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Feasibility Pump using

WalkSAT Sparsity in “real" Integer Programs (IPs)
Introduction

» “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is
1.63% (0.17%).

» Many have "arrow shape" [Bergner, Caprara, Furini, Libbecke,
Malaguti, Traversi 11] or "almost decomposable structure" of the
constraint matrix.

» Other example, two-stage Stochastic IPs:
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Goal: Exploit sparsity of IPs while designing primal heuristics,
cutting-plane, branching rules...
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Feasibility Pump using

WalkSAT Introduction: Feasibility Pump (FP)

Feasibility Pump (FP): [Fischetti, Glover, Lodi 05]

Introduction

Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X, y)
be an optimal solution
» While X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» Project: Let (X, y) be the point in the LP relaxation that
minimizes Y |x; — X;| (we say, X = ¢1-proj(X)).
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Feasibility Pump (FP): [Fischetti, Glover, Lodi 05]

Introduction

Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X, y)
be an optimal solution

» While X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» Project: Let (X, y) be the point in the LP relaxation that
minimizes Y |x; — X;| (we say, X = ¢1-proj(X)).

Problem: The above algorithm may cycle: Revisit the same
X € {0,1}" is different iterations (stalling).
Solution: Randomly perturb X.
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Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X, )
be an optimal solution

» while X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» If stalling detected: Randomly perturb X
to a different 0/1 vector.

> Project (¢1-proj): Let (X, y) be the point in the LP
relaxation that minimizes 3=, |x; — X;|.
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Feasibility Pump (FP): » FP is very successful in practice (For example, the original FP
Iniroduction finds feasible solutions for 96.3% of the instances in MIPLIB 2003
instances).

» Many improvements and generalizations: [Achterberg, Berthold
07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi,
Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard,
Engineer, Tsoukalas 12], [D’Ambrosio, Frangioni, Liberti, Lodi
12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer,
Fischetti, Savelsbergh, Tsoukalas 14], [GeiB3ler, Morsi, Schewe,
Schmidt 17], ...

» Some directions of research:

Take objective function into account

Mixed-integer programs with general integer variables.
Mixed-integer Non-linear programs (MINLP)
Alternative projection and rounding steps

vyvyYyy
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Randomization step plays significant role but has not been explicitly
studied. We focus on changing the randomization step by "thinking
about sparsity".
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Feasibility Pump (FP):
Introduction

» As discussed earlier real integer programs are sparse.

» A common example of sparse integer programs is those that are
almost decomposable.
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WalkSAT Sparse IPs ~ Decomposable IPs

Feasibility Pump (FP):
Introduction

» As discussed earlier real integer programs are sparse.

» A common example of sparse integer programs is those that are
almost decomposable.

» As proxy, we keep in mind decomposable problems.
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WalkSAT Agenda

Feasibility Pump (FP):
Introduction

» Propose a modification of WalkSAT for the mixed-binary case.

» Show that this modified algorithm "works well" on-mixed-binary
instances that are decomposable.



Feasibility Pump using

WalkSAT Agenda

Feasibility Pump (FP):
Introduction

» Propose a modification of WalkSAT for the mixed-binary case.

» Show that this modified algorithm "works well" on-mixed-binary
instances that are decomposable.

» Analyze randomization based on WalkSAT + Feasibility Pump.

» Show that this version of FP "works well" on single-row
decomposable instances.
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WalkSAT Agenda

Feasibility Pump (FP):
Introduction

» Propose a modification of WalkSAT for the mixed-binary case.

» Show that this modified algorithm "works well" on-mixed-binary
instances that are decomposable.

» Analyze randomization based on WalkSAT + Feasibility Pump.

» Show that this version of FP "works well" on single-row
decomposable instances.

» Implementation of FP with new randomization step that combines
ideas from the previous randomization and new randomization.

» The new method shows small but consistent improvement over FP.




2
WalkSAT



Skear - Introduction: WALKSAT

WalkSAT is effective primal heuristic used in SAT community

WalkSAT [Schéning 99]
] O
|:|1 O
7 O
I O Y O
x=[0100 . 001 1101

WalkSAT for pure binary IPs

» Start with a uniformly random point x € {0, 1}". If
feasible, done
» While X is infeasible do

» Pick any violated constraint and randomly pick a variable
X; in its support
> Flip value of X;
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» [Schéning 99] With probability 1 — 6, WALKSAT returns a

WalkSAT feasible solution in ~ log($)2" iterations.

Key Ideas:
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» [Schéning 99] With probability 1 — 6, WALKSAT returns a

WalkSAT feasible solution in ~ log($)2" iterations.

Key Ideas:
» Consider a fixed integer feasible solution x*. Track the

number of coordinates that are different from x*.
» In each step, with probability at least

1
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# non-zeros in violated constraint

we choose to flip coordinate where they differ.



e ke =" Performance of WalkSAT

» [Schéning 99] With probability 1 — 6, WALKSAT returns a

WalkSAT feasible solution in ~ log($)2" iterations.

Key Ideas:
» Consider a fixed integer feasible solution x*. Track the

number of coordinates that are different from x*.
» In each step, with probability at least

1
S
# non-zeros in violated constraint
we choose to flip coordinate where they differ.
a positive constant

» With probability atleast}sf, reduce by 1 the number of
coordinates they differ.

20
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WalkSAT WalkSAT good for decomposable instances

WalkSAT

[ ]

Observation

» Each iteration depends only on one part. Overall execution can
be split into independent executions over each part

» Put together bound from previous page over all parts

24



Feasibility Pump using

WalkSAT WalkSAT good for decomposable instances

WalkSAT

[ ]

Observation

» Each iteration depends only on one part. Overall execution can
be split into independent executions over each part

» Put together bound from previous page over all parts

Consequences

» Find feasible solution in ~ k2"/* iterations.
» Compare this to total enumeration ~ 2" iterations.

29
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WalkSAT

Mixed-binary WalkSAT

Mixed-binary version of WalkSAT

WalkSAT(/) for Mixed-binary IPs

» Input: Mixed-binary LP-relaxation
{(x,y)| Ax + By < b} (with binary variables x and
continuous variables y); parameter: /

» Start with a uniformly random point x € {0,1}". If 3y
such that (x, y) is feasible, done
» While x ¢ Proj, (P) do
» Generate minimal (wrt support of \) projected certificate
of infeasibility:

ATAx<ATh

1. avalid inequality for Proj,(P) i.e.,A > 0, ATB=o.
2. violating x: (ATA)X > AT b
(Can be obtained by solving a LP)
» Randomly pick / variables (with replacement) in the
support of minimal projected certificate.
» Flip value of these variables

24
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Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Mixed-binary WalkSAT

25
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Mixed-binary WalkSAT

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Theorem
Consider a feasible decomposable mixed-binary set

P'= P| x ... x Pj, where for all i € [k] we have
Pl = PN ({0,1}7 x RY),
Pi={(x,y") €[0,1]" x R% : AX' + By’ < c'}. (1)

Let s; be such that each constraint in P; has at most s; binary
variables, and define ~; := min{s; - (d; + 1), n;}. Then with probability
at least 1 — §, Mixed-binary WalkSAT(1) returns a feasible solution

within
In(k/8) > nj2meom
i

iterations.

26
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WalkSAT

FP + WalkSAT

FP + WalkSAT (FPW)

Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X, )
be an optimal solution

» while X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» If Stalling detected: "Randomly" perturb
x to a different 0/1 vector.

> Project: Let (X, y) be the point in the LP relaxation that
minimizes Y_; |x; — X;.

o8
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FP + WalkSAT

FP + WalkSAT (FPW)

Feasibility Pump + WalkSAT

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X, )
be an optimal solution

» while X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» If Stalling detected: "Randomly" perturb

X to a different 0/1 vector. < — — —— Use
mixed-binary WalkSAT(l) for random

update

> Project: Let (X, y) be the point in the LP relaxation that
minimizes Y~ |x; — X;.

29




wmen . Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP
> Issue: From previous proof, with probability 1/s; randomization
makes progress, but projection+rounding in next iteration could ruin
everything

FP + WalkSAT

20



wmen . Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP
> Issue: From previous proof, with probability 1/s; randomization
makes progress, but projection+rounding in next iteration could ruin
everything

FP + WalkSAT

2. Can analyze running-time for decomposable 1-row instances, i.e.
instances of the following kind:

ax +by =c .
X € {01}, y; € RY. } i€l

29
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WalkSAT Main result

Theorem

£+ WalkSAT Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1 — §, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = [In(k/4)] Z m(ni+1) - o2n; log < [In(k/68)] k(A + 1)2 . p2nlogh

iclk]

iterations, where n = max; n;.

kPl
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WalkSAT Main result

Theorem

£+ WalkSAT Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1 — §, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = [In(k/4)] Z m(ni+1) - o2n; log < [In(k/68)] k(A + 1)2 . p2nlogh

iclk]

iterations, where n = max; n;.

Note: Naive Feasibility Pump with original randomization (and no
re-start) may fail to converge for these instances.

k]
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WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

FP + WalkSAT
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WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
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FP + WalkSAT
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WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT
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WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT

» Notation (Stabilization): AltProj*(X) = X, where
AltProj* (%) = AltProj**'(X) = X for some k € Z ..

27
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WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT

» Notation (Stabilization): AltProj*(X) = X, where
AltProj* (%) = AltProj**'(X) = X for some k € Z ..

# of iterations FPW < [# iterations of AltProj*] x

Number of stallings

MaXseo,13» MiN{K : altProj*(x) = altProj* (%)} .

Worst-case stabilization time
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WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT

» Notation (Stabilization): AltProj*(X) = X, where
AltProj* (%) = AltProj**'(X) = X for some k € Z ..

# of iterations FPW < [# iterations of AltProj*] x

Number of stallings

MaXseo,13» MiN{K : altProj*(x) = altProj* (%)} .

Worst-case stabilization time

Proposition (Worst-case stabilization time)
For any X € {0,1}", AltProj""" (X) = AltProj(X).

20



R Proof sketch - I

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]

— [x® .= AltProj* (%)) —  [%® := WALKSAT(x%)]

— [¥* .= AltProj* (%)) —

Like last time, we target a point x* € Proj,(P) N {0,1}".

FP + WalkSAT

40

[X* := WALKSAT(x4)] ...
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[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) —  [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] —  [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:

AP » What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

a1
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WalkSAT Proof sketch - Il

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) —  [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] —  [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:

> What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

FP + WalkSAT

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(x) = X.

42
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[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) —  [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] —  [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:
AP » What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(X) = X. Then there is a point X' € {0,1}"
satisfying the following:
1. (close to ) ||X' — X|lo <2

2. (closerto x*) ||X" — x*|lo < ||¥ — x*]lo — 1

43



R Proof sketch - I

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) —  [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] —  [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:

AP » What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(X) = X. Then there is a point X' € {0,1}"
satisfying the following:
1. (close to ) ||X' — X|lo <2
2. (closerto x*) ||X" — x*|lo < ||¥ — x*]lo — 1
3. (projection control) ||¢y-proj(X') — X[l < 3.
Moreover, if we have the equality ||¢1-proj(X') — X'||1 = % in Item 3, then
X" = x*[lo < IX = x*[lo — 2.

44
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FP + WalkSAT

Proof sketch - Il

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) —  [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] —  [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:
> What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(X) = X. Then there is a point X' € {0,1}"
satisfying the following:
1. (close to ) ||X' — X|lo <2
2. (closerto x*)||X" — x*|lo < ||X — x*||o — 1
3. (projection control) ||¢y-proj(X') — X[l < 3.

Moreover, if we have the equality ||¢1-proj(X') — X'||1 = % in Item 3, then
X" = x*llo < IX — x*[lo — 2.

Corollary

Let x* be a coordinate-wise maximal solution in {0, 1}" N Proj, (P). Consider
any point X € {0,1}"\ Proj, (P) satisfying altProj*(X) = %X, and let X’ € {0,1}"
be a point constructed in Lemma above with respect to x* and X. Then
[altProj* (%) — x*[lo < [|% — x*[|o — 1.
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Feasibility Pump using

WalkSAT Proposed randomization

» All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

» The only change is in the randomization step.

Computations
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WalkSAT Proposed randomization

» All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

» The only change is in the randomization step.

Computations Old random |Zat|0n

» Define fractionality of /" variable: |x; — X;|. Let F be the number of
variables with positive fractionality.

» Randomly generate an integer TT (uniformly from {10, ...,30}).

» Flip the min{F, TT} variables with highest fractionality.

48
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WalkSAT Proposed randomization

» All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

» The only change is in the randomization step.

Computations Old randomization
» Define fractionality of /" variable: |x; — X;|. Let F be the number of
variables with positive fractionality.
» Randomly generate an integer TT (uniformly from {10, ...,30}).
» Flip the min{F, TT} variables with highest fractionality.

New randomization

» Flip the min{F, TT} variables with highest fractionality.
» If F < TT, then:

> let S be the union of the supports of the constraints that are not
satisfied by the current point (X, y).

» Select uniformly at random min{|S|, TT — |F|} indices from S, and
flip the values in X for all the selected indices.

49
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WalkSAT Computational experiments

Two classes of problems:
1. Two-stage stochastic models (randomly generated)

Computations AX+ Diyi < bi7 ie {17 . ,k}
x €{0,1}°
ye{0,1}9ie{1,... k}

2. MIPLIB 2010
Two algorithms:
1. FP: Feasibility pump 2.0
2. FPWM: Feasibility pump 2.0 + the modified randomization above

50
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Computations

Results for stochastic instances

# found time (s) % gap % modified
seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM
1 81 96 266 198 2.76 2.35 47% 39% 22%
2 81 101 257 167 2.71 2.1 45% 36% 26%
3 79 93 279 194 286 2.41 48% 40% 25%
4 81 106 275 181 2.81 2.26 45% 35% 23%
5 83 108 253 178 2.69 2.15 45% 35% 25%
6 76 101 255 85 2.72 2.20 49% 37% 27%
7 78 94 277 198 2.84 2.43 47% 39% 27%
8 80 99 256 175 2.71 2.21 47% 37% 25%
9 78 97 276 192 2.79 2.36 48% 37% 26%
10 80 98 274 185 2.86 224 47% 38% 24%
Avg. 80 99 267 185 2.78 227 47% 37% 25%

Table: Aggregated results by seed on two-stage stochastic models.

» 150 instances

» k € {10,20,30,40,50}
» p=qe{10,20}
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Computations

Results for MIPLIB 2010 instances

# found itr. time (s) % gap % modified
seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM
1 279 280 43 43 8.24 8.32 48% 48% 29%
2 279 279 44 44  8.40 8.33 50% 50% 22%
3 277 285 43 41 8.32 8.02 48% 47% 33%
4 280 282 42 41 8.07 7.89 48% 48% 25%
5 276 277 42 41 8.26 8.21 51% 51% 27%
6 277 278 43 42 8.29 8.13 50% 50% 32%
7 278 281 43 41 8.17 8.04 50% 49% 26%
8 273 277 43 43 8.16 8.07 49% 48% 31%
9 282 282 42 41 8.13 7.95 49% 49% 27%
10 278 282 42 40 8.33 8.02 50% 49% 31%
Avg. 278 280 43 42 8.24 8.10 49% 49% 28%

Table: Aggregated results by seed on MIPLIB2010.
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Feas ey =" Conclusions

Computaions » First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

» Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.
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WakSAT Conclusions

Computaions » First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

» Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.

» "Designing for sparse instances" helps!

R4
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