Improving the Randomization Step in Feasibility Pump using WalkSAT

Santanu S. Dey Joint work with: Andres Iroume, Marco Molinaro, Domenico Salvagnin

Discrepancy & IP workshop, 2018

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

Introduction

Feasibility Pump (FP): Introduction

WalkSA

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Sparsity in "real" Integer Programs (IPs)

- "Real" IPs are sparse: The average number (median) of non-zero entries in the constraint matrix of MIPLIB 2010 instances is <u>1.63%</u> (0.17%).
- Many have "arrow shape" [Bergner, Caprara, Furini, Lübbecke, Malaguti, Traversi 11] or "almost decomposable structure" of the constraint matrix.
- Other example, two-stage Stochastic IPs:

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Sparsity in "real" Integer Programs (IPs)

- "Real" IPs are sparse: The average number (median) of non-zero entries in the constraint matrix of MIPLIB 2010 instances is <u>1.63%</u> (0.17%).
- Many have "arrow shape" [Bergner, Caprara, Furini, Lübbecke, Malaguti, Traversi 11] or "almost decomposable structure" of the constraint matrix.
- Other example, two-stage Stochastic IPs:

・ロット (雪) (日) (日)

Goal: Exploit sparsity of IPs while designing primal heuristics, cutting-plane, branching rules...

1 Feasibility Pump

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

Feasibility Pump (FP): Introduction

- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

- Input: Mixed-binary LP (with binary variables x and continuous variables y)
- Solve the linear programming relaxation, and let (\bar{x}, \bar{y}) be an optimal solution
- While \bar{x} is not integral **do**:
 - ► Round: Round x̄ to closest 0/1 values, call the obtained vector x̃.
 - ▶ Project: Let (\bar{x}, \bar{y}) be the point in the LP relaxation that minimizes $\sum_{i} |x_i \tilde{x}_i|$ (we say, $\bar{x} = \ell_1$ -proj (\tilde{x})).

Introduction

Feasibility Pump (FP): Introduction

- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

- Input: Mixed-binary LP (with binary variables x and continuous variables y)
- Solve the linear programming relaxation, and let (\bar{x}, \bar{y}) be an optimal solution
- While \bar{x} is not integral **do**:
 - ► Round: Round x̄ to closest 0/1 values, call the obtained vector x̃.
 - ▶ Project: Let (\bar{x}, \bar{y}) be the point in the LP relaxation that minimizes $\sum_i |x_i \tilde{x}_i|$ (we say, $\bar{x} = \ell_1$ -proj (\tilde{x})).

Problem: The above algorithm may cycle: Revisit the same $\tilde{x} \in \{0, 1\}^n$ is different iterations (stalling). **Solution**: Randomly perturb \tilde{x} .

Introduction

Feasibility Pump (FP): Introduction

- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

- Input: Mixed-binary LP (with binary variables x and continuous variables y)
- Solve the linear programming relaxation, and let (\bar{x}, \bar{y}) be an optimal solution
- while \bar{x} is not integral do:
 - ► Round: Round \bar{x} to closest 0/1 values, call the obtained vector \tilde{x} .
 - If stalling detected: Randomly perturb \tilde{x} to a different 0/1 vector.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Project (ℓ₁-proj): Let (x̄, ȳ) be the point in the LP relaxation that minimizes ∑_i |x_i − x̃_i|.

Introduction

Feasibility Pump (FP): Introduction

- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Feasibility Pump (FP)

- ► FP is very successful in practice (For example, the original FP finds feasible solutions for 96.3% of the instances in MIPLIB 2003 instances).
- Many improvements and generalizations: [Achterberg, Berthold 07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi, Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard, Engineer, Tsoukalas 12], [D'Ambrosio, Frangioni, Liberti, Lodi 12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer, Fischetti, Savelsbergh, Tsoukalas 14], [Geißler, Morsi, Schewe, Schmidt 17], ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Some directions of research:
 - Take objective function into account
 - Mixed-integer programs with general integer variables.
 - Mixed-integer Non-linear programs (MINLP)
 - Alternative projection and rounding steps

Introduction

Feasibility Pump (FP): Introduction

- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Feasibility Pump (FP)

- ► FP is very successful in practice (For example, the original FP finds feasible solutions for 96.3% of the instances in MIPLIB 2003 instances).
- Many improvements and generalizations: [Achterberg, Berthold 07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi, Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard, Engineer, Tsoukalas 12], [D'Ambrosio, Frangioni, Liberti, Lodi 12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer, Fischetti, Savelsbergh, Tsoukalas 14], [Geißler, Morsi, Schewe, Schmidt 17], ...
- Some directions of research:
 - Take objective function into account
 - Mixed-integer programs with general integer variables.
 - Mixed-integer Non-linear programs (MINLP)
 - Alternative projection and rounding steps

Randomization step plays significant role but has not been explicitly studied. We focus on changing the randomization step by "thinking about sparsity".

Introduction

Feasibility Pump (FP): Introduction

- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Sparse IPs \approx Decomposable IPs

- As discussed earlier real integer programs are sparse.
- A common example of sparse integer programs is those that are almost decomposable.

・ロット (雪) (日) (日) (日)

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

Sparse IPs \approx Decomposable IPs

- As discussed earlier real integer programs are sparse.
- A common example of sparse integer programs is those that are almost decomposable.
- As proxy, we keep in mind decomposable problems.

Agenda

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

- Propose a modification of WalkSAT for the mixed-binary case.
 - Show that this modified algorithm "works well" on-mixed-binary instances that are decomposable.

э

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

Agenda

- Propose a modification of WalkSAT for the mixed-binary case.
 - Show that this modified algorithm "works well" on-mixed-binary instances that are decomposable.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э.

- Analyze randomization based on WalkSAT + Feasibility Pump.
 - Show that this version of FP "works well" on single-row decomposable instances.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

Agenda

- Propose a modification of WalkSAT for the mixed-binary case.
 - Show that this modified algorithm "works well" on-mixed-binary instances that are decomposable.
- Analyze randomization based on WalkSAT + Feasibility Pump.
 - Show that this version of FP "works well" on single-row decomposable instances.
- Implementation of FP with new randomization step that combines ideas from the previous randomization and new randomization.
 - The new method shows small but consistent improvement over FP.

・ロット (雪) (日) (日)

2 WalkSAT

▲ロト ▲御ト ▲注ト ★注ト 三注

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Introduction: WALKSAT

WalkSAT is effective primal heuristic used in SAT community [Schöning 99]

WalkSAT for pure binary IPs

- Start with a uniformly random point x̄ ∈ {0,1}ⁿ. If feasible, done
- While \bar{x} is infeasible do
 - Pick any violated constraint and randomly pick a variable \bar{x}_i in its support

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Flip value of \bar{x}_i

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

[Schöning 99] With probability 1 − δ, WALKSAT returns a feasible solution in ~ log(¹/_δ)2ⁿ iterations.

Key Ideas:

Performance of WalkSAT

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

[Schöning 99] With probability 1 − δ, WALKSAT returns a feasible solution in ~ log(¹/_δ)2ⁿ iterations.

Key Ideas:

Performance of WalkSAT

Consider a fixed integer feasible solution x*. Track the number of coordinates that are different from x*.

・ロット (雪) (日) (日)

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

[Schöning 99] With probability 1 − δ, WALKSAT returns a feasible solution in ~ log(¹/_δ)2ⁿ iterations.

Key Ideas:

Performance of WalkSAT

- Consider a fixed integer feasible solution x*. Track the number of coordinates that are different from x*.
- In each step, with probability at least

・ロット (雪) (日) (日)

we choose to flip coordinate where they differ.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

[Schöning 99] With probability 1 − δ, WALKSAT returns a feasible solution in ~ log(¹/_δ)2ⁿ iterations.

Key Ideas:

Performance of WalkSAT

- Consider a fixed integer feasible solution x*. Track the number of coordinates that are different from x*.
- In each step, with probability at least

we choose to flip coordinate where they differ.

a positive constant

・ロット (雪) (日) (日)

 With probability atleast ¹/_s, reduce by 1 the number of coordinates they differ.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

WalkSAT good for decomposable instances

Observation

Each iteration depends only on one part. Overall execution can be split into independent executions over each part

(日)

Put together bound from previous page over all parts

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

WalkSAT good for decomposable instances

Observation

- Each iteration depends only on one part. Overall execution can be split into independent executions over each part
- Put together bound from previous page over all parts

Consequences

- Find feasible solution in $\sim k2^{n/k}$ iterations.
- Compare this to total enumeration $\sim 2^n$ iterations.

3 Mixed-binary version of WalkSAT

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Mixed-binary version of WalkSAT

WalkSAT(I) for Mixed-binary IPs

- Input: Mixed-binary LP-relaxation {(x, y) | Ax + By ≤ b} (with binary variables x and continuous variables y); parameter: l
- Start with a uniformly random point $\bar{x} \in \{0, 1\}^n$. If $\exists \bar{y}$ such that (\bar{x}, \bar{y}) is feasible, done
- While $\bar{x} \notin \operatorname{Proj}_{x}(P)$ do
 - Generate <u>minimal</u> (wrt support of λ) projected certificate of infeasibility:

$$\lambda^{\top} A x \leq \lambda^{\top} b$$

- 1. a valid inequality for $\operatorname{Proj}_{X}(P)$ i.e., $\lambda \geq 0$, $\lambda^{\top} B = 0$.
- 2. violating \bar{x} : $(\lambda^{\top} A)\bar{x} > \lambda^{\top} b$

(Can be obtained by solving a LP)

- Randomly pick / variables (with replacement) in the support of minimal projected certificate.
- Flip value of these variables

Introduction

Feasibility Pump (FP): Introduction

WalkSA

Mixed-binary WalkSAT

FP + WalkSA

Computations

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate has a support contained in exactly one disjoint set of variables.

Introduction

Feasibility Pump (FP): Introduction

WalkSA

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate has a support contained in exactly one disjoint set of variables.

Theorem

Consider a feasible decomposable mixed-binary set

$$P^{l} = P_{1}^{l} \times \ldots \times P_{k}^{l}, \text{ where for all } i \in [k] \text{ we have}$$

$$P_{i}^{l} = P_{i} \cap (\{0, 1\}^{n_{i}} \times \mathbb{R}^{d_{i}}),$$

$$P_{i} = \{(x^{i}, y^{i}) \in [0, 1]^{n_{i}} \times \mathbb{R}^{d_{i}} : A^{i}x^{i} + B^{i}y^{i} \leq c^{i}\}.$$
(1)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Let s_i be such that each constraint in P_i has at most s_i binary variables, and define $\gamma_i := \min\{s_i \cdot (d_i + 1), n_i\}$. Then with probability at least $1 - \delta$, Mixed-binary WalkSAT(1) returns a feasible solution within

$$\ln(k/\delta) \sum_{i} n_i 2^{n_i \log \gamma_i}$$

iterations.

4 Feasibility Pump + WalkSAT

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

FP + WalkSAT (FPW)

Vanilla Feasibility Pump

- Input: Mixed-binary LP (with binary variables x and continuous variables y)
- Solve the linear programming relaxation, and let (\bar{x}, \bar{y}) be an optimal solution
- while \bar{x} is not integral do:
 - ▶ Round: Round \bar{x} to closest 0/1 values, call the obtained vector \tilde{x} .
 - If Stalling detected: "Randomly" perturb x to a different 0/1 vector.
 - ► Project: Let (\bar{x}, \bar{y}) be the point in the LP relaxation that minimizes $\sum_{i} |x_i \bar{x}_i|$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

FP + WalkSAT (FPW)

Feasibility Pump + WalkSAT

- Input: Mixed-binary LP (with binary variables x and continuous variables y)
- Solve the linear programming relaxation, and let (\bar{x}, \bar{y}) be an optimal solution
- while \bar{x} is not integral do:
 - Round: Round x̄ to closest 0/1 values, call the obtained vector x̄.
 - If Stalling detected: "Randomly" perturb x
 to a different 0/1 vector. < - - - Use mixed-binary WalkSAT(I) for random update
 - ▶ Project: Let (\bar{x}, \bar{y}) be the point in the LP relaxation that minimizes $\sum_{i} |x_i \bar{x}_i|$.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Analysis of Feasibility Pump + WalkSAT (FPW)

- 1. We are not able to analyze this algorithm WFP for a general mixed-binary IP
 - Issue: From previous proof, with probability 1/s_j randomization makes progress, but projection+rounding in next iteration could ruin everything

・ロット (雪) (日) (日)

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Analysis of Feasibility Pump + WalkSAT (FPW)

- 1. We are not able to analyze this algorithm WFP for a general mixed-binary IP
 - Issue: From previous proof, with probability 1/s_j randomization makes progress, but projection+rounding in next iteration could ruin everything
- 2. Can analyze running-time for decomposable 1-row instances, i.e. instances of the following kind:

$$egin{array}{l} a^{i}x^{i}+b^{i}y^{i}=c_{i}\ x^{i}\in\{0,1\}^{n_{i}},y_{i}\in\mathbb{R}^{d_{i}}_{+}. \end{array}
ight\} \ orall i\in[k]$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Main result

Theorem

Consider a feasible decomposable 1-row instances set as shown in the previous slide. Then with probability at least $1 - \delta$, Feasibility Pump + WalkSAT(2) returns a feasible solution within

 $T = \lceil \ln(k/\delta) \rceil \sum_{i \in [k]} n_i (n_i + 1) \cdot 2^{2n_i \log n_i} \leq \lceil \ln(k/\delta) \rceil k(\bar{n} + 1)^2 \cdot 2^{2\bar{n} \log \bar{n}}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

iterations, where $\overline{n} = \max_i n_i$.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Main result

Theorem

Consider a feasible decomposable 1-row instances set as shown in the previous slide. Then with probability at least $1 - \delta$, Feasibility Pump + WalkSAT(2) returns a feasible solution within

 $\mathcal{T} = \lceil \ln(k/\delta) \rceil \sum_{i \in [k]} n_i (n_i + 1) \cdot 2^{2n_i \log n_i} \leq \lceil \ln(k/\delta) \rceil k(\bar{n} + 1)^2 \cdot 2^{2\bar{n} \log \bar{n}}$

iterations, where $\overline{n} = \max_i n_i$.

Note: Naive Feasibility Pump with original randomization (and no re-start) may fail to converge for these instances.

Proof sketch - I

- Introduction
- Feasibility Pump (FP): Introduction
- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

 (Like before) We can split the execution into independent executions over each constraint.

(ロ) (四) (E) (E) (E) (E)

- Introduction
- Feasibility Pump (FP): Introduction
- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Proof sketch - I

- (Like before) We can split the execution into independent executions over each constraint.
- ▶ Notation: For $\tilde{x} \in \{0, 1\}^n$: AltProj $(\tilde{x}) := \text{round}(\ell_1 \text{proj}(\tilde{x}))$.

- Introduction
- Feasibility Pump (FP): Introduction
- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Proof sketch - I

- (Like before) We can split the execution into independent executions over each constraint.
- ▶ Notation: For $\tilde{x} \in \{0, 1\}^n$: AltProj $(\tilde{x}) := \text{round}(\ell_1 \text{proj}(\tilde{x}))$.

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only when AltProj $(\tilde{x}) = \tilde{x}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Introduction
- Feasibility Pump (FP): Introduction
- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Proof sketch - I

- (Like before) We can split the execution into independent executions over each constraint.
- ▶ Notation: For $\tilde{x} \in \{0, 1\}^n$: AltProj $(\tilde{x}) := \text{round}(\ell_1 \text{proj}(\tilde{x}))$.

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only when AltProj $(\tilde{x}) = \tilde{x}$.

Notation (Stabilization): AltProj^{*}(x̃) = x̄, where AltProj^k(x̃) = AltProj^{k+1}(x̃) = x̄ for some k ∈ Z₊₊.

- Introduction
- Feasibility Pump (FP): Introduction
- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

Proof sketch - I

- (Like before) We can split the execution into independent executions over each constraint.
- ▶ Notation: For $\tilde{x} \in \{0, 1\}^n$: AltProj $(\tilde{x}) := \text{round}(\ell_1 \text{proj}(\tilde{x}))$.

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only when AltProj $(\tilde{x}) = \tilde{x}$.

Notation (Stabilization): AltProj^{*}(x̃) = x̄, where AltProj^k(x̃) = AltProj^{k+1}(x̃) = x̄ for some k ∈ Z₊₊.

> # of iterations FPW $\leq [$ # iterations of AltProj^{*}] \times Number of stallings $\max_{\tilde{x} \in \{0,1\}^n} \min\{k : altProj^k(\tilde{x}) = altProj^*(\tilde{x})\}$. Worst-case stabilization time

- Introduction
- Feasibility Pump (FP): Introduction
- WalkSAT
- Mixed-binary WalkSAT
- FP + WalkSAT

Computations

Proof sketch - I

- (Like before) We can split the execution into independent executions over each constraint.
- ▶ Notation: For $\tilde{x} \in \{0, 1\}^n$: AltProj $(\tilde{x}) := \text{round}(\ell_1 \text{proj}(\tilde{x}))$.

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only when AltProj $(\tilde{x}) = \tilde{x}$.

Notation (Stabilization): AltProj^{*}(x̃) = x̄, where AltProj^k(x̃) = AltProj^{k+1}(x̃) = x̄ for some k ∈ Z₊₊.

> # of iterations FPW $\leq [$ # iterations of AltProj^{*}] \times Number of stallings

$$\max_{\tilde{x} \in \{0,1\}^n} \min\{k : \operatorname{altProj}^k(\tilde{x}) = \operatorname{altProj}^*(\tilde{x})\}.$$

Worst-case stabilization time

Proposition (Worst-case stabilization time) For any $\tilde{x} \in \{0, 1\}^n$, AltProj^{*n*+1} $(\tilde{x}) = AltProj(\tilde{x})$.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

$$\begin{split} [x^2 &:= \mathsf{AltProj}^*(\tilde{x}^1)] &\longrightarrow [\tilde{x}^2 &:= \mathsf{WALKSAT}(x^2)] \\ &\longrightarrow [x^3 &:= \mathsf{AltProj}^*(\tilde{x}^2)] &\longrightarrow [\tilde{x}^3 &:= \mathsf{WALKSAT}(x^3)] \\ &\longrightarrow [x^4 &:= \mathsf{AltProj}^*(\tilde{x}^3)] &\longrightarrow [\tilde{x}^4 &:= \mathsf{WALKSAT}(x^4)] \dots \end{split}$$
 Like last time, we target a point $x^* \in \mathsf{Proj}_x(\mathcal{P}) \cap \{0,1\}^n$.

40

<ロ> <回> <回> <回> <回> <回> < 回</p>

Introduction

Feasibility Pump (FP): Introduction

WalkSA^{*}

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

$$\begin{split} & [x^2 := \mathsf{AltProj}^*(\tilde{x}^1)] \quad \longrightarrow \quad [\tilde{x}^2 := \mathsf{WALKSAT}(x^2)] \\ & \longrightarrow [x^3 := \mathsf{AltProj}^*(\tilde{x}^2)] \quad \longrightarrow \quad [\tilde{x}^3 := \mathsf{WALKSAT}(x^3)] \\ & \longrightarrow [x^4 := \mathsf{AltProj}^*(\tilde{x}^3)] \quad \longrightarrow \quad [\tilde{x}^4 := \mathsf{WALKSAT}(x^4)] \, . \, . \end{split}$$

Like last time, we target a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Key Question:

What if we get closer to x* in the WalkSAT step, but then go far away in the AltProj* step.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

$$\begin{split} & [x^2 := \mathsf{AltProj}^*(\tilde{x}^1)] \quad \longrightarrow \quad [\tilde{x}^2 := \mathsf{WALKSAT}(x^2)] \\ & \longrightarrow [x^3 := \mathsf{AltProj}^*(\tilde{x}^2)] \quad \longrightarrow \quad [\tilde{x}^3 := \mathsf{WALKSAT}(x^3)] \\ & \longrightarrow [x^4 := \mathsf{AltProj}^*(\tilde{x}^3)] \quad \longrightarrow \quad [\tilde{x}^4 := \mathsf{WALKSAT}(x^4)] \, . \, . \end{split}$$

Like last time, we target a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Key Question:

What if we get closer to x* in the WalkSAT step, but then go far away in the AltProj* step.

Lemma

Consider a point $x^* \in \text{Proj}_x(P) \cap \{0,1\}^n$, and a point $\tilde{x} \in \{0,1\}^n$ not in $\text{Proj}_x(P) \cap \{0,1\}^n$. Suppose altProj $(\tilde{x}) = \tilde{x}$.

э.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

$$\begin{split} & [x^2 := \mathsf{AltProj}^*(\tilde{x}^1)] \quad \longrightarrow \quad [\tilde{x}^2 := \mathsf{WALKSAT}(x^2)] \\ & \longrightarrow [x^3 := \mathsf{AltProj}^*(\tilde{x}^2)] \quad \longrightarrow \quad [\tilde{x}^3 := \mathsf{WALKSAT}(x^3)] \\ & \longrightarrow [x^4 := \mathsf{AltProj}^*(\tilde{x}^3)] \quad \longrightarrow \quad [\tilde{x}^4 := \mathsf{WALKSAT}(x^4)] \, . \, . \end{split}$$

Like last time, we target a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Key Question:

What if we get closer to x* in the WalkSAT step, but then go far away in the AltProj* step.

Lemma

Consider a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$, and a point $\tilde{x} \in \{0, 1\}^n$ not in $\operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Suppose $\operatorname{altProj}(\tilde{x}) = \tilde{x}$. Then there is a point $\tilde{x}' \in \{0, 1\}^n$ satisfying the following:

- 1. (close to \tilde{x}) $\|\tilde{x}' \tilde{x}\|_0 \le 2$
- 2. (closer to x^*) $\|\tilde{x}' x^*\|_0 \le \|\tilde{x} x^*\|_0 1$

Introduction

Feasibility Pump (FP): Introduction

WalkSA

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

$$\begin{split} & [x^2 := \mathsf{AltProj}^*(\tilde{x}^1)] \quad \longrightarrow \quad [\tilde{x}^2 := \mathsf{WALKSAT}(x^2)] \\ & \longrightarrow [x^3 := \mathsf{AltProj}^*(\tilde{x}^2)] \quad \longrightarrow \quad [\tilde{x}^3 := \mathsf{WALKSAT}(x^3)] \\ & \longrightarrow [x^4 := \mathsf{AltProj}^*(\tilde{x}^3)] \quad \longrightarrow \quad [\tilde{x}^4 := \mathsf{WALKSAT}(x^4)] \, . \, . \end{split}$$

Like last time, we target a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Key Question:

What if we get closer to x* in the WalkSAT step, but then go far away in the AltProj* step.

Lemma

Consider a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$, and a point $\tilde{x} \in \{0, 1\}^n$ not in $\operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Suppose $\operatorname{altProj}(\tilde{x}) = \tilde{x}$. Then there is a point $\tilde{x}' \in \{0, 1\}^n$ satisfying the following:

- 1. (close to \tilde{x}) $\|\tilde{x}' \tilde{x}\|_0 \le 2$
- 2. (closer to x^*) $\|\tilde{x}' x^*\|_0 \le \|\tilde{x} x^*\|_0 1$

3. (projection control) $\|\ell_1 \operatorname{-proj}(\tilde{x}') - \tilde{x}'\|_1 \leq \frac{1}{2}$.

Moreover, if we have the equality $\|\ell_1 \operatorname{-proj}(\tilde{x}') - \tilde{x}'\|_1 = \frac{1}{2}$ in Item 3, then $\|\tilde{x}' - x^*\|_0 \le \|\tilde{x} - x^*\|_0 - 2$.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

$$\begin{split} & [x^2 := \mathsf{AltProj}^*(\tilde{x}^1)] \quad \longrightarrow \quad [\tilde{x}^2 := \mathsf{WALKSAT}(x^2)] \\ & \longrightarrow [x^3 := \mathsf{AltProj}^*(\tilde{x}^2)] \quad \longrightarrow \quad [\tilde{x}^3 := \mathsf{WALKSAT}(x^3)] \\ & \longrightarrow [x^4 := \mathsf{AltProj}^*(\tilde{x}^3)] \quad \longrightarrow \quad [\tilde{x}^4 := \mathsf{WALKSAT}(x^4)] \, . \, . \end{split}$$

Like last time, we target a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Key Question:

What if we get closer to x* in the WalkSAT step, but then go far away in the AltProj* step.

Lemma

Consider a point $x^* \in \operatorname{Proj}_x(P) \cap \{0, 1\}^n$, and a point $\tilde{x} \in \{0, 1\}^n$ not in $\operatorname{Proj}_x(P) \cap \{0, 1\}^n$. Suppose $\operatorname{altProj}(\tilde{x}) = \tilde{x}$. Then there is a point $\tilde{x}' \in \{0, 1\}^n$ satisfying the following:

- 1. (close to \tilde{x}) $\|\tilde{x}' \tilde{x}\|_0 \le 2$
- 2. (closer to x^*) $\|\tilde{x}' x^*\|_0 \le \|\tilde{x} x^*\|_0 1$

3. (projection control) $\|\ell_1 \operatorname{-proj}(\tilde{x}') - \tilde{x}'\|_1 \leq \frac{1}{2}$.

Moreover, if we have the equality $\|\ell_1 \operatorname{-proj}(\tilde{x}') - \tilde{x}'\|_1 = \frac{1}{2}$ in Item 3, then $\|\tilde{x}' - x^*\|_0 \le \|\tilde{x} - x^*\|_0 - 2$.

Corollary

Let x^* be a coordinate-wise maximal solution in $\{0,1\}^n \cap \operatorname{Proj}_X(P)$. Consider any point $\tilde{x} \in \{0,1\}^n \setminus \operatorname{Proj}_X(P)$ satisfying alt $\operatorname{Proj}^*(\tilde{x}) = \tilde{x}$, and let $\tilde{x}' \in \{0,1\}^n$ be a point constructed in Lemma above with respect to x^* and \tilde{x} . Then $\|\operatorname{alt}\operatorname{Proj}^*(\tilde{x}') - x^*\|_0 \le \|\tilde{x} - x^*\|_0 - 1$.

5 Computations

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

- Feasibility Pump (FP): Introduction
- WalkSA
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Proposed randomization

- All features (such as constraint propagation) which are part of the Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code have been left unchanged.
- The only change is in the randomization step.

Introduction

- Feasibility Pump (FP): Introduction
- WalkSA
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Proposed randomization

- All features (such as constraint propagation) which are part of the Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code have been left unchanged.
- The only change is in the randomization step.

Old randomization

- ► Define fractionality of *i*th variable: $|\bar{x}_i \tilde{x}_i|$. Let *F* be the number of variables with positive fractionality.
- Randomly generate an integer *TT* (uniformly from $\{10, \ldots, 30\}$).

► Flip the min{*F*, *TT*} variables with highest fractionality.

Introduction

- Feasibility Pump (FP): Introduction
- WalkSA
- Mixed-binary WalkSAT
- FP + WalkSAT
- Computations

Proposed randomization

- All features (such as constraint propagation) which are part of the Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code have been left unchanged.
- The only change is in the randomization step.

Old randomization

- ▶ Define fractionality of *i*th variable: |x̄_i x̃_i|. Let *F* be the number of variables with positive fractionality.
- Randomly generate an integer *TT* (uniformly from $\{10, \ldots, 30\}$).
- ► Flip the min{*F*, *TT*} variables with highest fractionality.

New randomization

- Flip the min $\{F, TT\}$ variables with highest fractionality.
- ▶ If *F* < *TT*, then:
 - let S be the union of the supports of the constraints that are not satisfied by the current point (x̃, ȳ).
 - Select uniformly at random $\min\{|S|, TT |F|\}$ indices from *S*, and flip the values in \tilde{x} for all the selected indices.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Computational experiments

Two classes of problems:

1. Two-stage stochastic models (randomly generated)

$$Ax + D^{i}y^{i} \le b^{i}, \ i \in \{1, \dots, k\}$$
$$x \in \{0, 1\}^{p}$$
$$y^{i} \in \{0, 1\}^{q} \ i \in \{1, \dots, k\}$$

2. MIPLIB 2010

Two algorithms:

- 1. FP: Feasibility pump 2.0
- 2. FPWM: Feasibility pump 2.0 + the modified randomization above

・ロット (雪) (日) (日)

Introduction

Feasibility Pump (FP) Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Results for stochastic instances

	# found		itr.		time (s)		% gap		% modified
seed	FP	FРWм	FP	FРWм	FP	FРWм	FP	FРWм	FРWм
1	81	96	266	198	2.76	2.35	47%	39%	22%
2	81	101	257	167	2.71	2.11	45%	36%	26%
3	79	93	279	194	2.86	2.41	48%	40%	25%
4	81	106	275	181	2.81	2.26	45%	35%	23%
5	83	103	253	178	2.69	2.15	45%	35%	25%
6	76	101	255	85	2.72	2.20	49%	37%	27%
7	78	94	277	198	2.84	2.43	47%	39%	27%
8	80	99	256	175	2.71	2.21	47%	37%	25%
9	78	97	276	192	2.79	2.36	48%	37%	26%
10	80	98	274	185	2.86	2.24	47%	38%	24%
Avg.	80	99	267	185	2.78	2.27	47%	37%	25%

Table: Aggregated results by seed on two-stage stochastic models.

・ロト (日本・ヨー・ヨー・ショー・ショー)

150 instances

- ▶ $k \in \{10, 20, 30, 40, 50\}$
- ▶ p = q ∈ {10, 20}

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Results for MIPLIB 2010 instances

	# found		itr.		time (s)		% gap		% modified
seed	FP	FРWм	FP	FРWм	FP	FРWм	FP	FPWм	FРWм
1	279	280	43	43	8.24	8.32	48%	48%	29%
2	279	279	44	44	8.40	8.33	50%	50%	22%
3	277	285	43	41	8.32	8.02	48%	47%	33%
4	280	282	42	41	8.07	7.89	48%	48%	25%
5	276	277	42	41	8.26	8.21	51%	51%	27%
6	277	278	43	42	8.29	8.13	50%	50%	32%
7	278	281	43	41	8.17	8.04	50%	49%	26%
8	273	277	43	43	8.16	8.07	49%	48%	31%
9	282	282	42	41	8.13	7.95	49%	49%	27%
10	278	282	42	40	8.33	8.02	50%	49%	31%
Avg.	278	280	43	42	8.24	8.10	49%	49%	28%

Table: Aggregated results by seed on MIPLIB2010.

ヘロト ヘヨト ヘヨト ヘヨト

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Conclusions

 First ever analysis of running time of Feasibility Pump (even if it is for a special class of instances)

 Suggested changes are trivial to implement and appears to dominate feasibility pump almost consistently.

Introduction

Feasibility Pump (FP): Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Conclusions

 First ever analysis of running time of Feasibility Pump (even if it is for a special class of instances)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Suggested changes are trivial to implement and appears to dominate feasibility pump almost consistently.
- "Designing for sparse instances" helps!