
Improving the Randomization Step in Feasibility Pump
using WalkSAT

Santanu S. Dey
Joint work with: Andres Iroume, Marco Molinaro, Domenico

Salvagnin

Discrepancy & IP workshop, 2018

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Sparsity in “real" Integer Programs (IPs)

I “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is
1.63% (0.17%).

I Many have "arrow shape" [Bergner, Caprara, Furini, Lübbecke,
Malaguti, Traversi 11] or "almost decomposable structure" of the
constraint matrix.

I Other example, two-stage Stochastic IPs:

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Goal: Exploit sparsity of IPs while designing primal heuristics,
cutting-plane, branching rules...

2

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Sparsity in “real" Integer Programs (IPs)

I “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is
1.63% (0.17%).

I Many have "arrow shape" [Bergner, Caprara, Furini, Lübbecke,
Malaguti, Traversi 11] or "almost decomposable structure" of the
constraint matrix.

I Other example, two-stage Stochastic IPs:

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Goal: Exploit sparsity of IPs while designing primal heuristics,
cutting-plane, branching rules...

3

1
Feasibility Pump

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I While x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i | (we say, x̄ = `1-proj(x̃)).

Problem: The above algorithm may cycle: Revisit the same
x̃ ∈ {0, 1}n is different iterations (stalling).
Solution: Randomly perturb x̃ .

5

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I While x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i | (we say, x̄ = `1-proj(x̃)).

Problem: The above algorithm may cycle: Revisit the same
x̃ ∈ {0, 1}n is different iterations (stalling).
Solution: Randomly perturb x̃ .

6

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Introduction: Feasibility Pump (FP)

[Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I while x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I If stalling detected: Randomly perturb x̃
to a different 0/1 vector.

I Project (`1-proj): Let (x̄ , ȳ) be the point in the LP
relaxation that minimizes

∑
i |xi − x̃i |.

7

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Feasibility Pump (FP)

I FP is very successful in practice (For example, the original FP
finds feasible solutions for 96.3% of the instances in MIPLIB 2003
instances).

I Many improvements and generalizations: [Achterberg, Berthold
07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi,
Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard,
Engineer, Tsoukalas 12], [D’Ambrosio, Frangioni, Liberti, Lodi
12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer,
Fischetti, Savelsbergh, Tsoukalas 14], [Geißler, Morsi, Schewe,
Schmidt 17], ...

I Some directions of research:
I Take objective function into account
I Mixed-integer programs with general integer variables.
I Mixed-integer Non-linear programs (MINLP)
I Alternative projection and rounding steps

Randomization step plays significant role but has not been explicitly
studied. We focus on changing the randomization step by "thinking
about sparsity".

8

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Feasibility Pump (FP)

I FP is very successful in practice (For example, the original FP
finds feasible solutions for 96.3% of the instances in MIPLIB 2003
instances).

I Many improvements and generalizations: [Achterberg, Berthold
07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi,
Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard,
Engineer, Tsoukalas 12], [D’Ambrosio, Frangioni, Liberti, Lodi
12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer,
Fischetti, Savelsbergh, Tsoukalas 14], [Geißler, Morsi, Schewe,
Schmidt 17], ...

I Some directions of research:
I Take objective function into account
I Mixed-integer programs with general integer variables.
I Mixed-integer Non-linear programs (MINLP)
I Alternative projection and rounding steps

Randomization step plays significant role but has not been explicitly
studied. We focus on changing the randomization step by "thinking
about sparsity".

9

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Sparse IPs ≈ Decomposable IPs

I As discussed earlier real integer programs are sparse.
I A common example of sparse integer programs is those that are

almost decomposable.

I As proxy, we keep in mind decomposable problems.

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

10

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Sparse IPs ≈ Decomposable IPs

I As discussed earlier real integer programs are sparse.
I A common example of sparse integer programs is those that are

almost decomposable.
I As proxy, we keep in mind decomposable problems.

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

11

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Agenda

I Propose a modification of WalkSAT for the mixed-binary case.
I Show that this modified algorithm "works well" on-mixed-binary

instances that are decomposable.

I Analyze randomization based on WalkSAT + Feasibility Pump.
I Show that this version of FP "works well" on single-row

decomposable instances.
I Implementation of FP with new randomization step that combines

ideas from the previous randomization and new randomization.
I The new method shows small but consistent improvement over FP.

12

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Agenda

I Propose a modification of WalkSAT for the mixed-binary case.
I Show that this modified algorithm "works well" on-mixed-binary

instances that are decomposable.
I Analyze randomization based on WalkSAT + Feasibility Pump.

I Show that this version of FP "works well" on single-row
decomposable instances.

I Implementation of FP with new randomization step that combines
ideas from the previous randomization and new randomization.

I The new method shows small but consistent improvement over FP.

13

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Agenda

I Propose a modification of WalkSAT for the mixed-binary case.
I Show that this modified algorithm "works well" on-mixed-binary

instances that are decomposable.
I Analyze randomization based on WalkSAT + Feasibility Pump.

I Show that this version of FP "works well" on single-row
decomposable instances.

I Implementation of FP with new randomization step that combines
ideas from the previous randomization and new randomization.

I The new method shows small but consistent improvement over FP.

14

2
WalkSAT

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Introduction: WALKSAT

WalkSAT is effective primal heuristic used in SAT community
[Schöning 99]

≤

≤

≥

=

1. RAND BASED ON WALKSAT

0 1 0 0 … 0 1 1 … … 1 1 0 1 𝑥 = 0

• WalkSAT is effective primal heuristic used in SAT community [Schoning 99]

WalkSAT for pure-binary IPs

- Start with a uniformly random point 𝑥 ∈ {0,1}𝑛. If feasible, done

- Else, pick any violated constraint and randomly pick a variable 𝑥𝑖 in its

support

- Flip value of 𝑥 𝑖

- Repeat from Step 2

WalkSAT for pure binary IPs

I Start with a uniformly random point x̄ ∈ {0, 1}n. If
feasible, done

I While x̄ is infeasible do
I Pick any violated constraint and randomly pick a variable

x̄i in its support
I Flip value of x̄i

16

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Performance of WalkSAT

I [Schöning 99] With probability 1− δ, WALKSAT returns a
feasible solution in ∼ log(1

δ)2
n iterations.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that are different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ.

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

17

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Performance of WalkSAT

I [Schöning 99] With probability 1− δ, WALKSAT returns a
feasible solution in ∼ log(1

δ)2
n iterations.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that are different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ.

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

18

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Performance of WalkSAT

I [Schöning 99] With probability 1− δ, WALKSAT returns a
feasible solution in ∼ log(1

δ)2
n iterations.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that are different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ.

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

19

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Performance of WalkSAT

I [Schöning 99] With probability 1− δ, WALKSAT returns a
feasible solution in ∼ log(1

δ)2
n iterations.

Key Ideas:

I Consider a fixed integer feasible solution x∗. Track the
number of coordinates that are different from x∗.

I In each step, with probability at least

1
s︸︷︷︸

non-zeros in violated constraint

we choose to flip coordinate where they differ.

I With probability atleast
�
��

a positive constant

1
s , reduce by 1 the number of

coordinates they differ.

20

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

WalkSAT good for decomposable instances

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Observation
I Each iteration depends only on one part. Overall execution can

be split into independent executions over each part
I Put together bound from previous page over all parts

Consequences

I Find feasible solution in ∼ k2n/k iterations.
I Compare this to total enumeration ∼ 2n iterations.

21

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

WalkSAT good for decomposable instances

SPARSITY IN IPs

• Many IPs in practice have sparse constraints

• Many have ”almost decomposable” structure:

• As proxy, we keep in mind decomposable problems

≤ 𝑥
2-stage stochastic

programming

≤ 𝑥

Observation
I Each iteration depends only on one part. Overall execution can

be split into independent executions over each part
I Put together bound from previous page over all parts

Consequences

I Find feasible solution in ∼ k2n/k iterations.
I Compare this to total enumeration ∼ 2n iterations.

22

3
Mixed-binary version of WalkSAT

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Mixed-binary version of WalkSAT

WalkSAT(l) for Mixed-binary IPs

I Input: Mixed-binary LP-relaxation
{(x , y) |Ax + By ≤ b} (with binary variables x and
continuous variables y); parameter: l

I Start with a uniformly random point x̄ ∈ {0, 1}n. If ∃ȳ
such that (x̄ , ȳ) is feasible, done

I While x̄ 6∈ Projx (P) do
I Generate minimal (wrt support of λ) projected certificate

of infeasibility:

λ>Ax ≤ λ>b

1. a valid inequality for Projx (P) i.e.,λ ≥ 0, λ>B = 0.
2. violating x̄ : (λ>A)x̄ > λ>b

(Can be obtained by solving a LP)
I Randomly pick l variables (with replacement) in the

support of minimal projected certificate.
I Flip value of these variables

24

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Theorem
Consider a feasible decomposable mixed-binary set

P I = P I
1 × . . .× P I

k , where for all i ∈ [k] we have

P I
i = Pi ∩ ({0, 1}ni × Rdi),

Pi = {(x i , y i) ∈ [0, 1]ni × Rdi : Aix i + B iy i ≤ c i}. (1)

Let si be such that each constraint in Pi has at most si binary
variables, and define γi := min{si · (di + 1), ni}. Then with probability
at least 1− δ, Mixed-binary WalkSAT(1) returns a feasible solution
within

ln(k/δ)
∑

i

ni 2ni log γi

iterations.

25

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Theorem
Consider a feasible decomposable mixed-binary set

P I = P I
1 × . . .× P I

k , where for all i ∈ [k] we have

P I
i = Pi ∩ ({0, 1}ni × Rdi),

Pi = {(x i , y i) ∈ [0, 1]ni × Rdi : Aix i + B iy i ≤ c i}. (1)

Let si be such that each constraint in Pi has at most si binary
variables, and define γi := min{si · (di + 1), ni}. Then with probability
at least 1− δ, Mixed-binary WalkSAT(1) returns a feasible solution
within

ln(k/δ)
∑

i

ni 2ni log γi

iterations.

26

4
Feasibility Pump + WalkSAT

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

FP + WalkSAT (FPW)

Vanilla Feasibility Pump

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I while x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I If Stalling detected: "Randomly" perturb
x̃ to a different 0/1 vector.

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i |.

28

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

FP + WalkSAT (FPW)

Feasibility Pump + WalkSAT

I Input: Mixed-binary LP (with binary variables x and
continuous variables y)

I Solve the linear programming relaxation, and let (x̄ , ȳ)
be an optimal solution

I while x̄ is not integral do:
I Round: Round x̄ to closest 0/1 values, call the obtained

vector x̃ .

I If Stalling detected: "Randomly" perturb
x̃ to a different 0/1 vector. < −−−− Use
mixed-binary WalkSAT(l) for random
update

I Project: Let (x̄ , ȳ) be the point in the LP relaxation that
minimizes

∑
i |xi − x̃i |.

29

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP

I Issue: From previous proof, with probability 1/sj randomization
makes progress, but projection+rounding in next iteration could ruin
everything

2. Can analyze running-time for decomposable 1-row instances, i.e.
instances of the following kind:

aix i + biy i = ci

x i ∈ {0, 1}ni , yi ∈ Rdi
+ .

}
∀i ∈ [k]

30

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP

I Issue: From previous proof, with probability 1/sj randomization
makes progress, but projection+rounding in next iteration could ruin
everything

2. Can analyze running-time for decomposable 1-row instances, i.e.
instances of the following kind:

aix i + biy i = ci

x i ∈ {0, 1}ni , yi ∈ Rdi
+ .

}
∀i ∈ [k]

31

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Main result

Theorem
Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1− δ, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = dln(k/δ)e
∑
i∈[k]

ni (ni + 1) · 22ni log ni ≤ dln(k/δ)e k(n̄ + 1)2 · 22n̄ log n̄

iterations, where n̄ = maxi ni .

Note: Naive Feasibility Pump with original randomization (and no
re-start) may fail to converge for these instances.

32

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Main result

Theorem
Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1− δ, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = dln(k/δ)e
∑
i∈[k]

ni (ni + 1) · 22ni log ni ≤ dln(k/δ)e k(n̄ + 1)2 · 22n̄ log n̄

iterations, where n̄ = maxi ni .

Note: Naive Feasibility Pump with original randomization (and no
re-start) may fail to converge for these instances.

33

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

34

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

35

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

36

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

37

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

38

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - I

I (Like before) We can split the execution into independent
executions over each constraint.

I Notation: For x̃ ∈ {0, 1}n: AltProj(x̃) := round (`1-proj(x̃)).

Proposition (Length of cycle)
All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(x̃) = x̃ .

I Notation (Stabilization): AltProj∗(x̃) = x̄ , where
AltProjk (x̃) = AltProjk+1(x̃) = x̄ for some k ∈ Z++.

I

of iterations FPW ≤ [# iterations of AltProj∗]︸ ︷︷ ︸
Number of stallings

×

maxx̃∈{0,1}n min{k : altProjk (x̃) = altProj∗(x̃)}︸ ︷︷ ︸
Worst-case stabilization time

.

Proposition (Worst-case stabilization time)
For any x̃ ∈ {0, 1}n, AltProjn+1(x̃) = AltProj(x̃).

39

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n.

Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

40

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

41

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ .

Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

42

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

43

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

44

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proof sketch - II

[x2 := AltProj∗(x̃1)] −→ [x̃2 := WALKSAT(x2)]

−→ [x3 := AltProj∗(x̃2)] −→ [x̃3 := WALKSAT(x3)]

−→ [x4 := AltProj∗(x̃3)] −→ [x̃4 := WALKSAT(x4)] . . .

Like last time, we target a point x∗ ∈ Projx (P) ∩ {0, 1}n. Key Question:
I What if we get closer to x∗ in the WalkSAT step, but then go far away in

the AltProj∗ step.

Lemma
Consider a point x∗ ∈ Projx (P) ∩ {0, 1}n, and a point x̃ ∈ {0, 1}n not in
Projx (P) ∩ {0, 1}n. Suppose altProj(x̃) = x̃ . Then there is a point x̃ ′ ∈ {0, 1}n

satisfying the following:
1. (close to x̃) ‖x̃ ′ − x̃‖0 ≤ 2

2. (closer to x∗) ‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 1

3. (projection control) ‖`1-proj(x̃ ′)− x̃ ′‖1 ≤ 1
2 .

Moreover, if we have the equality ‖`1-proj(x̃ ′)− x̃ ′‖1 = 1
2 in Item 3, then

‖x̃ ′ − x∗‖0 ≤ ‖x̃ − x∗‖0 − 2.

Corollary
Let x∗ be a coordinate-wise maximal solution in {0, 1}n ∩ Projx (P). Consider
any point x̃ ∈ {0, 1}n \ Projx (P) satisfying altProj∗(x̃) = x̃ , and let x̃ ′ ∈ {0, 1}n

be a point constructed in Lemma above with respect to x∗ and x̃. Then
‖altProj∗(x̃ ′)− x∗‖0 ≤ ‖x̃ − x∗‖0 − 1.

45

5
Computations

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proposed randomization

I All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

I The only change is in the randomization step.

Old randomization
I Define fractionality of i th variable: |x̄i − x̃i |. Let F be the number of

variables with positive fractionality.
I Randomly generate an integer TT (uniformly from {10, . . . , 30}).
I Flip the min{F ,TT} variables with highest fractionality.

New randomization
I Flip the min{F ,TT} variables with highest fractionality.
I If F < TT , then:

I let S be the union of the supports of the constraints that are not
satisfied by the current point (x̃ , ȳ).

I Select uniformly at random min{|S|,TT − |F |} indices from S, and
flip the values in x̃ for all the selected indices.

47

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proposed randomization

I All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

I The only change is in the randomization step.

Old randomization
I Define fractionality of i th variable: |x̄i − x̃i |. Let F be the number of

variables with positive fractionality.
I Randomly generate an integer TT (uniformly from {10, . . . , 30}).
I Flip the min{F ,TT} variables with highest fractionality.

New randomization
I Flip the min{F ,TT} variables with highest fractionality.
I If F < TT , then:

I let S be the union of the supports of the constraints that are not
satisfied by the current point (x̃ , ȳ).

I Select uniformly at random min{|S|,TT − |F |} indices from S, and
flip the values in x̃ for all the selected indices.

48

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Proposed randomization

I All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

I The only change is in the randomization step.

Old randomization
I Define fractionality of i th variable: |x̄i − x̃i |. Let F be the number of

variables with positive fractionality.
I Randomly generate an integer TT (uniformly from {10, . . . , 30}).
I Flip the min{F ,TT} variables with highest fractionality.

New randomization
I Flip the min{F ,TT} variables with highest fractionality.
I If F < TT , then:

I let S be the union of the supports of the constraints that are not
satisfied by the current point (x̃ , ȳ).

I Select uniformly at random min{|S|,TT − |F |} indices from S, and
flip the values in x̃ for all the selected indices.

49

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Computational experiments

Two classes of problems:

1. Two-stage stochastic models (randomly generated)

Ax + Diy i ≤ bi , i ∈ {1, . . . , k}
x ∈ {0, 1}p

y i ∈ {0, 1}q i ∈ {1, . . . , k}

2. MIPLIB 2010

Two algorithms:

1. FP: Feasibility pump 2.0

2. FPWM: Feasibility pump 2.0 + the modified randomization above

50

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Results for stochastic instances

found itr. time (s) % gap % modified

seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM

1 81 96 266 198 2.76 2.35 47% 39% 22%
2 81 101 257 167 2.71 2.11 45% 36% 26%
3 79 93 279 194 2.86 2.41 48% 40% 25%
4 81 106 275 181 2.81 2.26 45% 35% 23%
5 83 103 253 178 2.69 2.15 45% 35% 25%
6 76 101 255 85 2.72 2.20 49% 37% 27%
7 78 94 277 198 2.84 2.43 47% 39% 27%
8 80 99 256 175 2.71 2.21 47% 37% 25%
9 78 97 276 192 2.79 2.36 48% 37% 26%
10 80 98 274 185 2.86 2.24 47% 38% 24%

Avg. 80 99 267 185 2.78 2.27 47% 37% 25%

Table: Aggregated results by seed on two-stage stochastic models.

I 150 instances
I k ∈ {10, 20, 30, 40, 50}
I p = q ∈ {10, 20}

51

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Results for MIPLIB 2010 instances

found itr. time (s) % gap % modified

seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM

1 279 280 43 43 8.24 8.32 48% 48% 29%
2 279 279 44 44 8.40 8.33 50% 50% 22%
3 277 285 43 41 8.32 8.02 48% 47% 33%
4 280 282 42 41 8.07 7.89 48% 48% 25%
5 276 277 42 41 8.26 8.21 51% 51% 27%
6 277 278 43 42 8.29 8.13 50% 50% 32%
7 278 281 43 41 8.17 8.04 50% 49% 26%
8 273 277 43 43 8.16 8.07 49% 48% 31%
9 282 282 42 41 8.13 7.95 49% 49% 27%
10 278 282 42 40 8.33 8.02 50% 49% 31%

Avg. 278 280 43 42 8.24 8.10 49% 49% 28%

Table: Aggregated results by seed on MIPLIB2010.

52

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Conclusions

I First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

I Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.

I "Designing for sparse instances" helps!

53

Feasibility Pump using
WalkSAT

Introduction

Feasibility Pump (FP):
Introduction

WalkSAT

Mixed-binary WalkSAT

FP + WalkSAT

Computations

Conclusions

I First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

I Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.

I "Designing for sparse instances" helps!

54

	Introduction
	Feasibility Pump (FP): Introduction
	WalkSAT
	Mixed-binary WalkSAT
	FP + WalkSAT
	Computations

