Improving the Randomization Step in Feasibility Pump
using WalkSAT

Santanu S. Dey
Joint work with: Andres Iroume, Marco Molinaro, Domenico
Salvagnin

Discrepancy & IP workshop, 2018

Feasibility Pump using

WalkSAT Sparsity in “real" Integer Programs (IPs)
Introduction

» “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is
1.63% (0.17%).

» Many have "arrow shape" [Bergner, Caprara, Furini, Libbecke,
Malaguti, Traversi 11] or "almost decomposable structure" of the
constraint matrix.

» Other example, two-stage Stochastic IPs:

L

Feasibility Pump using

WalkSAT Sparsity in “real" Integer Programs (IPs)
Introduction

» “Real" IPs are sparse: The average number (median) of non-zero
entries in the constraint matrix of MIPLIB 2010 instances is
1.63% (0.17%).

» Many have "arrow shape" [Bergner, Caprara, Furini, Libbecke,
Malaguti, Traversi 11] or "almost decomposable structure" of the
constraint matrix.

» Other example, two-stage Stochastic IPs:

L

Goal: Exploit sparsity of IPs while designing primal heuristics,
cutting-plane, branching rules...

1
Feasibility Pump

Feasibility Pump using

WalkSAT Introduction: Feasibility Pump (FP)

Feasibility Pump (FP): [Fischetti, Glover, Lodi 05]

Introduction

Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X, y)
be an optimal solution
» While X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» Project: Let (X, y) be the point in the LP relaxation that
minimizes Y |x; — X;| (we say, X = ¢1-proj(X)).

en - Introduction: Feasibility Pump (FP)

Feasibility Pump (FP): [Fischetti, Glover, Lodi 05]

Introduction

Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X, y)
be an optimal solution

» While X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» Project: Let (X, y) be the point in the LP relaxation that
minimizes Y |x; — X;| (we say, X = ¢1-proj(X)).

Problem: The above algorithm may cycle: Revisit the same
X € {0,1}" is different iterations (stalling).
Solution: Randomly perturb X.

et Introduction: Feasibility Pump (FP)

Feasibility P FP): . . .
einon O [Fischetti, Glover, Lodi 05]

Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X,)
be an optimal solution

» while X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» If stalling detected: Randomly perturb X
to a different 0/1 vector.

> Project (¢1-proj): Let (X, y) be the point in the LP
relaxation that minimizes 3=, |x; — X;|.

Feasibwzlfgzrp using Feas|b||lty Pump (FP)

Feasibility Pump (FP): » FP is very successful in practice (For example, the original FP
Iniroduction finds feasible solutions for 96.3% of the instances in MIPLIB 2003
instances).

» Many improvements and generalizations: [Achterberg, Berthold
07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi,
Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard,
Engineer, Tsoukalas 12], [D’Ambrosio, Frangioni, Liberti, Lodi
12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer,
Fischetti, Savelsbergh, Tsoukalas 14], [GeiB3ler, Morsi, Schewe,
Schmidt 17], ...

» Some directions of research:

Take objective function into account

Mixed-integer programs with general integer variables.
Mixed-integer Non-linear programs (MINLP)
Alternative projection and rounding steps

vyvyYyy

wmen - Feasibility Pump (FP)

Feasibility Pump (FP): » FP is very successful in practice (For example, the original FP
OUCCLCHCE finds feasible solutions for 96.3% of the instances in MIPLIB 2003
instances).

» Many improvements and generalizations: [Achterberg, Berthold
07], [Bertacco, Fischetti, Lodi 07], [Bonami, Cornuéjols, Lodi,
Margot 09], [Fischetti, Salvagnin 09], [Boland, Eberhard,
Engineer, Tsoukalas 12], [D’Ambrosio, Frangioni, Liberti, Lodi
12], [De Santis, Lucidi, Rinaldi 13], [Boland, Eberhard, Engineer,
Fischetti, Savelsbergh, Tsoukalas 14], [GeiB3ler, Morsi, Schewe,
Schmidt 17], ...

» Some directions of research:

Take objective function into account

Mixed-integer programs with general integer variables.
Mixed-integer Non-linear programs (MINLP)
Alternative projection and rounding steps

vyvyYyy

Randomization step plays significant role but has not been explicitly
studied. We focus on changing the randomization step by "thinking
about sparsity".

Feasibility Pump using

WalkSAT Sparse IPs ~ Decomposable IPs

Feasibility Pump (FP):
Introduction

» As discussed earlier real integer programs are sparse.

» A common example of sparse integer programs is those that are
almost decomposable.

Feasibility Pump using

WalkSAT Sparse IPs ~ Decomposable IPs

Feasibility Pump (FP):
Introduction

» As discussed earlier real integer programs are sparse.

» A common example of sparse integer programs is those that are
almost decomposable.

» As proxy, we keep in mind decomposable problems.

L]

Feasibility Pump using

WalkSAT Agenda

Feasibility Pump (FP):
Introduction

» Propose a modification of WalkSAT for the mixed-binary case.

» Show that this modified algorithm "works well" on-mixed-binary
instances that are decomposable.

Feasibility Pump using

WalkSAT Agenda

Feasibility Pump (FP):
Introduction

» Propose a modification of WalkSAT for the mixed-binary case.

» Show that this modified algorithm "works well" on-mixed-binary
instances that are decomposable.

» Analyze randomization based on WalkSAT + Feasibility Pump.

» Show that this version of FP "works well" on single-row
decomposable instances.

Feasibility Pump using

WalkSAT Agenda

Feasibility Pump (FP):
Introduction

» Propose a modification of WalkSAT for the mixed-binary case.

» Show that this modified algorithm "works well" on-mixed-binary
instances that are decomposable.

» Analyze randomization based on WalkSAT + Feasibility Pump.

» Show that this version of FP "works well" on single-row
decomposable instances.

» Implementation of FP with new randomization step that combines
ideas from the previous randomization and new randomization.

» The new method shows small but consistent improvement over FP.

2
WalkSAT

Skear - Introduction: WALKSAT

WalkSAT is effective primal heuristic used in SAT community

WalkSAT [Schéning 99]
] O
|:|1 O
7 O
I O Y O
x=[0100 . 001 1101

WalkSAT for pure binary IPs

» Start with a uniformly random point x € {0, 1}". If
feasible, done
» While X is infeasible do

» Pick any violated constraint and randomly pick a variable
X; in its support
> Flip value of X;

e ke =" Performance of WalkSAT

» [Schéning 99] With probability 1 — 6, WALKSAT returns a

WalkSAT feasible solution in ~ log($)2" iterations.

Key Ideas:

e ke =" Performance of WalkSAT

» [Schéning 99] With probability 1 — 6, WALKSAT returns a

WalkSAT feasible solution in ~ log($)2" iterations.

Key Ideas:

» Consider a fixed integer feasible solution x*. Track the
number of coordinates that are different from x*.

e ke =" Performance of WalkSAT

» [Schéning 99] With probability 1 — 6, WALKSAT returns a

WalkSAT feasible solution in ~ log($)2" iterations.

Key Ideas:
» Consider a fixed integer feasible solution x*. Track the

number of coordinates that are different from x*.
» In each step, with probability at least

1

S

non-zeros in violated constraint

we choose to flip coordinate where they differ.

e ke =" Performance of WalkSAT

» [Schéning 99] With probability 1 — 6, WALKSAT returns a

WalkSAT feasible solution in ~ log($)2" iterations.

Key Ideas:
» Consider a fixed integer feasible solution x*. Track the

number of coordinates that are different from x*.
» In each step, with probability at least

1
S
non-zeros in violated constraint
we choose to flip coordinate where they differ.
a positive constant

» With probability atleast}sf, reduce by 1 the number of
coordinates they differ.

20

Feasibility Pump using

WalkSAT WalkSAT good for decomposable instances

WalkSAT

[]

Observation

» Each iteration depends only on one part. Overall execution can
be split into independent executions over each part

» Put together bound from previous page over all parts

24

Feasibility Pump using

WalkSAT WalkSAT good for decomposable instances

WalkSAT

[]

Observation

» Each iteration depends only on one part. Overall execution can
be split into independent executions over each part

» Put together bound from previous page over all parts

Consequences

» Find feasible solution in ~ k2"/* iterations.
» Compare this to total enumeration ~ 2" iterations.

29

3
Mixed-binary version of WalkSAT

Feasibility Pump using
WalkSAT

Mixed-binary WalkSAT

Mixed-binary version of WalkSAT

WalkSAT(/) for Mixed-binary IPs

» Input: Mixed-binary LP-relaxation
{(x,y)| Ax + By < b} (with binary variables x and
continuous variables y); parameter: /

» Start with a uniformly random point x € {0,1}". If 3y
such that (x, y) is feasible, done
» While x ¢ Proj, (P) do
» Generate minimal (wrt support of \) projected certificate
of infeasibility:

ATAx<ATh

1. avalid inequality for Proj,(P) i.e.,A > 0, ATB=o.
2. violating x: (ATA)X > AT b
(Can be obtained by solving a LP)
» Randomly pick / variables (with replacement) in the
support of minimal projected certificate.
» Flip value of these variables

24

Feaskilty Pump using Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Mixed-binary WalkSAT

25

Feasibility Pump using
WalkSAT

Mixed-binary WalkSAT

Mixed-binary WalkSAT

Key Observation: If a set is decomposable, then minimal certificate
has a support contained in exactly one disjoint set of variables.

Theorem
Consider a feasible decomposable mixed-binary set

P'= P| x ... x Pj, where for all i € [k] we have
Pl = PN ({0,1}7 x RY),
Pi={(x,y") €[0,1]" x R% : AX' + By’ < c'}. (1)

Let s; be such that each constraint in P; has at most s; binary
variables, and define ~; := min{s; - (d; + 1), n;}. Then with probability
at least 1 — §, Mixed-binary WalkSAT(1) returns a feasible solution

within
In(k/8) > nj2meom
i

iterations.

26

4
Feasibility Pump + WalkSAT

Feasibility Pump using
WalkSAT

FP + WalkSAT

FP + WalkSAT (FPW)

Vanilla Feasibility Pump

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X,)
be an optimal solution

» while X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» If Stalling detected: "Randomly" perturb
x to a different 0/1 vector.

> Project: Let (X, y) be the point in the LP relaxation that
minimizes Y_; |x; — X;.

o8

Feasibility Pump using
WalkSAT

FP + WalkSAT

FP + WalkSAT (FPW)

Feasibility Pump + WalkSAT

» Input: Mixed-binary LP (with binary variables x and
continuous variables y)

» Solve the linear programming relaxation, and let (X,)
be an optimal solution

» while X is not integral do:

» Round: Round X to closest 0/1 values, call the obtained
vector X.

» If Stalling detected: "Randomly" perturb

X to a different 0/1 vector. < — — —— Use
mixed-binary WalkSAT(l) for random

update

> Project: Let (X, y) be the point in the LP relaxation that
minimizes Y~ |x; — X;.

29

wmen . Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP
> Issue: From previous proof, with probability 1/s; randomization
makes progress, but projection+rounding in next iteration could ruin
everything

FP + WalkSAT

20

wmen . Analysis of Feasibility Pump + WalkSAT (FPW)

1. We are not able to analyze this algorithm WFP for a general
mixed-binary IP
> Issue: From previous proof, with probability 1/s; randomization
makes progress, but projection+rounding in next iteration could ruin
everything

FP + WalkSAT

2. Can analyze running-time for decomposable 1-row instances, i.e.
instances of the following kind:

ax +by =c .
X € {01}, y; € RY. } i€l

29

Feasibility Pump using

WalkSAT Main result

Theorem

£+ WalkSAT Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1 — §, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = [In(k/4)] Z m(ni+1) - o2n; log < [In(k/68)] k(A + 1)2 . p2nlogh

iclk]

iterations, where n = max; n;.

kPl

Feasibility Pump using

WalkSAT Main result

Theorem

£+ WalkSAT Consider a feasible decomposable 1-row instances set as shown in
the previous slide. Then with probability at least 1 — §, Feasibility
Pump + WalkSAT(2) returns a feasible solution within

T = [In(k/4)] Z m(ni+1) - o2n; log < [In(k/68)] k(A + 1)2 . p2nlogh

iclk]

iterations, where n = max; n;.

Note: Naive Feasibility Pump with original randomization (and no
re-start) may fail to converge for these instances.

k]

Feasibility Pump using

WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

FP + WalkSAT

24

Feasibility Pump using

WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

FP + WalkSAT

25

Feasibility Pump using

WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT

26

Feasibility Pump using

WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT

» Notation (Stabilization): AltProj*(X) = X, where
AltProj* (%) = AltProj**'(X) = X for some k € Z ..

27

Feasibility Pump using

WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT

» Notation (Stabilization): AltProj*(X) = X, where
AltProj* (%) = AltProj**'(X) = X for some k € Z ..

of iterations FPW < [# iterations of AltProj*] x

Number of stallings

MaXseo,13» MiN{K : altProj*(x) = altProj* (%)} .

Worst-case stabilization time

9

Feasibility Pump using

WalkSAT Proof sketch - |

» (Like before) We can split the execution into independent
executions over each constraint.

» Notation: For X € {0, 1}": AltProj(X) := round (¢1-proj(X)).

Proposition (Length of cycle)

All cycles are due to short cycles, i.e. randomization is invoked only
when AltProj(X) = X.

FP + WalkSAT

» Notation (Stabilization): AltProj*(X) = X, where
AltProj* (%) = AltProj**'(X) = X for some k € Z ..

of iterations FPW < [# iterations of AltProj*] x

Number of stallings

MaXseo,13» MiN{K : altProj*(x) = altProj* (%)} .

Worst-case stabilization time

Proposition (Worst-case stabilization time)
For any X € {0,1}", AltProj""" (X) = AltProj(X).

20

R Proof sketch - I

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]

— [x® .= AltProj* (%)) — [%® := WALKSAT(x%)]

— [¥* .= AltProj* (%)) —

Like last time, we target a point x* € Proj,(P) N {0,1}".

FP + WalkSAT

40

[X* := WALKSAT(x4)] ...

R Proof sketch - I

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) — [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] — [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:

AP » What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

a1

Feasibility Pump using

WalkSAT Proof sketch - Il

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) — [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] — [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:

> What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

FP + WalkSAT

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(x) = X.

42

R Proof sketch - I

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) — [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] — [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:
AP » What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(X) = X. Then there is a point X' € {0,1}"
satisfying the following:
1. (close to) ||X' — X|lo <2

2. (closerto x*) ||X" — x*|lo < ||¥ — x*]lo — 1

43

R Proof sketch - I

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) — [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] — [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:

AP » What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(X) = X. Then there is a point X' € {0,1}"
satisfying the following:
1. (close to) ||X' — X|lo <2
2. (closerto x*) ||X" — x*|lo < ||¥ — x*]lo — 1
3. (projection control) ||¢y-proj(X') — X[l < 3.
Moreover, if we have the equality ||¢1-proj(X') — X'||1 = % in Item 3, then
X" = x*[lo < IX = x*[lo — 2.

44

Feasibility Pump using
WalkSAT

FP + WalkSAT

Proof sketch - Il

[x? := AltProj* (%")] — [¥? := WALKSAT(x?)]
— [x® .= AltProj* (%)) — [%® := WALKSAT(x%)]
— [¥* := AltProj* (x%)] — [X* := WALKSAT(x4)]...
Like last time, we target a point x* € Proj,(P) N {0, 1}". Key Question:
> What if we get closer to x* in the WalkSAT step, but then go far away in
the AltProj* step.

Lemma
Consider a point x* € Proj,(P) N {0,1}", and a point X € {0,1}" not in
Proj, (P) N {0, 1}". Suppose altProj(X) = X. Then there is a point X' € {0,1}"
satisfying the following:
1. (close to) ||X' — X|lo <2
2. (closerto x*)||X" — x*|lo < ||X — x*||o — 1
3. (projection control) ||¢y-proj(X') — X[l < 3.

Moreover, if we have the equality ||¢1-proj(X') — X'||1 = % in Item 3, then
X" = x*llo < IX — x*[lo — 2.

Corollary

Let x* be a coordinate-wise maximal solution in {0, 1}" N Proj, (P). Consider
any point X € {0,1}"\ Proj, (P) satisfying altProj*(X) = %X, and let X’ € {0,1}"
be a point constructed in Lemma above with respect to x* and X. Then
[altProj* (%) — x*[lo < [|% — x*[|o — 1.

45

5
Computations

Feasibility Pump using

WalkSAT Proposed randomization

» All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

» The only change is in the randomization step.

Computations

a7

Feasibility Pump using

WalkSAT Proposed randomization

» All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

» The only change is in the randomization step.

Computations Old random |Zat|0n

» Define fractionality of /" variable: |x; — X;|. Let F be the number of
variables with positive fractionality.

» Randomly generate an integer TT (uniformly from {10, ...,30}).

» Flip the min{F, TT} variables with highest fractionality.

48

Feasibility Pump using

WalkSAT Proposed randomization

» All features (such as constraint propagation) which are part of the
Feasibility Pump 2.0 ([Fischetti, Salvagnin 09]) code
have been left unchanged.

» The only change is in the randomization step.

Computations Old randomization
» Define fractionality of /" variable: |x; — X;|. Let F be the number of
variables with positive fractionality.
» Randomly generate an integer TT (uniformly from {10, ...,30}).
» Flip the min{F, TT} variables with highest fractionality.

New randomization

» Flip the min{F, TT} variables with highest fractionality.
» If F < TT, then:

> let S be the union of the supports of the constraints that are not
satisfied by the current point (X, y).

» Select uniformly at random min{|S|, TT — |F|} indices from S, and
flip the values in X for all the selected indices.

49

Feasibility Pump using

WalkSAT Computational experiments

Two classes of problems:
1. Two-stage stochastic models (randomly generated)

Computations AX+ Diyi < bi7 ie {17 . ,k}
x €{0,1}°
ye{0,1}9ie{1,... k}

2. MIPLIB 2010
Two algorithms:
1. FP: Feasibility pump 2.0
2. FPWM: Feasibility pump 2.0 + the modified randomization above

50

Feasibility Pump using
WalkSAT

Computations

Results for stochastic instances

found time (s) % gap % modified
seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM
1 81 96 266 198 2.76 2.35 47% 39% 22%
2 81 101 257 167 2.71 2.1 45% 36% 26%
3 79 93 279 194 286 2.41 48% 40% 25%
4 81 106 275 181 2.81 2.26 45% 35% 23%
5 83 108 253 178 2.69 2.15 45% 35% 25%
6 76 101 255 85 2.72 2.20 49% 37% 27%
7 78 94 277 198 2.84 2.43 47% 39% 27%
8 80 99 256 175 2.71 2.21 47% 37% 25%
9 78 97 276 192 2.79 2.36 48% 37% 26%
10 80 98 274 185 2.86 224 47% 38% 24%
Avg. 80 99 267 185 2.78 227 47% 37% 25%

Table: Aggregated results by seed on two-stage stochastic models.

» 150 instances

» k € {10,20,30,40,50}
» p=qe{10,20}

51

Feasibility Pump using
WalkSAT

Computations

Results for MIPLIB 2010 instances

found itr. time (s) % gap % modified
seed FP FPWM FP FPWM FP FPWM FP FPWM FPWM
1 279 280 43 43 8.24 8.32 48% 48% 29%
2 279 279 44 44 8.40 8.33 50% 50% 22%
3 277 285 43 41 8.32 8.02 48% 47% 33%
4 280 282 42 41 8.07 7.89 48% 48% 25%
5 276 277 42 41 8.26 8.21 51% 51% 27%
6 277 278 43 42 8.29 8.13 50% 50% 32%
7 278 281 43 41 8.17 8.04 50% 49% 26%
8 273 277 43 43 8.16 8.07 49% 48% 31%
9 282 282 42 41 8.13 7.95 49% 49% 27%
10 278 282 42 40 8.33 8.02 50% 49% 31%
Avg. 278 280 43 42 8.24 8.10 49% 49% 28%

Table: Aggregated results by seed on MIPLIB2010.

5O

Feas ey =" Conclusions

Computaions » First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

» Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.

%]

Feasibility Pump using

WakSAT Conclusions

Computaions » First ever analysis of running time of Feasibility Pump (even if it is
for a special class of instances)

» Suggested changes are trivial to implement and appears to
dominate feasibility pump almost consistently.

» "Designing for sparse instances" helps!

R4

	Introduction
	Feasibility Pump (FP): Introduction
	WalkSAT
	Mixed-binary WalkSAT
	FP + WalkSAT
	Computations

