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Mixed-Integer Nonlinear Programs (MINLPs)

min ¢'x

st.gr(x) <0 Vk € [m]
Xi €L VieZ C[n]
Xi € [f,', U,‘] Vi e [ﬂ]

The functions gy, € C'([¢, u], R) can be

convex or nonconvex
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One way of solving MINLPs to global optimality

- Methods for finding (good) feasible solutions
~» Primal heuristics

- Proof that there is no better solution
~» LP-based spatial branch and bound
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LP based spatial Branch & Bound

- Build a (extended formulation of a) polyhedral relaxation R
- Solve R and get solution x*

- If x* is feasible we are done. If not,

- Try to strengthen R by separating x*

- When not possible, branch possibly on continuous variables (spatially)
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Building polyhedral relaxations: the problem

- We can start with the variable’s bounds as our relaxation.

- Then we have to solve the separation problem: Given
{xe[lu]:g(x) <0} and X s.t. g(x) > 0 either
- Find a separating inequality or
- prove that none exists.
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Building polyhedral relaxations: the problem

- We can start with the variable’s bounds as our relaxation.

- Then we have to solve the separation problem: Given
{xe[lu]:g(x) <0} and X s.t. g(x) > 0 either
- Find a separating inequality or
- prove that none exists.

- Very expensive for general g
- However, when g is convex, it is as easy as computing a gradient:

9(%) + Vg(R)(x — %) < 0

- Idea: find convex underestimator g of g(x)
- Then{x e [,u] : g(x) <0} C{xe[l,u]:g(x) <0}
- If §(X) > 0 we can separate.
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Building polyhedral relaxations: an example

“ X2+ Y2+ 2exp(xy?) < 3 with x,y € [-2,2]
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Building polyhedral relaxations: an example

“ X2 4y + 2exp(xy?) < 3 with x,y € [-2,2]
“exp() > 0= X2 + Y2 < X2+ Y2 + 2exp(xy?)

- Admittedly, ad-hoc argument

- In practice: if functions are simple enough, we know convex/concave
envelopes

- If function is not simple enough, make it simpler!
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Building polyhedral relaxation in SCIP

- X2+ y? + 2exp(xy?) <3
- Introduce auxiliary variables

=y
© 7 =Xz
- Xy 4 2exp(z2) <3

- We can find polyhedral relaxations of z; = y*
- For z, = xz; we have McCormick inequalities:

max{Xzi +Z1X — X21, X21 + 21X —XZ1} < Z, < min{XZ1 + 21X —XZ1, X1 + 71X — X1 }

- Finally, x> 4+ y? + 2 exp(2;) is convex
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Spatial Branch and bound

Solutions might not be separable: conv{(x,y) : x* = y,x € [¢,u]} is

2 p
- e(x—f) Vx €[4, ul].

u—1+¢
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Spatial Branch and bound

Solutions might not be separable: conv{(x,y) : x* = y,x € [¢,u]} is

iy
Ty, (x—10) vxeltul].

Branching on a nonlinear variable in a nonconvex constraint allows for

tighter relaxations:

L L
05 10
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Sub-NLP

- Idea: fix integer variables to integer values and run a local NLP solver

- Good for: MINLP

Let X be LP-optimum of the current node’s relaxation
- Ifthere is ai e Z such thatx; ¢ Z — STOP
- Fix x; to X;.
- Solve remaining NLP to local optimality using X
as initial point.
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Sub-NLP

- Idea: fix integer variables to integer values and run a local NLP solver
- Good for: MINLP

Let X be LP-optimum of the current node’s relaxation
- Ifthere is ai e Z such thatx; ¢ Z — STOP
- Fix x; to X;.
- Solve remaining NLP to local optimality using X
as initial point. i _
min

Extends MIP heuristics to MINLP
- SCIP runs its MIP heuristics on MIP relaxation of MINLP
- use heuristic’s proposed solution as X
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NLP diving

- Idea: Solve NLP relaxations, fixing an integer variable after each NLP
- Good for: MINLP

- solve NLP relaxation

- fix an integer variable

© propagate

- repeat

- if fixing is infeasible, backtrack

- undo last fixing and fix to another value
- if infeasible again, abort
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Multi-start Heuristic [Chinneck et al. 2013]

- Idea: use different starting points for NLP solver
- Good for: NLPs without too many integer variables

4<X+y* <9
4< (X2 +y* <9
X €[4, 6]
y€[=44]

Gleixner, Serrano - MINLPs in SCIP 12/ 24



Multi-start in SCIP
Input: Nonlinear Constraints gij(x) < 0
1. generate random points in [¢, u]
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Multi-start in SCIP
Input: Nonlinear Constraints g;(x) <0
1. generate random points in [¢, u]
2. for each point x:
S 7_9'(X**)H2Vg,-(xk) Vi

i TVgi0%)
- Update:

n
1
+ k
X :Xk-f—*g S
3 H_1}
1=
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Multi-start in SCIP
Input: Nonlinear Constraints g;(x) <0
1. generate random points in [¢, u]
2. for each point x:
S 7_9'(X“)‘|2Vg,-(xk) Vi

i TVgi0%)
- Update:

n
1
+ R
X :X;?—f—fg S;
3 ﬂ_1/
=

3. identify clusters of points G,...,Cp
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Multi-start in SCIP
Input: Nonlinear Constraints g;(x) <0
1. generate random points in [¢, u]
2. for each point x:
Cshi= S g (x,) Vi

= Vg ()2
- Update:

n
1
+ k
Xk ZXie-l-E 5151‘
1=

3. identify clusters of points G,...,Cp
4. for each cluster
- build convex combination
1
yi= 161 ZXGC/X
- round each fractional integer
variable to closest integer

- use resulting point as starting point
for NLP
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MPEC Heuristic [Schewe and Schmidt 2016]

- Idea: write x € {0,1} as x(1—x) = 0, relax to x(1 — x) < e and solve
sequences of NLP withe — 0
- Good for: Mixed Binary NLPs

- MPEC stands for Mathematical Program with Equilibrium Constraints

min f(x)
s.it. gi(x) <0 vie{1,...,m}
Xi € [4;, ui] Vie{l,...,kR}
x; € {0,1} Vie{k+1,...,n}
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MPEC Heuristic [Schewe and Schmidt 2016]

- Idea: write x € {0,1} as x(1 — x) = 0, relax to x(1 — x) < e and solve
sequences of NLP withe — 0

- Good for: Mixed Binary NLPs

- MPEC stands for Mathematical Program with Equilibrium Constraints

min f(x)
s.t. gi(x) <0 vie{l,...,m}
Xj € [é,—,u,-] Vie {1,...,/’(’} (NLPE)

x; €10,1] Vie{kR+1,...,n}
xi(1—x))<e Vie{k+1,...,n}
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MPEC in SCIP

Algorithm
0. choose e € [0, 1] and x € R"
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MPEC in SCIP

Algorithm
0. choose e € [0, 1] and x € R"
1. x* := solution of NLP, using x as starting point
2. if x* is feasible for NLP. and x; € {0,1} — STOP
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MPEC in SCIP

Algorithm
0. choose e € [0, 1] and x € R"
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MPEC in SCIP

Algorithm
0. choose e € [0, 1] and x € R"
1. x* := solution of NLP, using x as starting point
2. if x* is feasible for NLP. and x; € {0,1} — STOP
3. if x* is feasible for NLP, but not binary:
-+ £:= £, GOTO 1. with x := x*
4. x* is infeasible for NLP. but satisfies x/(1 — x;) < e — STOP
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MPEC in SCIP

Algorithm

0. choose e € [0, 1] and x € R"

1. x* := solution of NLP, using x as starting point

2. if x* is feasible for NLP. and x; € {0,1} — STOP
3. if x* is feasible for NLP, but not binary:

-+ £:= £, GOTO 1. with x := x*

x* is infeasible for NLP. but satisfies x/(1 - x7) < e — STOP
5. x* is infeasible for NLP. and there are X7 (1 —x) > ¢

&
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MPEC in SCIP

Algorithm

0. choose e € [0, 1] and x € R"

1. x* := solution of NLP, using x as starting point

2. if x* is feasible for NLP. and x; € {0,1} — STOP
3. if x* is feasible for NLP, but not binary:

-+ £:= £, GOTO 1. with x := x*
x* is infeasible for NLP. but satisfies x/(1 - x7) < e — STOP
5. x* is infeasible for NLP. and there are X7 (1 —x) > ¢
- reset or fix x; for binary variables with xj (1 — x) > ¢

{0, XF>0.5
X =

&

1, otherwise
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MPEC in SCIP

Algorithm
0. choose e € [0, 1] and x € R"
1. x* := solution of NLP, using x as starting point
2. if x* is feasible for NLP. and x; € {0,1} — STOP
3. if x* is feasible for NLP, but not binary:
-+ £:= £, GOTO 1. with x := x*
x* is infeasible for NLP. but satisfies x/(1 - x7) < e — STOP
5. x* is infeasible for NLP. and there are X7 (1 —x) > ¢
- reset or fix x; for binary variables with xj (1 — x) > ¢
0, xF>0.5
1, otherwise
- GOTO 1.

&

X =
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Undercover [Berthold and Gleixner 2014]

- Idea: fix variables so that MINLP transforms into a MIP
- Good for: MIQCQP

- Solve a relaxation (LP, NLP)

- Identify minimum set C of variables to be fixed in
order to obtain a MIP

- Fix variables in C to relaxation’s solution.
- Solve MIP
- Postprocess: Fix integer values and solve NLP

Gleixner, Serrano - MINLPs in SCIP 16 / 24



Undercover in SCIP

- Identifying minimum set C of variables to be fixed
CIf 2

6><><

- Build graph with nodes x; and arcs {x;, x;} if axx gr(x) #0
- Minimum vertex cover yields the set we are ookmg for.
- Fix variables in C to relaxation’s solution

- Fix a variable, if variable must be integer, fix to rounded value.

- Propagate bounds: to avoid "obvious” infeasible fixings

- If next fixing value is outside bounds, choose closest bound or resolve
relaxation

- If infeasible, backtrack: undo last fixing and try new value

gr(x) # 0 then x; or x; must be fixed
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RENS: The optimal rounding [Berthold 2014]

- RENS stands for Relaxation Enforced Neighborhood Search

- Idea: restrict integer variables around LP-relaxation’s solution and solve
remaining MINLP

- Good for: MIP, MINLP

- Let X be the LP solution

- If|{i € Z:X; € Z}| > p|Z| for some p € [0,1] then
- Change bounds of x; to {[Xi], [Xi]}

- Solve smaller MINLP

- This gives the feasible rounding with best
objective value
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Computational results for RENS

Table 1 Computing optimal roundings (aggregated results)

Integrality Succe Prim. gap Comp. effort

>90 % Avg (%) Mean Std dev Nodes Time (s)
MIP + cuts 55/159 71.7 95/159 8.22 20.34 814.4 22.6
MIP — cuts 62/159 73.6 80/159 10.88 21.19 719.9 21.7
MIQCP (LP) 9/70 59.9 49/70 11.61 13.14 627.7 30.9
MIQCP (NLP) 1/70 13.8 48/70 1.30 3.37 7,078.8 168.1
MINLP (LP) 6/105 63.5 65/105 13.80 17.73 11,175.6 83.0
MINLP (NLP) 1/105 15.0 73/105 4.60 14.99 93,908.0 262.7

- Basic LP solutions often show high integrality
- Success rate seems to decreases when more integer variables are fixed
- Roundability of MIP and MINLP are similar
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- Basic LP solutions often show high integrality
- Success rate seems to decreases when more integer variables are fixed

Roundability of MIP and MINLP are similar
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Conclusion

Summary
- very brief introduction to LP-based branch and bound
- overview of MINLP heuristics in SCIP
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Conclusion

Summary
- very brief introduction to LP-based branch and bound
- overview of MINLP heuristics in SCIP

What is missing in SCIP
- Non-linear Feasibility Pump
- Problem specific heuristics

Thank you for your attention
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