Primal heuristic for MINLPs in SCIP

Ambros Gleixner, and Felipe Serrano

Zuse Institute Berlin · serrano@zib.de SCIP Optimization Suite · http://scip.zib.de

Workshop on Discrepancy Theory and Integer Programming

Amsterdam · June 12, 2018

Federal Ministry of Education and Research

Outline

Introduction: LP-based Branch and Bound Spatial Branch and bound

Heuristics

Sub-NLP NLP diving Multi-start MPEC Undercover RENS

Conclusion

Mixed-Integer Nonlinear Programs (MINLPs)

$$\begin{array}{l} \min c^{\mathsf{T}} x \\ \text{s.t. } g_k(x) \leq 0 \qquad \forall k \in [m] \\ x_i \in \mathbb{Z} \qquad \forall i \in \mathcal{I} \subseteq [n] \\ x_i \in [\ell_i, u_i] \qquad \forall i \in [n] \end{array}$$

The functions $g_k \in C^1([\ell, u], \mathbb{R})$ can be

One way of solving MINLPs to global optimality

Methods for finding (good) feasible solutions
 ~ Primal heuristics

• Proof that there is no better solution \sim LP-based spatial branch and bound

LP based spatial Branch & Bound

- \cdot Build a (extended formulation of a) polyhedral relaxation ${\cal R}$
- Solve ${\mathcal R}$ and get solution x^*
- If x^* is feasible we are done. If not,
- Try to strengthen ${\mathcal R}$ by separating x^*
- When not possible, branch possibly on continuous variables (spatially)

- We can start with the variable's bounds as our relaxation.
- Then we have to solve the separation problem: Given $\{x \in [l, u] : g(x) \le 0\}$ and \overline{x} s.t. $g(\overline{x}) > 0$ either
 - Find a separating inequality or
 - prove that none exists.

- We can start with the variable's bounds as our relaxation.
- Then we have to solve the separation problem: Given $\{x \in [l, u] : g(x) \le 0\}$ and \overline{x} s.t. $g(\overline{x}) > 0$ either
 - Find a separating inequality or
 - prove that none exists.
- Very expensive for general g

- We can start with the variable's bounds as our relaxation.
- Then we have to solve the separation problem: Given $\{x \in [l, u] : g(x) \le 0\}$ and \overline{x} s.t. $g(\overline{x}) > 0$ either
 - Find a separating inequality or
 - prove that none exists.
- Very expensive for general g
- However, when g is convex, it is as easy as computing a gradient:

$$g(\bar{x}) + \nabla g(\bar{x})(x - \bar{x}) \leq 0$$

- We can start with the variable's bounds as our relaxation.
- Then we have to solve the separation problem: Given $\{x \in [l, u] : g(x) \le 0\}$ and \overline{x} s.t. $g(\overline{x}) > 0$ either
 - Find a separating inequality or
 - prove that none exists.
- Very expensive for general g
- However, when g is convex, it is as easy as computing a gradient:

$$g(\bar{x}) + \nabla g(\bar{x})(x - \bar{x}) \leq 0$$

• Idea: find convex underestimator \hat{g} of g(x)

- $\cdot\,$ We can start with the variable's bounds as our relaxation.
- Then we have to solve the separation problem: Given $\{x \in [l, u] : g(x) \le 0\}$ and \overline{x} s.t. $g(\overline{x}) > 0$ either
 - Find a separating inequality or
 - prove that none exists.
- Very expensive for general g
- However, when g is convex, it is as easy as computing a gradient:

$$g(\bar{x}) + \nabla g(\bar{x})(x - \bar{x}) \leq 0$$

- · Idea: find convex underestimator \hat{g} of g(x)
- Then $\{x \in [l, u] : g(x) \le 0\} \subseteq \{x \in [l, u] : \hat{g}(x) \le 0\}$
- If $\hat{g}(\bar{x}) > 0$ we can separate.

Building polyhedral relaxations: an example

· $x^2 + y^2 + 2 \exp(xy^3)$ ≤ 3 with $x, y \in [-2, 2]$

Building polyhedral relaxations: an example

• $\exp(\cdot) > 0 \Rightarrow x^2 + y^2 \le x^2 + y^2 + 2\exp(xy^3)$

Building polyhedral relaxations: an example

•
$$x^2 + y^2 + 2 \exp(xy^3) \le 3$$
 with $x, y \in [-2, 2]$

$$\cdot \exp(\cdot) > 0 \Rightarrow x^2 + y^2 \le x^2 + y^2 + 2\exp(xy^3)$$

- Admittedly, ad-hoc argument
- In practice: if functions are simple enough, we know convex/concave envelopes
- · If function is not simple enough, make it simpler!

Building polyhedral relaxation in SCIP

- $x^{2} + y^{2} + 2 \exp(xy^{3}) \le 3$
- Introduce auxiliary variables
 - $z_1 = y^3$
 - $Z_2 = XZ_1$
 - $x^2 + y^2 + 2 \exp(z_2) \le 3$
- We can find polyhedral relaxations of $z_1 = y^3$
- For $z_2 = xz_1$ we have McCormick inequalities:

 $\max\{x\underline{z_1} + z_1\underline{x} - \underline{x}\underline{z_1}, x\overline{z_1} + z_1\overline{x} - \overline{x}\overline{z_1}\} \le z_2 \le \min\{x\overline{z_1} + z_1\underline{x} - \underline{x}\overline{z_1}, x\underline{z_1} + z_1\overline{x} - \overline{x}\underline{z_1}\}$

• Finally, $x^2 + y^2 + 2 \exp(z_2)$ is convex

Spatial Branch and bound

Solutions might not be separable: $conv\{(x, y) : x^2 = y, x \in [\ell, u]\}$ is

$$x^2 \le y \le \ell^2 + \frac{u^2 - \ell^2}{u - \ell} (x - \ell) \quad \forall x \in [\ell, u].$$

Spatial Branch and bound

Solutions might not be separable: $conv\{(x, y) : x^2 = y, x \in [\ell, u]\}$ is

$$x^2 \leq y \leq \ell^2 + \frac{u^2 - \ell^2}{u - \ell} (x - \ell) \quad \forall x \in [\ell, u].$$

Branching on a nonlinear variable in a nonconvex constraint allows for tighter relaxations:

Outline

Introduction: LP-based Branch and Bound Spatial Branch and bound

Heuristics

Sub-NLP NLP diving Multi-start MPEC Undercover RENS

Conclusion

Sub-NLP

- · Idea: fix integer variables to integer values and run a local NLP solver
- Good for: MINLP

Let \bar{x} be LP-optimum of the current node's relaxation

- If there is a $i \in \mathcal{I}$ such that $\bar{x}_i \notin \mathbb{Z} \to \text{STOP}$
- Fix x_i to \overline{x}_i .
- Solve remaining NLP to local optimality using \bar{x} as initial point.

Gleixner, Serrano - MINLPs in SCIP

10 / 24

Sub-NLP

- Idea: fix integer variables to integer values and run a local NLP solver
- Good for: MINLP
- Let \bar{x} be LP-optimum of the current node's relaxation
 - If there is a $i \in \mathcal{I}$ such that $\bar{x}_i \notin \mathbb{Z} \to \text{STOP}$
 - Fix x_i to \overline{x}_i .
 - Solve remaining NLP to local optimality using \bar{x} as initial point.

Extends MIP heuristics to MINLP

- SCIP runs its MIP heuristics on MIP relaxation of MINLP
- use heuristic's proposed solution as \bar{x}

NLP diving

- $\cdot\,$ Idea: Solve NLP relaxations, fixing an integer variable after each NLP
- Good for: MINLP

- solve NLP relaxation
- fix an integer variable
- propagate
- repeat
- if fixing is infeasible, backtrack
 - undo last fixing and fix to another value
 - if infeasible again, abort

Multi-start Heuristic [Chinneck et al. 2013]

- · Idea: use different starting points for NLP solver
- Good for: NLPs without too many integer variables

$$4 \le x^{2} + y^{2} \le 9$$

$$4 \le (x - 2)^{2} + y^{2} \le 9$$

$$x \in [-4, 6]$$

$$y \in [-4, 4]$$

Input: Nonlinear Constraints $g_i(x) \leq 0$

1. generate random points in $[\ell, u]$

Input: Nonlinear Constraints $g_i(x) \leq 0$

1. generate random points in $[\ell, u]$

Input: Nonlinear Constraints $g_i(x) \leq 0$

- 1. generate random points in $[\ell, u]$
- 2. for each point x_k :

•
$$s_i^k := \frac{-g_i(x_k)}{||\nabla g_i(x_k)||^2} \nabla g_i(x_k) \forall i$$

$$x_k^+ = x_k + \frac{1}{n} \sum_{i=1}^n s_i^k$$

Input: Nonlinear Constraints $g_i(x) \leq 0$

- 1. generate random points in $[\ell, u]$
- 2. for each point x_k :

•
$$s_i^k := \frac{-g_i(x_k)}{||\nabla g_i(x_k)||^2} \nabla g_i(x_k) \forall i$$

$$x_k^+ = x_k + \frac{1}{n} \sum_{i=1}^n s_i^k$$

Input: Nonlinear Constraints $g_i(x) \leq 0$

- 1. generate random points in $[\ell, u]$
- 2. for each point x_k :

•
$$s_i^k := \frac{-g_i(x_k)}{||\nabla g_i(x_k)||^2} \nabla g_i(x_k) \forall i$$

$$x_k^+ = x_k + \frac{1}{n} \sum_{i=1}^n s_i^k$$

Input: Nonlinear Constraints $g_i(x) \leq 0$

- 1. generate random points in $[\ell, u]$
- 2. for each point x_k :

•
$$s_i^k := \frac{-g_i(x_k)}{||\nabla g_i(x_k)||^2} \nabla g_i(x_k) \forall i$$

• Update:

$$x_k^+ = x_k + \frac{1}{n} \sum_{i=1}^n s_i^k$$

3. identify clusters of points C_1, \ldots, C_p

Input: Nonlinear Constraints $g_i(x) \leq 0$

- 1. generate random points in $[\ell, u]$
- 2. for each point x_k :

•
$$s_i^k := \frac{-g_i(x_k)}{||\nabla g_i(x_k)||^2} \nabla g_i(x_k) \forall i$$

$$x_k^+ = x_k + \frac{1}{n} \sum_{i=1}^n s_i^k$$

- 3. identify clusters of points C_1, \ldots, C_p
- 4. for each cluster
 - build convex combination

$$y := \frac{1}{|C_j|} \sum_{x \in C_j} x$$

- round each fractional integer variable to closest integer
- use resulting point as starting point for NLP

MPEC Heuristic [Schewe and Schmidt 2016]

- Idea: write $x \in \{0, 1\}$ as x(1 x) = 0, relax to $x(1 x) \le \varepsilon$ and solve sequences of NLP with $\varepsilon \to 0$
- Good for: Mixed Binary NLPs
- MPEC stands for Mathematical Program with Equilibrium Constraints

$$\min f(x)$$
s.t. $g_j(x) \le 0 \qquad \forall j \in \{1, \dots, m\}$
 $x_i \in [\ell_i, u_i] \qquad \forall i \in \{1, \dots, k\}$
 $x_i \in \{0, 1\} \qquad \forall i \in \{k + 1, \dots, n\}$

MPEC Heuristic [Schewe and Schmidt 2016]

- Idea: write $x \in \{0, 1\}$ as x(1 x) = 0, relax to $x(1 x) \le \varepsilon$ and solve sequences of NLP with $\varepsilon \to 0$
- Good for: Mixed Binary NLPs
- MPEC stands for Mathematical Program with Equilibrium Constraints

$$\min f(x)$$
s.t. $g_j(x) \le 0 \quad \forall j \in \{1, \dots, m\}$
 $x_i \in [\ell_i, u_i] \quad \forall i \in \{1, \dots, k\}$
 $x_i \in [0, 1] \quad \forall i \in \{k + 1, \dots, n\}$
 $x_i(1 - x_i) \le 0 \quad \forall i \in \{k + 1, \dots, n\}$

MPEC Heuristic [Schewe and Schmidt 2016]

- Idea: write $x \in \{0, 1\}$ as x(1 x) = 0, relax to $x(1 x) \le \varepsilon$ and solve sequences of NLP with $\varepsilon \to 0$
- Good for: Mixed Binary NLPs
- MPEC stands for Mathematical Program with Equilibrium Constraints

$$\min f(x)$$
s.t. $g_j(x) \le 0 \quad \forall j \in \{1, \dots, m\}$
 $x_i \in [\ell_i, u_i] \quad \forall i \in \{1, \dots, k\}$
 $x_i \in [0, 1] \quad \forall i \in \{k + 1, \dots, n\}$
 $x_i(1 - x_i) \le \varepsilon \quad \forall i \in \{k + 1, \dots, n\}$

Algorithm

0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$
- 3. if x^* is feasible for NLP_{ε} but not binary:

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$
- 3. if x^* is feasible for NLP_{ε} but not binary:

•
$$\varepsilon := \frac{\varepsilon}{2}$$
; GOTO 1. with $x := x^*$

Algorithm

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$
- 3. if x^* is feasible for NLP_{ε} but not binary:

• $\varepsilon := \frac{\varepsilon}{2}$; GOTO 1. with $x := x^*$

4. x^* is infeasible for NLP_{ε} but satisfies $x_i^*(1 - x_i^*) \leq \varepsilon \rightarrow \text{STOP}$

Algorithm

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$
- 3. if x^* is feasible for NLP_{ε} but not binary:

• $\varepsilon := \frac{\varepsilon}{2}$; GOTO 1. with $x := x^*$

- 4. x^* is infeasible for NLP_{ε} but satisfies $x_i^*(1 x_i^*) \leq \varepsilon \rightarrow \text{STOP}$
- 5. x^* is infeasible for NLP_{ε} and there are $x_i^*(1 x_i^*) > \varepsilon$

Algorithm

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$
- 3. if x^* is feasible for NLP_{ε} but not binary:

• $\varepsilon := \frac{\varepsilon}{2}$; GOTO 1. with $x := x^*$

- 4. x^* is infeasible for NLP_{ε} but satisfies $x_i^*(1 x_i^*) \leq \varepsilon \rightarrow \text{STOP}$
- 5. x^* is infeasible for NLP_{ε} and there are $x_i^*(1 x_i^*) > \varepsilon$

• reset or fix x_i for binary variables with $x_i^*(1-x_i^*) > \varepsilon$

Algorithm

0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$

- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$
- 3. if x^* is feasible for NLP_{ε} but not binary:

• $\varepsilon := \frac{\varepsilon}{2}$; GOTO 1. with $x := x^*$

- 4. x^* is infeasible for NLP_{ε} but satisfies $x_i^*(1 x_i^*) \leq \varepsilon \rightarrow \text{STOP}$
- 5. x^* is infeasible for NLP_{ε} and there are $x_i^*(1 x_i^*) > \varepsilon$
 - reset or fix x_i for binary variables with $x_i^*(1-x_i^*) > \varepsilon$

$$x_i := \begin{cases} 0, & x_i^* > 0.5 \\ 1, & \text{otherwise} \end{cases}$$

Algorithm

- 0. choose $\varepsilon \in [0, \frac{1}{4}]$ and $x \in \mathbb{R}^n$
- 1. $x^* :=$ solution of NLP_{ε} using x as starting point
- 2. if x^* is feasible for NLP_{ε} and $x_i^* \in \{0, 1\} \rightarrow \text{STOP}$
- 3. if x^* is feasible for NLP_{ε} but not binary:

• $\varepsilon := \frac{\varepsilon}{2}$; GOTO 1. with $x := x^*$

- 4. x^* is infeasible for NLP_{ε} but satisfies $x_i^*(1 x_i^*) \leq \varepsilon \rightarrow \text{STOP}$
- 5. x^* is infeasible for NLP_{ε} and there are $x_i^*(1 x_i^*) > \varepsilon$
 - reset or fix x_i for binary variables with $x_i^*(1 x_i^*) > \varepsilon$

$$\cdot x_i := \begin{cases} 0, & x_i^* > 0.5 \\ 1, & \text{otherwise} \end{cases}$$

• GOTO **1**.

Undercover [Berthold and Gleixner 2014]

- Idea: fix variables so that MINLP transforms into a MIP
- Good for: MIQCQP

- Solve a relaxation (LP, NLP)
- Identify minimum set $\ensuremath{\mathcal{C}}$ of variables to be fixed in order to obtain a MIP
- Fix variables in $\mathcal C$ to relaxation's solution.
- Solve MIP
- · Postprocess: Fix integer values and solve NLP

Undercover in SCIP

- \cdot Identifying minimum set ${\mathcal C}$ of variables to be fixed
 - If $\frac{\partial^2}{\partial x_i x_i} g_k(x) \neq 0$ then x_i or x_j must be fixed
 - Build graph with nodes x_i and arcs $\{x_i, x_j\}$ if $\frac{\partial}{\partial x_i x_i} g_k(x) \neq 0$
 - Minimum vertex cover yields the set we are looking for.
- Fix variables in $\mathcal C$ to relaxation's solution
 - Fix a variable, if variable must be integer, fix to rounded value.
 - Propagate bounds: to avoid "obvious" infeasible fixings
 - If next fixing value is outside bounds, choose closest bound or resolve relaxation
 - If infeasible, backtrack: undo last fixing and try new value

RENS: The optimal rounding [Berthold 2014]

- RENS stands for Relaxation Enforced Neighborhood Search
- Idea: restrict integer variables around LP-relaxation's solution and solve remaining MINLP
- Good for: MIP, MINLP
- Let \bar{x} be the LP solution
- If $|\{i \in \mathcal{I} : \bar{x}_i \in \mathbb{Z}\}| > p|\mathcal{I}|$ for some $p \in [0, 1]$ then
- Change bounds of x_i to $\{\lfloor \overline{x}_i \rfloor, \lceil \overline{x}_i \rceil\}$
- Solve smaller MINLP
- This gives the feasible rounding with best objective value

Computational results for RENS

	Integrality		Succ	Prim. gap		Comp. effort	
	>90%	Avg (%)		Mean	Std dev	Nodes	Time (s)
MIP + cuts	55/159	71.7	95/159	8.22	20.34	814.4	22.6
MIP – cuts	62/159	73.6	80/159	10.88	21.19	719.9	21.7
MIQCP (LP)	9/70	59.9	49/70	11.61	13.14	627.7	30.9
MIQCP (NLP)	1/70	13.8	48/70	1.30	3.37	7,078.8	168.1
MINLP (LP)	6/105	63.5	65/105	13.80	17.73	11,175.6	83.0
MINLP (NLP)	1/105	15.0	73/105	4.60	14.99	93,908.0	262.7

 Table 1
 Computing optimal roundings (aggregated results)

- Basic LP solutions often show high integrality
- Success rate seems to decreases when more integer variables are fixed
- Roundability of MIP and MINLP are similar

Computational results for RENS

Fig. 3 Moving averages of success rate, MIPLIB instances, after cuts

- · Basic LP solutions often show high integrality
- Success rate seems to decreases when more integer variables are fixed
- Roundability of MIP and MINLP are similar

Outline

Introduction: LP-based Branch and Bound Spatial Branch and bound

Heuristics

Sub-NLP NLP diving Multi-start MPEC Undercover RENS

Conclusion

Conclusion

Summary

- very brief introduction to LP-based branch and bound
- overview of MINLP heuristics in SCIP

Conclusion

Summary

- very brief introduction to LP-based branch and bound
- overview of MINLP heuristics in SCIP

What is missing in SCIP

- Non-linear Feasibility Pump
- Problem specific heuristics

Conclusion

Summary

- · very brief introduction to LP-based branch and bound
- overview of MINLP heuristics in SCIP

What is missing in SCIP

- Non-linear Feasibility Pump
- Problem specific heuristics

Thank you for your attention

Primal heuristic for MINLPs in SCIP

Ambros Gleixner, and Felipe Serrano

Zuse Institute Berlin · serrano@zib.de SCIP Optimization Suite · http://scip.zib.de

Workshop on Discrepancy Theory and Integer Programming

Amsterdam · June 12, 2018

Federal Ministry of Education and Research

Literature I

Timo Berthold.

RENS - the optimal rounding.

Mathematical Programming Computation, 6(1):33–54, 2014. doi: 10.1007/s12532-013-0060-9.

Timo Berthold and Ambros M. Gleixner.

Undercover: a primal MINLP heuristic exploring a largest sub-MIP. Mathematical Programming, 144(1-2):315–346, 2014. doi: 10.1007/s10107-013-0635-2.

Lars Schewe and Martin Schmidt. Computing feasible points for minlps with mpecs. Technical report, Technical report, Optimization Online, 2016. URL http://www.optimization-online.org/DB_HTML/2016/12/5778. html, 2016.

Literature II

Laurence Smith, John Chinneck, and Victor Aitken.

Improved constraint consensus methods for seeking feasibility in nonlinear programs.

Computational Optimization and Applications, 54(3):555–578, 2013. doi: 10.1007/s10589-012-9473-z.

