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Mixed-Integer Nonlinear Programs (MINLPs)

min cTx
s.t. gk(x) ≤ 0 ∀k ∈ [m]

xi ∈ Z ∀i ∈ I ⊆ [n]
xi ∈ [ℓi,ui] ∀i ∈ [n]

The functions gk ∈ C1([ℓ,u],R) can be
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One way of solving MINLPs to global optimality

• Methods for finding (good) feasible solutions; Primal heuristics

• Proof that there is no better solution; LP-based spatial branch and bound
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LP based spatial Branch & Bound

• Build a (extended formulation of a) polyhedral relaxation R

• Solve R and get solution x∗

• If x∗ is feasible we are done. If not,

• Try to strengthen R by separating x∗

• When not possible, branch possibly on continuous variables (spatially)
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Building polyhedral relaxations: the problem

• We can start with the variable’s bounds as our relaxation.
• Then we have to solve the separation problem: Given
{x ∈ [l,u] : g(x) ≤ 0} and x̄ s.t. g(x̄) > 0 either

• Find a separating inequality or
• prove that none exists.

• Very expensive for general g
• However, when g is convex, it is as easy as computing a gradient:

g(x̄) +∇g(x̄)(x− x̄) ≤ 0

• Idea: find convex underestimator ĝ of g(x)
• Then {x ∈ [l,u] : g(x) ≤ 0} ⊆ {x ∈ [l,u] : ĝ(x) ≤ 0}
• If ĝ(x̄) > 0 we can separate.
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Building polyhedral relaxations: an example

• x2 + y2 + 2 exp(xy3) ≤ 3 with x, y ∈ [−2, 2]

• exp(·) > 0 ⇒ x2 + y2 ≤ x2 + y2 + 2 exp(xy3)
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• Admittedly, ad-hoc argument
• In practice: if functions are simple enough, we know convex/concave
envelopes

• If function is not simple enough, make it simpler!
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Building polyhedral relaxation in SCIP

• x2 + y2 + 2 exp(xy3) ≤ 3
• Introduce auxiliary variables

• z1 = y3
• z2 = xz1
• x2 + y2 + 2 exp(z2) ≤ 3

• We can find polyhedral relaxations of z1 = y3

• For z2 = xz1 we have McCormick inequalities:

max{xz1+z1x−xz1, xz̄1+z1x̄− x̄z̄1} ≤ z2 ≤ min{xz̄1+z1x−xz̄1, xz1+z1x̄− x̄z1}

• Finally, x2 + y2 + 2 exp(z2) is convex
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Spatial Branch and bound

Solutions might not be separable: conv{(x, y) : x2 = y, x ∈ [ℓ,u]} is

x2 ≤ y ≤ ℓ2 +
u2 − ℓ2

u− ℓ
(x− ℓ) ∀x ∈ [ℓ,u].

Branching on a nonlinear variable in a nonconvex constraint allows for
tighter relaxations:
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Sub-NLP

• Idea: fix integer variables to integer values and run a local NLP solver
• Good for: MINLP

Let x̄ be LP-optimum of the current node’s relaxation
• If there is a i ∈ I such that x̄i /∈ Z → STOP
• Fix xi to x̄i.
• Solve remaining NLP to local optimality using x̄
as initial point.

min

Extends MIP heuristics to MINLP
• SCIP runs its MIP heuristics on MIP relaxation of MINLP
• use heuristic’s proposed solution as x̄
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NLP diving

• Idea: Solve NLP relaxations, fixing an integer variable after each NLP
• Good for: MINLP

• solve NLP relaxation
• fix an integer variable
• propagate
• repeat
• if fixing is infeasible, backtrack

• undo last fixing and fix to another value
• if infeasible again, abort
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Multi-start Heuristic [Chinneck et al. 2013]
• Idea: use different starting points for NLP solver
• Good for: NLPs without too many integer variables

4 ≤ x2 + y2 ≤ 9
4 ≤ (x− 2)2 + y2 ≤ 9

x ∈ [−4, 6]
y ∈ [−4, 4]
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Multi-start in SCIP
Input: Nonlinear Constraints gi(x) ≤ 0
1. generate random points in [ℓ,u]

2. for each point xk:
• ski :=

−gi(xk)
||∇gi(xk)||2

∇gi(xk) ∀i
• Update:

x+k = xk +
1
n

n∑
i=1

ski

3. identify clusters of points C1, . . . , Cp
4. for each cluster

• build convex combination
y := 1

|Cj|
∑

x∈Cj
x

• round each fractional integer
variable to closest integer

• use resulting point as starting point
for NLP
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MPEC Heuristic [Schewe and Schmidt 2016]

• Idea: write x ∈ {0, 1} as x(1− x) = 0, relax to x(1− x) ≤ ε and solve
sequences of NLP with ε → 0

• Good for: Mixed Binary NLPs

• MPEC stands for Mathematical Program with Equilibrium Constraints

min f(x)
s.t. gj(x) ≤ 0 ∀j ∈ {1, . . . ,m}

xi ∈ [ℓi,ui] ∀i ∈ {1, . . . , k}
xi ∈ {0, 1} ∀i ∈ {k+ 1, . . . ,n}
xi(1− xi) = 0
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MPEC in SCIP

Algorithm
0. choose ε ∈ [0, 1

4 ] and x ∈ Rn

1. x∗ := solution of NLPε using x as starting point
2. if x∗ is feasible for NLPε and x∗i ∈ {0, 1} → STOP
3. if x∗ is feasible for NLPε but not binary:

• ε := ε
2 ; GOTO 1. with x := x∗

4. x∗ is infeasible for NLPε but satisfies x∗i (1− x∗i ) ≤ ε → STOP
5. x∗ is infeasible for NLPε and there are x∗i (1− x∗i ) > ε

• reset or fix xi for binary variables with x∗i (1− x∗i ) > ε

• xi :=
{
0, x∗i > 0.5
1, otherwise

• GOTO 1.
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Undercover [Berthold and Gleixner 2014]

• Idea: fix variables so that MINLP transforms into a MIP
• Good for: MIQCQP

• Solve a relaxation (LP, NLP)
• Identify minimum set C of variables to be fixed in
order to obtain a MIP

• Fix variables in C to relaxation’s solution.
• Solve MIP
• Postprocess: Fix integer values and solve NLP
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Undercover in SCIP

• Identifying minimum set C of variables to be fixed
• If ∂2

∂xixj
gk(x) ̸= 0 then xi or xj must be fixed

• Build graph with nodes xi and arcs {xi, xj} if ∂
∂xixj

gk(x) ̸= 0
• Minimum vertex cover yields the set we are looking for.

• Fix variables in C to relaxation’s solution
• Fix a variable, if variable must be integer, fix to rounded value.
• Propagate bounds: to avoid ”obvious” infeasible fixings
• If next fixing value is outside bounds, choose closest bound or resolve
relaxation

• If infeasible, backtrack: undo last fixing and try new value
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RENS: The optimal rounding [Berthold 2014]

• RENS stands for Relaxation Enforced Neighborhood Search
• Idea: restrict integer variables around LP-relaxation’s solution and solve
remaining MINLP

• Good for: MIP, MINLP

• Let x̄ be the LP solution
• If |{i ∈ I : x̄i ∈ Z}| > p|I| for some p ∈ [0, 1] then
• Change bounds of xi to {⌊x̄i⌋, ⌈x̄i⌉}
• Solve smaller MINLP

• This gives the feasible rounding with best
objective value
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Computational results for RENS

• Basic LP solutions often show high integrality
• Success rate seems to decreases when more integer variables are fixed
• Roundability of MIP and MINLP are similar
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Outline

Introduction: LP-based Branch and Bound
Spatial Branch and bound

Heuristics
Sub-NLP
NLP diving
Multi-start
MPEC
Undercover
RENS

Conclusion
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Conclusion

Summary
• very brief introduction to LP-based branch and bound
• overview of MINLP heuristics in SCIP

What is missing in SCIP
• Non-linear Feasibility Pump
• Problem specific heuristics

Thank you for your attention
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