
1

Glossary

Glossary of Meta-Environment Terminology
Abstract Data Type (ADT) Structural description of the interface of a component. Used by APIGEN to

generate an Application Programmer's Interface (API) for the component.

APIGEN Application Programming Interface (API) generator. Given a datastructure
definition (in the form of an Abstract Data Type), APIGEN generates C
or Java code to access that datastructure. Internally, the datastructure is
represented as ATerm.

ASF Algebraic Specification Formalism. This a notation for describing rewrite
rules and is mostly used for defining software analysis, fact extraction, and
software transformation.

ASF checker ASF checker performs static checking on ASF definitions.

ASF compiler The ASF compiler transforms ASF specifications to C code. That C code
is compiled and linked with a run-time library. This leads very efficient
execution of specifications.

ASF interpreter The ASF interpreter takes the equation sections from the ASF+SDF
specification and applies them to the parsed input term. It produces another
parse tree as output.

ASF operations ASF operations provides all operations to read and modify ASF definitions.

ASF+SDF The combination of the formalisms ASF and SDF. ASF+SDF can describe
both the syntax of a language and the operations on that language (checking,
execution, analysis, transformation).

ASF+SDF checker The ASF+SDF checker checks an SDF definition for compatibility for use
with ASF, and also checks some production attributes that are specifically
interpreted by ASF rewriting engines. It is an extension of the SDF checker.

ASF+SDF library A collection of elementary datatypes (lists, tables, etc.), language grammars
(C, COBOL, Java, SDF, etc.) and utilities.

ASF+SDF modules The ASF+SDF modules describe:

• the syntax of the base language,

• the functions that can be applied to base language programs.

Note that the ASF+SDF modules may define several base languages at the
same time.

AsFix ASF+SDF Fixed format. The dataformat used to represent parse trees. AsFix
is a specialized view on ATerms. Important features are:

• The AsFix format is a full parse trees that contains all the original layout
and comments from the original source code program that was parsed.

• The AsFix format is self-descriptive: each subtree contains information
about the exact grammar production that has been used to parse the text that
has resulted in that parse tree.



Glossary

2

• The AsFix format does not contain source code coordinates per se, but a
separate tool (addPosInfo) can easily compute these coordinates and add
them to the parse tree in the form of annotations.

ATerm Annotated terms. A dataformat used for the internal representation of all data.
Distinguishing features are:

• ATerms are language-independent and can be processed by programs in
any language.

• ATerms can be annotated with auxiliary information that does not affect
the tree structure.

• ATerms preserve maximal subterm sharing. This means that common parts
of the data are not duplicated but shared. This leads to considerable size-
reduction of the data.

Box Intermediate representation of the prettyprinter. A parse tree is first converted
to a box term that includes all desired formatting directives (alignment, font
and color directives, and the like). Next, the box term is converted to various
output formats (plain text, HTML, etc.).

Configuration manager The configuration manager handles user settings and preferences.

Compiled specification It is possible to compile the ASF+SDF into a very efficient executable form.
Compiled specifications can be used via the command line interface of The
Meta-Environment by power users.

Debugger The debugger allows a step-by-step execution of the rewrite rules defined in
ASF+SDF specifications.

Errors & warnings Errors & warnings pinpoint any errors in the ASF+SDF modules or input
terms.

Graph Data format to represent graphs. Used as representation of import graphs and
parse trees that are displayed in the GUI.

Graphical user interface (GUI) The graphical user-interface (GUI) gives end-users access to the system's
functionality. It is a "sovereign" user-interface that occupies the complete
desktop window and provides functionality like:

• Opening, editing and closing ASF+SDF modules.

• Opening, editing, reducing and closing input terms.

• A graphical and tree-structured display of the import relations between
ASF+SDF modules.

• A graphical display of parse trees.

• Error and progress indications.

Location Data format to describe locations in source code.

Input term A text that conforms to the syntax defined in the ASF+SDF modules. This
includes:

• the syntax of the base language (e.g., C, Java, Boolean expressions, a
domain-specific language),

• the functions that can be applied to base language programs (e.g.,
typecheck, extract facts, compile, remove unused methods).



Glossary

3

The input term can be freely edited and is checked for syntactic correctness
before any function is applied to it. It is possible to simultaneously edit
different input terms in different base languages.

Module manager The module manager is responsible for all information related to the
ASF+SDF modules that reside in the system.

Output term A text that describes the result of applying a function to a program in the
base language. Note that this text conforms to the syntax R, where R is the
result sort of the function that was applied. With Java-to-Java transformation
the result sort will be Java. When no function is applied, the output term is
identical to the input term.

Parser The parser takes a parse table (as produced by the parse table generator) and
text (as provided by a text editor) as input and produces a parse tree as output.
Any errors are shown in the error display of the GUI.

Parse table A parse table is an efficient representation (ATerm) of the base language as
defined by the ASF+SDF modules and enables efficient parsing.

Parse table generator The parse table generator takes syntax sections from the ASF+SDF
specification and converts them to a parse table to be used for the parsing of
terms.

Parse tree Tree-structured representation (in AsFix) of a text that has been analyzed by
a parser.

Prettyprinter The prettyprinter converts parse trees to text. The prettyprinter uses default
rules to insert layout in a parse tree so that its corresponding text is presented
in a uniform way. Optionally, the ASF+SDF specification may contain
formatting rules that can replace this default behaviour.

Rscript A small scripting language for defining relational expressions. Used for the
analysis of facts extracted from software.

SDF Syntax Definition Formalism. A notation for describing the grammar of
programming and application languages.

SDF checker SDF checker performs static checking on SDF definitions.

SDF operations SDF operations provides all operations to read and modify SDF definitions.

Sisyphus A system for continuous integration that rebuilds the system after each change
that is committed by a developer.

Structure editor A syntax-directed editor that closely cooperates with the text editor. It is
mostly used for syntax-directed navigation through the text. The structure-
editor does not appear as such in the GUI but all its functionality is visible
through the text editor.

Summary An error or message summary. A dataformat for the internal representation
of errors and messages. Summaries are produced by checker and compilers
and are used by the GUI.

Term store The term store contains all parse tables, parse trees and other intermediate data
that is generated during execution of The Meta-Environment. This includes:

• The parse tree for each ASF+SDF module.

• The parse tree for each parsed input term.



Glossary

4

• The parse tree for each generated output term.

Text editor The text editor allows text editing on ASF+SDF modules and input terms.
Multiple editors may be opened; each appears as a tabbed window in one of
the panes of the GUI.

The Meta-Environment The architecture of The Meta-Environment (or just "the system") is the
primary object of study of this document.

ToolBus The ToolBus coordination architecture enables the flexible and controlled
combination and orchestration of software components. It is used as backbone
for The Meta-Environment. The ToolBus has the following characteristics:

• Components (or tools in ToolBus parlance) can be written in different
programming languages.

• Components can be running on different machines.

• All interactions between components are regulated by a ToolBus script (or
Tscript for short) that is executing in the ToolBus. Tscript is a concurrent
language that allows the definition of parallel processes, messaging
between these processes and interaction between processes and tools.

Tscript The script that describes the cooperation between components in a ToolBus-
based application.


