
1Introduction to Generic Language Technology

Introduction to
Generic Language Technology

Mark van den Brand,
Paul Klint,

Jurgen Vinju

2Introduction to Generic Language Technology

How can we ...

● ... build tools for software analysis and
manipulation?

● ... make the tools programming language
independent (language-parametric)?

● ... integrate the tools in Interactive Development
Environment (IDE)?

● ... a quick general overview, and then an
introduction to specific technologies?

3Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

4Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

5Introduction to Generic Language Technology

What is a Language?

● A programming language
– Assembler, Cobol, PL/I, C, C++, Java, C#, ...

● A Domain-Specific Language (DSL)
– SQL for queries

– BibTex for entries in a bibliography

– Euris for railroad emplacement safety

– Risla for financial products

6Introduction to Generic Language Technology

Aspects of a Language

● Syntax
– Textual form of declarations, statements, etc.

● Static Semantics
– Scope and type of variables, conversions,

formal/actual parameters, etc.

– Queries: who calls who, who uses variable X, ...

● Dynamic Semantics
– Program execution

7Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

8Introduction to Generic Language Technology

What is a Programming
Environment?

A system that supports the development of
programs in order to:

● Increase productivity:
– Uniform user-interface (UI); integrated tools

– Increased interaction; early error detection

● Increase quality:
– Integrated version management

– Integrated testing

9Introduction to Generic Language Technology

Classical PE

● Text editor only
● Programs stored in files
● Complete recompilation after each change
● Late error detection
● Debugging requires recompilation
● Example:

– xemacs or vim

– gcc or javac

10Introduction to Generic Language Technology

Integrated PE (IPE)
also: Integrated Development Environment (IDE)

● Specialized, syntax-directed, editor for each
language

● Common intermediate representation for all tools
● Incremental processing
● Early error detection

– Syntax errors

– Undeclared variables

– Type errors in expressions

11Introduction to Generic Language Technology

Functionality of a IPE

● Syntax-directed editing/highlighting, pretty
printing

● Typechecking
● Restructuring
● Versioning
● Executing, debugging, profiling
● Testing
● Documenting

12Introduction to Generic Language Technology

Simple, External, View of IPE

Integrated
Programming
Environment

Text

Edit
Commands

Text

Error
Messages

Values

13Introduction to Generic Language Technology

Simple, Internal, View of IPE

Text

Edit
Commands

Text

Error
Messages

Edit
Commands

Values

Parser

Syntax
Tree

Manager
Pretty Printer

Editor

Type checker

Evaluator

14Introduction to Generic Language Technology

Examples of IPEs

● Eclipse: www.eclipse.org
– Integrated Development Environment (IDE) for Java

– Plug-in mechanism for extensions

● MS Visual Studio: msdn.microsoft.com/vstudio
– IDE for various languages VB, C, C++, C#

http://www.eclipse.org/

15Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

16Introduction to Generic Language Technology

What is Generic Language
Technology?

● Goal: Enable the easy creation of language-
specific tools and programming environments

● Separate language-specific aspects from generic
aspects

● Approach:
– Find good, reusable, solutions for generic aspects

– Find ways to define language-specific aspects

– Find ways to generate tools from language-specific
definitions

17Introduction to Generic Language Technology

Generic aspects

● User-interface
● Text editor
● Program storage
● Documentation

18Introduction to Generic Language Technology

Defining Language Aspects

● Syntax
– Context-free grammar

● Static semantics
– Algebraic specification/rewrite rules

● Dynamic semantics
– Algebraic specification/rewrite rules

19Introduction to Generic Language Technology

From Definition to Tool

● Syntax
– Parser generation

● Static semantics
– Term rewriting

● Dynamic semantics
– Term rewriting

20Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

21Introduction to Generic Language Technology

What is a Program Generator?

Definition of
problem P

Generator

Generated program that solves P

Declarative programming

Operational programming

22Introduction to Generic Language Technology

Examples of Program Generators (1)

● Regular expression matching:

– Problem: recognize regular expressions R
1
, ..., R

n
 in a

text

– Generates: finite automaton

● Web sites
– Problem: create uniform web site for set of HTML

pages

– Generate: HTML code with standard layout and site
map

23Introduction to Generic Language Technology

Examples of Program Generators (2)
● Generate bibliographic entries; input
 @article{BJKO00, author = {Brand, {M.G.J. van den} and Jong, {H.A. de}

and P. Klint and P. Olivier},

 title = {{E}fficient {A}nnotated {T}erms},

 journal = {Software, Practice \& Experience},

 year = {2000},

 pages = {259—291},

 number = {3},
 volume = {30}}

 generates:
M.G.J. van den Brand, H.A. de Jong, P. Klint and P.A. Olivier, Efficient Annotated
Terms, Software, Practice & Experience, 30(3):259―291, 2000

24Introduction to Generic Language Technology

Examples of Program Generators (3)

● Compiler:
– Input: Java program

– Generates: JVM code

● C preprocessor:

– Input C program with #include, #define directives

– Generates C program with directives replaced.

25Introduction to Generic Language Technology

Program Generators (summary)

● Problem description is specific and is usually
written in a Domain-Specific Language (DSL)

● Generator contains generic algorithms and
information about application domain.

● A PG isolates a problem description from its
implementation ⇒ easier to switch to other
implementation methods.

● Improvements/optimizations in the generator are
good for all generated programs.

26Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

27Introduction to Generic Language Technology

What is a Programming Environment
Generator (PEG)?

● A PEG is a program generator applied in the
domain of programming environments

● Input: description of a desired language L
● Output: (parts of) a dedicated L environment
● Advantages:

– Uniform interface across different languages

– Generator contains generic, re-usable, implementation
knowledge

● Disadvantage: some UI optimizations are hard

28Introduction to Generic Language Technology

Programming Environment Generator

Formal definition
of language L

Generator

Dedicated environment
for editing, manipulating and executing

L programs

29Introduction to Generic Language Technology

PEG = collection of program
generators

Definition of
 L static semantics

Definition of
 L syntax

Definition of
 L dynamic semantics

Parser
Generator

L-parser

Typechecker
Generator

L-typechecker

Evaluator
Generator

L-evaluator

Integrated L-programming environment

30Introduction to Generic Language Technology

From Definitions to Components

Text

Edit
Commands

Text

Error
Messages

Edit
Commands

Values

Parser

Syntax
Tree

Manager
Pretty Printer

Editor

Type checker

Evaluator

Syntax Definition

Dynamic Semantics

Static Semantics

31Introduction to Generic Language Technology

PEG: further definitions

● Lexical syntax
● Concrete syntax
● Abstract syntax
● Pretty printing
● Editor behaviour
● Dataflow
● Control flow

● Program Analysis
● Program Queries
● Evaluation rules
● Compilation rules
● User Interface
● Help rules
● ...

32Introduction to Generic Language Technology

 ASF+SDF Meta-Environment (1)

● An interactive development environment for
generating tools from formal language definitions

● Based on:
– Full context-free grammars

– Conditional term rewriting

● Language definitions written in ASF+SDF

– SDF: Syntax definition Formalism
– ASF: Algebraic Specification Formalism

33Introduction to Generic Language Technology

Interactive
Development
Environment
for Language
definitions

ASF+SDF Meta-Environment (2)

Stand-alone,
generated,
environment

Formal definition
of language L

Generator

Generated L
programming environment

ASF+SDF Meta-Environment

34Introduction to Generic Language Technology

ASF+SDF Specifications

● Series of modules
● A module can import other modules
● A module can be parameterized
● Each module consists of two parts:

– SDF-part defines lexical and context-free syntax,
priorities and variables

– ASF-part defines arbitrary functions, e.g. for
typechecking, analysis, evaluation, transformation, ...

35Introduction to Generic Language Technology

Booleans: syntax

module Booleans
 exports
 sorts BOOL
 context-free syntax

 “true” -> BOOL
 “false” -> BOOL
 and(BOOL,BOOL) -> BOOL

 variables
 “B” -> BOOL

Simplified version of
a library module

36Introduction to Generic Language Technology

Booleans: terms

Defines the syntax of the language of Booleans,
e.g.

– true
– and(true,false)
– and(and(true,false), and(false, false))

● or, terms with variables (as used in equations):

– and(true,B)
– and(and(true,false), and(B, false))

37Introduction to Generic Language Technology

Booleans: semantics

Add semantics for and function:
equations
[1] and(true, true) = true
[2] and(true,false) false
[3] and(false,true) = false
[4] and(false, false) = false

Alternative:
equations
[1] and(true, B) = B
[2] and(false, B) = false

38Introduction to Generic Language Technology

Booleans: complete module

module Booleans
 exports
 sorts BOOL
 context-free syntax

true -> BOOL
false -> BOOL
and(BOOL,BOOL) -> BOOL

 variables
B -> BOOL

 equations
 [1] and(true, B) = B
 [2] and(false, B) = false

39Introduction to Generic Language Technology

Arithmetic (1)

● The successor notation is a well-known device to
define numbers and arithmetic:

– 0 is represented by 0
– 1 is represented by s(0)
– 2 is represented by s(s(0))
– n is represented by sn(0)

40Introduction to Generic Language Technology

Arithmetic (2)

module Arithmetic
exports
 sorts INT
 context-free syntax

“0” -> INT
s(INT) -> INT
plus(INT, INT) -> INT

 variables
“X” -> INT
“Y” -> INT

41Introduction to Generic Language Technology

Arithmetic (3)

Add semantics for function plus:

Or using infix notation:

equations
[p1] plus(0, X) = X
[p2] plus(s(X), Y) = s(plus(X, Y))

equations
[p1'] 0 + X = X
[p2'] (X+1) + Y = (X + Y) + 1

42Introduction to Generic Language Technology

Arithmetic (4)
module Arithmetic
 exports
 sorts INT
 context-free syntax

“0” -> INT
s(INT) -> INT
plus(INT, INT) -> INT

 variables
X -> INT
Y -> INT

equations
[p1] plus(0, X) = X
[p2] plus(s(X), Y) = s(plus(X, Y))

43Introduction to Generic Language Technology

Arithmetic (5)

Using these rules

we can start computing:

plus(s(s(0)), s(s(s(0)))) =p2

s(plus(s(0), s(s(s(0)))) =p2

s(s(plus(0, s(s(s(0)))) =p1

s(s(s(s(s(0)))))

In other words: 2 + 3 = 5

[p1] plus(0, X) = X
[p2] plus(s(X), Y) = s(plus(X, Y))

44Introduction to Generic Language Technology

Term Rewriting (1)

Rewrite rules {L
i
 → R

i
}r

i=1
 and initial term T

0

Example:

● [p1] plus(0, X) = X
● [p2] plus(s(X), Y) = s(plus(X, Y))

Initial term:

● plus(s(s(0)), s(s(s(0))))

45Introduction to Generic Language Technology

Term Rewriting (2)

Match subterm (redex) of T
j
 with some L

i
 and

replace by R
i
(after variable substitution); this

gives T
j+1

● Try to apply [p2] plus(s(X), Y) = s(plus(X, Y)) to
plus(s(s(0)), s(s(s(0))))

● Match plus(s(s(0)), s(s(s(0)))) with plus(s(X), Y)
● Yields X=s(0) and Y= s(s(s(0)))
● Substitute in r.h.s.: s(plus(s(0), s(s(s(0)))))

46Introduction to Generic Language Technology

Term Rewriting (3)

● We have reached a normal form T
n
 when no more

matches in T
i
are possible

● The reduction sequence is: T
0
→ T

1
→…→ T

n

plus(s(s(0)), s(s(s(0)))) ->

s(plus(s(0), s(s(s(0)))) ->

s(s(plus(0, s(s(s(0)))) ->

s(s(s(s(s(0)))))

47Introduction to Generic Language Technology

Term Rewriting (4)

● The order in which a redex is selected may differ
● We use innermost selection
● There is more to term rewriting:

– Lists and list matching

– Conditional rules

– Default rules

– Traversal functions

– ...

48Introduction to Generic Language Technology

ASF+SDF (summary)

Surprisingly, these trivial examples scale to large
applications. The pattern is always:

– define a syntax (Booleans, numbers, COBOL
programs)

– define functions on terms in this syntax (and, plus,
eliminate-goto's)

– apply to examples of interest

We will hear later about other interesting features of
ASF+SDF

49Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

50Introduction to Generic Language Technology

What are applications of GLT? (1)

● Domain-specific languages
– RISLA (financial software, Fortis, ING)

– EURIS (railroad safety, Dutch Rail)

● Software renovation
– Analysis of telephone software (Ericsson)

– Analysis and transformation of COBOL systems

– Analysis of Java systems (code smells)

51Introduction to Generic Language Technology

What are applications of GLT? (2)

● Code generation from UML
● Java verification
● Tools for various specification languages: CHI,

Elan, Action Semantics, LOTOS, muCRL, ...
● Various tools of the Meta-Environment: parser

generator, compiler, checkers, ...

52Introduction to Generic Language Technology

What are applications of GLT (3)

Source code,
Programs

Abstractions,
Facts

Documentation,
Pictures

presentation

formalizationgeneration

extraction

analysis conversiontransformation

Generic Language Technology helps implementing translations
between source code representations

53Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?

54Introduction to Generic Language Technology

What technology is used for GLT?

Relations,
FactsTrees

Strings,
Files

Parsing

Pretty printing,
Un-parsing

Relational
Calculus

Rewriting

ToolBus/ATerm middleware

55Introduction to Generic Language Technology

What Technology is used for GLT?

● ToolBus: a software coordination architecture
used for connecting tools

● ATerms: Annotated Terms used to exchange data
between tools

● SGLR: Scannerless Generalized LR parsing
● Conditional term rewriting and efficient

compilation techniques

56Introduction to Generic Language Technology

Coordination, Representation &
Computation

● Coordination: the way in which program and
system parts interact (procedure calls, RMI, ...)

● Representation: language and machine neutral
data exchanged between components

● Computation: program code that carries out a
specialized task

A rigorous separation of coordination
from computation is the key to
flexible and reusable systems

57Introduction to Generic Language Technology

Cooperating Components

Architectural Layers

Single Component

Representation

Computation

Single Component

Representation

Computation

Coordination

58Introduction to Generic Language Technology

Generic Representation
Annotated Terms (ATerms)

● Applicative, prefix terms

● Maximal subterm sharing (⇒ DAG)

– cheap equality test, efficient rewriting

– automatic generational garbage collection

● Annotations (text coordinates, dataflow info, ...)
● Very concise, binary, sharing preserving

encoding
● Language & machine independent exchange

format

59Introduction to Generic Language Technology

ATerms
Sharing

+

+ +

1 1 1

+

+

1

6 nodes 3 nodes

60Introduction to Generic Language Technology

ATerms
Term and Annotations

Annotations

61Introduction to Generic Language Technology

The ToolBus Architecture (1)

● Goals: integrate tools written in different
languages running on different machines

● A programmable software bus
● Scripts describe the cooperation of tools
● Scripts are based on Process Algebra

62Introduction to Generic Language Technology

The ToolBus Architecture (2)

ToolBus Coordination

Representation

ComputationTools
ATerms
common

data exchange
format

63Introduction to Generic Language Technology

A typical scenario

UI DB

User-interface Database

Configuration knowledge
only in ToolBus script

UI and DB are
completely
decoupled

64Introduction to Generic Language Technology

ToolBus scripts

● Send, receive message (handshaking)
● Send/receive notes (broadcasting)

● P
1
+ P

2
 P

1
. P

2
 P

1
|| P

2
 P

1
* P

2

● :=, if then else
● Absolute/relative delay, timeout
● Dynamic process creation
● Execution, connection & termination of tools

65Introduction to Generic Language Technology

Architecture of the
ASF+SDF MetaEnvironment

ToolBus

structure
editor

text
editor

parser
generator

parser

graph
browser

ASF+SDF
compiler

ASF+SDF
interpreter

unparser
generator unparser

tree
repository

66Introduction to Generic Language Technology

What Technology is used for GLT?

● ToolBus: a software coordination architecture
used for connecting tools

● ATerms: Annotated Terms used to exchange data
between tools

● SGLR: Scannerless Generalized LR parsing
● Conditional term rewriting and efficient

compilation techniques

67Introduction to Generic Language Technology

Scannerless Generalized LR Parsing
(1)

● Scannerless: in a traditional compiler lexical
syntax is implemented by a scanner and context-
free syntax by a parser. SGLR: scanner and
parser are integrated
– makes resulting parser more expressive

– simplifies the implementation

68Introduction to Generic Language Technology

Scannerless Generalized LR Parsing
(2)

● LR: left-to-right (bottom-up) parsing as used by
Yacc and Bison.

● Generalized: extends the class of accepted
grammars to all context-free grammars
– Context-free grammars are closed under composition

(as opposed to, e.g., LR grammars)

– Enables modular grammars

– Important for large grammars and language dialects

69Introduction to Generic Language Technology

Scannerless Generalized LR Parsing
(3)

● An LR-based parser generator does not allow
conflicts: (shift/reduce, reduce/reduce)

● Key ideas in SGLR:
– split a concurrent parse when a conflict occurs

– merge concurrent parses as soon as possible

– an ambiguity node represents alternative parses

● It is undecidable whether a context-free grammar
is ambiguous, but heuristics might help.

70Introduction to Generic Language Technology

Parsing Architecture

Syntax of L
(SDF rules)

Parser
Generator

SGLR Parser
for L

L text
L

tree

71Introduction to Generic Language Technology

What Technology is used for GLT?

● ToolBus: a software coordination architecture
used for connecting tools

● ATerms: Annotated Terms used to exchange data
between tools

● SGLR: Scannerless Generalized LR parsing
● Conditional term rewriting and efficient

compilation techniques

72Introduction to Generic Language Technology

Conditional Term Rewriting

● Collect rules with same outermost symbol and
generate one C function for them

● Generate a finite automaton for the matching of
left-hand sides

● Use ATerms to represent terms:
– maximal subterm sharing

– structural equality can be implemented by pointer
comparison!

73Introduction to Generic Language Technology

Compilation to C

f(a,b,c) = g(a)
f(X,b,d) = g(X)

 ATerm f(ATerm arg0, ATerm arg1, ATerm arg2) {
 if term_equal(arg0,a) {
 if term_equal(arg1,b) {
 if term_equal(arg2,c) {
 return g(a);
 }
 }
 }
 if term_equal(arg1,b) {
 if term_equal(arg2,d) {
 return g(arg0);
 }
 }
 return make_nf3(fsym, arg0, arg1, arg2)
 }

 Compiles
to

74Introduction to Generic Language Technology

Rewriting Architecture

Specification
(ASF rules)

ASF
compiler

Compiled C
programinput

term
normal
form

75Introduction to Generic Language Technology

Effects of sharing

Application Time (sec) Memory (Mb)
sharing/no sharing sharing/no sharing

ASF+SDF compiler 45/155 27/134
Java servlet generator 12/50 10/34
Typesetter 10/49 5/5
SDF normalizer 8/28 8/11
Pico interpreter 20/80 4/4

76Introduction to Generic Language Technology

Wrap up

● Summary of GLT
● Current work on applications
● Current work on technology
● Further reading

77Introduction to Generic Language Technology

Summary

● Generic Language Technology helps to build
tools for language processing quickly

● Programming Environment Generators are an
application of GLT

● The ASF+SDF Meta-Environment is an
Interactive Development Environment for
language definitions and a Programming
Environment Generator

78Introduction to Generic Language Technology

Current work on Applications (1)

● Verification of JavaCard
● Detection and visualization of code smells in Java
● Transformation of formulae in Abramowitz and

Stegun, Handbook of Mathematical Functions,
from LaTeX to MathML and Mathematica

● Using relational calculus for software analysis
● Cobol transformations
● Design of DSL for ASML's chip manufacturing

machines

79Introduction to Generic Language Technology

Current work on Applications (2)

● ELAN Environment (Nancy)
● Action Semantics Environment (Aarhus)
● CHI environment (Eindhoven)
● C++ restructuring (Bell Labs)
● Connection with Eclipse

80Introduction to Generic Language Technology

Current work on Technology

● Generic/generated IPE/GUI features
● Redesign/implementation of ToolBus

– Reimplement in Java

– Connections with RMI, Corba, .NET, Eclipse

● Grammar engineering
● Smoother coupling between term rewriting and

relational calculus

81Introduction to Generic Language Technology

Further reading (1)
technology

● J. Heering and P. Klint, Rewriting-Based Languages and Systems, Chapter 15 in
Terese, Term Rewriting Systems, Cambridge University Press, 2003

● M.G.J. van den Brand, J. Heering, P. Klint and P.A. Olivier, Compiling language
definitions: The ASF+SDF compiler. ACM Transactions on Programming Languages
and Systems, 24 (4):334-368, July 2002

● M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T.
Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J.
Visser, The ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. in: R. Wilhelm (ed). Proceedings of Compiler Construction
(CC'01), LNCS 2027, 365--370, 2001.

● M.G.J. van den Brand, H.A. de Jong, P. Klint and P.A. Olivier, Efficient Annotated
Terms, Software, Practice & Experience, 30(3):259--291, 2000

● J. A. Bergstra and P. Klint, The discrete time ToolBus -- a software coordination
architecture, Science of Computer Programming 31(2-3):205-229, 1998

82Introduction to Generic Language Technology

Further reading (2)
application areas

● A. van Deursen, P. Klint and J. Visser. Domain-Specific Languages: An
Annotated Bibliography ACM SIGPLAN Notices 35(6):26-36, June 2000.

● M.G.J. van den Brand, P. Klint and C. Verhoef, Reverse Engineering and
System Renovation: an Annotated Bibliography, ACM Software
Engineering Notes, 22(1): 42--57, January 1997

● M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, E.A. van der
Meulen, Industrial Applications of ASF+SDF, In M. Wirsing and M. Nivat
(eds) Proceedings of Algebraic Methodology and Software Technology
(AMAST'96), LNCS Vol. 1101, 9-18, 1996

● See: www.meta-environment.org
● See: Home pages of the authors

