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How can we ...

● ... build tools for software analysis and 
manipulation?

● ... make the tools programming language 
independent (language-parametric)?

● ... integrate the tools in Interactive Development 
Environment (IDE)?

● ... a quick general overview, and then an 
introduction to specific technologies?
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What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?
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What is a Language?

● A programming language
– Assembler, Cobol, PL/I, C, C++, Java, C#, ...

● A Domain-Specific Language (DSL)
– SQL for queries

– BibTex for entries in a bibliography

– Euris for railroad emplacement safety

– Risla for financial products
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Aspects of a Language

● Syntax
– Textual form of declarations, statements, etc.

● Static Semantics
– Scope and type of variables, conversions, 

formal/actual parameters, etc.

– Queries: who calls who, who uses variable X, ...

● Dynamic Semantics
– Program execution
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What is a Programming 
Environment?

A system that supports the development of 
programs in order to: 

● Increase productivity:
– Uniform user-interface (UI); integrated tools

– Increased interaction; early error detection

● Increase quality:
– Integrated version management

– Integrated testing
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Classical PE

● Text editor only
● Programs stored in files
● Complete recompilation after each change
● Late error detection
● Debugging requires recompilation
● Example:

– xemacs or vim 

– gcc or javac
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Integrated PE (IPE)
also: Integrated Development Environment (IDE)

● Specialized, syntax-directed, editor for each 
language

● Common intermediate representation for all tools
● Incremental processing
● Early error detection

– Syntax errors

– Undeclared variables

– Type errors in expressions
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Functionality of a IPE

● Syntax-directed editing/highlighting, pretty 
printing

● Typechecking
● Restructuring
● Versioning
● Executing, debugging, profiling
● Testing
● Documenting
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Simple, External, View of IPE
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Simple, Internal, View of IPE

Text

Edit
Commands

Text

Error
Messages

Edit
Commands

Values

Parser

Syntax
Tree

Manager
Pretty Printer

Editor

Type checker

Evaluator



14Introduction to Generic Language Technology

Examples of IPEs

● Eclipse: www.eclipse.org
– Integrated Development Environment (IDE) for Java

– Plug-in mechanism for extensions

● MS Visual Studio: msdn.microsoft.com/vstudio
– IDE for various languages VB, C, C++, C#

http://www.eclipse.org/
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What is Generic Language 
Technology?

● Goal: Enable the easy creation of language-
specific tools and programming environments

● Separate language-specific aspects from generic 
aspects

● Approach:
– Find good, reusable, solutions for generic aspects

– Find ways to define language-specific aspects

– Find ways to generate tools from language-specific 
definitions
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Generic aspects

● User-interface
● Text editor
● Program storage
● Documentation
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Defining Language Aspects

● Syntax
– Context-free grammar

● Static semantics
– Algebraic specification/rewrite rules

● Dynamic semantics
– Algebraic specification/rewrite rules
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From Definition to Tool

● Syntax
– Parser generation

● Static semantics
– Term rewriting

● Dynamic semantics
– Term rewriting



20Introduction to Generic Language Technology

What ...

● ... is a language?
● ... is a Programming Environment (PE)?
● ... is Generic Language Technology (GLT)?
● ... is a Program Generator?
● ... is a Programming Environment Generator?
● ... are the applications areas of GLT?
● ... technology is used for GLT?



21Introduction to Generic Language Technology

What is a Program Generator?

Definition of 
problem P

Generator

Generated program that solves P

Declarative programming

Operational programming
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Examples of Program Generators (1)

● Regular expression matching:

– Problem: recognize regular expressions R
1
, ..., R

n
 in a 

text

– Generates: finite automaton

● Web sites
– Problem: create uniform web site for set of HTML 

pages

– Generate: HTML code with standard layout and site 
map
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Examples of Program Generators (2)
● Generate bibliographic entries; input
    @article{BJKO00,   author  = {Brand, {M.G.J. van den} and Jong,  {H.A. de} 

and P. Klint and P. Olivier},

      title   = {{E}fficient {A}nnotated {T}erms},

      journal = {Software, Practice \& Experience},

      year    = {2000},

      pages   = {259—291},

 number = {3},
      volume  = {30}}

  generates:
M.G.J. van den Brand, H.A. de Jong, P. Klint and P.A. Olivier, Efficient Annotated 
Terms, Software, Practice & Experience, 30(3):259―291, 2000



24Introduction to Generic Language Technology

Examples of Program Generators (3)

● Compiler:
– Input: Java program

– Generates: JVM code

● C preprocessor:

– Input C program with #include, #define directives

– Generates C program with directives replaced.
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Program Generators (summary)

● Problem description is specific and is usually 
written in a Domain-Specific Language (DSL)

● Generator contains generic algorithms and 
information about application domain.

● A PG isolates a problem description from its 
implementation ⇒ easier to switch to other 
implementation methods.

● Improvements/optimizations in the generator are 
good for all generated programs.
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What is a Programming Environment 
Generator (PEG)?

● A PEG is a program generator applied in the 
domain of programming environments

● Input: description of a desired language L
● Output: (parts of) a dedicated L environment
● Advantages:

– Uniform interface across different languages

– Generator contains generic, re-usable, implementation 
knowledge

● Disadvantage: some UI optimizations are hard
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Programming Environment Generator

Formal definition
of language L

Generator

Dedicated environment 
for editing, manipulating and executing 

L programs



29Introduction to Generic Language Technology

PEG = collection of program 
generators
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 L static semantics

Definition of
 L syntax

Definition of
 L dynamic semantics

Parser 
Generator

L-parser

Typechecker
Generator
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Integrated L-programming environment
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From Definitions to Components
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PEG: further definitions

● Lexical syntax
● Concrete syntax
● Abstract syntax
● Pretty printing
● Editor behaviour
● Dataflow
● Control flow

● Program Analysis
● Program Queries
● Evaluation rules
● Compilation rules
● User Interface
● Help rules
● ...
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 ASF+SDF Meta-Environment (1)

● An interactive development environment for 
generating tools from formal language definitions

● Based on:
– Full context-free grammars

– Conditional term rewriting

● Language definitions written in ASF+SDF

– SDF: Syntax definition Formalism
– ASF: Algebraic Specification Formalism
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Interactive
Development
Environment
for Language
definitions

ASF+SDF Meta-Environment (2)

Stand-alone, 
generated, 
environment

Formal definition
of language L

Generator

Generated L 
programming environment 

ASF+SDF Meta-Environment
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ASF+SDF Specifications

● Series of modules
● A module can import other modules
● A module can be parameterized
● Each module consists of two parts:

– SDF-part defines lexical and context-free syntax, 
priorities and variables

– ASF-part defines arbitrary functions, e.g. for 
typechecking, analysis, evaluation, transformation, ...
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Booleans: syntax

module Booleans
  exports
    sorts BOOL
    context-free syntax

  “true”          -> BOOL
  “false”          -> BOOL
  and(BOOL,BOOL) -> BOOL

   variables
 “B” -> BOOL

Simplified version of
a library module
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Booleans: terms

Defines the syntax of the language of Booleans, 
e.g.

– true
– and(true,false)
– and(and(true,false), and(false, false))

● or, terms with variables (as used in equations):

– and(true,B)
– and(and(true,false), and(B, false))
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Booleans: semantics

Add semantics for and function:
equations
[1] and(true, true) = true
[2] and(true,false) false
[3] and(false,true) = false
[4] and(false, false) = false

Alternative:
equations
[1] and(true, B) = B
[2] and(false, B) = false
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Booleans: complete module

module Booleans
 exports
   sorts BOOL
   context-free syntax

true             -> BOOL
false             -> BOOL
and(BOOL,BOOL) -> BOOL

   variables
B -> BOOL

 equations
  [1] and(true, B) = B
  [2] and(false, B) = false
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Arithmetic (1)

● The successor notation is a well-known device to 
define numbers and arithmetic:

– 0 is represented by 0
– 1 is represented by s(0)
– 2 is represented by s(s(0))
– n is represented by sn(0)
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Arithmetic (2)

module Arithmetic
exports
  sorts  INT
  context-free syntax

“0” -> INT
s(INT) -> INT
plus(INT, INT) -> INT

  variables
“X” -> INT
“Y” -> INT
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Arithmetic (3)

Add semantics for function plus:

Or using infix notation:

equations
[p1] plus(0, X) = X
[p2] plus(s(X), Y) = s(plus(X, Y))

equations
[p1'] 0 + X = X
[p2'] (X+1) + Y = (X + Y) + 1
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Arithmetic (4)
module Arithmetic
 exports
   sorts  INT
   context-free syntax

“0” -> INT
s(INT) -> INT
plus(INT, INT) -> INT

   variables
X -> INT
Y -> INT

equations
[p1] plus(0, X) = X
[p2] plus(s(X), Y) = s(plus(X, Y))
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Arithmetic (5)

Using these rules 

we can start computing:

plus(s(s(0)), s(s(s(0)))) =p2

s(plus(s(0), s(s(s(0)))) =p2

s(s(plus(0, s(s(s(0)))) =p1

s(s(s(s(s(0)))))

In other words: 2 + 3 = 5

[p1] plus(0, X) = X
[p2] plus(s(X), Y) = s(plus(X, Y))
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Term Rewriting (1)

Rewrite rules {L
i
 → R

i
}r

i=1
 and initial term T

0

Example:

● [p1] plus(0, X) = X
● [p2] plus(s(X), Y) = s(plus(X, Y))

Initial term:

● plus(s(s(0)), s(s(s(0))))
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Term Rewriting (2)

Match subterm (redex) of T
j
 with some L

i
  and 

replace by R
i 
(after variable substitution); this 

gives T
j+1

● Try to apply [p2] plus(s(X), Y) = s(plus(X, Y)) to 
plus(s(s(0)), s(s(s(0))))

● Match plus(s(s(0)), s(s(s(0)))) with plus(s(X), Y)
● Yields X=s(0) and Y= s(s(s(0)))
● Substitute in r.h.s.: s(plus(s(0), s(s(s(0)))))



46Introduction to Generic Language Technology

Term Rewriting (3)

● We have reached a normal form T
n
 when no more 

matches in T
i 
are possible

● The reduction sequence is: T
0 
→ T

1 
→…→ T

n

plus(s(s(0)), s(s(s(0)))) ->

s(plus(s(0), s(s(s(0)))) ->

s(s(plus(0, s(s(s(0)))) ->

s(s(s(s(s(0)))))
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Term Rewriting (4)

● The order in which a redex is selected may differ
● We use innermost selection
● There is more to term rewriting:

– Lists and list matching

– Conditional rules

– Default rules

– Traversal functions

– ...
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ASF+SDF (summary)

Surprisingly, these trivial examples scale to large 
applications. The pattern is always:

– define a syntax (Booleans, numbers, COBOL 
programs)

– define functions on terms in this syntax (and, plus, 
eliminate-goto's)

– apply to examples of interest

We will hear later about other interesting features of 
ASF+SDF



49Introduction to Generic Language Technology

What ...
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What are applications of GLT? (1)

● Domain-specific languages
– RISLA (financial software, Fortis, ING)

– EURIS (railroad safety, Dutch Rail)

● Software renovation
– Analysis of telephone software (Ericsson)

– Analysis and transformation of COBOL systems

– Analysis of Java systems (code smells)
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What are applications of GLT? (2)

● Code generation from UML
● Java verification
● Tools for various specification languages: CHI, 

Elan, Action Semantics, LOTOS, muCRL, ...
● Various tools of the Meta-Environment: parser 

generator, compiler, checkers, ...
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What are applications of GLT (3)

Source code,
Programs

Abstractions,
Facts

Documentation,
Pictures

presentation

formalizationgeneration

extraction

analysis conversiontransformation

Generic Language Technology helps implementing translations 
between source code representations 
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What technology is used for GLT?

Relations,
FactsTrees

Strings,
Files

Parsing

Pretty printing,
Un-parsing

Relational
Calculus

Rewriting

ToolBus/ATerm middleware
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What Technology is used for GLT?

● ToolBus: a software coordination architecture 
used for connecting tools

● ATerms: Annotated Terms used to exchange data 
between tools

● SGLR: Scannerless Generalized LR parsing
● Conditional term rewriting and efficient 

compilation techniques
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Coordination, Representation & 
Computation

● Coordination: the way in which program and 
system parts interact (procedure calls, RMI, ...)

● Representation: language and machine neutral 
data exchanged between components

● Computation: program code that carries out a 
specialized task

A rigorous separation of coordination
from computation is the key to 
flexible and reusable systems
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Cooperating Components

Architectural Layers

Single Component

Representation

Computation

Single Component

Representation

Computation

Coordination
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Generic Representation
Annotated Terms (ATerms)

● Applicative, prefix terms

● Maximal subterm sharing (⇒ DAG)

– cheap equality test, efficient rewriting

– automatic generational garbage collection

● Annotations (text coordinates, dataflow info, ...)
● Very concise, binary, sharing preserving 

encoding
● Language & machine independent exchange 

format
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ATerms
Sharing

+

+ +
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ATerms
Term and Annotations

Annotations
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The ToolBus Architecture (1)

● Goals: integrate tools written in different 
languages running on different machines

● A programmable software bus
● Scripts describe the cooperation of tools
● Scripts are based on Process Algebra
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The ToolBus Architecture (2)

ToolBus Coordination

Representation

ComputationTools
ATerms
common

data exchange 
format
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A typical scenario

UI DB

User-interface Database

Configuration knowledge
only in ToolBus script

UI and DB are 
completely 
decoupled
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ToolBus scripts

● Send, receive message (handshaking)
● Send/receive notes (broadcasting)

● P
1
+ P

2    
 P

1
. P

2    
 P

1
|| P

2   
 P

1
* P

2

● :=, if then else
● Absolute/relative delay, timeout
● Dynamic process creation
● Execution, connection & termination of tools
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Architecture of the
ASF+SDF MetaEnvironment

ToolBus

structure
editor

text
editor

parser
generator

parser

graph
browser

ASF+SDF
compiler

ASF+SDF
interpreter

unparser
generator unparser

tree
repository
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What Technology is used for GLT?

● ToolBus: a software coordination architecture 
used for connecting tools

● ATerms: Annotated Terms used to exchange data 
between tools

● SGLR: Scannerless Generalized LR parsing
● Conditional term rewriting and efficient 

compilation techniques
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Scannerless Generalized LR Parsing 
(1)

● Scannerless: in a traditional compiler lexical 
syntax is implemented by a scanner and context-
free syntax by a parser. SGLR: scanner and 
parser are integrated
– makes resulting parser more expressive

– simplifies the implementation
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Scannerless Generalized LR Parsing 
(2)

● LR: left-to-right (bottom-up) parsing as used by 
Yacc and Bison.

● Generalized: extends the class of accepted 
grammars to all context-free grammars
– Context-free grammars are closed under composition 

(as opposed to, e.g., LR grammars)

– Enables modular grammars

– Important for large grammars and language dialects



69Introduction to Generic Language Technology

Scannerless Generalized LR Parsing 
(3)

● An LR-based parser generator does not allow 
conflicts: (shift/reduce, reduce/reduce)

● Key ideas in SGLR: 
– split a concurrent parse when a conflict occurs

– merge concurrent parses as soon as possible

– an ambiguity node represents alternative parses

● It is undecidable whether a context-free grammar 
is ambiguous, but heuristics might help.
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Parsing Architecture

Syntax of L
(SDF rules)

Parser
Generator

SGLR Parser 
for L

L text
L

tree
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What Technology is used for GLT?

● ToolBus: a software coordination architecture 
used for connecting tools

● ATerms: Annotated Terms used to exchange data 
between tools

● SGLR: Scannerless Generalized LR parsing
● Conditional term rewriting and efficient 

compilation techniques
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Conditional Term Rewriting

● Collect rules with same outermost symbol and 
generate one C function for them

● Generate a finite automaton for the matching of 
left-hand sides

● Use ATerms to represent terms:
– maximal subterm sharing

– structural equality can be implemented by pointer 
comparison!
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Compilation to C

f(a,b,c) = g(a)
f(X,b,d) = g(X)

 ATerm f(ATerm arg0, ATerm arg1, ATerm arg2) {
    if term_equal(arg0,a) { 
       if term_equal(arg1,b) { 
          if term_equal(arg2,c) {
             return g(a);
          }
       }
    }
    if term_equal(arg1,b) {
       if term_equal(arg2,d) { 
          return g(arg0);
       }
    }
    return make_nf3(fsym, arg0, arg1, arg2)
  }

  Compiles
to



74Introduction to Generic Language Technology

Rewriting Architecture

Specification
(ASF rules)

ASF
compiler

Compiled C
programinput

term
normal
form
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Effects of sharing

Application Time (sec) Memory (Mb)
sharing/no sharing sharing/no sharing

ASF+SDF compiler 45/155 27/134
Java servlet generator 12/50 10/34
Typesetter 10/49   5/5
SDF normalizer   8/28   8/11
Pico interpreter 20/80   4/4
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Wrap up

● Summary of GLT
● Current work on applications
● Current work on technology
● Further reading
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Summary

● Generic Language Technology helps to build 
tools for language processing quickly

● Programming Environment Generators are an 
application of GLT

● The ASF+SDF Meta-Environment is an 
Interactive Development Environment for 
language definitions and a Programming 
Environment Generator
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Current work on Applications (1)

● Verification of JavaCard
● Detection and visualization of code smells in Java 
● Transformation of formulae in Abramowitz and 

Stegun, Handbook of Mathematical Functions, 
from LaTeX to MathML and Mathematica

● Using relational calculus for software analysis
● Cobol transformations
● Design of DSL for ASML's chip manufacturing 

machines
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Current work on Applications (2)

● ELAN Environment (Nancy)
● Action Semantics Environment (Aarhus)
● CHI environment (Eindhoven)
● C++ restructuring (Bell Labs)
● Connection with Eclipse
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Current work on Technology

● Generic/generated IPE/GUI features
● Redesign/implementation of ToolBus

– Reimplement in Java

– Connections with RMI, Corba,  .NET, Eclipse

● Grammar engineering
● Smoother coupling between term rewriting and 

relational calculus
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Further reading (1)
technology

● J. Heering and P. Klint, Rewriting-Based Languages and Systems,  Chapter 15 in 
Terese, Term Rewriting Systems, Cambridge University Press, 2003

● M.G.J. van den Brand, J. Heering, P. Klint and P.A. Olivier, Compiling language 
definitions: The ASF+SDF compiler. ACM Transactions on Programming Languages 
and Systems, 24 (4):334-368, July 2002

● M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. 
Kuipers, P. Klint, L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. 
Visser, The ASF+SDF Meta-Environment: a Component-Based Language 
Development Environment. in: R. Wilhelm (ed). Proceedings of Compiler Construction 
(CC'01), LNCS 2027, 365--370, 2001.

● M.G.J. van den Brand, H.A. de Jong, P. Klint and P.A. Olivier, Efficient Annotated 
Terms, Software, Practice & Experience, 30(3):259--291, 2000

● J. A. Bergstra and P. Klint, The discrete time ToolBus -- a software coordination 
architecture, Science of Computer Programming  31(2-3):205-229, 1998
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Further reading (2)
application areas

● A. van Deursen, P. Klint and J. Visser. Domain-Specific Languages: An 
Annotated Bibliography ACM SIGPLAN Notices 35(6):26-36, June 2000.

● M.G.J. van den Brand, P. Klint and C. Verhoef, Reverse Engineering and 
System Renovation: an Annotated Bibliography, ACM Software 
Engineering Notes, 22(1): 42--57, January 1997

● M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, E.A. van der 
Meulen, Industrial Applications of ASF+SDF, In M. Wirsing and M. Nivat 
(eds) Proceedings of Algebraic Methodology and Software Technology 
(AMAST'96), LNCS Vol. 1101, 9-18, 1996

● See: www.meta-environment.org
● See: Home pages of the authors


