
1

The Syntax Definition Formalism SDF

Mark van den Brand
Paul Klint

Jurgen Vinju
2007-09-13 18:33:40 +0200 (Thu, 13 Sep 2007)

Table of Contents
1. An Introduction to SDF .. 2

1.1. Why use SDF? ... 2
1.2. How to use SDF ... 3
1.3. Learning more .. 4
1.4. This document .. 4

2. The life-cycle of an SDF definition .. 5
3. Modules .. 6

3.1. Basic module structure ... 6
3.2. Hiddens and exports sections .. 7
3.3. Module parameters .. 7
3.4. Definitions ... 8

4. Comments .. 8
5. Symbols .. 8

5.1. Literal symbols ... 9
5.2. Sort symbols .. 9
5.3. Character class symbols ... 9
5.4. Optional symbols .. 10
5.5. Sequence ... 10
5.6. Repetition or list symbols ... 11
5.7. Alternative symbols ... 11
5.8. Labelled symbols .. 11
5.9. Tuple symbols .. 12
5.10. Function symbols .. 12
5.11. Lifted Symbols ... 12
5.12. LAYOUT symbol .. 12

6. Grammars .. 13
6.1. Imports .. 13
6.2. Aliases .. 14
6.3. Sort declarations ... 14
6.4. Lexical and context-free syntax ... 14
6.5. Lexical and context-free start-symbols .. 17
6.6. Lexical and context-free priorities .. 17
6.7. Variables ... 18
6.8. Lexical variables ... 19
6.9. Restrictions .. 19

7. Disambiguation ... 20
7.1. Introduction .. 20
7.2. Priorities .. 20
7.3. Associativity .. 21
7.4. Bracket attribute ... 21
7.5. Rejects .. 21
7.6. Preferences ... 22
7.7. Restrictions .. 22

The Syntax Definition
Formalism SDF

2

8. Examples ... 22
8.1. A simple lexical syntax .. 23
8.2. Using Character Classes ... 23
8.3. A simple Drawing Language ... 24
8.4. Identifiers .. 25
8.5. Numbers .. 26
8.6. Strings ... 27
8.7. Identifier Lists .. 27
8.8. An Expression Language with Chain Rules .. 28
8.9. Using Labels in Productions .. 29
8.10. Groups of Associative Productions .. 29
8.11. Associative Productions .. 30
8.12. Parameterization .. 31
8.13. Symbol Renaming ... 32
8.14. Examples on dealing with lexical ambiguity using restrictions 33
8.15. Some Tricky Cases .. 34

9. Well-formedness .. 36
9.1. Parse Errors ... 36
9.2. Type check warnings for SDF ... 37
9.3. Type check errors for SDF ... 37

10. Derivations ... 38
11. Historical Notes ... 38
12. To Do .. 39

Warning

This document was recently rewritten (May 11th 2007). It is up-to-date with the latest version
of SDF. References to ASF+SDF syntax and semantics have been removed and descriptions
of syntax and semantics of SDF have been brought up-to-date with the current state. Please
contact <meta-devel-list@cwi.nl> if you would like to contribute to this document.

1. An Introduction to SDF
If you want to:

• describe the syntax of an existing language like C, C++, Java, or Cobol,

• describe an embedded language and need to combine several language grammars,

• describe the syntax of your newly designed domain-specific language,

• get a front-end for the semantic analysis of programming or application languages,

then SDF may be the right technology to use.

1.1. Why use SDF?
The Syntax Definition Formalism SDF is intended for the high-level description of grammars for
programming languages, application languages, domain-specific languages, data formats and other
computer-based formal languages. The primary goal of any SDF definition is the description of syntax.
The secondary goal is to generate a working parser from this definition. A parser is a tool that takes
a string that represents a program as input and outputs a tree that represents the same program in a
more structured form. SDF is based mainly on context-free grammars, like EBNF is. It has a number
of additions that make it more apt to describe the syntax of really complex programming languages.
Especially the languages that were not originally designed to be formally defined, or to have parsers
generated for, are the ones that SDF is meant to be applicable to.

These are the unique selling points of SDF, from the language definition point of view:

The Syntax Definition
Formalism SDF

3

• SDF allows modular grammar definitions. This enables the combination and re-use of grammars
and makes it easy to handle embedded languages or different dialects of a common base language.
It means that you are allowed to write any grammar in SDF, not just LALR(1) or LL(1) grammars.

• SDF allows more declarative grammars definitions and this results in simpler and more "natural"
grammars that are not polluted by idiosyncrasies of particular parsing techniques. This allows an
SDF definition to be independent of the implementation of SDF.

• SDF allows the integrated definition of lexical and context-free syntax.

• SDF allows declarative disambiguation. For typical ambiguous constructs in programming
languages SDF allows you to define a disambiguation with mathematical precision. Note however
that SDF does not have a disambiguation construct for every possible ambiguity.

The implementation of SDF is the combination of an SLR(1) parse table generator and a scannerless
generalized LR parser.The goal of this implementation is to fully implement all expressiveness that is
available in SDF, and avoiding any hidden implementation details.

These are the unique selling points of the implementation of SDF, from the parser generation point
of view:

• There is no seperate scanner. This prevents all kinds of "lexical ambiguity" to occur at all, simply
because the parser has more context information.

• It accepts all context-free grammars, including the ambiguous ones. Many programming languages
do not only have LR(1) conflicts, they truly have ambiguous syntaxes (like C for example).

• It generates all ambiguous derivations, so no implicit choices are made. This is done without
backtracking, and without the possibility for exponential behavior.

• It constructs parse trees automatically, and the optional mapping from parse trees to abstract syntax
trees is also provided.

• It implements the SDF disambiguation constructs as parse tree filters in an efficient manner.

Note that the language definition point of view, and the parser generation point of view are closely
related. Because of SDF's focus on the definition of languages and explicitly declaring disambiguations
it is particulary well suited for situations that have "language multiplicity":

• Having to deal with many language dialects (such as in reverse engineering COBOL programs)

• Dealing with embedded languages (SQL in COBOL/C)

• Dealing with language extensions (Java with AspectJ)

• Dealing with domain specific languages (many small languages, and DSL evolution)

The basic assumption of SDF is that all derivations of an input string will be produced. This
guarantees that no implicit disambiguation will take place. To disambiguate, the user has to give
explicit (declarative) disambiguation rules. Examples of disambiguation rules are longest-match and
priorities. By making all these language design choices explicit in a concise manner, SDF allows you
to deal with language multiplicity in a more visible (controlled) fashion. In that way high level syntax
definition in SDF is like high level programming.

1.2. How to use SDF

On the one hand, SDF can be used to simply define a language, in order to communicate it as
documentation. There are tools that support this use case; checking the definition for inconsistencies

The Syntax Definition
Formalism SDF

4

and other basic editing support. On the other hand, SDF is often used to obtain a parser for the defined
language. Sometimes, SDF is used for other kinds of processing.

1.2.1. How to define a language

Of course you can define an SDF specification in any editor. There is an IDE for SDF called the SDF
Meta-Environment, of which the ASF+SDF Meta-Environment is an extension. This IDE supports
SDF definition with all kinds of user-interface features (syntax highlighting, static checking, parse
forest visualization, metrics and refactoring).

1.2.2. How to generate a parser

To generate a parser from an SDF definition you may use the implementation of SDF. You can use
The SDF Meta-Environment, The ASF+SDF Meta-Environment or the commandline tools sdf2table
and sglr.

1.3. Learning more

The following references on SDF may be interesting for you:

Warning

TODO Add links!

• Syntax Analysis, this documents refreshes your knowledge of grammars and parsing in general

• SDF Disambiguation Med kit for Programming Languages, this document focuses on SDF
disambiguation constructs and how to solve common issues when developing SDF grammars

• Guided Tour: Playing with the Booleans, This interactive demonstrations shows some of the features
of SDF in the context of The Meta-Environment

• SDF definition of SDF, this is the final reference (and implementation) of the syntax of SDF

1.4. This document

In this document we describe the syntax of SDF and its basic semantics. It is a basic but complete
reference manual for SDF based on small examples. This document is loosely structured according
to the syntactic structure of SDF: modules, grammars and symbols. After we have described all of
it, we continue with a set of examples. The document ends with special sections on well-formedness,
disambiguation and the history of SDF. This document does not detail the usage of the implementations
of SDF (sdf2table and sglr).

The Syntax Definition
Formalism SDF

5

Figure 1. The hierarchical structure of the SDF syntax, extracted from the SDF
definition of SDF

As an index to this document, the following example exhibits almost all features of SDF with
references to the appropriate sections. SDF keywords are highlighted in boldface.

module languages/mylanguage/MyFunnyExample[Param1 Param2]
 imports basic/Whitespace
 imports utilities/Parsing[Expr]
 imports languages/mylanguage/MyExpressions[Expression => Expr]
exports
 sorts Identifier Expr List Stat
 lexical syntax
 [A-Z][a-z]+ -> Identifier
 lexical restrictions
 Identifier -/- [a-z]
 context-free syntax
 Identifier -> Expr {cons("name")}
 Expr* -> List[[Param1]]
 "if" Expr "then" {Param2 ";"}+ "else" {Param2 ";"}+ "fi" -> Param2
 "if" Expr "then" {Param2 ";"}+ "fi" -> Param2 {prefer}
 context-free syntax
 "if" | "then" | "fi" -> Identifier {reject}
 context-free priorities
 Expr "&" Expr -> Expr {left} >
 Expr "|" Expr -> Expr {right}
hiddens
 variables
 "Id"[0-9\']* -> Identifier
 lexical variables
 "Head" -> [A-Z]
 "Tail" -> [a-z]+

2. The life-cycle of an SDF definition
Every SDF grammar has a life-cycle, just like any other software has. This is the life-cycle of an SDF
grammar (see also this overview figure):

The Syntax Definition
Formalism SDF

6

1. A user types in the modules of an SDF grammar, including the production rules and disambiguation
constructs.

2. The modules are concatenated into one single definition.

3. The syntax definition is given as input to the sdf2table tool:

a. The syntax definition is checked for trivial errors by the sdf-checker.

b. The syntax and the disambiguation constructs in the definition are "normalized" to "kernel SDF",
by removing all syntactic sugar (expanding macros) and some other stuff.

c. The syntax is used to generate an SLR(1) parse table, and the disambiguation constructs are used
to filter some reductions from the parse table

4. The resulting parse table can be used by the sglr tool to parse strings. sglr uses some of the
disambiguation constructs to filter at parse time, and just after it

5. sglr reads in a file containing a program and outputs a parse forest (or possibly a single parse tree,
or a parse error)

6. Other (back-end) tools take the parse forest and do stuff.

At any point in this process something may be erroneous and the process starts from step 1. Step 2 can
be done manually by the user, or taken care of by The Meta-Environment. Step 3 and its contributing
parts (3.1-3.3) are done by the sdf2table commandline tool, or by the ASF+SDF Meta-Environment.
The steps 4 and 5 are done by the sglr commandline tool, or by the ASF+SDF Meta-Environment.
Step 6 is open to any other tool that can read ATerms (the output format of sglr).

One more thing, SDF definitions are not only used as input to parser generators. There are tools that
generate libraries for syntax tree manipulation, and tools that analyze syntax definitions for example.
Recall that the primary goal of SDF is syntax definition, parser generation is the most important
secondary goal of SDF.

Figure 2. Overview of the data flow of an SDF definition

Although this document is on SDF's syntax and semantics, and not its implementation, the above
overview is important. Especially point 3.2 is an essential step for understanding the semantics of
SDF. This document describes in several places what certain SDF constructs mean by mapping them
to kernel SDF.

3. Modules
3.1. Basic module structure

An SDF specification consists of a number of module declarations. The sdf2table commandline tool
takes a file with all modules concatenated and the word "definition" in front of them as input. The
ASF+SDF Meta-Environment accepts the modules in separate files, each with the extension ".sdf". In
that case, an SDF module must be in a file named exactly as the name of the module.

Each module may define lexical syntax, context-free syntax and disambiguations. Modules may
import other modules for reuse or separation of concerns. A module may extend the definition of a
non-terminal in another module. A module may compose the definition of a language by importing
the parts of the language.

Note

SDF modules do not hide names in principle, there is no "private/public" mechanism. So
beware of name clashes. Later we will see how the renaming facility can be used to solve

The Syntax Definition
Formalism SDF

7

name clashes declaratively. There is an "hiddens/exports" mechanism however, but it does
not only hide names, it also hides the complete definitions from importing modules. More
on that mechanism later too.

The basic structure of a module is this. The module keyword is followed by the module name, then a
series of imports can be made, followed by the actual definition of the syntax:

module <ModuleName>
 <ImportSection>*
 <ExportOrHiddenSection>*

A <ModuleName> is either a simple <ModuleId> or a <ModuleId> followed by zero or
more parameter symbols, e.g., <Module>[<Symbol>*], the symbols will be explained later. The
<ModuleId> may be a compound module name (i.e. <ModuleId> separated by forward slashes), the
ModuleId reflects the directory structure. For example basic/Booleans means that the module
Booleans is found in the subdirectory basic.

3.2. Hiddens and exports sections
An <ExportOrHiddenSection> is either an export section or a hidden section. The former starts
with the keyword exports and makes all entities in the section visible to other modules. The latter
starts with the keyword hiddens and makes all entities in the section local to the module. So, hidden
means that when another module imports that module, none of the hiddens sections will be present in
the composition. The effect for parser generation is that only the hiddens sections of top module of an
SDF specification contribute to the parser generation.

An <ExportOrHiddenSection> has thus one of the two forms:

exports
 <Grammar>+

or

hiddens
 <Grammar>+

A <Grammar> can be a definition of one of the following:

• Imports.

• Aliases.

• Sorts.

• Start-symbols.

• Lexical syntax.

• Context-free syntax.

• Priorities.

• Variables.

Each of these entities is described and illustrated in Grammars. Most grammars have Symbols as
their basic building blocks. Symbols are the SDF term for terminals and non-terminals. Note that it is
possible to have hidden imports as well, this means that the full definition of the import definition is
copied in the hiddens section of the importing module.

3.3. Module parameters
Modules may have formal symbol parameters, which can be bound by actual symbols using imports.
The syntax of module parameters is:

The Syntax Definition
Formalism SDF

8

module <ModuleName> [<Symbol>+]

When the module is imported, all occurences of the formal parameters will be substituted by the actual
parameters.

3.4. Definitions
SDF modules may be collected in a single definition file, for input to the sdf2table tool. The structure
of the definition file is as follows:

definition
 <Module>+

4. Comments
The comment convention within an SDF specification is that characters between %% and the end of line
is comment as well as every character between two % characters including the newline character. An
example of the use of comments is given below. This definition also defines the comment convention
in SDF itself. More details on defining layout can be found in the section Restrictions.

Example 1. SDF comments

module basic/Comments

imports basic/Whitespace

%% In this module we define the
%% comment convention for SDF.

exports
 lexical syntax
 "%%" ~[\n]* "\n" -> LAYOUT
 "%" ~[\%]+ "%" -> LAYOUT

 context-free restrictions
 LAYOUT? -/- [\%]

Note that every line that has a %% must be ended with a newline (even the last line in your SDF module
file).

5. Symbols
The elementary building block of SDF syntax rules is the symbol. It is comparable to terminals and
non-terminals in other grammar definition formalisms. The elementary symbols are: literal, sort and
character class.

Since there is no real separation between lexical syntax and context-free syntax in SDF, only character
classes are real terminal symbols. Sorts are user-defined non-terminals. All other symbols are short-
hands for non-terminals for which the productions are generated for you by SDF (i.e. not user-defined
non-terminals). You may view these automatic symbols as macros that generate frequently used
grammatical design patterns for you.

Starting with the elementary symbols, more complex symbols can be constructed by way of recursive
symbol application. Examples of the use of the various operators will be given in the section Examples.

Remember that complex symbols such as, parameterized sorts, lists and optionals are nothing but
non-terminals. They carry no additional semantics from the SDF point of view. However, there are

The Syntax Definition
Formalism SDF

9

back-ends (tools applied after parsing) which attribute special semantics to these kinds of symbols.
ASF+SDF as a rewriting language is an example of a back-end that provides additional semantics to
SDF's symbols (but only after parsing).

Symbols are an orthogonal feature of SDF. All symbols of SDF are allowed in both lexical and context-
free syntax, priorities and other parts of SDF.

5.1. Literal symbols
A literal symbol defines a fixed length word. This usually corresponds to a terminal symbol in ordinary
BNF grammars, e.g., "true" or "&". Literals must always be quoted, also the literals consisting of
letters only. SDF generates automatically one production for each literal in order to define it in terms
of terminal symbols.

lexical syntax
 "definition" -> Definition

will generate:

[d][e][f][i][n][i][t][i][o][n] -> "definition"

The above obviously generates a case-sensitive implementation of the defined literal. There are also
case-insensitive literals. They are defined using single quotes as in 'true' and 'def-word'. SDF generates
a different production to implement case insensitivity:

[dD][eE][fF][\-][wW][oO][rR][dD] -> 'def-word'

In literals, the following characters are special and should be escaped:

• ": double quote (\")

• \: escape character (\\).

Warning

TODO, lookup escaping conventions of literals and ci literals.

5.2. Sort symbols
A sort corresponds to a non-terminal, e.g., Bool. Sort names always start with a capital letter and may
be followed by letters and/or digits. Hyphens (-) may be embedded in a sort name. Sort names should
be declared in a sorts section to allow some static consistency checking.

Sort names can have parameters. Parameterized sorts can be used to implement grammar
polymorphism, and to facilitate grammar reuse without clashing sort names. It provides a way
of distinguishing a List of integers from a List of booleans, e.g. List[[Int]], versus
List[[Bool]]. The sort parameters are usually instantiated via the parameters of a module or via
renaming. A parameterized sort may have several parameters, like List[[X,Y]]. See parameters
for more details. Parameterized sorts have the following form:

 <Sort>[[<Symbol1>, <Symbol2>, ...]]

5.3. Character class symbols
Enumerations of characters occur frequently mostly in lexical definitions. They can be abbreviated by
using character classes enclosed by [and]. A character class contains a list of zero or more characters
(which stand for themselves) or character ranges such as, for instance, [0-9] as an abbreviation for
the characters 0, 1, ..., 9. In a character range of the form c1-c2 one of the following restrictions
should apply:

The Syntax Definition
Formalism SDF

10

• c1 and c2 are both lower-case letters and c2 follows c1 in the alphabet, or

• c1 and c2 are both upper-case letters and c2 follows c1 in the alphabet, or

• c1 and c2 are both digits and the numeric value of c2 is greater than that of c1, or

• c1 and c2 are both escaped non-printable characters and the character code of c2 is greater than that
of c1

Escape Conventions Characters with a special meaning in SDF may cause problems when they are
needed as ordinary characters in the lexical syntax. The backslash character (\) is used as escape
character for the quoting of special characters. You should use \c whenever you need special character
c as ordinary character in a definition. All individual characters in character classes, except digits and
letters, are always escaped with a backslash.

You may use the following abbreviations in literals and in character classes:

• \n: newline character

• \r: carriage return

• \t: horizontal tabulation

• \x: a non-printable character with the decimal code x.

Character Class Operators The following operators are available for character classes:

• ~: complement of character class. Accepts all characters not in the original class.

• /: difference of two character classes. Accepts all characters in the first class unless they are in
the second class.

• /\: intersection of two character classes. Accepts all characters that are accepted by both character
classes.

• \/: union of two character classes. Accepts all characters that are accepted by either character class.

The first operator is a unary operator, whereas the other three are left-associative binary operators.
Note that the character class operators are not applicable to symbols in general.

5.4. Optional symbols
The postfix option operator ? describes an optional part in a syntax rule. For instance, ElsePart?
defines zero or exactly one occurrence of ElsePart. SDF generates the following syntax:

 -> ElsePart?
 ElsePart -> ElsePart?

5.5. Sequence
The sequence operator (...) describes the grouping of two or more symbols, e.g., (Bool "&").
Sequences are mostly used to group symbols together to form a more complex symbol using one of
the available operators, e.g., (Bool "&")*. It has no effect to construct a sequence consisting of
a single symbol, because then the (...) brackets are simply brackets. The empty sequence is a special
symbol. SDF generates the following syntax for the (Bool "&") symbol:

Bool "&" -> (Bool "&")

For () it simply generates:

The Syntax Definition
Formalism SDF

11

 -> ()

5.6. Repetition or list symbols
Repetition operators express that a symbol should occur several times. In this way it is possible to
construct flat lists and therefore we usually refer to repetitions as \emph{lists}. Repetition operators
come in two flavors, with and without separators. Furthermore, it is possible to express the minimal
number of repetitions of the symbol: at least zero times (*) or at least one time (+). Examples are:

• Bool* (a list of zero or more Bools).

• {Bool ","}+ (a list of one or more Bools separated by comma's).

Note that the separator may be an arbitrary symbol, but that some back-ends do not support parse
trees that contain them. The sdf-checker of the ASF+SDF Meta-Environment will warn you if you
use anything but a literal as a separator.

Again, to implement lists SDF simply generates a few production for you, i.e.:

 -> Bool*
 Bool+ -> Bool*
 Bool -> Bool+
 Bool+ Bool+ -> Bool+ {left}

 -> {Bool ","}*
 {Bool ","}+ -> {Bool ","}+
 Bool -> {Bool ","}+
 {Bool ","}+ "," {Bool ","}+ -> {Bool ","}+ {left}

Note that there are some more productions generated, but they are not shown here. SDF generates
more productions to allow arbitrary compositions of * and + lists, and also adds disambiguation filters
to deal with the ambiguity this introduces.

5.7. Alternative symbols
The alternative operator | expresses the choice between two symbols, e.g., "true" | "false"
represents that either a "true" symbol or a "false" symbol may occur here. The alternative
operator is right associative and binds stronger than any other operator on symbols. This is important
because Bool "," | Bool ";" expresses Bool ("," | Bool) ";" instead of (Bool
",") | (Bool ";"). So, in case of doubt use the sequence operator in combination with the
alternative operator.

For "," | ";" SDF generates:

"," -> "," | ";"
";" -> "," | ";"

5.8. Labelled symbols
It is possible to decorate the symbols with labels. The labels have no semantics in SDF, and will be
removed before parse table generation. Other tools that take SDF definitions as input, such as API
generators make use of the labels.

So, labels are removed by replacing the labelled symbol with the symbol, as in:

mylist:{elem:Stat sep:";"}+
is replaced by
{Stat ";"}+

The Syntax Definition
Formalism SDF

12

5.9. Tuple symbols
The tuple operator describes the grouping of a sequence of symbols of a fixed length into a tuple. The
notation for tuples is < , , >, i.e., a comma-separated list of elements enclosed in angle brackets.
For example, <Bool, Int, Id> describes a tuple with three elements consisting of a Bool, an
Int and an Id (in that order). For instance, <true, 3, x> is a valid example of such a tuple.

Tuple is one of the few symbols that actually introduce a fixed syntax, i.e. the angular brackets. You
may consider them as an arbitrary shorthand. To define your own short hand, consider the use of
parameterized sorts and module parameters.

For <A,B> SDF generates:

"<" A "," B ">" -> <A,B>

5.10. Function symbols
The function operator (...=>...) allows the definition of function types. Left of => zero or more
symbols may occur, right of => exactly one symbol may occur. For example, (Bool Int) =>
Int represents a function with two argument (of types Bool and Int, respectively) and a result type
Int. The function symbol may be used to mimick a higher order type system. The function symbol
also introduces some arbitrary syntax (the () brackets).

SDF generates the following syntax for (A B => C):

(A B => C) "(" A B ")" -> C

Read this as "something of type (A B => C) may be applied to A and B to become a C". Note that
this is the only symbol that is not defined by generating productions with the defined symbol on the
right-hand side. The user must still define the syntax for (A B => C) manually like:

"myfunction" -> (A B => C)

5.11. Lifted Symbols
The lifting operator `...` translates the name of an arbitrary complex symbol to a literal syntax
definition of that name. It makes a symbol a part of the defined syntax. An example: `X?` defines
the syntax ("X" "?"). The lifting operator is typically used in combination with parameterized
modules, and specifically for applications of SDF that implement concrete syntax. The lifting symbol
is a reflexive operator, it generates different syntax for different operators.

Note that the lifting operator is not implemented by defining it using production symbols. This operator
is implemented by replacing it with another symbol. Examples:

`"foo"` is replaced by "\"foo\""
`A ?"` is replaced by ("A" "?")
`{A ","}+` is replaced by ("{" "A" "\",\"" "}" "+")

5.12. LAYOUT symbol
The LAYOUT symbol is a reserved sort name. SDF does not generate any productions for it. Instead
for all context-free syntax grammars it will distribute LAYOUT? between all members of the
left-hand sides of all productions. Note that the "?" in LAYOUT? will take care of some production
generation. The user must define all alternatives for LAYOUT herself. Example:

[\ \t\n] -> LAYOUT

Note that LAYOUT may only be defined in lexical syntax grammars. The LAYOUT non-
terminal is used by back-ends (independent of SDF) to find out what is irrelevant about a parse tree and

The Syntax Definition
Formalism SDF

13

what is relevant. Still, SDF does not attribute any additional semantics to it. It is just a non-terminal
that is distributed over context-free productions.

6. Grammars
A grammar is the entity that can be defined in an export section or hidden section of a module. It is a
catch-all notion that covers more than pure grammar productions and includes

• Imports: include one module in another one.

• Aliases: abbreviations for complex symbols.

• Sorts: the non-terminals of the grammar.

• Start-symbols: the start symbols of the grammar.

• Lexical syntax: the lexical productions of the grammar.

• Context-free syntax: the context-free productions of the grammar.

• Priorities: the disambiguation rules.

• Variables: definitions of variables.

• Restrictions

An SDF module may contain as many grammars of any kind as you need. We will now describe all
these kinds of grammars. Also see the Section Examples.

6.1. Imports

6.1.1. Plain imports

Apart from the import sections at the beginning of each module, there may be an arbitrary number
of import grammar spread through a module. Each <ImportSection> starts with the keyword
imports followed by zero or more module names:

imports
 <ModuleName>*

When importing modules at the topmost level of a module or when the import section occurs within
the scope of an exports keyword, all exported entities of the imported module (and of all modules that
are imported indirectly by it) become available in the importing module. In addition, they are also
exported by the importing module. However, if the import section occurs within the scope of a hiddens
keyword, the exported entities are only visible in the importing module but they are not exported by
the importing module.

6.1.2. Binding module parameters

When an imported module has formal parameters, imports can be used to bind them to actual
parameters. The syntax is as follows:

imports mylanguage/myModule[<Symbol>+]

6.1.3. Renamings

Symbol renaming is in fact very similar to parameterization except that it is not necessary to add formal
parameters to a module. The mechanism of symbol renaming allows the overriding of one symbol or
a set of symbols by another symbol or symbols, respectively. It allows a flexible and concise way of
adapting specifications.

The Syntax Definition
Formalism SDF

14

imports mylanguage/myModule[<Symbol> => <Symbol2>]

Any number of renamings can be given. Note that renamings and module parameters can be combined.
Also note that renamings will not be applied to renamed symbols.

6.2. Aliases
Aliases are similar to productions but not quite. An alias is used to define a short hand for a complex
or otherwise cumbersome symbol.

aliases
 <Sort1> -> <Sort2>

where the alias Sort2 is given to Sort1. An example is ("{" | "<:") from the C programming language.
Instead of having to repeat that everywhere you may write:

aliases
 ("{" | "<:") -> BracketOpen

Aliases are tricky. There are a number of rules you should adhere to:

• Aliases may not define each other

• Aliased symbols may not be redefined by another alias

• Don't forget that aliases are replaced everywhere, even on the right-hand sides of productions

• Several known other back-ends of SDF deal badly with aliases (see the next point).

• Be aware of the non-traceability of aliases, because they are substituted before parse table generation
time, you will not find them in your parse trees or abstract syntax trees.

6.3. Sort declarations
Sorts are declared by listing their name in a sorts section of the form:

sorts
 <Symbol>*

Only plain Sorts and parameterized Sorts should declared in the sorts section. The sdf-checker
will generate a warnings. The checker requires that all sorts that occur in some symbol in the
specification are declared. Note however that the sorts declaration does not carry any semantics other
than simply declaring a name. The checker uses this to warn the SDF user for possible typos.

6.4. Lexical and context-free syntax
Lexical syntax describes the low-level structure of text while context-free syntax describes the higher-
level structure. In SDF, these two aspects of syntax are defined in a very uniform manner. In fact,
production rules are used to describe both lexical and concrete syntax.

The only difference between the two is that context-free productions are pre-processed somewhat
extensively by SDF before parser generation, while lexical productions are not. And, it is important to
note that symbols defined in lexical syntax and symbols defined in context-free syntax are in separate
name-spaces. Example:

lexical syntax
 "a" -> A
context-free syntax
 "b" -> A

The Syntax Definition
Formalism SDF

15

Here we are defining two different A's: one lexical and one context-free. The two definitions are
automatically linked by SDF by the following transformation:

 "a" -> <A-LEX>
 <A-LEX> -> <A-CF>
 "b" -> <A-CF>

6.4.1. Lexical Syntax

The lexical syntax usually describes the low level structure of programs (often referred to as lexical
tokens.) However, in SDF the token concept is not really relevant, since only character classes are
terminals. The lexical syntax grammars in SDF are simply a convenient notation for the low level
syntax of a language. The LAYOUT symbol should also be defined in a lexical syntax grammar. A
lexical syntax consists of a list of productions.

Lexical syntax is described as follows:

lexical syntax
 <Production>*

6.4.2. Context-free syntax

The context-free syntax describes the more high-level syntactic structure of sentences in a language.
A context-free syntax contains a list of productions. Elements of the left-hand side of a context-
free function pre-processed before parser generation by adding the LAYOUT? symbol everywhere.
Context-free syntax has the form:

context-free syntax
 <Production>*

As an example, consider the way SDF pre-processes the following grammar:

context-free syntax
 "{" Stat* "}" -> Block

is pre-processed to:

"{" LAYOUT? Stat* LAYOUT? "}" -> Block

which will be then wrapped as in:

"{" <LAYOUT?-CF> <Stat*-CF> <LAYOUT?-CF> "}" -> <Block-CF>

The resulting definitions may look complex, but in fact there are only non-terminals and production
rules. The complexity stems from the names of the non-terminals.

6.4.3. Productions

The basic building block of a context-free syntax, lexical syntax or variables grammar is the
production. It consists of a left-hand side of zero or more symbols, an arrow symbol -> and a right-
hand side that contains a symbol and an optional list of attributes. This is summarized as follows:

<Symbol>* -> <Symbol>

A production is read as the definition of a symbol. The symbol on the right-hand side is defined by
the left-hand side of the production.

The symbols in a production can be arbitrarily complex but the implementation may impose some
limitations on this. Productions are used to describe lexical as well as context-free syntax, variables
and lexical variables. Productions also occur in priority grammars. All productions with the same
result sort together define the alternatives for that symbol.

The Syntax Definition
Formalism SDF

16

The most striking (but also most trivial) difference between SDF and EBNF is the way the production
rules are written in SDF. In EBNF one writes production rules as

 P ::= 'b' D S 'e'

whereas in SDF this is written as

 "b" D S "e" -> P

So, the left- and right-hand side of the production rules are swapped. Otherwise the meaning of an
SDF production is the same as a BNF production. Notice however that there is a difference with the
| operator. When we write the following in BNF:

A ::= C | D | E

We would write this in SDF:

C -> A
D -> A
E -> A

Or, we could use the alternative symbol, but that does generate a different grammar:

C | D | E -> A
will generate the following grammar:
C | D | E -> A
C -> C | D | E
D -> C | D | E
E -> C | D | E

6.4.3.1. Attributes

The definition of a lexical, context-free productions and variables may be followed by attributes that
define additional (syntactic or semantic) properties of that function. The attributes are written between
curly brackets after the non-terminal in the right hand side. If a production rule has more than one
attribute they are separated by commas. Productions with attributes have thus the following form:

<Symbol>* -> <Symbol> { <Attribute1>, <Attribute2>, ...}

The following syntax-related attributes exist:

• {bracket} is an attribute without SDF semantics, but is important nevertheless in combination
with priorities. See brackets attribute.

• {left, right, non-assoc, assoc} are disambiguation constructs used to define the
associativity of productions. See associativity.

• {prefer} and {avoid} are disambiguation constructs to define preference of one derivation over
others. See preferences.

• {reject} is a disambiguation construct that implements language difference. It is used for
keyword reservation. See rejects.

• Arbitrary ATerms may also be used as attributes. Another frequently occurring non-SDF attribute
is {cons("<name>")}. There are tools that use this cons attribute to construct abstract syntax trees
or to generated API's in C or Java to manipulate syntax trees.

6.4.3.2. Merging productions

An important detail of SDF is that if two productions are equal, they will not lead to ambiguity.
Instead only one of the productions is used to generate the parse table. In other words, the collection
of productions that is used to generate a parse table is a set. The identity of a production is computed

The Syntax Definition
Formalism SDF

17

from its left-hand side and its right-hand side. If the attributes are different, the set of attributes will
be merged. Example:

"if" E "then" S -> S {cons("if")}
"if" E "then" S -> S {prefer}
will be merged to:
"if" E "then" S -> S {cons("if"), prefer}

6.4.3.3. Prefix Functions

Prefix functions are a special kind of productions. They have a prefix syntax and are an abbreviation
mechanism for productions written as expected. For instance the function f(X,Y) -> Z is a prefix
function. SDF automatically replaces all prefix productions by a normal productions. Example:

f(X,Y) -> Z {cons("f")}
is replaced by
"f" "(" X "," Y ")" -> Z {cons("f")}

6.5. Lexical and context-free start-symbols
Via the lexical or context-free start symbols section the symbols are explicitly defined which will serve
as start symbols when parsing terms. If no start symbols are defined it is not possible to recognize
terms. This has the effect that input sentences corresponding to these symbols can be parsed. So, if we
want to recognize booleans terms we have to define explicitly the sort Boolean as a start symbol in
the module Booleans. Any symbol, also lists, tuples, etc., can serve as a start-symbol. A definition
of lexical start symbols looks like

lexical start-symbols
 <Symbol>*

while context-free start symbols are defined as

context-free start-symbols
 <Symbol>*

Start symbols are short-hand notation, for which SDF generates productions as in:

lexical start-symbols
 Identifier
generates
 <Identifier-LEX> -> <START>
and
context-free start-symbols
 Program
generates
 <LAYOUT?-CF> <Program-CF> <LAYOUT?-CF> -> <START>

6.6. Lexical and context-free priorities
Priorities are one of SDF's most often used disambiguation constructs. A priority 'grammar' defines the
relative priorities between productions. There is a lot of short-hand notation for doing this concisely.
Priorities are a powerful disambiguation construct. The basic priority looks like this:

context-free priorities
<Production> > <Production>

Context-free priorities work on context-free productions, while lexical priorities work on lexical
productions. The idea behind the semantics of priorities is that productions with a higher priority "bind
stronger" than productions with a lower priority. However, strictly speaking the semantics of SDF's

The Syntax Definition
Formalism SDF

18

priorities are that they give rise to parse forest filters that remove certain trees. If A > B, then all trees
are removed that have a B node as a direct child of an A node.

Several priorities in a priority grammar are separated by comma's. Productions may be grouped
between curly braces on each side of the > sign. Groups may have relative associativity labels.
Examples:

context-free priorities
 { left: E "*" E -> E {left}
 E "/" E -> E {right}
 } >
 { right: E "+" E -> E {left}
 E "-" E -> E {left}
 ,
 "-" E -> E > E "+" E -> E {left}

Please note the following details on priorities:

• By default, the priority relation is automatically transitively closed (i.e. if A > B and B > C
then A > C)

• By default, the priority relation applies to all arguments of the first production (i.e. the second
production can not be a child of any member of the first production)

• Priorities filter regardlessly, and assume you apply them only when there is actually an ambiguity.
Priorities may be used to filter the last remaining tree from a forest, resulting in a parse error.

There are two recent additions to priorities which make them more flexible. Firstly, priorities can now
be targeted at specific members of the first production: "priorities in specific arguments". Example:

context-free priorities
 E "[" E "]" -> E
 <0> >
 E "+" E -> E {left}

Between the angular brackets a comma separated list of argument indexes indicates to which
arguments the disambiguation should be applied (and implicitly in which not). In fact, in this example
applying the filter to all arguments would result in parse errors for terms such as "1 [2 + 3]".
The semantics of priorities in specific arguments is thus to remove all derivations that have the second
production as a child of the first production at the specified positions.

The second addition is non-transitive priorities. In rare cases the automatic transitive closure may be
incorrect. Note however that by not transitively closing the priority relation you may have to write
down a high amount of priorities. Example:

context-free priorities
 "-" E -> E >.
 E "+" E -> E

The ".", or full stop, makes sure that this relation does not contribute to any transitive closure.

6.7. Variables
Variables are declared in the variables section of a module. Like all other entities in a module,
except equations, variables may be exported (see section Modules). A variables section consists of
a list of variable names followed by a symbol. In fact, a variable declaration can define an infinite
collection of variables by using a naming scheme instead of a simple variable name. A naming scheme
is a regular expression like the ones allowed in the lexical syntax except that sorts are not allowed.
A variable may represent any symbol. In the specification below, Id, Type3, and Id-list are

The Syntax Definition
Formalism SDF

19

examples of variables declared by the naming schemes in the variables section. Strings that occur
in the left-hand side of variable declarations should always be quoted.

Example 2. Variable declarations using naming schemes

module VarDecls

imports basic/Whitespace

exports
 context-free start-symbols Decl
 sorts Id Decl Type

 lexical syntax
 [a-z]+ -> Id

 context-free syntax
 "decl" {Id ","}+ ":" Type -> Decl
 "integer" -> Type
 "real" -> Type

hiddens
 variables
 "Id" -> Id
 "Type"[0-9]* -> Type
 "Id-list"[\']* -> {Id ","}*
 "Id-ne-list" -> {Id ","}+

6.8. Lexical variables
Lexical variables are similar to variables. The difference is that they range over non-terminals defined
in lexical syntax sections, and may range over character classes and symbol operators applied to
character classes.

6.9. Restrictions
The notion of restrictions enables the formulation of lexical disambiguation strategies that occur
in the design of programming languages. Examples are "shift before reduce" and "longest match".
A restriction filters applications of productions for certain non-terminals if the following character
(lookahead) is in a certain class. The result is that specific symbols may not be followed by a character
from a given character class. A lookahead may consist of more than one character class (multiple
lookahead). Restrictions come in two flavors:

• lexical restrictions that apply to lexical non-terminals

• context-free restrictions that apply to context-free non-terminals.

The general form of a restriction is:

<Symbol>+ -/- <Lookaheads>

In case of lexical restrictions <Symbol> may be either a literal or sort. In case of context-free
restrictions only a sort or symbol is allowed. The restriction operator -/- should be read as may not
be followed by. Before the restriction operator -/- a list of symbols is given for which the restriction
holds.

Lookaheads are lists of character classes separated by ".". Note that single character restrictions are
implemented faster then multiple character restrictions. Example:

The Syntax Definition
Formalism SDF

20

Identifier -/- [i].[f]
Identifier -/- [e].[l].[s].[e]

The semantics of a restriction <Symbol> -/- <Lookahead> are thus to remove all derivations
that produce a certain <Symbol>. The condition for this removal is that the derivation tree for that
symbol is followed immediately by something that matches the lookahead declaration. Note that to be
able to check this condition, one must look past derivations that produce the empty language, until the
characters to the right of the filtered symbol are found. Also, for finding multiple lookahead matches,
one must ignore nullable sub-trees that may occur in the middle of the matched lookahead.

Warning

A note on implementation of restrictions is that follow restrictions with one lookahead
character class are filtered at parse-table generation time. This is a fast implementation.
Follow restrictions with multiple lookahead are implemented at parse time, which takes some
more time. On the whole, the application of follow restrictions can make a generated parser a
lot faster. Sometimes it is used to remove conflicts from the parse table, even if the language
is not ambiguous at all. This may improve speed.

7. Disambiguation

7.1. Introduction
As mentioned before SDF is based on two notions. The first is context-free grammars, and the second
is disambiguation filters. The disambiguation constructs of SDF are:

• Priorities

• The reject mechanism

• Associativity

• Preference attributes

• Restrictions

Each disambiguation construct gives rise to a specific derivation filter. So, the semantics of SDF
can be seen as two-staged. First, the grammar generates all possible derivations. Second, the
disambiguation constructs remove a number of derivations. This section mainly serves as an index
to the disambiguation constructs found in the Section 6, and it provides additional information where
needed.

An extensive "How To" on disambiguation can be found in the SDF Disambiguation Med kit for
Programming Languages. In the current document there is only limited "howto" information on this
subject.

7.2. Priorities
Priorities are described in Section 6.6. Note that there is a link between associativity and priorities:
priority declarations can contain relative associativities. The {bracket} attribute also plays a role in
priorities. The essence of the priority disambiguation construct is that certain vertical (father/child)
relations in derivations are removed.

Warning

A note on the implementation of priorities. Although we have defined priorities here to
work on direct father/child relations only, the current implementation of SDF will also filter
deriviations that are directly linked via a chain of injection productions.

The Syntax Definition
Formalism SDF

21

7.3. Associativity
Associativity declarations occur in two places in SDF. The first is as production attributes. The second
is as associativity declarations in priority groups. Like with priorities, the essence of the associativity
attribute is that certain vertical (father/child) relations in derivations are removed:

• The {left} associativity attribute on a production P filters all occurences of P as a direct child of P in
the right-most argument. This implies that {left} is only effective on productions that are recursive
on the right (as in A B C -> C).

• The {right} associativity attribute on a production P filters all occurences of P as a direct child
of P in the left-most argument. This implies that {right} is only effective on productions that are
recursive on the left (as in C A B -> C).

• The {non-assoc} associativity attribute on a production P filters all occurrences of P as a direct child
of P in any argument. This implement that {non-assoc} is only effective if a production is indeed
recursive (as in A C B -> C).

• The {assoc} attribute means the same as {left}

Note that in general associatity attributes are thus intended to work on production rules with the
following pattern: X ... X -> X.

In priority groups, the associativity attribute can also be found. It has the same semantics as the
associativity attributes, except that the filter refers to two nested productions instead of a recursive
nesting of one production. The group associativity attribute works pairwise and commutative on all
combinations of productions in the group. If there is only one element in the group the attribute is
reflexive, otherwise it is not reflexive.

Note that associativity does not work transitively. Another way of defining associativity is to translate
associativity attributes to non-transitive priorities in specific arguments.

7.4. Bracket attribute
It is not used by SDF, but some back-ends use it. For example, the restore-brackets tool uses the
bracket attribute to find productions to add to a parse tree before pretty printing (when the tree violates
priority constraints). Note that most of these tools demand the production with a {bracket} attribute
to have the shape: "(" X ")" -> X {bracket} with any kind of bracket syntax but the X being
the same symbol on the left-hand side and the right-hand side.

The connection with priorities and associativity is that when a non-terminal is disambiguated using
either of them, a production rule with the {bracket} attribute is probably also needed.

7.5. Rejects
The reject disambiguation construct also filters derivations. For a production <Symbol>+ ->
Symbol {reject} the semantics is that the set of all derivations for <Symbol> are filtered.
Namely, all derivations that derive a string that can also be derived from <Symbol>+ are removed.
Another way of saying this is that the language (set of strings) defined by <Symbol> has become
smaller, namely the set of strings defined by <Symbol+> is subtracted from it.

The reject mechanism effectively defines the difference operator between two context-free languages.

As such it can be used to define non context-free languages such as anbncn. This is not it's intended use.

Warning

A note on the implementation of {reject} is that the full semantics are not implemented by the
current implementation of SDF. The {reject} attribute works well for keyword reservation
in the form of productions like "keyword" -> Identifier {reject}. I.e. the

The Syntax Definition
Formalism SDF

22

language on the left-hand side is regular. Note that the {reject} attribute implementation is
known to filter incompletely when:

• applied to productions that are empty or right-nullable or recursive.

• the non-terminal on the right-hand side is nullable by another production.

• there is nested {reject} productions applied to each other.

7.6. Preferences
The preferences mechanism is another disambiguation filter that provides a filter semantics to a
production attribute. The attributes {prefer} and {avoid} are the only disambiguation constructs that
compare alternative derivations. They are sometimes referred to as horizontal disambiguation filters.

The following definition assumes that derivations are represented using parse forests with "packaged
ambiguity nodes". This means that whenever in a derivation there is a choice for several sub-
derivations, at that point a special choice node (ambiguity constructor) is placed with all alternatives
as children. We assume here that the ambiguity constructor is always placed at the location where a
choice is needed, and not higher (i.e. a minimal parse forest representation). The preference mechanism
compares the top nodes of each alternative:

• All alternative derivations that have {avoid} at the top node will be removed, but only if other
alternatives derivations are there that do not have {avoid} at the top node.

• If there are derivations that have {prefer} at the top node, all other derivations that do not have
{prefer} at the top node will be removed.

Warning

A note on implementation of preferences is that the current implementation of SDF does not
always provide a "minimal parse forest representation". Therefore, it is sometimes hard to see
where (at which vertical level) the ambiguity constructor will be, and thus which productions
will be at the top to compare the preference attributes.

7.7. Restrictions
Restrictions, or follow restrictions, are intended for filtering ambiguity that occurs on a lexical level.
They are described in restrictions.

8. Examples
We will now give a sequence of small examples that illustrate the various constructs in SDF:

• A simple lexical syntax.

• Using character classes.

• A simple drawing language.

• Identifiers.

• Numbers.

• Strings.

• Identifier lists.

• An expression language.

• Using labels in productions.

The Syntax Definition
Formalism SDF

23

In the Section Some tricky cases, we give examples of definitions that may lead to some confusion.

8.1. A simple lexical syntax
Below we give an example of a simple lexical function definition for defining the first three words
that Dutch children learn to read. The three sorts Aap, Noot and Mies, each recognize, respectively,
the strings aap, noot and mies. The sort LeesPlank (a reading-desk used in primary education)
recognizes the single string aapnootmies.

Example 3. Simple lexical productions

module LeesPlank

imports basic/Whitespace

exports
 context-free start-symbols LeesPlank
 sorts Aap Noot Mies LeesPlank
 lexical syntax
 "aap" -> Aap
 "noot" -> Noot
 "mies" -> Mies
 Aap Noot Mies -> LeesPlank

8.2. Using Character Classes
Definitions for lower-case letter (LCLetter), upper-case letters (UCLetter), lower-case and upper-
case letters (Letter) and digits (Digit) are shown in the first example below}.

Example 4. Defining letter (lower-case and upper-case) and digit

module LettersDigits1

imports basic/Whitespace

exports
 context-free start-symbols Letter Digit
 sorts LCLetter UCLetter Letter Digit
 lexical syntax
 [a-z] -> LCLetter
 [A-Z] -> UCLetter
 [a-zA-Z] -> Letter
 [0-9] -> Digit

The next example gives a definition of the sort LetterOrDigit that recognizes a single letter
(upper-case or lower-case) or digit.

Example 5. Defining a single letter or digit

module LettersDigits2
imports basic/Whitespace

exports
 context-free start-symbols LetterOrDigit
 sorts LetterOrDigit
 lexical syntax
 [a-z] -> LetterOrDigit
 [A-Z] -> LetterOrDigit
 [0-9] -> LetterOrDigit

The Syntax Definition
Formalism SDF

24

The example below gives the definition of a single letter or digit using the alternative operator \/.
This definition is equivalent to the one given above.

Example 6. Defining a single letter or digit using the alternative operator

module LettersDigits3
exports
 context-free start-symbols LetterOrDigit
 sorts LetterOrDigit
 lexical syntax
 [a-z] \/ [A-Z] \/ [0-9] -> LetterOrDigit

Another example is shown below. This definition of characters contains all possible characters, either
by means of the ordinary representation or via their decimal representation.

Example 7. Example of character classes

module Characters

imports basic/Whitespace

exports
 context-free start-symbols L-Char
 sorts AlphaNumericalEscChar DecimalEscChar EscChar L-Char
 lexical syntax
 "\\" ~[] -> AlphaNumericalEscChar

 "\\" [01] [0-9] [0-9] -> DecimalEscChar
 "\\" "2" [0-4] [0-9] -> DecimalEscChar
 "\\" "2" "5" [0-5] -> DecimalEscChar

 AlphaNumericalEscChar -> EscChar
 DecimalEscChar -> EscChar

 ~[\0-\31\"\\] \/ [\t\n] -> L-Char
 EscChar -> L-Char

8.3. A simple Drawing Language
Consider the language of coordinates and drawing commands presented below.

Example 8. Simple context-free syntax definition

module DrawingCommands

imports basic/Whitespace

exports
 context-free start-symbols CMND
 sorts NAT COORD CMND

 lexical syntax
 [0-9]+ -> NAT

 context-free syntax
 "(" NAT "," NAT ")" -> COORD
 "line" "to" COORD -> CMND
 "move" "to" COORD -> CMND

The Syntax Definition
Formalism SDF

25

An equivalent conventional BNF grammar (and not considering lexical syntax) of the above grammar
is as follows:

Example 9. BNF definition of simple grammar

<COORD> ::= "(" <NAT> "," <NAT> ")"
<CMND> ::= "line" "to" <COORD> | "move" "to" <COORD>

8.4. Identifiers
Lexical tokens are often described by patterns that exhibit a certain repetition. The list symbols
described in List Symbols can be used to express repetitions. The example below demonstrates the
use of the repetition symbol * for defining identifiers consisting of a letter followed by zero or more
letters or digits.

Example 10. Defining identifiers using the repetition operator *

module Identifiers-repetition

imports basic/Whitespace

exports
 context-free start-symbols Id
 sorts Letter DigitLetter Id
 lexical syntax
 [a-z] -> Letter
 [a-z0-9] -> DigitLetter

 Letter DigitLetter* -> Id

If zero or exactly one occurrence of a lexical token is desired the option operator described in Optional
symbols can be used. The use of the option operator is illustrated below. Identifiers are defined
consisting of one letter followed by one, optional, digit. This definition accepts a and z8, but rejects
ab or z789.

Example 11. Defining a letter followed by an optional number using the option
operator ?

module Identifiers-optional

imports basic/Whitespace

exports
 context-free start-symbols Id
 sorts Letter Digit Id
 lexical syntax
 [a-z] -> Letter
 [0-9] -> Digit

 Letter Digit? -> Id

Productions with the same result sort together define the lexical syntax of tokens for that sort. The
left-hand sides of these function definitions form the alternatives for this function. Sometimes, it is
more convenient to list these alternatives explicitly in a single left-hand side or to list alternative parts
inside a left-hand side. This is precisely the role of the alternative operator. The example below shows
how this operator can be used. It describes identifiers starting with an upper-case letter followed by
one of the following:

The Syntax Definition
Formalism SDF

26

• zero or more lower-case letters,

• zero or more upper-case letters, or

• zero or more digits.

According to this definition, Aap, NOOT, and B49 are acceptable, but MiES, B49a and 007 are not.

Example 12. Example of alternative operator |

module Identifiers-alternative1

imports basic/Whitespace

exports
 context-free start-symbols Id
 sorts LCLetter UCLetter Digit Id
 lexical syntax
 [A-Z] -> UCLetter
 [a-z] -> LCLetter
 [0-9] -> Digit

 UCLetter LCLetter* | UCLetter* | Digit* -> Id

Note that the relation between juxtaposition and alternative operator is best understood by looking at
the line defining Id. A parenthesized version of this same line would read as follows:

 UCLetter (LCLetter* | UCLetter* | Digit*) -> Id

As an aside, note that moving the * outside the parentheses as in

 UCLetter (LCLetter | UCLetter | Digit)* -> Id

yields a completely different definition: it describes identifiers starting with an uppercase letter
followed by zero or more lower-case letters, uppercase letters or digits. According to this definition
MiES, B49a and Bond007 would, for instance, be acceptable. A slightly more readable definition
that is equivalent to the previous one is shown below. In any case, we recommend to use parentheses
to make the scope of alternatives explicit.

Example 13. Example of alternative operator |

module Identifiers-alternative2

imports basic/Whitespace

exports
 context-free start-symbols Id
 sorts UCLetter LCLetter Digit Id
 lexical syntax
 [A-Z] -> UCLetter
 [a-z] -> LCLetter
 [0-9] -> Digit

 (UCLetter LCLetter*) | (UCLetter UCLetter*) | (UCLetter Digit*) -> Id

8.5. Numbers
Definitions of integers and real numbers are shown below. Note the use of the alternative operator
in the definitions of UnsignedInt and Number. Also note the use of the option operator in the
definitions of SignedInt and UnsignedReal.

The Syntax Definition
Formalism SDF

27

Example 14. Lexical definition of Numbers

module Numbers

imports basic/Whitespace

exports
 context-free start-symbols Number
 sorts UnsignedInt SignedInt UnsignedReal Number

 lexical syntax
 [0] | ([1-9][0-9]*) -> UnsignedInt

 [\+\-]? UnsignedInt -> SignedInt

 UnsignedInt "." UnsignedInt ([eE] SignedInt)? -> UnsignedReal
 UnsignedInt [eE] SignedInt -> UnsignedReal

 UnsignedInt | UnsignedReal -> Number

8.6. Strings

The specification below, gives the lexical definition of strings which may contain escaped double
quote characters. It defines a StringChar as either

• zero or more arbitrary characters except double quote or newline, or

• an escaped double quote, i.e., \".

A string consists of zero or more StringChars surrounded by double quotes.

Example 15. Lexical definition of String

module Strings

imports basic/Whitespace

exports
 context-free start-symbols String
 sorts String StringChar

 lexical syntax
 ~[\"\n] -> StringChar
 [\\][\"] -> StringChar
 "\"" StringChar* "\"" -> String

8.7. Identifier Lists

Context-free syntax often requires the description of the repetition of a syntactic notion or of list
structures (with or without separators) containing a syntactic notion. The list symbols can be used for
this purpose. Lists may be used in both the left-hand side and right-hand side of a context-free function
as well as in the right-hand side of a variable declaration.

Here is an example of how lists can be used to define the syntax of a list of identifiers (occurring in
a declaration in a Pascal-like language).

The Syntax Definition
Formalism SDF

28

Example 16. Definition of a list of identifiers

module Decls

imports basic/Whitespace

exports
 context-free start-symbols Decl
 sorts Id Decl Type

 lexical syntax
 [a-z]+ -> Id

 context-free syntax
 "decl" {Id ","}+ ":" Type -> Decl
 "integer" -> Type
 "real" -> Type

8.8. An Expression Language with Chain Rules
A context-free syntax may contain productions that do not add syntax, but serve the sole purpose of
including a smaller syntactic notion into a larger one. This notion is also known as injections. Injections
are productions without a name and with one argument sort like Id -> Data. A typical example
is the inclusion of identifiers in expressions or of natural numbers in reals. Such a chain function has
one of the following forms:

• SMALL -> BIG

• {SMALL SEP}* -> BIG

• SMALL* -> BIG

• {SMALL SEP}+ -> BIG

• SMALL+ -> BIG

It is a common misconception that chain rules will not be represented in the parse tree that sglr
outputs. An injection production is a production like any other, and will lead to a node in the parse
tree. However, some back-ends are known to interpret chain rules as sub-sort relations. In the example
below the symbols Nat and Var are injected in Exp.

Example 17. Definition of expressions that uses injections

module Exp

imports basic/Whitespace

exports
 context-free start-symbols Exp
 sorts Nat Var Exp

 lexical syntax
 [0-9]+ -> Nat
 [XYZ] -> Var

 context-free syntax
 Nat -> Exp
 Var -> Exp
 Exp "+" Exp -> Exp

The Syntax Definition
Formalism SDF

29

8.9. Using Labels in Productions

See below for an example of an SDF specification containing labels. Remember that labels do not
have semantics in SDF.

Example 18. The module basic/Booleans decorated with labels

module Booleans

imports basic/Whitespace

exports
 context-free start-symbols Boolean
 sorts Boolean

 context-free syntax
 lhs:Boolean "|" rhs:Boolean -> Boolean
 lhs:Boolean "&" rhs:Boolean -> Boolean

8.10. Groups of Associative Productions

Groups of associative productions define how to accept or reject trees containing related occurrences
of different productions with the same priority. They are defined by prefixing a list of context-free
productions in a priority declaration with one of the following attributes:

• left: related occurrences of F and G associate from left to right.

• right: related occurrences of F and G associate from right to left.

• non-assoc: related occurrences of F and G are not allowed.

where F and G are productions appearing in the list. Below is an example of the use of grouped
associativity.

The Syntax Definition
Formalism SDF

30

Example 19. More complex associativity and priority definitions

module ComplexExpr

imports basic/Whitespace
imports basic/NatCon

exports
 context-free start-symbols E

 sorts E

 context-free syntax
 NatCon -> E
 E "+" E -> E {left}
 E "-" E -> E {non-assoc}
 E "*" E -> E {left}
 E "/" E -> E {non-assoc}
 E "^" E -> E {right}
 "(" E ")" -> E {bracket}

 context-free priorities
 E "^" E -> E >
 {non-assoc: E "*" E -> E
 E "/" E -> E} >
 {left: E "+" E -> E
 E "-" E -> E}

8.11. Associative Productions

Associativity attributes can be attached to binary productions of the form S op S -> S, where
op is a symbol or empty. Without associativity attributes, nested occurrences of such productions
immediately lead to ambiguities, as is shown by the sentence S-string op S-string op S-
string where S-string is a string produced by symbol S. The particular associativity associated
with op determines the intended interpretation of such sentences. We call two occurrences of
productions F and G related, when the node corresponding to F has a node corresponding to G as
first or last child. The associativity attributes define how to accept or reject trees containing related
occurrences of the same function, F:

• left: related occurrences of F associate from left to right.

• right: related occurrences of F associate from right to left.

• assoc: related occurrences of F associate from left to right.

• non-assoc: related occurrences of F are not allowed.

Currently, there is no syntactic or semantic difference between left and assoc, but we may change
the semantics of the assoc attribute in the future. Is this really true?

Below we give an example of a definition of simple arithmetic expressions with the usual priorities
and associativities.

The Syntax Definition
Formalism SDF

31

Example 20. Simple context-free priority definition

module SimpleExpr

imports basic/Whitespace
imports basic/NatCon

exports
 context-free start-symbols E
 sorts E

 context-free syntax
 NatCon -> E
 E "+" E -> E {left}
 E "*" E -> E {left}
 "(" E ")" -> E {bracket}

 context-free priorities
 E "*" E -> E >
 E "+" E -> E

8.12. Parameterization

Module parameterization allows the definition of generic modules for lists, pairs, sets, etc. The
operations defined in these modules are independent of a specific type. When importing a
parameterized module and instantiating the formal by actual parameters the operations become sort
specific. Modules can have formal parameters when defining them. The module name is then followed
by a list of symbols, representing the formal parameters of this module. The specification below
shows an example of a parameterized module. In this example the formal parameters are used in
the parameterized sorts as well, in order to increase readability and to avoid name clashes between
different instances of the same module.

Example 21. Definition of generic pairs

module Pair[X Y]

imports basic/Whitespace
imports basic/Booleans

hiddens
 sorts X Y

exports
 context-free start-symbols Pair[[X,Y]]
 sorts Pair[[X,Y]]

 context-free syntax
 "[" X "," Y "]" -> Pair[[X,Y]]

 make-pair(X, Y) -> Pair[[X,Y]]
 first(Pair[[X,Y]]) -> X
 second(Pair[[X,Y]]) -> Y
 is-pair(Pair[[X,Y]]) -> Boolean

When importing a parameterized module the formal parameters have to be replaced by
actual parameters. The specification below shows an example of a rather complicated
import of a parameterized module. The symbols Pair[[Boolean,Boolean]] and

The Syntax Definition
Formalism SDF

32

Pair[[Integer,Integer]] are the actual parameters of the module Pair[X Y] in the last
import.

Example 22. Use of generic pair module

module TestPair

imports basic/Booleans
imports basic/Integers
imports Pair[Boolean Boolean]
imports Pair[Integer Integer]
imports Pair[Pair[[Boolean,Boolean]] Pair[[Integer,Integer]]]

8.13. Symbol Renaming

The specification below shows an example of the Pair module without parameters. The idea is to
achieve the same effect as parameterization by explicitly renaming X and Y to the desired names when
Pair is imported.

Example 23. Definition of generic pairs

module Pair

imports basic/Whitespace
imports basic/Booleans

hiddens
 sorts X Y

exports
 context-free start-symbols Pair[[X,Y]]
 sorts Pair[[X,Y]]

 context-free syntax
 "[" X "," Y "]" -> Pair[[X,Y]]

 make-pair(X, Y) -> Pair[[X,Y]]
 first(Pair[[X,Y]]) -> X
 second(Pair[[X,Y]]) -> Y
 is-pair(Pair[[X,Y]]) -> Boolean

During import such module symbols can be renamed via symbol renaming. The specification below
shows an example of a rather complicated import of the module Pair using renamings. Renaming X
to Boolean is, for instance, written as X => Boolean.

Example 24. Use of generic pair module

module TestPair

imports basic/Booleans
imports basic/Integers
imports Pair[X => Boolean Y => Boolean]
imports Pair[X => Integer Y => Integer]
imports Pair[X => Pair[[Boolean,Boolean]] Y => Pair[[Integer,Integer]]]

The Syntax Definition
Formalism SDF

33

8.14. Examples on dealing with lexical ambiguity using
restrictions

In the example below both let and in may not be followed by a letter. This example shows how
lexical restrictions can be used to prevent the recognition of erroneous expressions in a small functional
language. The lexical restriction deals with the possible confusion between the reserved words let
and in and variables (of sort Var). It forbids the recognition of, for instance, let as part of letter.
Without this restriction letter would be recognized as the keyword let followed by the variable
ter. The context-free restriction forbids that a variable is directly followed by a letter. It does not
forbid layout characters between the letters, e.g. a b is a legal recognizable string.

Example 25. Using restrictions in the definition of a simple functional language

module Functional

imports basic/Whitespace

exports
 context-free start-symbols Term
 sorts Var Term
 lexical syntax
 [a-z]+ -> Var
 context-free syntax
 Var -> Term
 Term Term -> Term {left}
 "let" Var "=" Term "in" Term -> Term

 lexical restrictions
 "let" "in" -/- [a-z]

 context-free restrictions
 Var -/- [a-z]

The next example illustrates the use of restrictions to define a safe way of layout. Recall that optional
layout, represented by the symbol LAYOUT?, may be recognized between the members of the left-
hand side of a context-free syntax rule. However, if a such a member recognizes the empty string, this
gives rise to a an ambiguity. This problem is avoided by the definition given below: it simply forbids
that optional layout is followed by layout characters.

Example 26. Safe way of defining LAYOUT

module basic/Whitespace

exports
 lexical syntax
 [\ \t\n] -> LAYOUT

 context-free restrictions
 LAYOUT? -/- [\ \t\n]

The example shown below illustrates the use of restrictions to extend the previous layout definition
with C-style comments. For readability we give here two restrictions whereas the first one is already
imported from module basic/Whitespace. The repetition of this first restriction is redundant and could
be eliminated.

The Syntax Definition
Formalism SDF

34

Example 27. Definition of C comments

module Comment

imports basic/Whitespace

exports
 sorts ComWord Comment
 lexical syntax
 ~[\ \n\t\/]+ -> ComWord

 context-free syntax
 "/*" ComWord* "*/" -> Comment
 Comment -> LAYOUT

 context-free restrictions
 LAYOUT? -/- [\ \t\n]
 LAYOUT? -/- [\/].[*]

A frequently asked question is when to use lexical restrictions and when to use context-free restrictions.
In one of the previous examples the lexical restrictions on let and in cannot be defined using context-
free restrictions because these keywords do not "live" at the context-free level. Is it possible to put a
lexical restriction on Var? Yes, but it will have no effect, because internally the lexical Var is injected
in the context-free Var. The general rule is to define the restrictions always on the context-free level
and not on the lexical level unless a situation as will be discussed in the next paragraph occurs. The
specification below is an example of an erroneous use of context-free expressions, because it prevents
the recognition of (abc)def. If we want to enforce the correct restriction, it is necessary to transform
this context-free restriction into a lexical restriction.

Example 28. Erroneous use of restrictions in the definition of simple expressions

module RestrictedExpressions

imports basic/Whitespace

exports
 context-free start-symbols Expr
 sorts Expr

 lexical syntax
 [a-z]+ -> Expr

 context-free syntax
 Expr Expr -> Expr {left}
 "(" Expr ")" -> Expr {bracket}

 context-free restrictions
 Expr -/- [a-z]

8.15. Some Tricky Cases

In Symbols a number of sophisticated operators, like alternative, option, function, sequence, and tuple
are discussed. These operators allow a concise manner of defining grammars. There are, however, a
number of issues to be taken into consideration when using this operators.

The Syntax Definition
Formalism SDF

35

8.15.1. Definition of Lists

In the example below, two different lists are defined, List1 represents a list of naturals separated
by commas whereas List2 represents a list of naturals separated by commas and terminated by a
comma.

Example 29. Definition of two list variants

module Lists

imports basic/Whitespace

exports
 context-free start-symbols List1 List2
 sorts Nat List1 List2

 lexical syntax
 [0-9]+ -> Nat

 context-free syntax
 {Nat ","}+ -> List1
 (Nat ",")+ -> List2

8.15.2. Alternative Alternatives

The choice between two symbols can be defined in two different ways: by two separate syntax rules
or by a single syntax rule using an alternative operator. Both styles are shown below. The definition
of the binary operators | and & can be made more concise as shown by Bool2, however, it is now
impossible to express that & has a higher priority than |, see Priorities for more details on priority
definitions.

Example 30. Two ways of defining | and &

module Bool

imports basic/Whitespace

exports
 context-free start-symbols Bool1 Bool2
 sorts Bool1 Bool2

 context-free syntax
 "true" -> Bool1
 "false" -> Bool1
 Bool1 "|" Bool1 -> Bool1 {left}
 Bool1 "&" Bool1 -> Bool1 {left}

 "true" | "false" -> Bool2
 Bool2 ("|" | "&") Bool2 -> Bool2 {left}

8.15.3. Lists in combination with optionals or empty producing
sorts

The combination of lists and optionals or empty producing sorts leads to cycles in the parse tree. Cycles
are considered parse errors. The parser will produce an error message whenever during parsing a cycle
is detected. No parse tree is constructed in such a case. Cycles will not lead to non-termination during
parsing. See below for an example of such a specification.

The Syntax Definition
Formalism SDF

36

Example 31. Dangerous combination of lists and optionals}

module Cycle

imports basic/Whitespace

exports
 context-free start-symbols T
 sorts A P T

 context-free syntax
 "a" -> A
 A? -> P
 "[" P+ "]" -> T

Sometimes commenting out parts of a production rule may lead to cycles, because a non-terminal
becomes an empty producing non-terminal. This in combination with lists may then produce
unexpected cycles.

9. Well-formedness
In order to improve the quality of the written specifications, a number of checks are performed before
an SDF specification is transformed into a parse table. The checks are performed on two levels: the
first level are SDF specific checks, the second level are ASF+SDF specific checks. There are various
categories of messages in The Meta-Environment

• Parse errors.

• SDF type check warnings.

• SDF type check errors.

We will briefly discuss each of the error messages and indicate what is exactly wrong in the
specification. Furthermore we will hint at how the error can be fixed.

9.1. Parse Errors
There are three different types of parse errors:

• A syntax error, which is reported by pinpointing the exact location in the file and a message like

Parse error near cursor

or

Parse error: character 'c' unexpected

or

Parse error: eof unexpected

This means that the parser detected a syntax error in the text to be parsed and cannot proceed its
parsing process. Clicking on the error in the Errors pane moves the cursor to the exact error
location and launches if needed the editor.

• A cycle is reported whenever the parser detects a non-terminating chain of reductions; the message is

Cycle: <list_of_production_rules>

The Syntax Definition
Formalism SDF

37

• An ambiguity is reported whenever the parser was able to recognize a (part of) the input sentence
in different ways and gives the message:

Ambiguity: <list_of_production_rules>

9.2. Type check warnings for SDF

Warning

It would be nice to rewrite this and the next section in the style:

• Error message

• Explanation

• Example of error.

• Example of correction.

Warnings do not break the specification, but it is advisable to fix them anyway. Often they point out
some not well-formed part in the specification.

• undeclared sorts: This warning indicates that a sort is used which is not explicitly declared,
or it is declared but in a hidden section.

• double declared sort: This warning points out that the sort is already declared somewhere
in this module, or in one of the imported modules.

• double declared start-symbol: This warning indicates that the start-symbol is previously
defined as start-symbol as well. This can be in the current module or in one of the imported modules.

• illegal attribute: {bracket, left, right, assoc, non-assoc}: This
warning is generated because the syntactic form of the production rule and the attribute do not
match. Given this mismatch the intended behaviour will not be effective.

• used in priorities but undefined: This warning is generated whenever a production
rule is used in a priority section which is not defined in this module or in one of the imported
modules. It is possible that this production rule will be defined in one of the modules which imports
this module. Normally, this indicates a typo.

• inconsistent rhs in priorities: This warning is caused by a production rule which
has not the same right-hand side as the other production rules in the priority relation. Whenever
this occurs the effect of the expressed priority relation will be ignored. This check is performed
modulo injections.

• unknown constructor used in priorities: This warning indicates the use of a
constructor which is not used in the corresponding set of production rules with the same right-hand
side. This is a very weak check on consistent use of constructor information.

• sort CHAR used in production rule:

• deprecated tuple notation:

• deprecated unquoted symbol notation:

• deprecated non-plain sort definition:

• aliased symbol already declared:

9.3. Type check errors for SDF
• module not available:

The Syntax Definition
Formalism SDF

38

• start-symbols in <ModuleName> not defined in any right-hand:

• literal in right-hand-side not allowed

• only sort allowed in right-hand-side of lexical-function

• double used label:

• constructor has already been used: The combination of right-hand symbol and the
constructor information should be unique. This warning points this out. It is advisable not to ignore
this warning. In fact, for the parser these double constructors are no problem, but there are tools
based on SDF for which this is problematic.

10. Derivations
Any parser generated from an SDF definition should output a representation of all derivations. For
example, a parse forest containing all parse trees, or any other representation which encodes/serializes
all derivations. A derivation should include all characters of the input and also a trace of all productions
that are recursively applied to obtain the derivations. A common representation that is used is parse
forest with ambiguity packing nodes serialized as ATerms.

Note that cyclic derivations should also be represented.

The essence of this requirement for SDF derivations is that no information should be thrown away.
A derivation represents exactly the grammar that was used to generate it, and the input sentence that
was parsed.

11. Historical Notes
The main publications on SDF are (in historical order):

• J. Heering, P. Klint, A Syntax Definition Formalism, ESPRIT''86: Results and Achievements,
North-Holland, 619--630, 1986. Describes the initial motivation and design of SDF.

• J. Heering, P. Hendriks, P. Klint and J. Rekers, The syntax definition formalism SDF
- reference manual [http://www.acm.org/pubs/citations/proceedings/pldi/73141/p179-heering/],
SIGPLAN Notices 24(11): 43-75, 1989. The first reference manual for SDF.

• E. Visser, Syntax Definition for Language Prototyping [http://homepages.cwi.nl/~paulk/
dissertations/Visser.ps.gz], dissertation, University of Amsterdam, 1997. A redesign of SDF that
adds modularization (modeled after the modularization constructs of ASF), unifies lexical and
concrete syntax, and proposes a normalisation procedure.

The main publications on implementation techniques related to SDF are:

• J. Heering, P. Klint and J. Rekers, Incremental Generation of Parsers [http://www.acm.org/pubs/
citations/proceedings/pldi/73141/p179-heering/], IEEE Transactions on Software Engineering,
16(12):1344--1350, 1990. This and the next publication describe our variant of Generalized LR
parsing as well as the just-in-time generation of scanners and parsers.

• J. Heering, P. Klint and J. Rekers, Incremental generation of lexical scanners [http://www.acm.org/
pubs/citations/journals/toplas/1992-14-4/p490-heering/], ACM Transactions on Programming
Languages and Systems 14(4):490--520, October 1992.

• J. Rekers, Parser Generation for Interactive Environments [http://homepages.cwi.nl/~paulk/
dissertations/Rekers.ps.gz], dissertation, University of Amsterdam, 1992. Detailed description of
the GLR algorithm.

• M.G. J. van den Brand, J. Scheerder, J. J. Vinju and E. Visser, Disambiguation Filters for
Scannerless Generalized LR Parsers [http://www.springerlink.com/content/03359k0cerupftfh/],

http://www.acm.org/pubs/citations/proceedings/pldi/73141/p179-heering/
http://www.acm.org/pubs/citations/proceedings/pldi/73141/p179-heering/
http://www.acm.org/pubs/citations/proceedings/pldi/73141/p179-heering/
http://homepages.cwi.nl/~paulk/dissertations/Visser.ps.gz
http://homepages.cwi.nl/~paulk/dissertations/Visser.ps.gz
http://homepages.cwi.nl/~paulk/dissertations/Visser.ps.gz
http://www.acm.org/pubs/citations/proceedings/pldi/73141/p179-heering/
http://www.acm.org/pubs/citations/proceedings/pldi/73141/p179-heering/
http://www.acm.org/pubs/citations/proceedings/pldi/73141/p179-heering/
http://www.acm.org/pubs/citations/journals/toplas/1992-14-4/p490-heering/
http://www.acm.org/pubs/citations/journals/toplas/1992-14-4/p490-heering/
http://www.acm.org/pubs/citations/journals/toplas/1992-14-4/p490-heering/
http://homepages.cwi.nl/~paulk/dissertations/Rekers.ps.gz
http://homepages.cwi.nl/~paulk/dissertations/Rekers.ps.gz
http://homepages.cwi.nl/~paulk/dissertations/Rekers.ps.gz
http://www.springerlink.com/content/03359k0cerupftfh/
http://www.springerlink.com/content/03359k0cerupftfh/
http://www.springerlink.com/content/03359k0cerupftfh/

The Syntax Definition
Formalism SDF

39

Proceedings of the 11th International Conference on Compiler Construction (CC'02), 143--158,
2002. Describes current disambiguation methods that are used in combination with scannerless
parsing.

12. To Do
Needed:

• Check error messages for correctness and add explanatory text to error messages.

• Check all examples.

