
1

Chapter 1. The ATerm Programming
Guide

Table of Contents
Introduction .................................................................................................................  1
ATerms at a glance .......................................................................................................  3

The ATerm data type ............................................................................................  3
Operations on ATerms ...........................................................................................  4

Using the C ATerm Library ............................................................................................ 9
Initializing and using the ATerm library .................................................................... 9
Memory Management of ATerms ........................................................................... 10
ATerm formats ...................................................................................................  11

Level One Interface of C ATerm Library ........................................................................  13
Level One Types .................................................................................................  13
A note on `blobs' and BAF ...................................................................................  14
Level One Functionality .......................................................................................  14

Level Two Interface of C ATerm Library ........................................................................  22
Level Two Types ................................................................................................  22
Level Two Functionality ....................................................................................... 23

Command Line Utilities ...............................................................................................  36
ATerm-conversion: baffle .....................................................................................  36
Calculating the size of an ATerm: termsize .............................................................  37
Calculating MD5 checksum of an ATerm: atsum ...................................................... 37
Calculating differences between two ATerms: atdiff ..................................................  37

Using the Java ATerm Library ......................................................................................  38
Overview of the Java ATerm Library ...................................................................... 38
Java ATerm Interfaces .........................................................................................  39
Example Using the Java ATerms ...........................................................................  42
Differences between C and Java Version of ATerm Library ........................................  43

Historical Notes ..........................................................................................................  44
Bibliography ...............................................................................................................  44

Introduction
Cut and paste operations on complex data structures are standard in most desktop software
environments: one can easily clip a part of a spreadsheet and paste it into a text document. The
exchange of complex data is also common in distributed applications: complex queries, transaction
records, and more complex data are exchanged between different parts of a distributed application.
Compilers and programming environments consist of tools such as editors, parsers, optimizers, and
code generators that exchange syntax trees, intermediate code, and the like.

Annotated Terms (ATerms) provide a solution for implementation needs in the areas of compilers,
interactive programming environments and distributed applications but are more widely applicable in
areas like model checking and ontology definition. They have the following characteristics:

Open Independent of any specific hardware or software platform.

Simple The procedural interface should contain 10 rather than 100 functions.

Efficient Operations on data structures should be fast as possible.

Concise Inside an application the storage of data structures should be as
small as possible by using compact representations and by exploiting



The ATerm Programming Guide

2

sharing. Between applications the transmission of data structures
should be fast by using a compressed representation with fast
encoding and decoding. Transmission should preserve any sharing of
in-memory representation in the data structures.

Language-independent Data structures can be created and manipulated in any suitable
programming language.

Annotations Applications can transparently extend the main data structures with
annotations of their own to represent non-structural information.

Typically, we want to exchange and process tree-like data structures such as parse trees, abstract syntax
trees, parse tables, generated code, and formatted source texts. The applications involved include
parsers, type checkers, compilers, formatters, syntax-directed editors, and user-interfaces written in
a variety of languages. Typically, a parser may add annotations to nodes in the tree describing the
coordinates of their corresponding source text and a formatter may add font or color information to
be used by an editor when displaying the textual representation of the tree.

The ATerm data type has been designed to represent such tree-like data structures and it is therefore
very natural to use ATerms both for the internal representation of data inside an application and
for the exchange of information between applications. Besides function applications that are needed
to represent the basic tree structure, a small number of other primitives are provided to make the
ATerm data type more generally applicable. These include integer constants, real number constants,
binary large data objects (``blobs''), lists of ATerms, and place holders to represent typed gaps in
ATerms. Using the comprehensive set of primitives and operations on ATerms, it is possible to
perform operations on an ATerm received from another application without first converting it to an
application-specific representation.

Figure 1.1. Maximal subterm sharing for x*(y+2) + (y+2)*z. (a) Tree
representation. (b) Maximal subterm sharing

One particular aspect of ATerms makes them unique and should be mentioned here explicitly: ATerms
are based on maximal subterm sharing. This is illustrated in Figure 1.1, “Maximal subterm sharing
for x*(y+2) + (y+2)*z. (a) Tree representation. (b) Maximal subterm sharing” (p. 2) for the
expression x*(y+2) + (y+2)*z. In (a) the ordinary tree representation is shown and in (b) the
common subexpression (y+2) is shared thus turning the tree into a Directed Acyclic Graph (DAG).

Maximal subterm sharing is a strategy to achieve "conciseness" as mentioned in the characteristics of
ATerms above and is a simple and effective way to minimize memory usage: terms are only created
when they are new, i.e., do not exist already. If a term to be constructed already exists, that term is
reused, ensuring maximal sharing. This strategy fully exploits the redundancy that is typically present
in the terms to be built and leads to maximal sharing of subterms. The library functions that construct
terms always return maximally shared terms as result. The sharing of terms is thus invisible to the
library user. Apart from reduced memory usage, maximal subterm sharing has another benefit: the



The ATerm Programming Guide

3

equality check on terms becomes very cheap: it reduces from an operation that is linear in the number
of subterms to be compared to a constant operation (only pointer equality has to be checked).

Maximal subterm sharing has, however, a price. In order to optimize sharing, ATerms are immutable
and "updating" an ATerm in any way always leads to the construction of a new ATerm that may,
however, share many subterms with the original ATerm. ATerm construction is also penalized by an
additional lookup operation to check for existing terms.

Despite these disadvantages, there are many application areas where ATerms lead to more transparent
program code and to more efficient execution. Some examples are term rewriting and model checking,
see [BK07] (p. 44) for these and other examples.

Where to go from here?

• Read the section called “ATerms at a glance” (p. 3) to get a quick overview of the functionality
of ATerms. These and the following sections are written from the C perspective.

• Read the section called “Using the C ATerm Library” (p. 9) for details about initialization,
memory management and file format.

• A detailed description of the C ATerm library can be found in the section called “Level One Interface
of C ATerm Library” (p. 13) and the section called “Level Two Interface of C ATerm Library”
(p. 22).

• On overview of the Java ATerm library is given in the section called “Using the Java ATerm
Library” (p. 38). It also summarizes the differences between the C and the Java version, see the
section called “Differences between C and Java Version of ATerm Library” (p. 43).

• Withthe section called “Historical Notes” (p. 44) and the section called “Bibliography” (p.
44) we complete this ATerm programming guide.

ATerms at a glance
We now describe the constructors of the ATerm data type and the operations defined on it.

The ATerm data type

The data type of ATerms (ATerm) is defined as follows:

INT An integer constant is an ATerm.

REAL A real constant is an ATerm.

APPL A function application consisting of a function symbol and zero or more ATerms
(arguments) is an ATerm. The number of arguments of the function is called the
arity of the function.

LIST A list of zero or more ATerms is an ATerm.

PLACEHOLDER A placeholder term containing an ATerm representing the type of the placeholder
is an ATerm.

BLOB A ``blob'' (Binary Large data OBject) containing a length indication and a byte
array of arbitrary (possibly very large) binary data is an ATerm.

ANNOTATION A list of ATerm pairs may be associated with every ATerm representing a list of
(label,annotation) pairs.



The ATerm Programming Guide

4

Each of these constructs except the last one (i.e., INT, REAL, APPL, LIST, PLACEHOLDER, and
BLOB) form subtypes of the data type ATerm. These subtypes are needed when determining the type
of an arbitrary ATerm. Depending on the actual implementation language the type is represented as
a constant (C) or a subclass (Java, C#). The last construct is the annotation construct which makes it
possible to annotate terms with transparent information. We will now give a number of examples to
show some of the features of the textual representation of ATerms.

Note

The textual representation of ATerms is readable and is useful for explanation and debugging.
It is hardly ever used in large applications. See the section called “ATerm formats” (p. 11)
for the various ATerm formats.

• Integer and real constants are written conventionally: 1, 3.14, and -0.7E34 are all valid ATerms.

• Function applications are represented by a function name followed by an open parenthesis, a list
of arguments separated by commas, and a closing parenthesis. When there are no arguments,
the parentheses may be omitted. Examples are: f(a,b) and "test!"(1,2.1,"Hello
world!"). These examples show that double quotes can be used to delimit function names that
are not identifiers.

• Lists are represented by an opening square bracket, a number of list elements separated by commas
and a closing square bracket: [1,2,"abc"], [], and [f,g([1,2]),x] are examples.

• A placeholder is represented by an opening angular bracket followed by a subterm and a closing
angular bracket. Examples are <int>, <[3]>, and <f(<int>,<real>)>.

• Blobs do not have a concrete syntax because their human-readable form depends on the actual blob
content.

Operations on ATerms

The operations on ATerms fall into three categories: making and matching ATerms, reading and
writing ATerms, and annotating ATerms. These functions provide enough functionality for most users
to build simple applications with ATerms. We refer to this interface as the level one interface of the
ATerm data type. To accommodate ``power'' users of ATerms we also provide a level two interface,
which contains a more sophisticated set of data types and functions. It is typically used in generated C
or Java code that calls ATerm primitives, or in efficiency-critical applications. These extensions are
useful only when more control over the underlying implementation is needed or in situations where
some operations that can be implemented using level one constructs can be expressed more concisely
and implemented more efficiently using level two constructs. The level two interface is a strict superset
of the level one interface. Observe that ATerms are a purely functional data type and that no destructive
updates are possible.

Making and Matching ATerms

The simplicity of the level one interface is achieved by the make-and-match paradigm that is also
illustrated in Figure 1.2, “The make-and-match paradigm” (p. 5):

Make Compose a new ATerm by providing a pattern for it and filling in the holes in the pattern.

Match Decompose an existing ATerm by comparing it with a pattern and decompose it according
to this pattern.



The ATerm Programming Guide

5

Figure 1.2. The make-and-match paradigm

Composition and decomposition of terms is not based on the direct manipulation of the underlying
representation of terms. Instead, term patterns are used to guide composition and decomposition.
Such term patterns play the same role as format strings in the printf/scanf paradigm in C. In a first
approximation, a term pattern is a literal string that would be obtained by a preorder traversal of a
term. For instance, the term pattern

"or(true, false)"

corresponds to a term whose root is labeled with the symbol or, and whose children are labeled with,
respectively, true and false. In this way, term patterns can be used to construct and to match terms.
Term patterns become, however, much more useful if they can be parameterized with subterms that
have been computed separately. To this end, we introduce the notion of directives as follows:

• <int>: corresponds to an integer (in C: int};

• <str>: corresponds to a string (in C: char *);

• <blob> corresponds to a binary string (in C: a (length, pointer) pair represented by two values of
types, respectively, int and void *);

• <term>: corresponds to an ATerm (in C: ATerm);

• <appl>: corresponds to one function application(in C: char *pattern, followed by
arguments);

• <list>: corresponds to a list of terms (in C: ATerm).

The precise interpretation of these directives depends on the context in which they are used. When
constructing a term, directives indicate that a subterm should be obtained from some given variable.
When matching a term, directives indicate the assignment of subterms to given variables.

Patterns are just ATerms containing place holders. These place holders determine the places where
ATerms must be substituted or matched. An example of a pattern is "and(<int>,<appl>)".
These patterns appear as string argument of both make and match and are remotely comparable to
the format strings in the printf/scanf functions in C. The operations for making and matching
ATerms are:

• ATerm ATmake(String p, ATerm a1, ..., ATerm an): Create a new term by taking
the string pattern p, parsing it as an ATerm and filling the place holders in the resulting term with
values taken from a1 through an. If the parse fails, a message is printed and the program is aborted.



The ATerm Programming Guide

6

The types of the arguments depend on the specific place holders used in the pattern p. For instance,
when the placeholder <int> is used an integer is expected as argument and a new integer ATerm
is constructed.

• ATbool ATmatch(ATerm t, String p, ATerm *a1, ..., ATerm *an): Match term
t against pattern p, and bind subterms that match with place holders in p with the result variables
a1 through an. Again, the type of the result variables depends on the place holders used. If the parse
of pattern p fails, a message is printed and the program is aborted. If the term itself contains place
holders these may occur in the resulting substitutions. The function returns true when the match
succeeds, false otherwise.

For instance, assuming the declarations

int n = 10;
char *fun = "pair", name = "any";
ATerm yellow = ATmake("yellow"), t;

the call

t = ATmake("exam(<appl(<term>,9)>,<int>,<str>)", 
           fun, yellow, n, 10, name)

will construct the term t with value

exam(pair(yellow,9),10,10,"any")

Binary strings (Binary Large OBjects or blobs) are used to represent arbitrary length, binary data that
cannot be represented by ordinary C strings because they may contain ``null'' characters. A binary
string is represented by a character pointer and a length. For instance, given

char buf[12];
ATerm bstr;
buf[0] = 0; buf[1] = 1; buf[2] = 2;

the call

bstr = ATmake("exam(<blob>)", 3, buf);

will construct a term with function symbol exam and as single argument a binary string of length 3
consisting of the three values 0, 1, and 2.

Matching terms amounts to

• determining whether there is a match or not,

• selectively assigning matched subterms to given variables.

For instance, in the context

ATerm t = ATmake("exam(pair(yellow,9),10, \"any\")");
ATerm t1;
int n;
char *ex, *s;

the call

ATmatch(t, "appl(<term>,<int>,<str>)", &ex, &t1, &n, &s);

yields true and is equivalent to the following assignments:

ex = "exam";
t1 = ATmake("pair(yellow,9)");
n = 10;



The ATerm Programming Guide

7

s = "any";

As explained in full detail in the section called “Memory Management of ATerms” (p. 10), memory
is managed automatically by the ATerm library. As a general rule, the values for ex, t1, and s are
pointers into the original term t rather than newly created values. As a result, they have a life time that
is equal to that of t. Matching binary strings is the inverse of constructing them. Given the term bstr
constructed at the end of the previous paragraph, its size and contents can be extracted as follows:

int n;
char *p;

ATmatch(bstr, "exam(<blob>)", &n, &p);

ATmatch will succeed and will assign 3 to the variable n and will assign a pointer to the character
data in the binary string to the variable p. Here, again, the value of p is a pointer into the term bstr
rather than a newly allocated string. Notes

• Double quotes (``"'') appearing inside the pattern argument of both ATmake and ATmatch have
to be escaped using ``\"''.

• The number and type of the variables whose addresses appear as arguments of ATmatch should
correspond, otherwise disaster will strike (as usual when using C).

• Assignments are being made during matching. As a result, some assignments may be performed,
even if the match as a whole fails.

Reading and Writing ATerms

For reasons of efficiency and conciseness, reading and writing can take place in several formats, see
the section called “ATerm formats” (p. 11). Either format (textual or binary) can be used on any
linear stream, including files, sockets, pipes, etc. Here, we only give examples of the pure textual
representation of ATerms.

The operations for reading and writing ATerms are:

• ATerm ATreadFromString(String s): Creates a new term by parsing the string s. When
a parse error occurs, a message is printed, and a special error value is returned.

• ATerm ATreadFromTextFile(File f): Creates a new term by parsing the data from file
f. Again, parse errors result in a message being printed and an error value being returned.

• String ATwriteToString(ATerm t): Return the text representation of term t as a string.

• ATbool ATwriteToTextFile(ATerm t, File f): Write the text representation of term
t to file f. Returns true for success and false for failure.

For instance, in the context:

FILE *f = fopen("foo", "wb");
ATerm Trm1 = ATmake("<appl(red,<int>)>", "freq", 17);

the statement

ATwriteToTextFile(Trm1, f);

will write the value of Trm1 (i.e., freq(red,17)) to file ``foo''.

When end of file is encountered or the term could not be read, the operation is aborted.The user can
redefine this behaviour using ATsetAbortHandler, which allows the definition of a user-defined
abort handler. See the section called “ATsetAbortHandler” (p. 21) for further details.

The last form of output that is supported by the ATerm library is formatted output. The function



The ATerm Programming Guide

8

int ATfprintf(FILE *File, const char *Pattern, ...)

writes formatted output to File. Pattern is printed literally except for occurrences of directives
which are replaced by the textual representation of the values appearing in .... For instance,

ATfprintf(stderr, "Wrong event \"%t\" ignored\n", 
                   ATmake("failure(<int>)", 13));

will print:

Wrong event "failure(13)" ignored

Note that ATprintf uses the normal printf conversion specifiers extended with ATerm-specific
specifiers. The most frequently used specifier is {\tt \%t} which stands for an ATerm argument whose
textual representation is to be inserted in the output stream.

Annotating ATerms

Annotations are (label,annotation) pairs that may be attached to an ATerm. Annotations can
be considered to be a "third dimension" for ATerms, see the section called “Annotating ATerms” (p.
8). Ordinary ATerms (bottom plane) can be extended in this dimension with arbitrary ATerms
(that, indeed, may again contain annotations).

Figure 1.3. ATerm annotations

The following operations for manipulating annotations are available (recall that ATerms are a
completely functional data type and that no destructive updates are possible):

• ATerm ATsetAnnotation(ATerm t, ATerm l, ATerm a): Return a copy of term t
in which the annotation labeled with l has been changed into a. If t does not have an annotation
with the specified label, it is added.

• ATerm ATgetAnnotation(ATerm t, ATerm l): Retrieve the annotation labeled with
l from term t. If t does not have an annotation with the specified label, a special error value is
returned.

• ATerm ATremoveAnnotation(ATerm t, ATerm l): Return a copy of term t from which
the annotation labeled with l has been removed. If t does not have an annotation with the specified
label, it is returned unchanged.



The ATerm Programming Guide

9

Using the C ATerm Library

Initializing and using the ATerm library

Using the ATerm library requires the following:

• Include the header file aterm1.h (or aterm2.h if you want to use the level 2 interface).
aterm1.h defines:

• ATbool: the boolean data type defined by

typedef enum ATbool {ATfalse=0, ATtrue} ATbool;

It is mainly used as the return value of library functions.

• ATerm: the type definition of ATerms. The ATerm library has been designed in such a way that
only pointers to terms must be passed to or are returned by library functions. The primitives that
are provided for constructing and decomposing terms are of such a high level that it is unnecessary
to know the internal representation of terms. When necessary, you can access the internal structure
of ATerms using the level 2 interface.

• Declare in your main program a local ATerm variable that will be used to determine the bottom
of C's runtime stack.

• Call ATinit to initialize the ATerm library.

• Link the ATerm library libATerm.a when compiling your application. This is achieved using
the -lATerm option of the C compiler.

A typical usage pattern is as follows:

#include <aterm1.h>
int main(int argc, char *argv[])
{

  ATerm bottomOfStack;                

  ATinit(argc, argv, &bottomOfStack); 
  /* ... code that uses ATerms ... */
}

Notes:

The local variable bottomOfStack is used to indicate the bottom of C's run-time stack and
needed when initializing the ATerm library.
Initialize the ATerm library. Observe that the program arguments are passed to ATinit (see
below).

The command line options can be passed to an application that use the ATerm library are listed in
Table 1.1, “Command line options ATerm library” (p. 10).



The ATerm Programming Guide

10

Table 1.1. Command line options ATerm library

Option Description 

-at-symboltable nsymbols Initial size of symbol table

-at-termtable tableclass Start with term table of 2tableclass entries

-at-hashinfo Write hash table statistics to the file
hashing.stats after execution

-at-print-gc-time Print timing information about garbage collector
to stderr after execution

-at-print-gc-info print verbose information about garbage collector
to stderr after execution

-at-silent Do not print status and version information

Memory Management of ATerms
The functions in the ATerm library provide automatic memory management of terms. Terms that have
been created but are no longer referenced are removed by a method called garbage collection. There
are two categories of terms that will survive a garbage collection:

• Terms that are referenced via a local variable of a currently active procedure.

• Terms that are explicitly protected by the user.

Effectively, all terms referenced by local variables and all protected terms (and their subterms) are
conserved and all other terms are considered as garbage and can be collected. It is guaranteed that no
garbage collection takes place during the execution of an event handler, hence it is not necessary to
protect temporary terms that are constructed during the execution of an event handler. However, terms
that should have a longer life time must be protected in order to survive. In order to protect terms from
being collected, the function

void ATprotect(ATerm *TrmPtr)

can be used that has as single argument a pointer to a variable with an ATerm as value. The protection
can be undone by the function

void ATunprotect(ATerm *TrmPtr)

The interplay between garbage collection and program variables is subtle. The following points are
therefore worth mentioning:

• Functions that return a term as value (e.g., ATBreadTermfromFile) do not explicitly protect
it. However, since the result will be referenced via local variable it will be safe for the garbage
collector.

• The function ATmake uses strings and terms and includes them into a new term T. The implications
for memory management are:

• All string arguments (using <str>, <blob> or <appl>) are copied before they are included
into T. They can thus safely be deallocated (e.g., using free) by the C program in case they
were globally allocated.

• All term arguments (using <term>) are included into T by means of a pointer. They thus become
reachable from T and their life time becomes at least as large as that of T; it is not required to
explicitly protect them unless the user decides otherwise.

• The function ATmatch assigns strings and terms to program variables by extracting them from an
existing term T. The general rule here is that extracted values have a life time that is equal to that
of T. The implications for memory management are:



The ATerm Programming Guide

11

• All string values (obtained using <str>, <blob> or <appl>) should be copied if they are used
outside the scope of the function in which they were created.

• All term values (obtained using <term>) should be explicitly protected if they should survive T.

ATerm formats
ATerms can be represented in four formats:

• ASCII text (the textual representation discussed earlier) This format is human-readable, space-
inefficient, and any sharing of the in-memory representation of terms is lost.

• Textual ATerm Format (TAF), a textual format that preserves maximal subterm sharing.

• Binary ATerm Format (BAF) is a portable, machine-readable, very compact format and preserves
all in-memory sharing.

• Streamable ATerm Format (SAF) allows the streaming of ATerms between applications (using a
fixed buffer size), also preserves sharing and optimizes the balance between speed, memory usage
and compression.

We now briefly discuss each format and conclude with a decision table when to use which format.

ASCII ATerm Format (ASCII)

The simplest format available for ATerms is plain ASCII text: the ATerm is read and written in
prefix form. Its main advantage are simplicity and readability. The main disadvantage is that maximal
subterm sharing is lost and that size may become huge. The ASCII ATerm Format is mainly used for
debugging purposes.

The main functions are:

• ATerm ATreadFromString(String s): Creates a new term by parsing the string s. When
a parse error occurs, a message is printed, and a special error value is returned.

• ATerm ATreadFromTextFile(File f): Creates a new term by parsing the data from file
f. Again, parse errors result in a message being printed and an error value being returned.

• String ATwriteToString(ATerm t): Return the text representation of term t as a string.

• ATbool ATwriteToTextFile(ATerm t, File f): Write the text representation of term
t to file f. Returns true for success and false for failure.

Textual ATerm Format (TAF)

There is also a textual ATerm format which supports maximal sharing but uses a much less complex
algorithm than the one used to encode and decode BAF files. This results in files that are somewhat
larger than their BAF counterparts, but are often (if the terms contain redundancy) significantly smaller
than their unshared form. TAF files always start with a '!' character to distinguish them from other
ATerm formats. The format uses abbreviations to refer to previously written terms. An abbreviation
consists of a hash character ('#') followed by a number in encoded using the Base64 Alphabet (see
RFC2045). Each term whose unparsed representation would take up more bytes than the textual
representation of the next available abbreviation is assigned such an abbreviation it has been written.
Subsequent occurrences of this term are then written by emitting the abbreviation instead of the term
itself. For example the term f(test,test) is represented as !f(test,#A) in TAF, whereas
f(a,a) is represented as !f(a,a) because test is longer than its abbreviation #A, but a is not.

The main functions are:



The ATerm Programming Guide

12

• ATerm ATreadFromSharedTextFile(FILE *f): Reads the TAF representation of term
t from file f.

• long ATwriteToSharedTextFile(ATerm t, FILE *f): Write the TAF representation
of term t to file f.

Binary ATerm Format (BAF)

The ATerm library is also equipped to store and restore ATerms in a compact, portable binary
representation. This representation is called BAF which stands for ``Binary ATerm Format''. This
format can be used to write a binary version of an ATerm to file, which can later be restored in a
much more efficient way than would be possible had the ATerm's textual counterpart been used. This
is due to the fact that textual representations have to be (re-)parsed each time they are read from
file, whereas BAF directly describes how to rebuild the internal representation of an ATerm, thus
skipping the parsing phase. Moreover, the maximal sharing of ATerms is exploited when writing BAF-
representations, making them take up much less space than their textual representations would have
needed. Users of the ATerm library are encouraged to use BAF representations when saving ATerms
to file. BAF was designed to be platform independent, which facilitates the exchange of ATerms.
The ATerm library comes with a utility that is able to convert an ATerm's textual representation into
its BAF counterpart and vice versa, see the section called “ATerm-conversion: baffle” (p. 36).
This conversion makes it possible to always work with BAF representations, while still being able to
look at the textual representation any time an error is suspected. It also allows conversion of textual
ATerms written by programs unable to write BAF which is especially convenient when these ATerms
are bulky. Although the ATerm library does not impose any constraints on the names of ATerm-files,
users are encouraged to use the extension .baf for BAF files. This will avoid confusion between
textual representations and binary ones. Textual representations could use the extension .trm. BAF
files always start with a NULL character followed by 0xBAF (hex) to distinguish them from other
ATerm formats.

The available functions are:

• ATerm ATreadFromBinaryFile(File f): Creates a new term by reading a BAF
representation from file f.

• ATbool ATwriteToBinaryFile(ATerm t, File f): Write a BAF representation of
term t to file f. Returns true for success, and false for failure.

(Semi-) Streamable ATerm Format (SAF)

The (Semi-) Streamable ATerm Format is a recent addition of the library. It is designed for usage in
high-performance applications and was initially developed for exchanging ATerms across network
connections in a portable way. It attempts to find a balance between the following characteristics:

• Encoding / decoding speed.

• Streaming functionality.

• Compression rate.

• Memory usage.

As the name suggests, this format enables the transmission of ATerms in a semi streamlike fashion.
This is achieved by reading and writing the serial representation of an ATerm in blocks of a variable
size; allowing the encoding and decoding process to be suspended at any point in time.

The available functions are:

• ATerm ATreadFromSAFFile(File f): Creates a new term by reading a SAF representation
from file f.



The ATerm Programming Guide

13

• ATbool ATwriteToSAFFile(ATerm t, File f): Write a SAF representation of term t
to file f. Returns true for success, and false for failure.

What is the best format?

Given these four formats it is not so easy to choose the right one. Their properties are summarized
in Table 1.2, “Properties of ATerm file formats” (p. 13). For high performance applications BAF
and SAF are the most likely candidates. BAF achieves a slightly better compression rates, but SAF
is able to encode and decode ATerms much faster. Another factor to consider is that there only is a
BAF implementation for C.

Tip

Since SAF is available for C and Java and is very efficient, it is a safe choice for most
applications.

Warning

Refer to SAF implementation document for measurements.

Table 1.2. Properties of ATerm file formats

Property ASCII TAF BAF SAF

Readability ++ -+ -- --

Efficiency writing -- + -+ ++

Efficiency reading -- -+ + ++

Compression
factor

-- -+ ++ +

Memory usage - -+ -+ +

C implementation + + + +

Java
implementation

+ + - +

Level One Interface of C ATerm Library
All types and functions that are defined in the level one interface are declared in aterm1.h.the
section called “Level One Types” (p. 13) reveals the types of ATerms that are used in the ATerm
library, as well as the extension to the standard C-types introduced in the level one interface. To avoid
confusion between BAF and the ATerm type AT_BLOB, the section called “A note on `blobs' and
BAF” (p. 14) is dedicated to explaining the difference between these two notions. Finally, the
section called “Level One Functionality” (p. 14) describes all the functions that are available in
the level one interface.

Level One Types
The following C-defines are used to represent the different ATerm types:

AT_INT An ATerm of type: integer.

AT_REAL An ATerm of type: real.

AT_APPL An ATerm of type: function application.

AT_LIST An ATerm of type: list.

AT_PLACEHOLDER An ATerm of type: placeholder



The ATerm Programming Guide

14

AT_BLOB An ATerm of type: binary large object.

The following C-types are defined in the level one interface:

ATbool A boolean value, either ATtrue or ATfalse.

ATerm An annotated term.

A note on `blobs' and BAF
Although the word binary is used in the abbreviations of both ``blob'' and BAF, these are two very
different notions. A blob represents an ATerm that holds binary data, with no specific meaning to the
ATerm library. This notion can be used as a means of escape in case you find that you need a type of
ATerm that is not on the list above. The notion of BAF is explained in the section called “Binary ATerm
Format (BAF)” (p. 12) and refers to a specific format used for reading and writing ATerms. Thus
an ATerm of type AT_BLOB can be saved in BAF. It could also be written in its textual representation,
although this does not guarantee that the blob will be readable, after all it represents binary data.

Level One Functionality
In this section, all functions are summarized. To obtain access to the level one interface, your
application should contain #include <aterm1.h>.

Level one: initialization

ATinit

void ATinit(int argc, char *argv[], ATerm *bottomOfStack)

Initialize the ATerm library.

See the section called “Initializing and using the ATerm library” (p. 9).

Level one: making and matching

ATmake

ATerm ATmake(const char *pattern, ...)

Create an ATerm from a string pattern and a variable number of arguments. Creates an ATerm given a
pattern and corresponding values. Table 1.3, “Argument types for ATmake” (p. 14) shows which
patterns can be used, and which type of arguments should be passed if such a pattern is used.

Table 1.3. Argument types for ATmake

Type Pattern Argument

Integer <int> int value

Real <real> double value

Application <appl> char *pattern, arguments

String <str> char *pattern, arguments

List <list> ATerm value

Term <term> ATerm value

Blob <blob> int length, void *data

Placeholder <placeholder> char *type value

Types <appl> and <str> should contain a pattern consisting of the function symbol to be used and
the types of the arguments. This pattern must be followed by exactly the number of arguments that are



The ATerm Programming Guide

15

used in the pattern. The types of the arguments must match the respective types used in the pattern.
Both <appl> and <str> create function applications. The difference is that <appl> creates one
with an unquoted function symbol, whereas <str> yields a quoted version. Here are some examples
of ATmake:

#include <aterm2.h>

int    ival = 42;
char  *sval = "example";
char  *blob = "12345678";
double rval = 3.14;
char  *func = "f";

void foo()
{
    ATerm term[4];
    ATerm list[3];
    ATerm appl[3];

    term[0] = ATmake("<int>" , ival);    

    term[1] = ATmake("<str>" , func);       

    term[2] = ATmake("<real>", rval);    

    term[3] = ATmake("<blob>", 8, blob); 

    list[0] = ATmake("[]");
    list[1] = ATmake("[1,<int>,<real>]", ival, rval);
    list[2] = ATmake("[<int>,<list>]", ival+1, list[1]);

    appl[0] = ATmake("<appl>", func);
    appl[1] = ATmake("<appl(<int>)>", func, ival);
    appl[2] = ATmake("<appl(<int>, <term>, <list>)>", 
                     func, 42, term[3], list[2]);

    ATprintf("appl[2] = %t\n", appl[2]);
}

int main(int argc, char *argv[])
{
    ATerm bottomOfStack;

    ATinit(argc, argv, &bottomOfStack);
    foo();
    return 0;
}

Notes:

Integer value 42.

Quoted application of "f", no arguments.

Real value 3.14.

Blob of size 8, and data 12345678.

ATmakeTerm

ATerm ATmakeTerm(ATerm pattern, ...)



The ATerm Programming Guide

16

Create an ATerm from an ATerm pattern and a variable number of arguments.

Note that pattern is here declared as ATerm and not as a string as in ATmake. It does not have to
be parsed as in the case of ATmake and therefore ATmakeTerm is more efficient.

See the section called “ATmake” (p. 14).

ATvmake

ATerm ATvmake(const char *pattern, va_list args)

Create an ATerm from a string pattern and a list of arguments} See the section called “ATmake” (p.
14).

ATvmakeTerm

ATerm ATvmakeTerm(ATerm pattern, va_list args)

Create an ATerm from an ATerm pattern and a list of arguments.

See the section called “ATmake” (p. 14).

ATmatch

ATbool ATmatch(ATerm t, const char *pattern, ...)

Match an ATerm against a string pattern.

Matches an ATerm against a pattern, attempting to fill the `holes'. If the ATerm matches the pattern,
ATtrue is returned and the variables will be filled according to the pattern, otherwise ATfalse is
returned. The <list> pattern can be used to match the tail of a list as well as a variable number of
arguments in a function application. Thus the first few arguments may be matched explicitly while
the tail of the arguments is directed to a list.

Here are a few examples of ATmatch:

#include <aterm2.h>

void foo()
{
    ATbool result;
    ATerm  list;
    double rval;
    int    ival;

    /* Sets result to ATtrue and ival to 16. */
    result = ATmatch(ATmake("f(16)"), "f(<int>)", &ival);

    /* Sets result to ATtrue and rval to 3.14. */
    result = ATmatch(ATmake("3.14"), "<real>", &rval);

    /* Sets result to ATfalse because f(g) != g(f) */
    result = ATmatch(ATmake("f(g)"), "g(f)");

    /* fills ival with 1 and list with [2,3] */
    result = ATmatch(ATmake("[1,2,3]"), 
                     "[<int>,<list>]", &ival, &list);
}

int main(int argc, char *argv[])
{



The ATerm Programming Guide

17

    ATerm bottomOfStack;

    ATinit(argc, argv, &bottomOfStack);
    foo();
    return 0;
}

ATmatchTerm

ATbool ATmatch(ATerm t, ATerm pattern, ...)

Match an ATerm t against a term pattern pattern. Since the pattern is pre-constructed and needs
not be parsed, this is a more efficient variant of ATmatch.

Level one: reading

ATreadFromFile

ATerm ATreadFromFile(FILE *file)

Read an ATerm from binary or text file.

This function reads an ATerm from a file. A test is performed to see if the file is in plain text, BAF,
TAF, or SAF format.

ATreadFromNamedFile

ATerm ATreadFromNamendFile(char *filename)

Read an ATerm from named binary or text file.

This function reads an ATerm file filename. A test is performed to see if the file is in plain text,
TAF, BAF, or SAF format. "-" is standard input's filename.

ATreadFromString

ATerm ATreadFromString(const char *string)

Read an ATerm from an ASCII text string.

This function parses a character string into an ATerm.

ATreadFromTextFile

ATerm ATreadFromTextFile(FILE *file)

Read an ATerm from an ASCII text file.

This function reads a text file and parses the contents into an ATerm.

ATreadFromSharedString

ATerm ATreadFromSharedString(const char *string, int size)

Read a ATerm from a string in TAF format.

This function decodes a TAF-encoded character string into an ATerm.

ATreadFromSharedTextFile

ATerm ATreadFromBinaryFile(FILE *file)

Read an ATerm from a shared text (TAF) file.



The ATerm Programming Guide

18

This function reads a shared text file and builds an ATerm.

ATreadFromBinaryString

ATerm ATreadFromBinaryString(const unsigned char *string, int size)

Read a ATerm from a string in BAF format.

This function decodes a BAF-encoded character string into an ATerm.

ATreadFromBinaryFile

ATerm ATreadFromBinaryFile(FILE *file)

Read an ATerm from a binary (BAF) file.

This function reads a BAF file and builds an ATerm.

ATreadFromSAFFile

ATerm ATreadFromSAFFile(FILE *file)

Read an ATerm from a streaming (SAF) file.

This function reads a SAF file and builds an ATerm.

Level one: term handling

ATgetType

int ATgetType(ATerm term)

Return the type of term.

A macro that returns the type of an ATerm. Result is one of AT_APPL, AT_INT, AT_REAL,
AT_LIST, AT_PLACEHOLDER, or AT_BLOB.

ATisEqual

ATBool ATisEqual(ATerm t1, ATerm t2)

A macro that tests equality of ATerms t1 and t2.

As ATerms are created using maximal sharing (see Section~\ref{sharing}), testing equality is
performed in constant time by comparing the addresses of t1 and t2. Note however that ATisEqual
only returns ATtrue when t1 and t2 are completely equal, inclusive any annotations they might
have!

Level one: writing

ATwriteToTextFile

ATBool ATwriteToTextFile(ATerm t, FILE *f)

Writes term t to file f in textual format.

This function writes ATerm t to the file f in textual format. This term can later be read again by
ATreadFromTextFile.

ATwriteToNamedTextFile

ATbool ATwriteToNamedTextFile(ATerm t, char *filename)

Writes term t to file named filename in textual format.



The ATerm Programming Guide

19

This function writes ATerm t in textual representation to file filename. "-" is standard output's
filename.

ATwriteToString

char *ATwriteToString(ATerm t)

Writes term t to a string.

Writes term t to an internal string buffer. The start of this buffer is returned. Note that the contents of
this buffer are volatile and may be overwritten by any call to the ATerm library.

ATwriteToSharedTextFile

long ATwriteToSharedTextFile(ATerm t, FILE *f)

Writes term t to file f in shared Textual ATerm Format (TAF).

This function writes ATerm t to the file f in TAF format, and returns the number of characters written.
This term can later be read again by ATreadFromSharedTextFile.

ATwriteToSharedString

char *ATwriteToSharedString(ATerm t, int *len)

Writes term t to a shared text string in TAF.

Writes term t to an internal string buffer in TAF. The start of this buffer is returned, and the length
of the resulting string is stored in len. Note that the contents of this buffer are volatile and may be
overwritten by any call to the ATerm library.

ATwriteToBinaryFile

ATbool ATwriteToBinaryFile(ATerm t, FILE *f)

Writes term t to file f in Binary ATerm Format (BAF).

This function writes ATerm t to the file f in BAF. This term can later be read again by
ATreadFromBinaryFile.

ATwriteToNamedBinaryFile

ATbool ATwriteToNamedBinaryFile(ATerm t, char *filename)

Writes term t to file named filename in Binary ATerm Format (BAF).

This function writes ATerm t in binary representation to file filename. "-" is standard output's
filename.

ATwriteToBinaryString

char *ATwriteToBinaryString(ATerm t, int *len)

Writes term t to a shared text string in BAF.

Writes term t to an internal string buffer in BAF. The start of this buffer is returned, and the length
of the resulting string is stored in len. Note that the contents of this buffer are volatile and may be
overwritten by any call to the ATerm library.

ATwriteToSAFFile

ATbool ATwriteToSAFFile(ATerm t, char *filename)

Writes term t to file named filename in Streaming ATerm Format (SAF).



The ATerm Programming Guide

20

This function writes ATerm t in streaming representation to file filename. "-" is standard output's
filename.

Level one: Formatted output

ATprintf

int ATprintf(const char *format, ...)

ATerm version of printf.

See ATvfprintf.

ATfprintf

int ATfprintf(FILE *stream, const char *format, ...)

ATerm version of fprintf.

See ATvfprintf.

ATvfprintf

int ATvfprintf(File *stream, const char *format, va_list args)

ATerm version of vfprintf.

The functions ATprintf, ATfprintf and ATvfprintf are used for formatted output to file.
The conversion specifiers c, d, i, o, u, x, X, e, E, f, g, G, p, s behave as can be expected from
fprintf. In addition the conversion specifiers a, h, l, n and t are supported as summarized in
Table 1.4, “Specifiers for print conversion” (p. 20)

Table 1.4. Specifiers for print conversion

 Conversion specifier Action 

a Print the symbol of an ATerm-application

h Print the MD5 checksum of an ATerm

l Print an ATerm-list

n Print information about an ATerm node

t Print an ATerm

Level one: annotations

ATsetAnnotation

ATerm ATsetAnnotation(ATerm t, ATerm label, ATerm anno)

Annotate a term with a labeled annotation.

Creates a version of t that is annotated with annotation anno which is labeled by label.

ATgetAnnotation

ATerm ATgetAnnotation(ATerm t, ATerm label)

Retrieves annotation of t with label label.

This function can be used to retrieve a specific annotation of a term. If t has no annotations, or no
annotation labeled with label exists, NULL is returned. Otherwise the annotation is returned.



The ATerm Programming Guide

21

ATremoveAnnotation

ATerm ATremoveAnnotation(ATerm t, ATerm label)

Remove a specific annotation from a term.

This function returns a version of t which has its annotation with label label removed. If t has no
annotations, or no annotation labeled with label exists, t itself is returned.

Level one: handling warnings, errors and aborts

ATsetWarningHandler

void ATsetWarningHandler(void (*handler)(const char *format, va_list args))

Specify a warning handler for the ATerm library.

Sets a warning handler for the ATerm library. This handler will be called when an error message is
issued via ATwarning.

ATwarning

void ATwarning(const char *format, ...)

Issue a warning message.

If an error handler has been installed through a call to ATsetWarningHandler, this handler will
be called. Otherwise ATwarning uses ATvfprintf to print a formatted message to stderr and
returns.

ATsetErrorHandler

void ATsetErrorHandler(void (*handler)(const char *format, va_list args))

Specify an error handler for the ATerm library.

Sets an error handler for the ATerm library This handler will be called when an error message is issued
via ATerror.

ATerror

void ATerror(const char *format, ...)

Issue an error message and exit the ATerm library.

If an error handler has been installed through a call to ATsetErrorHandler, this handler will be
called. Otherwise ATerror uses ATvfprintf to print a formatted message to stderr and exits
with errorcode 1.

ATsetAbortHandler

void ATsetAbortHandler(void (*handler)(const char *format, va_list args))

Specify an abort handler for the ATerm library.

Sets an abort handler for the ATerm library. This handler will be called when an error message is
issued via ATabort.

ATabort

void ATabort(const char *format, ...)

Issue a error message and abort the ATerm library.



The ATerm Programming Guide

22

If an abort handler has been installed through a call to ATsetAbortHandler, this handler will be
called. Otherwise ATabort uses ATvfprintf to print a formatted message to stderr and calls
abort.

Level one: memory management

ATprotect

void ATprotect(ATerm *atp)

Protect an ATerm.

Protects an ATerm from being freed by the garbage collector. See the section called “Memory
Management of ATerms” (p. 10).

ATunprotect

void ATunprotect(ATerm *atp)

Unprotect an ATerm.

Releases protection of an ATerm which has previously been protected through a call to ATprotect.
Seethe section called “Memory Management of ATerms” (p. 10) .

ATprotectArray

void ATprotectArray(ATerm *start, int size)

Protect an array of ATerms.

Protects an entire array of size ATerms starting at start.

ATunprotectArray

void ATunprotectArray(ATerm *start)

Unprotect an array of ATerms.

Releases protection of the array of ATerms which starts at start.

Level Two Interface of C ATerm Library
This section explains in detail the types and functions that are defined in the level two interface of the
Term library. These functions are declared in aterm2.h.

Level Two Types
In addition to the C-types explained in the section called “Level One Types” (p. 13), the level two
interface also uses the following ATerm types:

ATermInt An integer value.

ATermReal A real value.

ATermAppl A function application.

ATermList A list of ATerms.

ATermPlaceholder A placeholder.

ATermBlob A Binary Large OBject.



The ATerm Programming Guide

23

In addition to these pure ATerm types, two additional types are supported:

ATermTable A hash table of ATerms.

ATermIndexedSet A set of ATerms where each element has a unique index.

Both datatypes are containers for ATerms and provide mutable operations on the container itself.

Note

Of course, mutations on the containers do not affect the ATerms that occur as elements in
the containers!

Level Two Functionality
This section describes all functions and macros that are available in the level two interface. To obtain
access to this functionality you need to #include <aterm2.h> instead of <aterm1.h> in your
application.

Level two: the type ATermInt

The type ATermInt is the ATerm representation of an integer. It abides by the rules of the C-type:
int.

ATmakeInt

ATermInt ATmakeInt(int value)

Build an ATerm Int from an integer value.

ATgetInt

int ATgetInt(ATermInt t)

Macro to get the integer value from the ATerm t.

Level two: the type ATermReal

The type ATermReal is the ATerm representation of a real. It abides by the rules of the C-type:
double.

ATmakeReal

ATermReal ATmakeReal(double value)

Build an ATerm Real from a real value.

ATgetReal

double ATgetReal(ATermInt t)

Macro to get the real value from the ATerm t.

Level two: the type ATermAppl

The type ATermAppl denotes a function application. In order to build a function application, first
its function symbol (AFun) must be built. This symbol holds the name of the function application,
its arity (how many arguments the function has) and whether the function name is quoted. Below are
some examples of function applications and the symbols needed to create them.

• true: a zero arity, unquoted function application that is created by:



The ATerm Programming Guide

24

sym = ATmakeAFun("true", 0, ATfalse);

• "true"; the same function application, but now with quoted function symbol:

sym = ATmakeAFun("true", 0, ATtrue);

• f(0): an unquoted function application of arity 1:

sym = ATmakeAFun("f", 1, ATfalse); 

• "prod"(2, b, []): a quoted function application of arity 3:

sym = ATmakeAFun("prod", 3, ATtrue);

ATmakeAFun

AFun ATmakeAFun(char *name, int arity, ATbool quoted)

Creates a function symbol (AFun).

Creates an AFun, representing a function symbol with name name and arity arity. Quoting of the
function application is defined via the quoted argument.

ATprotectAFun

void ATprotectAFun(AFun sym)

Just as ATerms which are not on the stack or in registers must be protected through a call to
ATprotect, so must AFuns be protected by calling ATprotectAFun.

ATunprotectAFun

void ATunprotectAFun(AFun sym)

Release an AFun's protection.

ATgetName

char *ATgetName(AFun sym)

Return the name of an AFun.

ATgetArity

int ATgetArity(AFun sym)

Return the arity (number of arguments) of a function symbol (AFun).

ATisQuoted

ATbool ATisQuoted(AFun sym)

Determine if a function symbol (AFun) is quoted or not.

ATmakeAppl

ATermAppl ATmakeAppl(AFun sym, ...)

Build an application from an AFun and a variable number of arguments.

The arity is taken from the first argument sym, the other arguments of ATmakeAppl should be the
arguments for the application. For arity N = 0, 1, ... 6 the corresponding ATmakeApplN can be used
instead for greater efficiency.



The ATerm Programming Guide

25

ATmakeAppl0

ATermAppl ATmakeAppl0(AFun sym)

Make a function application with zero arguments.

ATmakeAppl1

ATermAppl ATmakeAppl1(AFun sym, ATerm a1)

Make a function application with one argument.

ATmakeAppl2

ATermAppl ATmakeAppl2(AFun sym, ATerm a1, a2)

Make a function application with two arguments.

ATmakeAppl3

ATermAppl ATmakeAppl3(AFun sym, ATerm a1, a2, a3)

Make a function application with three arguments.

ATmakeAppl4

ATermAppl ATmakeAppl4(AFun sym, ATerm a1, a2, a3, a4)

Make a function application with four arguments.

ATmakeAppl5

ATermAppl ATmakeAppl5(AFun sym, ATerm a1, a2, a3, a4, a5)

Make a function application with five arguments.

ATmakeAppl6

ATermAppl ATmakeAppl6(AFun sym, ATerm a1, a2, a3, a4, a5, a6)

Make a function application with six arguments.

ATgetAFun

AFun ATgetAFun(ATermAppl appl)

Get the function symbol (AFun) of an application.

ATgetArgument

ATerm ATgetArgument(ATermAppl appl, int n)

Get the n-th argument of an application.

ATsetArgument

ATermAppl ATsetArgument(ATermAppl appl, ATerm arg, int n)

Set the n-th argument of an application to arg.

This function returns a copy of appl with argument n replaced by arg.

ATgetArguments

ATermList ATgetArguments(ATermAppl appl)



The ATerm Programming Guide

26

Get a list of arguments of an application.

Return the arguments of appl in ATermList format. Note: traversing the arguments of appl can
be done more efficiently using the ATgetArgument macro.

ATmakeApplList

ATermAppl ATmakeApplList(AFun sym, ATermList args)

Build an application given an AFun and a list of arguments.

Build an application from sym and the argument list args. Note: unless the arguments are already in
an ATermList, it is probably more efficient to use the appropriate ATmakeApplN.

ATmakeApplArray

ATermAppl ATmakeApplArray(AFun sym, ATerm args[])

Build an application given an AFun and an array of arguments.

Level two: the type ATermList

The type ATermList is the ATerm representation of linear lists.

ATmakeList

ATermList ATmakeList(int n, ...)

Create an ATermList of n elements. The elements should be passed as arguments 1, ..., n.

ATmakeList0

ATermList ATmakeList0()

Macro that yields the empty list [].

ATmakeList1

ATermList ATmakeList1(ATerm a1)

Construct a list of one element.

ATmakeList2

ATermList ATmakeList2(ATerm a1, a2)

Construct a list of two elements.

ATmakeList3

ATermList ATmakeList3(ATerm a1, a2, a3)

Construct a list of three elements.

ATmakeList4

ATermList ATmakeList4(ATerm a1, a2, a3, a4)

Construct a list of four elements.

ATmakeList5

ATermList ATmakeList5(ATerm a1, a2, a3, a4, a5)



The ATerm Programming Guide

27

Construct a list of five elements.

ATmakeList6

ATermList ATmakeList6(ATerm a1, a2, a3, a4, a5, a6)

Construct a list of six elements.

ATgetLength

int ATgetLength(ATermList l)

Macro to get the length of list l.

ATgetFirst

ATerm ATgetFirst(ATermList l)

Macro to get the first element of list l.

ATgetNext

ATermList ATgetNext(ATermList l)

Macro to get the next part (the tail) of list l.

ATisEmpty

ATbool ATisEmpty(ATermList l)

Macro to test if list l is empty.

ATgetTail

ATermList ATgetTail(ATermList l, int start)

Return the sublist from start to the end of l.

ATreplaceTail

ATermList ATreplaceTail(ATermList l, ATermList tail, int start)

Replace the tail of l from position start with tail.

ATgetPrefix

ATermList ATgetPrefix(ATermList l)

Return all but the last element of l.

ATgetSlice

ATermList ATgetSlice(ATermList l, int start, int end)

Get a portion (slice) of a list.

Return the portion of l that lies between start and end. Thus start is included, end is not.

ATinsert

ATermList ATinsert(ATermList l, ATerm a)



The ATerm Programming Guide

28

Return list l with element a inserted. The behaviour of ATinsert is of constant complexity. That
is, the behaviour of ATinsert does not degrade as the length of l increases.

ATinsertAt

ATermList ATinsertAt(ATermList l, ATerm a, int idx)

Return l with a inserted at position idx.

ATappend

ATermList ATappend(ATermList l, ATerm a)

Return l with a appended to it.

ATappend is implemented in terms of ATinsert by making a new list with a as the first element
and then ATinserting all elements from l. As such, the complexity of ATappend is linear in
the number of elements in l. When ATappend is needed inside a loop that traverses a list (see
Example 1.1, “Parse lists, version 1” (p. 28)), behaviour of the loop will demonstrate quadratic
complexity.

Example 1.1. Parse lists, version 1

/* Example of parse_list that demonstrates quadratic complexity */
ATermList parse_list1(ATermList list)
{
    ATerm     elem;
    ATermList result = ATempty;

    /* while list has elements */
    while (!ATisEmpty(list))
    {
        /* Get head of list */
        elem = ATgetFirst(list);

        /* If elem satisfies some predicate (not shown here)
           then APPEND it to result */
        if (some_predicate(elem) == ATtrue)
            result = ATappend(result, elem);

        /* Continue with tail of list */
        list = ATgetNext(list);
    }

    /* Return the result list */
    return result;
}

To avoid this behaviour, the inner loop could use ATinsert instead of ATappend to make the new
list. This will cause the resulting list to be in reverse order. A single ATreverse must therefore
be performed, but this can be done after the loop has terminated, bringing the behaviour down
from quadratic to linear complexity, but at the cost of two ATinserts per element (one for each
ATinsert in the loop, and an implicit one for each element through the use of ATreverse). An
example in Example 1.2, “Parse lists, version 2” (p. 29).



The ATerm Programming Guide

29

Example 1.2. Parse lists, version 2

/* Example of parse_list that demonstrates linear complexity,
 * using ATinsert instead of ATappend and reversing the list
 * outside the loop just once.  */
ATermList parse_list2(ATermList list)
{
    ATerm     elem;
    ATermList result = ATempty;

    /* while list has elements */
    while (!ATisEmpty(list))
    {
        /* Get head of list */
        elem = ATgetFirst(list);

        /* If elem satisfies some predicate (not shown here)
           then INSERT it to result */
        if (some_predicate(elem) == ATtrue)
            result = ATinsert(result, elem);

        /* Continue with tail of list */
        list = ATgetNext(list);
    }

    /* Return result after reversal */
    return ATreverse(result);
}

An even further optimisation could make use of a locally allocated buffer. While traversing the list,
all elements that would normally be ATappended, are now placed in this buffer. Finally, the result
is obtained by starting with an empty list and ATinserting all elements from this buffer in reverse
order. As the cost of allocating and freeing a local buffer is by no means marginal, this solution should
probably only be applied when the loop appends more than just a few elements. This is shown in
Example 1.3, “Parse lists, version 3” (p. 30)



The ATerm Programming Guide

30

Example 1.3. Parse lists, version 3

/* Example of parse_list that demonstrates linear complexity,
 * but which avoids using ATinsert twice, by inlining ATreverse
 * using a local buffer. */
ATermList parse_list3(ATermList list)
{
    int        pos = 0;
    ATerm      elem;
    ATerm     *buffer = NULL;
    ATermList  result = ATempty;

    /* Allocate local buffer that can hold all elements of list */
    buffer = (ATerm *) calloc(ATgetLength(list), sizeof(ATerm));
    if (buffer == NULL) abort();

    /* while list has elements */
    while (!ATisEmpty(list))
    {
        /* Get head of list */
        elem = ATgetFirst(list);

        /* If elem satisfies some predicate (not shown here)
         * then add it to buffer at next available position */
        if (some_predicate(elem) == ATtrue)
            buffer[pos++] = elem;

        /* Continue with tail of list */
        list = ATgetNext(list);
    }

    /* Now insert all elems in buffer to result */
    for(--pos; pos >= 0; pos--)
        result = ATinsert(result, buffer[pos]);

    /* Release allocated resources */
    free(buffer);

    /* Return result */
    return result;
}

ATconcat

ATermList ATconcat(ATermList l1, ATermList l2)

Return the concatenation of l1 and l2.

ATindexOf

int ATindexOf(ATermList l, ATerm a, int start)

Return the index of an ATerm in a list. Return the index where element a can be found in the list l.
Start looking at position start. Returns -1 if a is not in the list.

ATlastIndexOf

int ATlastIndexOf(ATermList l, ATerm a, int start)

Return the index of an ATerm in a list (searching in reverse order).



The ATerm Programming Guide

31

Search backwards for element a in the list l. Start searching at position start. Return the index of
the first occurrence of a encountered, or -1 when a is not present before start.

ATelementAt

ATerm ATelementAt(ATermList l, int idx)

Return a specific element of a list. Return the element at position idx in list l. Return NULL when
idx is not in the list.

ATremoveElement

ATermList ATremoveElement(ATermList l, ATerm a)

Return the list l with one occurrence of element a removed.

ATremoveAll

ATermList ATremoveAll(ATermList l, ATerm a)

Return the list l with all occurrences of element a removed.

ATremoveElementAt

ATermList ATremoveElementAt(ATermList l, int idx)

Return the list l with the element at position idx removed.

ATreplace

ATermList ATreplace(ATermList l, ATerm a, int idx)

Return the list l with the element at position idx replaced by a.

ATreverse

ATermList ATreplace(ATermList l, ATerm a, int idx)

Return the list l with its elements in reverse order.

ATsort

ATermList ATsort(ATermList l, int (*compare)(ATerm t1, const ATerm t2))

Sort the list l given a comparison function compare. The result is a new list.

ATfilter

ATermList ATsort(ATermList l, ATbool (*predicate)(ATerm t))

Create a new list that consists of all elements of list l that satisfy the predicate predicate.

Level two: the type ATermPlaceholder

A placeholder is a special subtype used to indicate a typed hole in an ATerm. This can be used to
create a term of a specific type, even though its actual contents are not filled in.

ATmakePlaceholder

ATermPlaceholder ATmakePlaceholder(ATerm type)

Build an ATerm Placeholder of a specific type. The type is taken from the type parameter. See
Example 1.4, “Examples of place holders” (p. 32).



The ATerm Programming Guide

32

ATgetPlaceholder

ATerm ATgetPlaceholder(ATermPlaceholder ph)

Get the type of an ATerm Placeholder.

Example 1.4. Examples of place holders

#include <assert.h>
#include <aterm2.h>

/* This example demonstrates the use of an ATermPlaceholder. 
 * It creates the function application "add" defined on two 
 * integers without actually using a specific integer:  
 * add(<int>,<int>).
 */
void demo_placeholder()
{
    Symbol           sym_int, sym_add;
    ATermAppl        app_add;
    ATermPlaceholder ph_int;

    /* Construct placeholder <int> using zero-arity function 
       symbol "int" */
    sym_int = ATmakeSymbol("int", 0, ATfalse);
    ph_int = ATmakePlaceholder((ATerm)ATmakeAppl0(sym_int));

    /* Construct add(<int>,<int>) using function symbol 
       "add" with 2 args */
    sym_add = ATmakeSymbol("add", 2, ATfalse);
    app_add = ATmakeAppl2(sym_add, (ATerm)ph_int, (ATerm)ph_int);

    /* Equal to constructing it using the level one interface */
    assert(ATisEqual(app_add, ATparse("add(<int>,<int>)")));

    /* Prints: Placeholder <int> is of type: int */
    ATprintf("Placeholder %t is of type: %t\n", 
             ph_int, ATgetPlaceholder(ph_int));
}

int main(int argc, char *argv[])
{
    ATerm bottomOfStack;

    ATinit(argc, argv, &bottomOfStack);
    demo_placeholder();
    return 0;
}

Level two: the type ATermBlob

ATmakeBlob

ATermBlob ATmakeBlob(unsigned int size, void *data)

Build a Binary Large OBject given size (in bytes) of data. This function can be used to create an
ATerm of type blob, holding the data pointed to by data. No copy of this data area is made, so the
user should allocate this himself. The size of a blob is limited by the maximal value of integers.



The ATerm Programming Guide

33

ATgetBlobData

void *ATgetBlobData(ATermBlob blob)

Macro to get the data section of a given blob.

ATgetBlobSize

int ATgetBlobSize(ATermBlob blob)

Macro to get the size (in bytes) of the data section of a given blob.

ATregisterBlobDestructor

void ATregisterBlobDestructor(ATbool (*destructor)(ATermBlob))

Register a blob-destructor function. When a blob-destructor function has been registered, it will be
called whenever the garbage collector deletes an ATermBlob. The destructor function can then handle
the deletion of the data area of the blob. At most 16 blob destructor functions can be registered in the
current implementation.

ATunregisterBlobDestructor

void ATunregisterBlobDestructor(ATbool (*destructor)(ATermBlob))

Unregister a blob-destructor function that has been previously registered through a call to
ATregisterBlobDestructor.

Level two: the type ATermDictionary

Dictionaries are data structures which allow looking up a certain ATerm given another ATerm. The
dictionary itself is also an ATerm and as such is subject to the garbage collection rules of the ATerm.
Each dictionary consists of its own list of ATerms. For each lookup in the dictionary, the list is
traversed to see if the current element's key matches the one being looked up. A lookup in a dictionary
demonstrates behaviour linear in the number of elements the dictionary contains. On average fifty
percent of the number of elements in the dictionary are examined before a match is found (if the
element is present at all). For a more efficient ATerm-to-ATerm mapping, see the section called “Level
two: the type ATermTable” (p. 34).

ATdictCreate

ATerm ATdictCreate()

Create a new dictionary.

ATdictGet

ATerm ATdictGet(ATerm dict, ATerm key)

Get the value belonging to a given key in a dictionary.

ATdictPut

ATerm ATdictPut(ATerm dict, ATerm key, ATerm value)

Add / update a (key, value)-pair in a dictionary. If key does not already exist in the dictionary,
this function adds the (key, value)-pair to the dictionary. Otherwise, it updates the value associated
with key to value. The modified dictionary is returned.



The ATerm Programming Guide

34

ATdictRemove

ATerm ATdictRemove(ATerm dict, ATerm key)

Remove a (key, value)-pair from a dictionary. If the entry was actually in the dictionary, the
modified dictionary is returned. If the entry was not in the dictionary, the (unmodified) dictionary
itself is returned.

Level two: the type ATermTable

The dictionaries described in the section called “Level two: the type ATermDictionary” (p. 33)
are in essence nothing more than linked lists, which makes them less suitable for large ATerm-to-
ATerm mappings. To this end, ATerm tables were created. These are efficiently implemented using
a hash table requiring approximately 16 bytes per stored entry, assuming that the hash table is filled
for 50%.

ATtableCreate

ATermTable ATtableCreate(int initial_size, int max_load_pct)

Create an ATermTable given an initial size and a maximum load percentage. Whenever this percentage
is exceeded (which is detected when a new entry is added using ATtablePut), the table is
automatically expanded and all existing entries are rehashed into the new table. If you know in advance
approximately how many items will be in the table, you may set it up in such a way that no resizing
(and thus no rehashing) is necessary. For example, if you expect about 1000 items in the table, you can
create it with its initial size set to 1333 and a maximum load percentage of 75%. You are not required
to do this, it merely saves a runtime expansion and rehashing of the table which increases efficiency.

ATtableDestroy

void ATtableDestroy(ATermTable table)

Destroy an ATermTable. As opposed to ATermDictionaries, ATermTables are themselves not
ATerms. This means they are not freed by the garbage collector when they are no longer referred
to. Therefore, when the table is no longer needed, the user should release the resources allocated by
the table by calling ATtableDestroy. All references the table has to ATerms will then also be
removed, so that those may be freed by the garbage collector (if no other references to them exist
of course).

ATtableReset

void ATtableReset(ATermTable table)

Reset an ATermTable. This function resets an ATermTable, without freeing the memory it occupies.
Its effect is the same as the subsequent execution of a destroy and a create of a table, but as no
memory is released and obtained from the C memory management system this function is generally
cheaper. However, if subsequent tables differ very much in size, the use of ATtableDestroy and
ATtableCreate may be preferred, because in such a way the sizes of the table adapt automatically
to the requirements of the application.

ATtablePut

void ATtablePut(ATermTable table, ATerm key, ATerm value)

Add / update a (key, value)-pair in a table. If key does not already exist in the table, this function
adds the (key, value)-pair to the table. Otherwise, it updates the value associated with key to
value.

ATtableGet

ATerm ATtableGet(ATermTable table, ATerm key)



The ATerm Programming Guide

35

Get the value associated with a given key in a table.

ATtableRemove

void ATtableRemove(ATermTable table, ATerm key)

Remove the pair with the key key from table.

ATtableKeys

ATermList ATtableKeys(ATermTable table)

Get an ATermList of all the keys in a table. This function can be useful if you need to iterate over
all elements in a table.

ATtableValues

ATermList ATtableValues(ATermTable table)

Get an ATermList of all the values in a table. This function can be useful if you need to iterate over
all values in a table.

Level two: the type ATermIndexedSet

The data type ATermIndexedSet provides a mapping from ATerms to integers, with as aim to
assign successive integers from zero upwards to each entered term. The association between a term
and an integer remains fixed until the term is removed from the table. When assigning integers to
newly entered elements, integers previously assigned to removed elements are used first. The range of
assigned integers is thus as compact as possible. This data type can be used for various purposes. First,
one can make a mapping from ATerms to elements in any arbitrary domain D. By entering the ATerms
in an ATermIndexedSet each ATerm gets a subsequent integer assigned. These integers can be
used as entries in an array to obtain the element of domain D that is associated with the ATerm. Another
type of application is the use as a set. Suppose that a sequence of ATerms must be processed. Suppose
that the sequence can contain identical ATerms, and that each unique ATerm needs to be processed
only once. Each processed ATerm can then be entered in the indexed set. For each candidate ATerm to
be processed one inspection of the indexed set suffices to know whether this ATerm has already been
processed before. A particular instance of this kind of application is the exploration of state spaces,
where each state is represented by an ATerm. The implementations of ATermIndexedSet and
ATermTable are strongly related. The implementation is quite efficient both in time and space, only
requiring 16 bytes for each entry in an indexed set, if the hash table, which forms its core, is half full.

ATindexedSetCreate

ATermIndexedSet ATindexedSetCreate(long initial_size, 
                                   int max_load_pct)

Create a new ATermIndexedSet with approximately the size initial_size, where it
guarantees that the internal hash table, will be filled up to max_load_pct percent. If needed,
the size of the hash table is dynamically extended to hold the entries inserted into it. If extension
of the hash table fails due to lack of memory, it is attempted to fill the hash table up to
100%. All elements entered into the indexed set are automatically protected. Note that for each
ATindexedSetCreate an ATindexedSetDestroy must be carried out to free memory, and to
allow inserted elements to be released by the automatic garbage system of the ATerm library. Carrying
out a ATindexedSetReset does not free the memory, but allows inserted elements to be garbage
collected.

ATindexedSetDestroy

void ATindexedSetDestroy(ATermIndexedSet set)



The ATerm Programming Guide

36

Releases all memory occupied by set.

ATindexedSetReset

void ATindexedSetReset(ATermIndexedSet set)

Clear the hash table in the set, but do not release the memory. Using ATindexedSetReset instead
of ATindexedSetDestroy is preferable when indexed sets of approximately the same size are
being used.

ATindexedSetPut

long ATindexedSetPut(ATermIndexedSet set, ATerm elem, ATbool *isnew}

Enter elem into the set. If elem was already in the set the previously assigned index of elem is
returned, and isnew is set to false. If elem did not yet occur in set a new number is assigned and
returned, and isnew is set to true. This number can either be the number of an element that has been
removed, or, if such a number is not available, the lowest not-used number. The lowest number that
is used is 0.

ATindexedSetGetIndex

long ATindexedSetGetIndex(ATermIndexedSet set, ATerm elem}

Find the index of elem in set. When elem is not in the set, a negative number is returned.

ATindexedSetGetElem

ATerm ATindexedSetGetElem(ATermIndexedSet set, long index)

Retrieve the element at index in set. This function must be invoked with a valid index and it returns
the element assigned to this index. If it is invoked with an invalid index, effects are not predictable.

ATindexedSetRemove

void ATindexedSetRemove(ATermIndexedSet set, ATerm elem}

Remove elem from set. If a number was assigned to elem, it is freed to be reassigned to an element
that may be put into the set at some later on.

ATindexedSetElements

ATermList ATindexedSetElements(ATermIndexedSet set)

Retrieve all elements in set. The resulting list is ordered from element with index 0 onwards.

Command Line Utilities
This section describes the utilities that come with the ATerm library. These utilities are automatically
built when the ATerm library is compiled and installed.

ATerm-conversion: baffle
This utility can be used to convert between the different ATerm formats: TEXT, BAF, and TAF.
Usage:

baffle [-i <input>] [-o <output> | -c] [-v] [-rb | -rt | -rs | -rS] 
       [-wb | -wt | -ws | -wS]



The ATerm Programming Guide

37

The options are explained in Table 1.5, “Command line options baffle” (p. 37).

Table 1.5. Command line options baffle

Option Description 

-i input Read input from file input (default: stdin)

-o output Write output to file output (default: stdout)

-c Check validity of input-term

-v Print version information

-h Display help information

-rb, -rt, -rs, -rS Choose between BAF, TEXT, TAF or SAF input (default: auto
detected)

-wb, -wt, -ws, -wS Choose between BAF, TEXT, TAF or SAF output (Default: -wb)

Some small scripts are included which can be used to connect a process producing one ATerm format
to a process which expects another. These scripts just set up baffle with the appropriate switches and
redirect stdin and stdout accordingly. These scripts are appropriately called: trm2baf, baf2trm,
trm2taf, taf2trm, baf2taf, and taf2baf.

Warning

Do we want to add trm2saf, saf2baf, etc?

Calculating the size of an ATerm: termsize
termsize can be used to calculate three things:

• core size: the amount of memory a given ATerm needs;

• text size: the amount of memory needed to hold a textual representation of an ATerm;

• tree depth: the maximum depth of an ATerm.

Usage:

termsize < inputfile 

termsize reads an ATerm from standard input (inputfile) and writes the results to standard output
(stdout). The input term can be in any format (TEXT, BAF, TAF, SAF).

Calculating MD5 checksum of an ATerm: atsum
atsum calculates and prints the MD5 checksum of the TAF representation of an ATerm. The algorithm
used is the RSA Data Security, Inc. MD5 Message-Digest Algorithm (see RFC1321). Usage:

atsum [inputfile]

Calculating differences between two ATerms: atdiff
atdiff compares two terms and prints a template term that covers the common parts containing place
holders of the form <diff> for subterms that differed, and a list of their differing subterms. Usage:

atdiff [<options>] file1 file2

The options are explained in Table 1.6, “Command line options atdiff” (p. 38).



The ATerm Programming Guide

38

Table 1.6. Command line options atdiff

Option Description 

--nodiffs Do not generate diffs

--diffs diff-file Write diffs to diff-file (default: stdout)

--notemplate Do not generate templates

--template template-
file

Write templates to template-file (default: stdout)

Using the Java ATerm Library
In addition to the C implementation discussed upto now, a Java implementation of the ATerm Library
is also available. The interfaces of the C implementation and the Java implementation are as similar as
possible. Unfortunately, constraints imposed by both languages prohibit the use of a single interface
for both languages. In this section we will discuss the Java interface, and highlight the differences with
the C interface where appropriate. Most differences are introduced by the fact that Java is a much more
structured and higher-level language than C. For instance, Java provides built-in garbage collection,
so no ATprotect and ATunprotect functions are needed in Java.

Overview of the Java ATerm Library
The interface ATerm defines functionality relevant for all ATerm subtypes. Each of these ATerm
subtypes has its own interface, describing the additional functionality relevant for that particular
subtype. An interface ATermFactory describes the various methods used to create new ATerm
objects. It is used to implement maximal sharing.

The interface hierarchy is shown in Figure 1.4, “Interface hierarchy” (p. 38).

Figure 1.4. Interface hierarchy

The ATerm library comes with a single implementation of the ATerm interfaces. For instance,
the interface ATermList is implemented by the class called ATermListImpl. The ATermFactory is



The ATerm Programming Guide

39

implemented by the class PureFactory. This implementation is a ``pure'' Java one, but given this
interface organization it would, in principle, be possible to build a layer of Java code on top of the
C implementation using the Java Native Interface (JNI) . The advances and disadvantages of such
an implementation have never been explored in detail. A complete and up-to-date description of the
Java implementation of the ATerm library can be found at http://homepages.cwi.nl/~daybuild/daily-
docs/aterm-java/.

Java ATerm Interfaces
We give here, without further ado, the methods defined by the Java ATerm Interfaces. For the meaning
of individual methods we refer to both the description given for the C implementation and to http://
homepages.cwi.nl/~daybuild/daily-docs/aterm-java/. [http://homepages.cwi.nl/~daybuild/daily-docs/
aterm-java/]

Interface ATermInt

public int getInt();

See the section called “Level two: the type ATermInt” (p. 23) for a descriptions of the
corresponding C functions.

Interface ATermReal

public double getReal();

See the section called “Level two: the type ATermReal” (p. 23) for a descriptions of the
corresponding C functions.

Interface ATermLong

public long getLong();

The support for long integers is unique for the Java ATerm library.

Interface AFun

public String getName();
public int getArity();
public boolean isQuoted();

See the section called “Level two: the type ATermAppl” (p. 23) for a descriptions of the
corresponding C functions.

Interface ATermAppl

public AFun getAFun();
public String getName();
public ATermList getArguments();
public ATerm[] getArgumentArray();
public ATerm getArgument(int i);
public ATermAppl setArgument(ATerm arg, int i);
public boolean isQuoted();
public int getArity();

See the section called “Level two: the type ATermAppl” (p. 23) for a descriptions of the
corresponding C functions.

Interface ATermBlob

public int getBlobSize();

http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/
http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/
http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/
http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/
http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/
http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/


The ATerm Programming Guide

40

public byte[] getBlobData();

See the section called “Level two: the type ATermBlob” (p. 32) for a descriptions of the
corresponding C functions.

Interface ATermFactory

ATerm parse(String trm);
ATerm make(String trm);
ATerm make(String pattern, List<Object> args);
ATerm make(String pattern, Object arg1);
ATerm make(String pattern, Object arg1, Object arg2);
ATerm make(String pattern, Object arg1, Object arg2, Object arg3);
ATerm make(String pattern, Object arg1, Object arg2, Object arg3,
             Object arg4);
ATerm make(String pattern, Object arg1, Object arg2, Object arg3,
             Object arg4, Object arg5);
ATerm make(String pattern, Object arg1, Object arg2, Object arg3,
             Object arg4, Object arg5, Object arg6);
ATerm make(String pattern, Object arg1, Object arg2, Object arg3,
             Object arg4, Object arg5, Object arg6, Object arg7);
ATermInt makeInt(int val);
ATermLong makeLong(long val);
ATermReal makeReal(double val);
ATermList makeList();
ATermList makeList(ATerm single);
ATermList makeList(ATerm head, ATermList tail);
ATermPlaceholder makePlaceholder(ATerm type);
ATermBlob makeBlob(byte[] data);
AFun makeAFun(String name, int arity, boolean isQuoted);
ATermAppl makeAppl(AFun fun);
ATermAppl makeAppl(AFun fun, ATerm arg);
ATermAppl makeAppl(AFun fun, ATerm arg1, ATerm arg2);
ATermAppl makeAppl(AFun fun, ATerm arg1, ATerm arg2, ATerm arg3);
ATermAppl makeAppl(AFun fun, ATerm arg1, ATerm arg2, ATerm arg3, 
                   ATerm arg4);
ATermAppl makeAppl(AFun fun, ATerm arg1, ATerm arg2, ATerm arg3, 
                   ATerm arg4, ATerm arg5);
ATermAppl makeAppl(AFun fun, ATerm arg1, ATerm arg2, ATerm arg3, 
                   ATerm arg4, ATerm arg5, ATerm arg6);
ATermAppl makeAppl(AFun fun, ATerm[] args);
ATermAppl makeApplList(AFun fun, ATermList args);
ATerm readFromTextFile(InputStream stream) 
      throws IOException;
ATerm readFromSharedTextFile(InputStream stream) 
      throws IOException;
ATerm readFromFile(String file) 
      throws IOException;
ATerm importTerm(ATerm term); /* from other factory */

See the section called “Making and Matching ATerms” (p. 4) for descriptions of the make-like
functions and the section called “Reading and Writing ATerms” (p. 7) for the reading-writing
related functions. Observe that the Java implementation does not support reading or writing from BAF
files.

Interface ATermList

public boolean isEmpty();



The ATerm Programming Guide

41

public int getLength();
public ATerm getFirst();
public ATerm getLast();
public ATermList getNext();
public int indexOf(ATerm el, int start);
public int lastIndexOf(ATerm el, int start);
public ATermList concat(ATermList rhs);
public ATermList append(ATerm el);
public ATerm elementAt(int i);
public ATermList remove(ATerm el);
public ATermList removeElementAt(int i);
public ATermList removeAll(ATerm el);
public ATermList insert(ATerm el);
public ATermList insertAt(ATerm el, int i);
public ATermList getPrefix();
public ATermList getSlice(int start, int end);
public ATermList replace(ATerm el, int i);
public ATermList reverse();
public ATerm dictGet(ATerm key);
public ATermList dictPut(ATerm key, ATerm value);
public ATermList dictRemove(ATerm key);

See the section called “Level two: the type ATermList” (p. 26) and the section called “Level two:
the type ATermDictionary” (p. 33) for a descriptions of the corresponding C functions. Note
that ATermIndexSet (see the section called “Level two: the type ATermIndexedSet” (p. 35))
is not available in the Java ATerm library.

Interface ATermPlaceholder

public ATerm getPlaceholder();

See the section called “Level two: the type ATermPlaceholder” (p. 31) for a descriptions of
the corresponding C functions.

Interface Identifiable

public int getUniqueIdentifier();

Interface Visitable

public aterm.Visitable accept(aterm.Visitor visitor) 
       throws jjtraveler.VisitFailure;

The visitor functionality is unique for the Java ATerm library. See http://homepages.cwi.nl/~daybuild/
daily-docs/aterm-java/ for details.

Interface Visitor

public aterm.Visitable visitATerm(ATerm arg) 
       throws VisitFailure;
public aterm.Visitable visitInt(ATermInt arg) 
       throws VisitFailure;
public aterm.Visitable visitLong(ATermLong arg) 
       throws VisitFailure;
public aterm.Visitable visitReal(ATermReal arg) 
       throws VisitFailure;
public aterm.Visitable visitAppl(ATermAppl arg) 

http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/
http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/


The ATerm Programming Guide

42

       throws VisitFailure;
public aterm.Visitable visitList(ATermList arg) 
       throws VisitFailure;
public aterm.Visitable visitPlaceholder(ATermPlaceholder arg) 
       throws VisitFailure;
public aterm.Visitable visitBlob(ATermBlob arg) 
       throws VisitFailure;
public aterm.Visitable visitAFun(AFun fun) 
       throws VisitFailure;

The visitor functionality is unique for the Java ATerm library. See http://homepages.cwi.nl/~daybuild/
daily-docs/aterm-java/ for details.

Interface ATerm

public static final int INT = 2;
public static final int REAL = 3;
public static final int APPL = 1;
public static final int LIST = 4;
public static final int PLACEHOLDER = 5;
public static final int BLOB = 6;
public static final int AFUN = 7;
public static final int LONG = 8;
public int getType();
public int hashCode();
public List<Object> match(String pattern);
public List<Object> match(ATerm pattern);
public boolean hasAnnotations();
public ATerm getAnnotation(ATerm label);
public ATerm setAnnotation(ATerm label, ATerm anno);
public ATerm removeAnnotation(ATerm label);
public ATermList getAnnotations();
public ATerm setAnnotations(ATermList annos);
public ATerm removeAnnotations();
public boolean isEqual(ATerm term);
public boolean equals(Object obj);
public void writeToTextFile(OutputStream stream)
      throws IOException;
public void writeToSharedTextFile(OutputStream stream)
      throws IOException;
public ATerm make(List<Object> args);
public ATermFactory getFactory();
public String toString();

See the section called “Making and Matching ATerms” (p. 4) for descriptions of the make-like
functions and the section called “Reading and Writing ATerms” (p. 7) for the reading-writing
related functions. Observe that LONG is only supported by the Java implementation.

Example Using the Java ATerms

To give a flavour of the manipulation of ATerms in Java, Example 1.5, “Using ATerms in Java” (p.
43) shows the creation of some ATerms and reading of an ATerm from a stream.

http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/
http://homepages.cwi.nl/~daybuild/daily-docs/aterm-java/


The ATerm Programming Guide

43

Example 1.5. Using ATerms in Java

import java.io.*;
import aterm.*;

public class Basic
{
  private ATermFactory factory;

  public static final void main(String[] args) throws IOException {
    Basic basic = new Basic(args);
  }

  public Basic(String[] args) throws IOException {
    factory = new aterm.pure.PureFactory();

    ATermInt i = factory.makeInt(42);
    System.out.println("i = " + i);

    AFun fun = factory.makeAFun("foo", 2, false);
    ATermAppl foo = factory.makeAppl(fun, i, i);
    System.out.println("foo = " + foo);

    ATerm t = factory.parse("this(is(a(term(0))))");
    System.out.println("t = " + t);

    try {
      ATerm input = factory.readFromFile(System.in);
      System.out.println("You typed a valid term: " + input);
    } catch (ParseError error) {
      System.out.println("Your input was not a valid term!");
    }
  }
}

Differences between C and Java Version of ATerm
Library

The differences between the C and Java version of the ATerm library are summarized in Table 1.7,
“Differences C and Java version” (p. 43).

Table 1.7. Differences C and Java version

 Feature C Java

(Un)protecting ATerms yes no (automatic)

LONG no yes

ATermTable yes no

AtermIndexedSet yes no

BAF yes no

Distinction level 1/level 2
interface

yes no



The ATerm Programming Guide

44

Historical Notes
The first term structure to be used for data exchange in The Meta-Environment was designed as part
of the ToolBus coordination architecture and is described in [BK94] (p. 44) and was implemented
by Paul Klint. These "ToolBus terms" already provided the make-and-match paradigm (the section
called “Making and Matching ATerms” (p. 4)) for constructing and deconstructing terms. They
also provided a linear string representation for the exchange of terms between components as well as
automatic garbage collection.

The ATerms as discussed here are described in detail in [BJKO00] (p. 44) and were implemented
by Hayco de Jong and Pieter Olivier (both in C and Java). They introduced several innovations over
the original design: maximal subterm sharing, annotations, a compressed binary exchange format,
and a two-level Application Programming Interface (API) that enables both simple and efficient
use of ATerms. The Java implementation uses SharedObjects as described in [BMV05] (p. 44)
and implemented by Pierre-Etienne Moreau. Erik Scheffers adapted the C ATerm Library to 64
bit architectures. Arnold Lankamp added the streamable ATerm format (SAF), performed major
optimizations on both the C and the Java version and made the Java version ready for efficient
execution on multi-core machines.

In order to further control the type safe access to ATerms, the API generator apigen has been
developed. First in C, described in [JO04] (p. 44) and implemented by Hayco de Jong and Pieter
Olivier. Later in Java, described in [BMV05] (p. 44) and implemented by Pierre-Etienne Moreau
and Jurgen Vinju.

Since their inception, ATerms have been used in a wide range of application:

• Data exchange between interoperating components.

• Implementation of term rewriting languages and engines.

• Source code representation and transformation.

• Software renovation.

• Representation of web ontologies.

• Representation of state spaces that are used for model checking.

• Representation of feature diagrams as used for domain-specific engineering and software product
lines.

An overview of the application of ATerms can be found in [BK07] (p. 44).

Bibliography
[BK94] J.A. Bergstra and P. Klint. The toolbus: a component interconnection architecture. Technical

ReportP9408. University of Amsterdam, Programming Research Group. 1994.

[BJKO00] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P. Olivier. Efficient Annotated Terms. 259--291.
Software, Practice & Experience. 30. 2000.

[BMV05] M.G.J. van den Brand, P.E. Moreau, and J.J. Vinju. A generator of efficient strongly typed abstract
syntax trees in java. 70--78. IEE Proceedings-Software. 152. 2. 2005.

[BK07] M.G.J. van den Brand and P. Klint. Aterms for manipulation and exchange of structured data: It's all
about sharing. 55--64. Information and Software Technology. 49. 1. 2007.

[JO04] H.A. de Jong and P.A. Olivier. Generation of abstract programming interfaces from syntax definitions.
35--61. Journal of Logic and Algebraic Programming. 50. 4. 2004.


