Chapter 1. The ATerm Programming
Guide
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Introduction

Cut and paste operations on complex data structures are standard in most desktop software
environments: one can easily clip a part of a spreadsheet and paste it into a text document. The
exchange of complex data is also common in distributed applications: complex queries, transaction
records, and more complex data are exchanged between different parts of a distributed application.
Compilers and programming environments consist of tools such as editors, parsers, optimizers, and
code generators that exchange syntax trees, intermediate code, and the like.

Annotated Terms (ATerms) provide a solution for implementation needs in the areas of compilers,
interactive programming environments and distributed applications but are more widely applicablein
areas like model checking and ontology definition. They have the following characteristics:

Open Independent of any specific hardware or software platform.

Simple The procedural interface should contain 10 rather than 100 functions.
Efficient Operations on data structures should be fast as possible.

Concise Inside an application the storage of data structures should be as

small as possible by using compact representations and by exploiting




The ATerm Programming Guide

sharing. Between applications the transmission of data structures
should be fast by using a compressed representation with fast
encoding and decoding. Transmission should preserve any sharing of
in-memory representation in the data structures.

Language-independent Data structures can be created and manipulated in any suitable
programming language.

Annotations Applications can transparently extend the main data structures with
annotations of their own to represent non-structural information.

Typically, wewant to exchange and processtree-like data structures such as parsetrees, abstract syntax
trees, parse tables, generated code, and formatted source texts. The applications involved include
parsers, type checkers, compilers, formatters, syntax-directed editors, and user-interfaces written in
avariety of languages. Typically, a parser may add annotations to nodes in the tree describing the
coordinates of their corresponding source text and a formatter may add font or color information to
be used by an editor when displaying the textual representation of the tree.

The ATerm data type has been designed to represent such tree-like data structures and it is therefore
very natural to use ATerms both for the interna representation of data inside an application and
for the exchange of information between applications. Besides function applications that are needed
to represent the basic tree structure, a small number of other primitives are provided to make the
ATerm data type more generally applicable. These include integer constants, real number constants,
binary large data objects (""blobs"), lists of ATerms, and place holders to represent typed gaps in
ATerms. Using the comprehensive set of primitives and operations on ATerms, it is possible to
perform operations on an ATerm received from another application without first converting it to an
application-specific representation.

Figure 1.1. Maximal subterm sharing for x*(y+2) + (y+2)*z. (a) Tree
representation. (b) Maximal subterm sharing

» @ & » @
(a) (b)

One particular aspect of ATerms makesthem unique and should be mentioned hereexplicitly: ATerms
are based on maximal subterm sharing. Thisisillustrated in Figure 1.1, “Maximal subterm sharing
for x*(y+2) + (y+2)*z. (a) Tree representation. (b) Maximal subterm sharings. 2) for the

expression x* (y+2) + (y+2)*z.In (a) the ordinary tree representation is shown and in (b) the
common subexpression ( y+2) is shared thus turning the tree into a Directed Acyclic Graph (DAG).

Maximal subterm sharing is a strategy to achieve "conciseness' as mentioned in the characteristics of
ATerms above and is a simple and effective way to minimize memory usage: terms are only created
when they are new, i.e., do not exist already. If aterm to be constructed already exists, that term is
reused, ensuring maximal sharing. This strategy fully exploits the redundancy that istypically present
in the terms to be built and leads to maximal sharing of subterms. The library functions that construct
terms always return maximally shared terms as result. The sharing of terms is thus invisible to the
library user. Apart from reduced memory usage, maximal subterm sharing has another benefit: the
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equality check on terms becomes very cheap: it reduces from an operation that is linear in the number
of subtermsto be compared to a constant operation (only pointer equality has to be checked).

Maximal subterm sharing has, however, a price. In order to optimize sharing, ATerms are immutable
and "updating” an ATerm in any way always leads to the construction of a new ATerm that may,
however, share many subterms with the original ATerm. ATerm construction is also penalized by an
additional lookup operation to check for existing terms.

Despite these disadvantages, there are many application areaswhere ATermslead to more transparent
program code and to more efficient execution. Some examples are term rewriting and model checking,
see [BKO7] (p. 44) for these and other examples.

Where to go from here?

» Read the section called “ATerms at a glanc&(p. 3)to get a quick overview of the functionality
of ATerms. These and the following sections are written from the C perspective.

* Read the section called “Using the C ATerm Library(p. 9)for details about initialization,
memory management and file format.

* A detailed description of the C ATermlibrary can befoundinthe section called “ Level Onelnterface
of C ATerm Library (p. 13) and the section called “Level Two Interface of C ATerm Library

(p. 22).

* On overview of the Java ATerm library is given in the section caled “Using the Java ATerm
Library” (p. 38) It also summarizes the differences between the C and the Java version, see the
section called “ Differences between C and Java Version of ATerm Library” (p. 43).

» Withthe section called “Historical Notes (p. 44) and the section called “Bibliography” (p.
44) we complete this ATerm programming guide.

ATerms at a glance

We now describe the constructors of the ATerm data type and the operations defined on it.

The ATerm data type

The datatype of ATerms (ATer ) is defined as follows:

INT An integer constant isan ATerm.
REAL A real constant isan ATerm.
APPL A function application consisting of afunction symbol and zero or more ATerms

(arguments) is an ATerm. The number of arguments of the function is called the
arity of the function.

LIST A list of zero or more ATermsisan ATerm.

PLACEHOLDER A placeholder term containing an ATerm representing the type of the placehol der
isan ATerm.

BLOB A “blob" (Binary Large data OBject) containing a length indication and a byte
array of arbitrary (possibly very large) binary dataisan ATerm.

ANNOTATION A list of ATerm pairs may be associated with every ATerm representing a list of
(I abel ,annot at i on) pairs.
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Each of these constructs except the last one (i.e., | NT, REAL, APPL, LI ST, PLACEHOLDER, and
BLOB) form subtypes of the data type ATerm. These subtypes are needed when determining the type
of an arbitrary ATerm. Depending on the actual implementation language the type is represented as
aconstant (C) or asubclass (Java, C#). Thelast construct is the annotation construct which makes it
possible to annotate terms with transparent information. We will now give a number of examples to
show some of the features of the textual representation of ATerms.

Note

Thetextual representation of ATermsisreadableand isuseful for explanation and debugging.
It is hardly ever used in large applications. See the section called “ATerm formats'(p. 11)
for the various ATerm formats.

* Integer and real constantsarewritten conventionaly: 1, 3. 14,and- 0. 7E34 areall valid ATerms.

» Function applications are represented by a function name followed by an open parenthesis, a list
of arguments separated by commas, and a closing parenthesis. When there are no arguments,
the parentheses may be omitted. Examples are: f (a, b) and "test!"(1,2.1,"Hello
wor | d!'") . These examples show that double quotes can be used to delimit function names that
are not identifiers.

 Listsarerepresented by an opening square bracket, a number of list elements separated by commas
and aclosing square bracket: [ 1, 2, "abc"],[],and[f, g([ 1, 2] ), Xx] areexamples.

» A placeholder is represented by an opening angular bracket followed by a subterm and a closing
angular bracket. Examplesare <i nt >, <[ 3] >, and <f ( <i nt >, <r eal >) >.

 Blobsdo not have a concrete syntax because their human-readable form depends on the actual blob
content.

Operations on ATerms

The operations on ATerms fall into three categories: making and matching ATerms, reading and
writing ATerms, and annotating ATerms. These functions provide enough functionality for most users
to build simple applications with ATerms. We refer to this interface as the level one interface of the
ATerm data type. To accommodate ~ power" users of ATerms we also provide alevel two interface,
which contains amore sophisticated set of datatypesand functions. Itistypically used in generated C
or Java code that calls ATerm primitives, or in efficiency-critical applications. These extensions are
useful only when more control over the underlying implementation is needed or in situations where
some operations that can be implemented using level one constructs can be expressed more concisely
and implemented more efficiently using level two constructs. Thelevel two interfaceisastrict superset
of thelevel oneinterface. Observethat ATermsareapurely functional datatypeand that no destructive
updates are possible.

Making and Matching ATerms

The simplicity of the level one interface is achieved by the make-and-match paradigm that is also
illustrated in Figure 1.2, “The make-and-match paradigm” (p. 5):

Make  Compose anew ATerm by providing a pattern for it and filling in the holes in the pattern.

Match  Decompose an existing ATerm by comparing it with a pattern and decompose it according
to this pattern.
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Figure 1.2. The make-and-match paradigm

Pattern

Compose

Decompose

Pattern

Composition and decomposition of terms is not based on the direct manipulation of the underlying
representation of terms. Instead, term patterns are used to guide composition and decomposition.
Such term patterns play the same role as format strings in the printf/scanf paradigm in C. In afirst
approximation, a term pattern is a literal string that would be obtained by a preorder traversal of a
term. For instance, the term pattern

"or(true, false)"

corresponds to aterm whose root is labeled with the symbol or , and whose children are labeled with,
respectively,t r ue andf al se. Inthisway, term patterns can be used to construct and to match terms.
Term patterns become, however, much more useful if they can be parameterized with subterms that
have been computed separately. To this end, we introduce the notion of directives as follows:

e <i nt >: correspondsto aninteger (inC: i nt};
» <str>: correspondsto astring (in C: char *);

» <hl ob> correspondsto ahinary string (in C: a (length, pointer) pair represented by two values of
types, respectively, i nt andvoi d *);

* <t ernp: correspondsto an ATerm (in C: ATer nj;

e <appl >: corresponds to one function application(in C: char *pattern, followed by
arguments);

» <l i st>:correspondsto alist of terms(in C: ATer m.

The precise interpretation of these directives depends on the context in which they are used. When
constructing a term, directives indicate that a subterm should be obtained from some given variable.
When matching aterm, directives indicate the assignment of subterms to given variables.

Patterns are just ATerms containing place holders. These place holders determine the places where
ATerms must be substituted or matched. An example of a pattern is " and( <i nt >, <appl >)".
These patterns appear as string argument of both make and match and are remotely comparable to
the format strings in the pri nt f /scanf functions in C. The operations for making and matching
ATermsare:

e ATerm ATnake(String p, ATermai, ..., ATerm a,): Createanew term by taking
the string pattern p, parsing it as an ATerm and filling the place holders in the resulting term with
valuestaken from a; through ay,. If the parse fails, amessageis printed and the program is aborted.
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The types of the arguments depend on the specific place holders used in the pattern p. For instance,
when the placeholder <i nt > isused an integer is expected as argument and a new integer ATerm
is constructed.

* ATbool ATmatch(ATermt, String p, ATerm*a;, ..., ATerm%*a,):Matchterm
t against pattern p, and bind subterms that match with place holdersin p with the result variables
aj through a,,. Again, the type of the result variables depends on the place holders used. If the parse
of pattern p fails, amessage is printed and the program is aborted. If the term itself contains place
holders these may occur in the resulting substitutions. The function returns true when the match
succeeds, false otherwise.

For instance, assuming the declarations

int n = 10;

char *fun = "pair", name = "any";
ATerm yel | ow = ATrmake("yel l ow'), t;
the call

t = ATmake("exam( <appl (<ternp, 9)>, <int>, <str>)",
fun, yellow, n, 10, nane)

will construct theterm t with value
exam(pair(yell ow, 9), 10, 10, "any")

Binary strings (Binary Large OBjects or blobs) are used to represent arbitrary length, binary data that
cannot be represented by ordinary C strings because they may contain ““null" characters. A binary
string is represented by a character pointer and alength. For instance, given

char buf[12];
ATerm bstr;
buf[0] = 0; buf[1l] = 1; buf[2] = 2;

the call
bstr = ATmake("exam(<bl ob>)", 3, buf);

will construct a term with function symbol examand as single argument a binary string of length 3
consisting of the three values 0, 1, and 2.

Matching terms amounts to

* determining whether there is amatch or not,

* selectively assigning matched subterms to given variables.
For instance, in the context

ATermt = ATnmake("exan(pair(yellow 9),10, \"any\")");
ATermt1;

int n;

char *ex, *s;

the call

ATmatch(t, "appl (<ternp,<int> <str>)", &ex, &1, &n, &s);

yields true and is equivalent to the following assignments:

ex = "exanl;
t1l = ATrmake("pair(yellow, 9)");
n = 10;
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s = "any";

As explained in full detail in the section called “Memory Management of ATerms(p. 10) memory
is managed automatically by the ATerm library. As a generd rule, the values for ex, t 1, and s are
pointersinto theoriginal termt rather than newly created values. Asaresult, they have alifetime that
isequal tothat of t . Matching binary stringsistheinverse of constructing them. Giventhetermbst r
constructed at the end of the previous paragraph, its size and contents can be extracted as follows:

int n;
char *p;

ATmat ch(bstr, "exam(<blob>)", &n, &p);

ATmat ch will succeed and will assign 3 to the variable n and will assign a pointer to the character
datain the binary string to the variable p. Here, again, the value of p isapointer into the term bst r
rather than anewly allocated string. Notes

» Double quotes ("™ ") appearing inside the pattern argument of both ATrmake and ATmat ch have
to be escaped using "\ " ".

e The number and type of the variables whose addresses appear as arguments of ATmat ch should
correspond, otherwise disaster will strike (as usual when using C).

» Assignments are being made during matching. As a result, some assignments may be performed,
even if the match as awholefails.

Reading and Writing ATerms

For reasons of efficiency and conciseness, reading and writing can take place in several formats, see
the section called “ATerm formats’ (p. 11) Either format (textual or binary) can be used on any
linear stream, including files, sockets, pipes, etc. Here, we only give examples of the pure textual
representation of ATerms.

The operations for reading and writing ATerms are:

* ATerm ATreadFronString(String s): Createsanew term by parsing the string s. When
aparse error occurs, amessage is printed, and a specia error value is returned.

 ATerm ATreadFroniext Fi |l e(Fi | e f): Createsanew term by parsing the data from file
f . Again, parse errors result in a message being printed and an error value being returned.

e String ATwriteToString(ATer mt) : Return thetext representation of termt asastring.

* ATbool ATwiteToTextFile(ATermt, File f):Writethetextrepresentation of term
t tofilef . Returnstrue for success and false for failure.

For instance, in the context:

FILE *f = fopen("foo", "wbh");
ATerm Trnll = ATrmake("<appl (red, <int>)>", "freq", 17);

the statement
ATwiteToTextFile(Trml, f);
will writethevaueof Trml (i.e, freq(red, 17) ) tofile "f 0o".

When end of file is encountered or the term could not be read, the operation is aborted.The user can
redefine this behaviour using ATset Abor t Handl er , which alows the definition of a user-defined
abort handler. See the section called “ATset Abor t Handl er ” (p. 21) for further details.

The last form of output that is supported by the ATerm library is formatted output. The function
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int ATfprintf(FILE *File, const char *Pattern, ...)

writes formatted output to Fi | e. Pat t er n is printed literally except for occurrences of directives
which are replaced by the textual representation of the values appearingin.. . . . For instance,

ATfprintf(stderr, "Wong event \"%\" ignored\n",
ATmake("failure(<int>)", 13));

will print:
Wong event "failure(13)" ignored
Notethat ATpri nt f usesthenormal pri nt f conversion specifiers extended with ATerm-specific

specifiers. The most frequently used specifier is{\tt \%t} which standsfor an ATerm argument whose
textual representation isto be inserted in the output stream.

Annotating ATerms

Annotations are (I abel ,annot at i on) pairs that may be attached to an ATerm. Annotations can
be considered to be a "third dimension” for ATerms, see the section called “ Annotating ATerms” (p.
8). Ordinary ATerms (bottom plane) can be extended in this dimension with arbitrary ATerms
(that, indeed, may again contain annotations).

Figure 1.3. ATerm annotations

Annotations

Annotation

Annotation

- -

The following operations for manipulating annotations are available (recall that ATerms are a
completely functional data type and that no destructive updates are possible):

 ATer m ATset Annot ati on(ATermt, ATerm |, ATerm a): Returnacopy of termt
in which the annotation labeled with | has been changed into a. If t does not have an annotation
with the specified label, it is added.

* ATerm ATget Annot ati on(ATerm t, ATerm |): Retrieve the annotation labeled with
| fromtermt . If t does not have an annotation with the specified label, a special error value is
returned.

» ATer m ATrenoveAnnot ati on( ATermt, ATerml):Returnacopy of termt fromwhich
the annotation labeled with | has been removed. If t does not have an annotation with the specified
label, it is returned unchanged.
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Using the C ATerm Library

Initializing and using the ATerm library

Using the ATerm library requires the following:

* Include the header file at er mL. h (or at er n2. h if you want to use the level 2 interface).
at er ml. h defines:

e ATbool : the boolean data type defined by
t ypedef enum ATbool {ATfal se=0, ATtrue} ATbool ;

Itis mainly used asthe return value of library functions.

e ATer m thetype definition of ATerms. The ATerm library has been designed in such away that
only pointersto terms must be passed to or are returned by library functions. The primitives that
areprovided for constructing and decomposing termsare of such ahighlevel that itisunnecessary
toknow theinternal representation of terms. When necessary, you can accesstheinternal structure

of ATerms using the level 2 interface.

» Declarein your mai n program alocal ATerm variable that will be used to determine the bottom
of C'sruntime stack.

o Cdl ATi ni t toinitializethe ATerm library.

* Link the ATerm library | i bATer m a when compiling your application. This is achieved using
the -1 ATer moption of the C compiler.

A typical usage patternis asfollows:

#i ncl ude <atermt. h>
int main(int argc, char *argv[])

{
ATer m bot t omOf St ack;
ATinit(argc, argv, &bottonOf Stack); 8
/* ... code that uses ATernms ... */

}

Notes:

The local variable bot t onOf St ack is used to indicate the bottom of C's run-time stack and
needed when initializing the ATerm library.

(7] Initialize the ATerm library. Observe that the program arguments are passed to ATinit (see
below).

The command line options can be passed to an application that use the ATerm library are listed in
Table 1.1, “Command line options ATerm library” (p. 10).
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Table 1.1. Command line options ATerm library

Option Description
-at -synbol t abl e nsynbol s Initial size of symbol table
-at-terntable tableclass Start with term table of 2%%13S entries
-at - hashinfo Write hash table dtatistics to the file

hashi ng. st at s after execution

-at-print-gc-tinme Print timing information about garbage collector
tost derr after execution

-at-print-gc-info print verbose information about garbage collector
tost derr after execution

-at-silent Do not print status and version information

Memory Management of ATerms

Thefunctionsinthe ATerm library provide automatic memory management of terms. Termsthat have
been created but are no longer referenced are removed by a method called garbage collection. There
are two categories of terms that will survive a garbage collection:

e Termsthat are referenced viaalocal variable of a currently active procedure.
» Termsthat are explicitly protected by the user.

Effectively, all terms referenced by local variables and all protected terms (and their subterms) are
conserved and all other terms are considered as garbage and can be collected. It is guaranteed that no
garbage collection takes place during the execution of an event handler, hence it is not necessary to
protect temporary termsthat are constructed during the execution of an event handler. However, terms
that should have alonger life time must be protected in order to survive. In order to protect termsfrom
being collected, the function

voi d ATprotect (ATerm *TrnPtr)

can be used that has as single argument a pointer to a variable with an ATermasvalue. The protection
can be undone by the function

voi d ATunprotect (ATerm *TrnPtr)

The interplay between garbage collection and program variables is subtle. The following points are
therefore worth mentioning:

» Functions that return aterm as value (e.g., ATBr eadTer nf r onti | €) do not explicitly protect
it. However, since the result will be referenced via local variable it will be safe for the garbage
collector.

» Thefunction ATnake uses strings and terms and includesthem into anew term T. Theimplications
for memory management are:

« All string arguments (using <st r >, <bl ob> or <appl >) are copied before they are included
into T. They can thus safely be deallocated (e.g., using f r ee) by the C program in case they
were globally allocated.

¢ All termarguments (using <t er n®) areincludedinto T by means of apointer. They thusbecome
reachable from T and their life time becomes at least as large as that of T; it is not required to
explicitly protect them unless the user decides otherwise.

» Thefunction ATmat ch assigns strings and terms to program variables by extracting them from an
existing term T. The general rule here is that extracted values have alife time that is equal to that
of T. The implications for memory management are:

10
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« All string values (obtained using <st r >, <bl ob> or <appl >) should be copied if they are used
outside the scope of the function in which they were created.

« All term values (obtained using <t er n) should be explicitly protected if they should surviveT.

ATerm formats

ATerms can be represented in four formats:

e ASCII text (the textual representation discussed earlier) This format is human-readable, space-
inefficient, and any sharing of the in-memory representation of termsis|ost.

e Textual ATerm Format (TAF), atextual format that preserves maximal subterm sharing.

* Binary ATerm Format (BAF) is a portable, machine-readable, very compact format and preserves
al in-memory sharing.

» Streamable ATerm Format (SAF) allows the streaming of ATerms between applications (using a
fixed buffer size), also preserves sharing and optimizes the balance between speed, memory usage
and compression.

We now briefly discuss each format and conclude with a decision table when to use which format.

ASCII ATerm Format (ASCII)

The simplest format available for ATerms is plain ASCII text: the ATerm is read and written in
prefix form. Its main advantage are simplicity and readability. The main disadvantage isthat maximal
subterm sharing is lost and that size may become huge. The ASCII ATerm Format ismainly used for
debugging purposes.

The main functions are:

* ATerm ATreadFronttri ng(String s): Createsanew term by parsing the string s. When
aparse error occurs, amessage is printed, and a specia error value is returned.

e ATerm ATreadFroniText Fi |l e(Fi | e f): Createsanew term by parsing the data from file
f . Again, parse errors result in amessage being printed and an error value being returned.

 String ATwriteToString(ATer mt) : Returnthetext representation of termt asastring.

* ATbool ATwiteToTextFile(ATermt, File f):Writethetextrepresentation of term
t tofilef . Returnstrue for success and false for failure.

Textual ATerm Format (TAF)

Thereis aso atextual ATerm format which supports maximal sharing but uses a much less complex
algorithm than the one used to encode and decode BAF files. This resultsin files that are somewhat
larger thantheir BAF counterparts, but are often (if theterms contain redundancy) significantly smaller
than their unshared form. TAF files aways start with a'! ' character to distinguish them from other
ATerm formats. The format uses abbreviations to refer to previoudy written terms. An abbreviation
consists of a hash character (‘#") followed by a number in encoded using the Base64 Alphabet (see
RFC2045). Each term whose unparsed representation would take up more bytes than the textual
representation of the next available abbreviation is assigned such an abbreviation it has been written.
Subsequent occurrences of thisterm are then written by emitting the abbreviation instead of the term
itself. For example theterm f (t est, t est) isrepresented as! f (t est, #A) in TAF, whereas
f(a,a) isrepresented as! f (a, a) becauset est islonger than its abbreviation #A, but a is not.

The main functions are:

11
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» ATer m ATr eadFr ontShar edText Fi | e( FI LE *f) : Readsthe TAF representation of term
t fromfilef .

* long ATwiteToSharedText Fil e(ATermt, FILE *f):Writethe TAF representation
of termt tofilef .

Binary ATerm Format (BAF)

The ATerm library is also equipped to store and restore ATerms in a compact, portable binary
representation. This representation is called BAF which stands for “Binary ATerm Format". This
format can be used to write a binary version of an ATerm to file, which can later be restored in a
much more efficient way than would be possible had the ATerm's textual counterpart been used. This
is due to the fact that textual representations have to be (re-)parsed each time they are read from
file, whereas BAF directly describes how to rebuild the interna representation of an ATerm, thus
Skipping the parsing phase. Moreover, the maximal sharing of ATermsisexploited whenwriting BAF-
representations, making them take up much less space than their textual representations would have
needed. Users of the ATerm library are encouraged to use BAF representations when saving ATerms
to file. BAF was designed to be platform independent, which facilitates the exchange of ATerms.
The ATerm library comes with a utility that is able to convert an ATerm's textual representation into
its BAF counterpart and vice versa, see the section called “ATerm-conversion: baffle€' (p. 36)
This conversion makesit possible to always work with BAF representations, while still being able to
look at the textual representation any time an error is suspected. It also allows conversion of textual
ATermswritten by programs unable to write BAF which is especially convenient when these ATerms
are bulky. Although the ATerm library does not impose any constraints on the names of ATerm-files,
users are encouraged to use the extension . baf for BAF files. This will avoid confusion between
textual representations and binary ones. Textual representations could use the extension . t r m BAF
files always start with a NULL character followed by OXBAF (hex) to distinguish them from other
ATerm formats.

The available functions are:

» ATerm ATreadFronBi naryFile(File f): Creates a new term by reading a BAF
representation fromfilef .

* ATbool ATwiteToBinaryFile(ATerm t, File f):WriteaBAF representation of
termt tofilef . Returnstrue for success, and false for failure.

(Semi-) Streamable ATerm Format (SAF)

The (Semi-) Streamable ATerm Format is a recent addition of the library. It is designed for usage in
high-performance applications and was initially developed for exchanging ATerms across network
connectionsin a portable way. It attempts to find a balance between the following characteristics:

Encoding / decoding speed.
 Streaming functionality.

» Compression rate.

* Memory usage.

As the name suggests, this format enables the transmission of ATermsin a semi streamlike fashion.
Thisis achieved by reading and writing the serial representation of an ATerm in blocks of avariable
size; allowing the encoding and decoding process to be suspended at any point in time.

The available functions are:

» ATer m ATr eadFr onSAFFi | e(Fi | e f) : Createsanew term by reading a SAF representation
fromfilef .

12
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» ATbool ATwriteToSAFFile(ATermt, File f):WriteaSAF representation of termt
tofilef . Returnstrue for success, and false for failure.

What is the best format?

Given these four formats it is not so easy to choose the right one. Their properties are summarized
in Table 1.2, “Properties of ATerm file formats(p. 13) For high performance applications BAF
and SAF are the most likely candidates. BAF achieves a dlightly better compression rates, but SAF
is able to encode and decode ATerms much faster. Another factor to consider is that there only isa
BAF implementation for C.

Tip

Since SAF is available for C and Java and is very efficient, it is a safe choice for most
applications.

Warning
Refer to SAF implementation document for measurements.

Table 1.2. Propertiesof ATerm fileformats

Property ASCII TAF BAF SAF
Readability ++ -+ - -
Efficiency writing -- + -+ ++
Efficiency reading -- -+ + ++
Compression -- -+ ++ +
factor
Memory usage - -+ -+ +
C implementation + + + +
Java + + - +
implementation

Level One Interface of C ATerm Library

All types and functions that are defined in the level one interface are declared in at er mlL. h.the
section called “Level One Types (p. 13) reveals the types of ATerms that are used in the ATerm
library, aswell asthe extension to the standard C-typesintroduced in the level oneinterface. To avoid
confusion between BAF and the ATerm type AT_BLOB, the section called “A note on “blobs and
BAF” (p. 14)is dedicated to explaining the difference between these two notions. Finaly, the
section called “Level One Functionality (p. 14) describes al the functions that are available in
the level one interface.

Level One Types

The following C-defines are used to represent the different ATerm types:

AT I NT An ATerm of type: integer.

AT _REAL An ATerm of type: real.

AT_APPL An ATerm of type: function application.
AT _LIST An ATerm of type: list.

AT_PLACEHOLDER An ATerm of type: placeholder
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AT_BLOB An ATerm of type: binary large object.
The following C-types are defined in the level one interface:
ATbool A boolean value, either ATt r ue or ATf al se.

ATerm Anannotated term.

A note on blobs' and BAF

Level

Although the word binary is used in the abbreviations of both ““blob" and BAF, these are two very
different notions. A blob represents an ATerm that holds binary data, with no specific meaning to the
ATerm library. This notion can be used as a means of escape in case you find that you need a type of
ATermthat isnot onthelist above. Thenotion of BAFisexplainedinthesection called “Binary ATerm
Format (BAF)" (p. 12) and refers to a specific format used for reading and writing ATerms. Thus
an ATermof type AT_BLOB can besaved in BAF. It could also bewritteninitstextual representation,
although this does not guarantee that the blob will be readable, after al it represents binary data.

One Functionality

In this section, all functions are summarized. To obtain access to the level one interface, your
application should contain #i ncl ude <at er ml. h>.

Level one: initialization

ATini t

void ATinit(int argc, char *argv[], ATerm *bottonmOf St ack)
Initialize the ATerm library.

See the section called “Initializing and using the ATerm library” (p. 9).

Level one: making and matching

ATmake

ATer m ATnake(const char *pattern, ...)

Create an ATerm from astring pattern and avariable number of arguments. Createsan ATerm given a
pattern and corresponding values. Table 1.3, “Argument types for ATmake(p. 14) shows which
patterns can be used, and which type of arguments should be passed if such a pattern is used.

Table 1.3. Argument typesfor ATmake

Type Pattern Argument
Integer <int> i nt val ue
Real <real > doubl e val ue
Application <appl > char *pattern, arguments
String <str> char *patt ern, arguments
List <list> ATer m val ue
Term <terne ATer m val ue
Blob <bl ob> int length, void *data
Placeholder <pl acehol der > char *type val ue

Types<appl! > and <st r > should contain a pattern consisting of the function symbol to be used and
thetypes of the arguments. This pattern must be followed by exactly the number of argumentsthat are
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used in the pattern. The types of the arguments must match the respective types used in the pattern.
Both <appl > and <st r > create function applications. The difference is that <appl > creates one
with an unguoted function symbol, whereas <st r > yields a quoted version. Here are some examples

of ATmake:

#i ncl ude <aternR. h>

i nt ival = 42;

char *sval = "exanple";
char *blob = "12345678";
doubl e rval = 3.14;

char *func = "f";

voi d foo()

{

ATermterni4];
ATerm list[3];
ATer m appl [ 3] ;

i val ,
i val +1,

ternf0] = ATmake("<int>" , ival);
ternf 1] = ATmake("<str>" func) ;
ternf 2] = ATnmeke("<real >", rval); 3]
tern{3] = ATnmake("<bl ob>", 8, blob);
list[0] = ATmake("[]");
list[1l] = ATmake("[ 1, <int>, <real >]",
list[2] = ATmake("[<int>, <list>]",
appl [0] = ATmake("<appl >", func);
appl [ 1] = ATmake( " <appl (<i nt>)>", func,
appl [2] = ATmake("<appl (<int>, <ternp,
func, 42, terni3],

ATprintf("appl[2] = %\n", appl[2]);

}

int main(int argc, char *argv[])

{
ATer m bot t onf St ack;
ATinit(argc, argv, &bottonf Stack);
foo();
return O;

}

Notes:

Integer value 42.

(7] Quoted application of "f", no arguments.
(3] Real value 3.14.

Blob of size 8, and data 12345678.

ATmakeTer m

ATer m ATnakeTer m( ATerm pattern, ...)
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Create an ATerm from an ATerm pattern and a variable number of arguments.

Note that pat t er n ishere declared as ATer mand not asastring asin ATnake. It does not have to
be parsed asin the case of ATrmak e and therefore ATmmakeTer mis more efficient.

See the section called “ATnake” (p. 14).
ATvmake

ATer m ATvnmake(const char *pattern, va_list args)

Create an ATerm from a string pattern and a list of arguments} See the section called “ATnake” (p.
14).

ATvmakeTer m
ATer m ATvmekeTer n{ ATerm pattern, va_list args)
Create an ATerm from an ATerm pattern and alist of arguments.
See the section called “ ATrmake” (p. 14).

ATmat ch
ATbool ATmatch(ATermt, const char *pattern, ...)
Match an ATerm against a string pattern.

Matches an ATerm against a pattern, attempting to fill the “holes.. If the ATerm matches the pattern,
ATt r ue isreturned and the variables will be filled according to the pattern, otherwise ATf al se is
returned. The <l i st > pattern can be used to match the tail of alist as well as a variable number of
arguments in a function application. Thus the first few arguments may be matched explicitly while
thetail of the argumentsis directed to alist.

Here are afew examples of ATmatch:

#i ncl ude <aternf. h>

voi d foo()

{
ATbool result;
ATerm |ist;
doubl e rval ;
i nt i val ;

/* Sets result to ATtrue and ival to 16. */
result = ATmat ch( ATmake("f(16)"), "f(<int>)", & val);

/* Sets result to ATtrue and rval to 3.14. */
result = ATnmat ch( ATnake("3.14"), "<real >", &rval);

= g(f) */
")

[* fills ival with 1 and list with [2,3] */
result = ATmat ch(ATmake("[1,2,3]"),
"[<int><list>]", & val, &ist);

/* Sets result to ATfal se because f(Qg)
result = ATmat ch(ATmake("f(g)"), "g(f)

}

int main(int argc, char *argv[])

{
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ATer m bot t onOf St ack;

ATinit(argc, argv, &bottonOf Stack);
foo();
return O;

}
ATmat chTer m
ATbool ATnmat ch(ATermt, ATerm pattern, ...)

Match an ATermt against aterm pattern pat t er n. Since the pattern is pre-constructed and needs
not be parsed, thisisamore efficient variant of ATnat ch.

Level one: reading
ATreadFronFil e

ATer m ATr eadFronFi | e(FI LE *fil e)
Read an ATerm from binary or text file.

This function reads an ATerm from afile. A test is performed to seeif the file isin plain text, BAF,
TAF, or SAF format.

ATr eadFr omNanedFi | e
ATer m ATr eadFr omNanendFi | e(char *fil enane)
Read an ATerm from named binary or text file.

This function reads an ATerm filef i | enane. A test is performed to see if the fileisin plain text,
TAF, BAF, or SAFformat. " - " is standard input's filename.

ATr eadFronfstri ng

ATer m ATr eadFrontt ri ng(const char *string)

Read an ATerm from an ASCI| text string.

This function parses a character string into an ATerm.
ATr eadFronmlext Fil e

ATer m ATr eadFr omText Fi | e(FI LE *file)

Read an ATerm from an ASCI| text file.

This function reads a text file and parses the contentsinto an ATerm.
ATr eadFr onShar edSt ri ng

ATer m ATr eadFr onShar edStri ng(const char *string, int size)

Read a ATerm from astring in TAF format.

This function decodes a TAF-encoded character string into an ATerm.
ATr eadFr onShar edText Fi | e

ATer m ATr eadFr onBi naryFi | e(FI LE *fil e)

Read an ATerm from a shared text (TAF) file.
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This function reads a shared text file and builds an ATerm.

ATr eadFronBi naryStri ng

ATer m ATr eadFr onBi naryStri ng(const unsi gned char *string, int size)
Read a ATerm from a string in BAF format.

This function decodes a BAF-encoded character string into an ATerm.

ATr eadFronBi naryFi | e

ATer m ATr eadFr onBi naryFi | e(FI LE *fil e)
Read an ATerm from abinary (BAF) file.
This function reads a BAF file and builds an ATerm.

ATr eadFr onBAFFi | e

ATer m ATr eadFr onBAFFi | e(FI LE *fil e)
Read an ATerm from a streaming (SAF) file.
This function reads a SAF file and builds an ATerm.

Level one: term handling

ATget Type

i nt ATget Type(ATermterm
Returnthetypeof t erm

A macro that returns the type of an ATerm. Result is one of AT_APPL, AT I NT, AT_REAL,
AT _LI ST, AT_PLACEHOLDER, or AT_BLOB.

ATi sEqual

ATBool ATi sEqual (ATermt1, ATermt 2)
A macro that tests equality of ATermst 1 and t 2.

As ATerms are created using maximal sharing (see Section~\ref{sharing}), testing equality is
performed in constant time by comparing the addressesof t 1 andt 2. Notehowever that ATi sEqual
only returns ATt rue whent 1 and t 2 are completely equal, inclusive any annotations they might
have!

Level one: writing

ATwiteToTextFil e

ATBool ATwriteToTextFile(ATermt, FILE *f)
Writestermt tofilef intextual format.

This function writes ATerm t to the file f in textual format. This term can later be read again by
ATr eadFroniText Fi | e.

ATwri teToNamedTextFil e

ATbool ATwriteToNanmedText Fil e(ATermt, char *fil enane)

Writestermt tofilenamedfi | enane in textual format.
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This function writes ATerm t in textual representation to filef i | enane. " -
filename.

is standard output's

ATwriteToString

char *ATwriteToString(ATermt)
Writestermt to astring.

Writestermt to aninternal string buffer. The start of this buffer is returned. Note that the contents of
this buffer are volatile and may be overwritten by any call to the ATerm library.

ATwri teToSharedTextFil e

| ong ATwiteToSharedTextFil e(ATermt, FILE *f)
Writestermt tofilef inshared Textua ATerm Format (TAF).

ThisfunctionwritesATermt tothefilef in TAFformat, and returnsthe number of characterswritten.
Thisterm can later be read again by ATr eadFr onShar edText Fi | e.

ATwri teToSharedStri ng

char *ATwiteToSharedStri ng(ATermt, int *len)
Writestermt to ashared text string in TAF.

Writesterm t to an internal string buffer in TAF. The start of this buffer is returned, and the length
of the resulting string is stored in | en. Note that the contents of this buffer are volatile and may be
overwritten by any call to the ATerm library.

ATwiteToBi naryFil e

ATbool ATwriteToBi naryFil e(ATermt, FILE *f)
Writestermt tofilef in Binary ATerm Format (BAF).

This function writes ATerm t to the file f in BAF. This term can later be read again by
ATr eadFr onBi nar yFi | e.

ATwr i t eToNanedBi nar yFi | e

ATbool ATwriteToNanedBi naryFil e(ATermt, char *fil ename)

Writesterm t tofilenamedf i | enane in Binary ATerm Format (BAF).

This function writes ATerm t in binary representation to filef i | enane. " -
filename.

is standard output's

ATwriteToBi naryString

char *ATwiteToBi naryStri ng(ATermt, int *|en)
Writestermt to ashared text string in BAF.

Writesterm t to an internal string buffer in BAF. The start of this buffer is returned, and the length
of the resulting string is stored in | en. Note that the contents of this buffer are volatile and may be
overwritten by any call to the ATerm library.

ATwri t eToSAFFi | e

ATbool ATwriteToSAFFi | e(ATermt, char *fil enane)

Writestermt to filenamed f i | enane in Streaming ATerm Format (SAF).
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ThisfunctionwritesATermt in streaming representationtofilef i | enane." - " isstandard output's
filename.

Level one: Formatted output

ATprintf

int ATprintf(const char *format, ...)
ATermversionof pri nt f.

See ATvfprintf.

ATfprintf

int ATfprintf(FILE *stream const char *format, ...)
ATermversionof f printf.

See ATvfprintf.

ATvf printf

int ATvfprintf(File *stream const char *format, va |list args)
ATerm version of vf pri ntf.

The functions ATpri nt f, ATf pri ntf and ATvf printf are used for formatted output to file.
The conversion specifiersc, d, i, 0, u, X, X, e, E, f, g, G p, s behave as can be expected from
fprintf.In addition the conversion specifiersa, h, |, n and t are supported as summarized in
Table 1.4, “ Specifiers for print conversion” (p. 20)

Table 1.4. Specifiersfor print conversion

Conversion specifier Action
a Print the symbol of an ATerm-application
h Print the MD5 checksum of an ATerm
I Print an ATerm-list
n Print information about an ATerm node
t Print an ATerm

Level one: annotations

ATset Annot ati on

ATer m ATset Annot ati on(ATerm t, ATerm | abel, ATerm anno)
Annotate a term with alabeled annotation.

Createsaversion of t that is annotated with annotation anno which islabeled by | abel .

ATget Annot ati on

ATer m ATget Annot ati on( ATermt, ATerm | abel)
Retrieves annotation of t with label | abel .

This function can be used to retrieve a specific annotation of aterm. If t has no annotations, or no
annotation labeled with | abel exists, NULL isreturned. Otherwise the annotation is returned.
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ATr enoveAnnot ati on
ATer m ATr emoveAnnot ati on(ATermt, ATerm | abel)
Remove a specific annotation from aterm.

This function returns aversion of t which has its annotation with label | abel removed. If t hasno
annotations, or no annotation labeled with | abel exists, t itsalf isreturned.

Level one: handling warnings, errors and aborts
ATset War ni ngHandl er

voi d ATset War ni ngHandl er (voi d (*handl er) (const char *format, va_list args))
Specify awarning handler for the ATerm library.

Sets awarning handler for the ATerm library. This handler will be called when an error message is
issued via ATwar ni ng.

ATwar ni ng
voi d ATwar ni ng(const char *format, ...)
I ssue a warning message.

If an error handler has been installed through a call to ATset War ni ngHandl er , this handler will
be called. Otherwise ATwar ni ng uses ATvf pri nt f to print aformatted messageto st derr and
returns.

ATset Err or Handl er
voi d ATset Error Handl er (voi d (*handl er) (const char *format, va_list args))
Specify an error handler for the ATerm library.

Setsan error handler for the ATerm library This handler will be called when an error messageisissued
viaATerror.

ATerror
voi d ATerror(const char *format, ...)
Issue an error message and exit the ATerm library.

If an error handler has been installed through acall to ATset Er r or Handl er, this handler will be
called. Otherwise ATer r or uses ATvf pri nt f to print aformatted messageto st der r and exits
with errorcode 1.

ATset Abor t Handl er
voi d ATset Abort Handl er (voi d (*handl er) (const char *format, va_list args))
Specify an abort handler for the ATerm library.

Sets an abort handler for the ATerm library. This handler will be called when an error message is
issued viaATabort .

ATabort

voi d ATabort (const char *format, ...)

Issue a error message and abort the ATerm library.
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If an abort handler has been installed through a call to ATset Abor t Handl er , this handler will be
called. Otherwise ATabort uses ATvf pri nt f to print aformatted messageto st der r and calls
abort.

Level one: memory management

ATpr ot ect
voi d ATprot ect (ATer m *at p)
Protect an ATerm.

Protects an ATerm from being freed by the garbage collector. See the section called “Memory
Management of ATerms’ (p. 10).

ATunpr ot ect
voi d ATunpr ot ect (ATer m *at p)
Unprotect an ATerm.

Releases protection of an ATerm which has previously been protected through acall to ATpr ot ect .
Seethe section called “Memory Management of ATerms” (p. 10) .

ATprot ect Array
voi d ATprotect Array(ATerm *start, int size)
Protect an array of ATerms.
Protects an entire array of si ze ATerms starting at st art .
ATunpr ot ect Arr ay
voi d ATunprot ect Array(ATerm *start)
Unprotect an array of ATerms.

Releases protection of the array of ATermswhich startsat st art .

Level Two Interface of C ATerm Library

This section explainsin detail the types and functions that are defined in the level two interface of the
Term library. These functions are declared in at er n2. h.

Level Two Types

In addition to the C-types explained in the section called “Level One Types (p. 13) the level two
interface al so uses the following ATerm types:

ATermint An integer value.
ATermResl A real value.
ATermAppl A function application.
ATermList A list of ATerms.
ATermPlaceholder A placeholder.
ATermBlob A Binary Large OBject.
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In addition to these pure ATerm types, two additional types are supported:
ATermTable A hash table of ATerms.
ATermlndexedSet A set of ATerms where each element has a unique index.

Both datatypes are containers for ATerms and provide mutable operations on the container itself.

Note

Of course, mutations on the containers do not affect the ATerms that occur as elementsin
the containers!

Level Two Functionality

This section describes all functions and macros that are available in the level two interface. To obtain
accessto thisfunctionality you need to#i ncl ude <at er n2. h>instead of <at er niL. h>inyour
application.

Level two: the type ATer m nt

Thetype ATer m nt isthe ATerm representation of an integer. It abides by the rules of the C-type:
int.

ATmakel nt
ATer mi nt ATmakel nt (i nt val ue)

Build an ATerm Int from an integer val ue.

ATget | nt
int ATgetlnt(ATerm nt t)

Macro to get the integer value fromthe ATerm t .

Level two: the type ATer nReal

The type ATer nReal isthe ATerm representation of areal. It abides by the rules of the C-type:
doubl e.

ATmakeReal
ATer nReal ATnmekeReal (doubl e val ue)

Build an ATerm Real from areal val ue.

ATgetReal
doubl e ATget Real (ATerm nt t)

Macro to get thereal value from the ATermt .

Level two: the type ATer mAppl

The type ATer mAppl denotes a function application. In order to build a function application, first
its function symbol (AFun) must be built. This symbol holds the name of the function application,
its arity (how many arguments the function has) and whether the function name is quoted. Below are
some examples of function applications and the symbols needed to create them.

* true:azero arity, unquoted function application that is created by:
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sym = ATmakeAFun("true", 0, ATfal se);
» "true"; the same function application, but now with quoted function symbol:
sym = ATmakeAFun("true", 0, ATtrue);
» f (0): anunguoted function application of arity 1:
sym = ATmakeAFun("f", 1, ATfal se);
e "prod" (2, b, []):aquotedfunction application of arity 3:
sym = ATmakeAFun(" prod", 3, ATtrue);
ATmakeAFun
AFun ATmakeAFun(char *nane, int arity, ATbool quoted)
Creates afunction symbol (AFun).

Creates an AFun, representing a function symbol with name nane and arity ar i t y. Quoting of the
function application is defined viathe quot ed argument.

ATpr ot ect AFun

voi d ATprot ect AFun( AFun synj

Just as ATerms which are not on the stack or in registers must be protected through a call to
ATpr ot ect , so must AFuns be protected by calling ATpr ot ect AFun.

ATunpr ot ect AFun

voi d ATunpr ot ect AFun( AFun sym

Release an AFun's protection.
ATget Nanme

char *ATget Nane( AFun sym

Return the name of an AFun.
ATgetArity

int ATget Arity(AFun sym

Return the arity (number of arguments) of afunction symbol (AFun).
ATi sQuot ed

ATbool ATi sQuot ed( AFun sym

Determine if afunction symbol (AFun) is quoted or not.
ATmakeAppl

ATer mAppl ATmakeAppl (AFun sym ...)

Build an application from an AFun and a variable number of arguments.

The arity is taken from the first argument sy m the other arguments of ATmakeAppl should be the
arguments for the application. For arity N=0, 1, ... 6 the corresponding ATrrak e Appl N can be used
instead for greater efficiency.
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ATmakeAppl O
ATer mAppl ATmakeAppl O( AFun syn)
Make a function application with zero arguments.
ATmakeAppl 1
ATer mAppl ATmakeAppl 1( AFun sym ATerm al)
Make a function application with one argument.
ATmakeAppl 2
ATer mAppl ATrmekeAppl 2( AFun sym ATerm al, a2)
Make a function application with two arguments.
ATmakeAppl 3
ATer mAppl ATmakeAppl 3(AFun sym ATerm al, a2, a3)
Make a function application with three arguments.
ATmakeAppl 4
ATer mAppl ATnmakeAppl 4( AFun sym ATerm al, a2, a3, a4)
Make a function application with four arguments.
ATmakeAppl 5
ATer mAppl ATmakeAppl 5( AFun sym ATerm al, a2, a3, a4, ab)
Make a function application with five arguments.
ATmakeAppl 6
ATer mAppl ATmakeAppl 6( AFun sym ATerm al, a2, a3, a4, ab, a6)
Make afunction application with six arguments.
ATget AFun
AFun ATget AFun( ATer mAppl appl )
Get the function symbol (AFun) of an application.
ATget Ar gunent
ATer m ATget Ar gunent ( ATer mAppl appl, int n)
Get the n-th argument of an application.
ATset Ar gunent
ATer mAppl ATset Ar gunent ( ATer mAppl appl, ATermarg, int n)
Set the n-th argument of an applicationto ar g.
This function returns a copy of appl with argument n replaced by ar g.
ATget Argunent s

ATer nmLi st ATget Ar gunent s( ATer mAppl appl)
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Get alist of arguments of an application.

Return the arguments of appl in ATer nmLi st format. Note: traversing the arguments of appl can
be done more efficiently using the ATget Ar gument macro.

ATmakeAppl Li st
ATer mAppl ATmakeAppl Li st (AFun sym ATernli st args)
Build an application given an AFun and alist of arguments.

Build an application from sy mand the argument list ar gs. Note: unlessthe arguments are already in
an ATer nLi st , it is probably more efficient to use the appropriate ATmakeAppl N.

ATmakeAppl Array
ATer mAppl ATmakeAppl Array( AFun sym ATerm args[])
Build an application given an AFun and an array of arguments.
Level two: the type ATer nLi st
Thetype ATermList isthe ATerm representation of linear lists.
ATmakeli st
ATer nLi st ATnmakeList(int n, ...)
Create an ATer nli st of n elements. The elements should be passed as arguments 1, ..., n.
ATmakelLi st O
ATer mLi st ATmakeLi st 0()
Macro that yieldstheempty list[] .
ATmakeli st 1
ATer nmLi st ATmakeLi st 1( ATer m al)
Construct alist of one element.
ATmakeli st 2
ATer nLi st ATmakeLi st 2( ATerm al, a2)
Construct alist of two elements.
ATmakeli st 3
ATer mLi st ATmakelLi st 3(ATerm al, a2, a3)
Construct alist of three elements.
ATmakeli st 4
ATer nLi st ATmakeLi st 4( ATerm al, a2, a3, a4)
Construct alist of four elements.
ATmakelLi st 5

ATer mLi st ATmekelLi st 5( ATerm al, a2, a3, a4, ab)
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Construct alist of five elements.
ATmakeli st 6
ATer nmLi st ATmekelLi st 6( ATerm al, a2, a3, a4, a5, ab6)
Construct alist of six elements.
ATget Lengt h
i nt ATget Lengt h( ATermii st |)
Macro to get the length of list | .
ATget Fi r st
ATer m ATget Fi r st (ATernli st 1)
Macro to get the first element of list| .
ATget Next
ATer nmLi st ATget Next (ATer nii st 1)
Macro to get the next part (thetail) of list| .
ATi sEnpt y
ATbool ATi sEnpty(ATernli st 1)
Macro to test if list | isempty.
ATget Tai |
ATer mLi st ATget Tai |l (ATernlist |, int start)
Return the sublist fromst art totheend of | .
ATr epl aceTai |
ATer nmLi st ATrepl aceTai |l (ATernList |, ATernList tail, int start)
Replacethetail of | from positionst art withtail .
ATget Prefi x
ATer nLi st ATget Prefi x(ATernList |)
Return al but the last element of | .
ATget Sl i ce
ATer mLi st ATget Slice(ATernList |, int start, int end)
Get aportion (dlice) of alist.
Return the portion of | that lies between st art and end. Thusst ar t isincluded, end is not.
ATi nsert

ATer nLi st ATi nsert (ATernLi st |, ATerm a)
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Return list | with element a inserted. The behaviour of ATi nsert isof constant complexity. That
is, the behaviour of ATi nsert does not degrade asthe length of | increases.

ATi nsert At
ATer nLi st ATi nsert At (ATernlList |, ATerma, int idx)
Return| with a inserted at positioni dx.
ATappend
ATer nmLi st ATappend( ATernlLi st |, ATerm a)
Return| with a appended to it.
ATappend isimplemented in terms of ATi nsert by making anew list with a as the first element
and then ATi nserting al elements from | . As such, the complexity of ATappend is linear in
the number of elements in | . When ATappend is needed inside a loop that traverses a list (see

Example 1.1, “Parse lists, version 1"(p. 28), behaviour of the loop will demonstrate quadratic
complexity.

Example 1.1. Parselists, version 1

/* Exanpl e of parse list that denonstrates quadratic conplexity */
ATer mLi st parse |ist1(ATernlist |ist)

{
ATer m el em
ATernmLi st result = ATenpty;
/* while |list has el enents */
while (!ATi senpty(list))
{
/* Get head of list */
el em = ATgetFirst(list);
/* If elemsatisfies some predi cate (not shown here)
then APPEND it to result */
if (some_predicate(elem == ATtrue)
result = ATappend(result, elem;
/* Continue with tail of list */
list = ATget Next (list);
}
/* Return the result list */
return result;
}

To avoid this behaviour, theinner loop could use ATi nsert instead of ATappend to make the new
list. This will cause the resulting list to be in reverse order. A single ATr ever se must therefore
be performed, but this can be done after the loop has terminated, bringing the behaviour down
from quadratic to linear complexity, but at the cost of two ATi nsert s per element (one for each
ATi nsert intheloop, and an implicit one for each element through the use of ATr ever se). An
examplein Example 1.2, “Parse lists, version 2" (p. 29).
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Example 1.2. Parselists, version 2

/* Exanpl e of parse list that denonstrates |inear conplexity,
* using ATinsert instead of ATappend and reversing the |ist
* outside the |oop just once. */

ATer nLi st parse_list2(ATernli st |ist)

{
ATerm el em
ATernmLi st result = ATenpty;
/[* while list has el enents */
whil e (!ATi senpty(list))
{
/* Get head of list */
el em = ATgetFirst(list);
/* If elemsatisfies some predi cate (not shown here)
then INSERT it to result */
if (some_predicate(elem == ATtrue)
result = ATinsert(result, elem;
/* Continue with tail of list */
list = ATget Next (list);
}
/* Return result after reversal */
return ATreverse(result);
}

An even further optimisation could make use of alocally allocated buffer. While traversing the list,
all elements that would normally be ATappended, are now placed in this buffer. Finaly, the result
is obtained by starting with an empty list and ATi nser t ing al elements from this buffer in reverse
order. Asthe cost of allocating and freeing alocal buffer is by no means marginal, this solution should
probably only be applied when the loop appends more than just a few elements. This is shown in
Example 1.3, “Parselists, version 3" (p. 30)
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Example 1.3. Parselists, version 3

/* Exanmpl e of parse_list that denpnstrates |inear conplexity,
* but which avoi ds using ATinsert tw ce, by inlining ATreverse
* using a local buffer. */

ATer nLi st parse_list3(ATernlist |ist)

{
i nt pos = O;
ATerm el em
ATerm *puf fer = NULL;
ATernLi st result = ATenpty;
/* Allocate |ocal buffer that can hold all elenments of list */
buffer = (ATerm *) call oc(ATget Length(list), sizeof(ATernj);
if (buffer == NULL) abort();
/* while list has el enents */
whil e (!ATi sEnpty(list))
{
/* Get head of list */
elem = ATgetFirst(list);
/[* If elemsatisfies some predicate (not shown here)
* then add it to buffer at next avail able position */
if (some_predicate(elem == ATtrue)
buf f er[ pos++] = el em
/[* Continue with tail of list */
list = ATget Next (list);
}
/* Now insert all elens in buffer to result */
for(--pos; pos >= 0; pos--)
result = ATinsert(result, buffer[pos]);
/* Rel ease all ocated resources */
free(buffer);
/* Return result */
return result;
}
ATconcat

ATer nLi st ATconcat (ATernLi st |1, ATernlist |2)
Return the concatenation of | 1 and | 2.

ATi ndexC
i nt ATi ndexOf (ATernlist |, ATerma, int start)

Return the index of an ATerm in alist. Return the index where element a can be found in thelist | .
Start looking at position st art . Returns- 1 if a isnot in thelist.

ATl ast | ndexOf
i nt ATl ast| ndexCOf (ATernList |, ATerma, int start)

Return the index of an ATerm in alist (searching in reverse order).
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Search backwards for element a inthelist | . Start searching at position st ar t . Return the index of
the first occurrence of a encountered, or - 1 when a is not present beforest art .

ATel enment At
ATer m ATel enent At (ATernblist |, int idx)

Return a specific element of alist. Return the element at positioni dx inlist| . Return NULL when
i dx isnotinthelist.

ATr enoveEl enment
ATer mLi st ATrenoveEl enent (ATernli st |, ATerm a)
Returnthelist| with one occurrence of element a removed.
ATr enoveAl |
ATer nLi st ATrenpveAl | (ATernlist |, ATerm a)
Returnthelist| with al occurrences of element a removed.
ATr enoveEl enent At
ATer mLi st ATr enoveEl enent At (ATernlist |, int idx)
Returnthelist | with the element at positioni dx removed.
ATr epl ace
ATer nLi st ATrepl ace( ATernLi st |, ATerma, int idx)
Returnthelist| with the element at position i dx replaced by a.
ATreverse
ATer nLi st ATrepl ace(ATernlist |, ATerma, int idx)
Returnthelist| with its elementsin reverse order.
ATsort
ATer nLi st ATsort(ATernlist |, int (*conmpare)(ATermtl, const ATermt2))
Sort thelist | given acomparison function conpar e. Theresult isanew list.
ATfilter
ATer nLi st ATsort (ATernlist |, ATbool (*predicate)(ATermt))

Create anew list that consists of all elementsof list| that satisfy the predicate pr edi cat e.

Level two: the type ATer nPl acehol der

A placeholder is a special subtype used to indicate a typed hole in an ATerm. This can be used to
create aterm of a specific type, even though its actual contents are not filled in.

ATmakePl acehol der

ATer nPl acehol der ATnakePl acehol der (ATer m t ype)

Build an ATerm Placeholder of a specific type. The type is taken from the t ype parameter. See
Example 1.4, “ Examples of place holders’ (p. 32).
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ATget Pl acehol der
ATer m ATget Pl acehol der ( ATer nPl acehol der ph)

Get the type of an ATerm Placeholder.

Example 1.4. Examples of place holders

#i ncl ude <assert. h>

#i ncl ude <atern2. h>

/* This exanpl e denpnstrates the use of an ATernPl acehol der.
It creates the function application "add" defined on two
i ntegers without actually using a specific integer:
add(<i nt>, <int>).

/

voi d denmpo_pl acehol der ()

* X * X X

{
Synbol sym.int, sym add;
ATer mAppl app_add;
ATer nPl acehol der ph_int;
/* Construct placeholder <int> using zero-arity function
synbol "int" */
sym.int = ATnmakeSynbol ("int", 0, ATfalse);
ph_i nt = ATnmakePl acehol der ( (ATer m) ATnakeAppl O(sym.int));
/* Construct add(<int>, <int>) using function synbol
"add" with 2 args */
sym add = ATnmakeSynbol ("add", 2, ATfal se);
app_add = ATnakeAppl 2(sym add, (ATermph_int, (ATern)ph_int);
/* Equal to constructing it using the |Ievel one interface */
assert ( ATi sequal (app_add, ATparse("add(<int>, <int>)")));
/* Prints: Placeholder <int>is of type: int */
ATprintf("Placehol der % is of type: %\n",
ph_i nt, ATget Pl acehol der (ph_int));
}
int main(int argc, char *argv[])
{
ATer m bot t onOf St ack;
ATinit(argc, argv, &bottonOf Stack);
deno_pl acehol der () ;
return O;
}

Level two: the type ATer nBl ob

ATmakeBl ob
ATer nBl ob ATnekeBl ob(unsi gned i nt size, void *data)
Build aBinary Large OBject given si ze (in bytes) of dat a. This function can be used to create an

ATer mof type blob, holding the data pointed to by dat a. No copy of this data areais made, so the
user should allocate this himself. The size of ablab islimited by the maximal value of integers.
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ATget Bl obDat a

voi d *ATget Bl obDat a( ATer nBl ob bl ob)

Macro to get the data section of agiven bl ob.

ATget Bl obSi ze

i nt ATget Bl obSi ze( ATer nBl ob bl ob)

Macro to get the size (in bytes) of the data section of agiven bl ob.

ATr egi st er Bl obDest r uct or

voi d ATregi st er Bl obDest ruct or (ATbool (*destructor) (ATernBl ob))

Register a blob-destructor function. When a blob-destructor function has been registered, it will be
called whenever the garbage collector deletes an ATermBIlob. The destructor function can then handle
the deletion of the data area of the blob. At most 16 blob destructor functions can be registered in the
current implementation.

ATunr egi st er Bl obDest r uct or

voi d ATunr egi st er Bl obDest r uct or (ATbool (*destructor) (ATer nBl ob))

Unregister a blob-destructor function that has been previously registered through a call to
ATr egi st er Bl obDest ruct or.

Level two: the type ATer nDi cti onary

Dictionaries are data structures which allow looking up a certain ATerm given another ATerm. The
dictionary itself isalso an ATerm and as such is subject to the garbage collection rules of the ATerm.
Each dictionary consists of its own list of ATerms. For each lookup in the dictionary, the list is
traversed to seeif the current element's key matches the one being looked up. A lookup in adictionary
demonstrates behaviour linear in the number of elements the dictionary contains. On average fifty
percent of the number of elements in the dictionary are examined before a match is found (if the
elementispresent at all). For amore efficient ATerm-to-ATerm mapping, seethe section called “ Level
two: thetype ATer nTabl e” (p. 34).

ATdi ct Creat e

ATer m ATdi ct Creat e()

Create anew dictionary.

ATdi ct Get

ATer m ATdi ct Get (ATer m di ct, ATer m key)

Get the value belonging to agiven key in adictionary.

ATdi ct Put

ATer m ATdi ct Put (ATer m di ct, ATerm key, ATerm val ue)

Add / update a (key, val ue)-pair in adictionary. If key does not already exist in the dictionary,
thisfunction addsthe (key, val ue)-pair to the dictionary. Otherwise, it updates the value associated
with key to val ue. The modified dictionary is returned.
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ATdi ct Renove
ATer m ATdi ct Renmove( ATerm di ct, ATer m key)

Remove a (key, val ue)-pair from a dictionary. If the entry was actually in the dictionary, the
modified dictionary is returned. If the entry was not in the dictionary, the (unmodified) dictionary
itself is returned.

Level two: the type ATer niTabl e

The dictionaries described in the section called “Level two: the type ATer nDi ct i onar y(p. 33)
are in essence nothing more than linked lists, which makes them less suitable for large ATerm-to-
ATerm mappings. To this end, ATerm tables were created. These are efficiently implemented using
a hash table requiring approximately 16 bytes per stored entry, assuming that the hash table is filled
for 50%.

ATt abl eCreat e

ATer niTabl e ATtabl eCreate(int initial _size, int max_| oad_pct)

Createan ATermTablegivenaninitial sizeand amaximum load percentage. Whenever this percentage
is exceeded (which is detected when a new entry is added using ATt abl ePut ), the table is
automatically expanded and all existing entries are rehashed into the new table. If you know in advance
approximately how many items will be in the table, you may set it up in such away that no resizing
(and thus no rehashing) is necessary. For example, if you expect about 1000 itemsin thetable, you can
createit with itsinitial size set to 1333 and a maximum load percentage of 75%. Y ou are not required
to do this, it merely saves a runtime expansion and rehashing of the table which increases efficiency.

ATt abl eDest r oy
voi d ATt abl eDest r oy( ATer nirabl e tabl e)

Destroy an ATermTable. As opposed to ATermDictionaries, ATermTables are themselves not
ATerms. This means they are not freed by the garbage collector when they are no longer referred
to. Therefore, when the table is no longer needed, the user should release the resources allocated by
the table by calling ATt abl eDest r oy. All references the table has to ATerms will then also be
removed, so that those may be freed by the garbage collector (if no other references to them exist
of course).

ATt abl eReset

voi d ATt abl eReset ( ATer niTabl e t abl e)

Reset an ATermTable. This function resets an ATermTable, without freeing the memory it occupies.
Its effect is the same as the subsequent execution of a destroy and a create of a table, but as no
memory is released and obtained from the C memory management system this function is generally
cheaper. However, if subsequent tables differ very much in size, the use of ATt abl eDest r oy and
ATt abl eCr eat e may be preferred, because in such away the sizes of the table adapt automatically
to the requirements of the application.

ATt abl ePut

voi d ATt abl ePut (ATer mTabl e tabl e, ATerm key, ATerm val ue)

Add/ update a (key, val ue)-pair in atable. If key does not aready exist in the table, this function
adds the (key, val ue)-pair to the table. Otherwise, it updates the value associated with key to
val ue.

ATt abl eGet

ATer m ATt abl eGet (ATer niTabl e tabl e, ATer m key)
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Get the value associated with agiven key inat abl e.
ATt abl eRenove
voi d ATt abl eRenove( ATer mTabl e t abl e, ATerm key)

Remove the pair with the key key fromt abl e.

ATtableKeys
ATer nLi st ATt abl eKeys( ATer nTabl e t abl e)

Get an ATermList of all the keysin atable. This function can be useful if you need to iterate over
all elementsin atable.

ATtableValues

ATer mLi st ATt abl eVal ues( ATer mTabl e t abl e)

Get an ATermList of al the valuesin atable. This function can be useful if you need to iterate over
all valuesin atable.

Level two: the type ATer m ndexedSet

The data type ATer ml ndexedSet provides a mapping from ATerms to integers, with as aim to
assign successive integers from zero upwards to each entered term. The association between aterm
and an integer remains fixed until the term is removed from the table. When assigning integers to
newly entered elements, integers previoudly assigned to removed el ements are used first. The range of
assigned integersisthus as compact as possible. Thisdatatype can be used for various purposes. First,
one can make amapping from ATermsto elementsin any arbitrary domain D. By enteringthe ATerms
in an ATer m ndexedSet each ATerm gets a subsequent integer assigned. These integers can be
used asentriesin an array to obtain the element of domain Dthat is associated with the ATerm. Another
type of application isthe use as a set. Suppose that a sequence of ATerms must be processed. Suppose
that the sequence can contain identical ATerms, and that each unique ATerm needs to be processed
only once. Each processed ATerm can then be entered in theindexed set. For each candidate ATermto
be processed one inspection of the indexed set sufficesto know whether this ATerm has already been
processed before. A particular instance of this kind of application is the exploration of state spaces,
where each state is represented by an ATerm. The implementations of ATer ml ndexedSet and
ATermTable are strongly related. The implementation is quite efficient both in time and space, only
requiring 16 bytes for each entry in anindexed set, if the hash table, which formsits core, is half full.

ATi ndexedSet Cr eat e

ATer ml ndexedSet ATi ndexedSet Create(l ong initial_size,
i nt max_| oad_pct)

Create a new ATer m ndexedSet with approximately the size i nitial _si ze, where it
guarantees that the internal hash table, will be filled up to max_| oad_pct percent. If needed,
the size of the hash table is dynamically extended to hold the entries inserted into it. If extension
of the hash table fails due to lack of memory, it is attempted to fill the hash table up to
100%. All elements entered into the indexed set are automatically protected. Note that for each
ATi ndexedSet Cr eat e an ATi ndexedSet Dest r oy must be carried out to free memory, and to
allow inserted elementsto be released by the automatic garbage system of the ATerm library. Carrying
out aATi ndexedSet Reset does not free the memory, but allows inserted elements to be garbage
collected.

ATi ndexedSet Dest r oy

voi d ATi ndexedSet Dest r oy( ATer ml ndexedSet set)
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Releases al memory occupied by set .

ATi ndexedSet Reset
voi d ATi ndexedSet Reset ( ATer ml ndexedSet set)

Clear thehashtableintheset , but do not releasethe memory. Using ATi ndexedSet Reset instead
of ATi ndexedSet Dest r oy is preferable when indexed sets of approximately the same size are
being used.

ATi ndexedSet Put
| ong ATi ndexedSet Put ( ATer ml ndexedSet set, ATerm el em ATbool *isnew}
Enter el eminto the set . If el emwas already in the set the previoudly assigned index of el emis
returned, and i snewis set to false. If el emdid not yet occur in set anew number is assigned and
returned, andi snewis set to true. This number can either be the number of an element that has been
removed, or, if such a number is not available, the lowest not-used number. The lowest number that
isusedisO.

ATi ndexedSet Get | ndex
| ong ATi ndexedSet Get | ndex( ATer m ndexedSet set, ATerm el en
Find the index of el eminset . When el emisnot in the set, a negative number is returned.

ATi ndexedSet Get El em
ATer m ATi ndexedSet CGet El en{ ATer ml ndexedSet set, |ong index)

Retrievetheelement ati ndex inset . Thisfunction must beinvoked with avalid index and it returns
the element assigned to thisindex. If it isinvoked with an invalid index, effects are not predictable.

ATi ndexedSet Renpve

voi d ATi ndexedSet Renove( ATer m ndexedSet set, ATerm el en}

Removeel emfromset . If anumber wasassignedto el em itisfreed to bereassigned to an element
that may be put into the set at some later on.

ATi ndexedSet El enent s
ATer mLi st ATi ndexedSet El ement s( ATer ml ndexedSet set)

Retrieve all elementsin set . Theresulting list is ordered from element with index 0 onwards.

Command Line Utilities

This section describes the utilities that come with the ATerm library. These utilities are automatically
built when the ATerm library is compiled and installed.

ATerm-conversion: baffle

This utility can be used to convert between the different ATerm formats. TEXT, BAF, and TAF.
Usage:

baffle [-i <input>] [-0 <output> | -c] [-Vv] [-rb | -rt | -rs | -r§]
[-wo | -wt | -ws | -w§]
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The options are explained in Table 1.5, “Command line options baffle” (p. 37).

Table 1.5. Command line options baffle

Option Description
-i 1 nput Read input from filei nput (default: stdin)
-0 out put Write output to file out put (default: stdout)
-C Check vaidity of input-term
-v Print version information
-h Display help information
-rb,-rt,-rs,-rS Choose between BAF, TEXT, TAF or SAF input (default: auto
detected)
-Wh, -wt,-ws, - wS Choose between BAF, TEXT, TAF or SAF output (Default: - wh)

Some small scripts are included which can be used to connect a process producing one ATerm format
to a process which expects another. These scripts just set up baffle with the appropriate switches and
redirect st di n and st dout accordingly. These scripts are appropriately called: trm2baf, baf2trm,
trm2taf, taf2trm, baf2taf, and taf2baf.

Warning

Do we want to add trm2saf, saf2baf, etc?

Calculating the size of an ATerm: termsize

termsize can be used to calculate three things:

 coresize: the amount of memory agiven ATerm needs,

* text size: the amount of memory needed to hold atextual representation of an ATerm;
* tree depth: the maximum depth of an ATerm.

Usage:

ternsize < inputfile

termsizereadsan ATerm from standard input (i nput f i | e) and writesthe resultsto standard output
(st dout ). Theinput term can bein any format (TEXT, BAF, TAF, SAF).

Calculating MD5 checksum of an ATerm: atsum

atsum calculatesand printsthe M D5 checksum of the TAF representation of an ATerm. Thea gorithm
used is the RSA Data Security, Inc. MD5 Message-Digest Algorithm (see RFC1321). Usage:

atsum [i nputfil e]

Calculating differences between two ATerms: atdiff

atdiff compares two terms and prints a template term that covers the common parts containing place
holders of the form <di f f > for subterms that differed, and alist of their differing subterms. Usage:

atdiff [<options>] filel file2

The options are explained in Table 1.6, “Command line options atdiff” (p. 38).
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Table 1.6. Command line options atdiff

Option Description
--nodi ffs Do not generate diffs
--diffs diff-file Writediffstodi ff - fi | e (default: st dout)
--notenpl ate Do not generate templates
--tenplate tenplate- |Writetemplatestot enpl ate-fil e (default: st dout)
file

Using the Java ATerm Library

In addition to the C implementation discussed upto now, a Javaimplementation of the ATerm Library
isalso available. Theinterfaces of the C implementation and the Javaimplementation are as similar as
possible. Unfortunately, constraints imposed by both languages prohibit the use of a single interface
for both languages. In this section wewill discussthe Javainterface, and highlight the differenceswith
the Cinterface where appropriate. Most differences areintroduced by the fact that Javaisamuch more
structured and higher-level language than C. For instance, Java provides built-in garbage collection,
so no ATpr ot ect and ATunpr ot ect functions are needed in Java.

Overview of the Java ATerm Library
The interface ATer mdefines functionality relevant for all ATerm subtypes. Each of these ATerm
subtypes has its own interface, describing the additional functionality relevant for that particular

subtype. An interface ATer nmFact or y describes the various methods used to create new ATerm
objects. It is used to implement maximal sharing.

Theinterface hierarchy is shown in Figure 1.4, “Interface hierarchy” (p. 38).

Figure 1.4. Interface hierarchy

ATermList

ATermReal

ATermlInt

PureFactory

ATermBlob

D Interface D Is-a
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The ATerm library comes with a single implementation of the ATerm interfaces. For instance,
the interface ATermList is implemented by the class called ATermListimpl. The ATermFactory is
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implemented by the class PureFactory. This implementation is a “pure" Java one, but given this
interface organization it would, in principle, be possible to build a layer of Java code on top of the
C implementation using the Java Native Interface (JNI) . The advances and disadvantages of such
an implementation have never been explored in detail. A complete and up-to-date description of the
Java implementation of the ATerm library can be found at http://homepages.cwi.nl/~daybuild/daily-
docg/aterm-javal.

Java ATerm Interfaces

Wegive here, without further ado, the methods defined by the Java ATerm Interfaces. For the meaning
of individual methods we refer to both the description given for the C implementation and to http://
homepages.cwi.nl/~daybuild/daily-docsaterm-javal. [http://homepages.cwi.nl/~daybuild/daily-docs/
aterm-javal]

Interface ATer m nt

public int getlnt();

See the section called “Level two: the type ATer ml nt’ (p. 23) for a descriptions of the
corresponding C functions.

Interface ATer nReal

public doubl e getReal ();

See the section called “Level two: the type ATer nReal” (p. 23) for a descriptions of the
corresponding C functions.

Interface ATer nLong
public | ong getLong();

The support for long integersis unique for the Java ATerm library.

Interface AFun

public String get Name();
public int getArity();
publ i c bool ean i sQuoted();

See the section called “Level two: the type ATer mAppl” (p. 23) for a descriptions of the
corresponding C functions.

Interface ATer mAppl
public AFun get AFun();
public String get Nanme();
public ATernLi st getArgunents();
public ATern{] getArgunmentArray();
public ATerm get Argunent (int i);
publ i c ATer mAppl set Argunent (ATermarg, int i);
publ i c bool ean i sQuoted();
c

public int getArity();

See the section called “Level two: the type ATer mAppl” (p. 23) for a descriptions of the
corresponding C functions.

Interface ATer nBl ob

public int getBlobSize();
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public byte[] getBl obData();

See the section called “Level two: the type ATer nBl ob (p. 32) for a descriptions of the
corresponding C functions.

Interface ATer nfFact ory

ATerm parse(String trn;
ATerm make(String trn;
ATerm make(String pattern, List<Cbject> args);
ATerm make(String pattern, Object argl);
ATerm make(String pattern, Object argl, Object arg2);
ATerm make(String pattern, Object argl, Object arg2, Object arg3l);
ATerm make(String pattern, Object argl, Object arg2, Object arg3,
oj ect arg4);
ATerm make(String pattern, Object argl, Object arg2, Object arg3,
oj ect arg4, noject argb);
ATerm make(String pattern, Object argl, Object arg2, Object arg3,
oj ect arg4, nject arg5, Object argb);
ATerm make(String pattern, Object argl, Object arg2, Object arg3,
oj ect arg4, nject arg5, Object arg6, Object arg7);
ATermi nt makelnt (i nt val);
ATer mLong makeLong( ! ong val);
ATer nReal makeReal (doubl e val);
ATer nmLi st makeLi st ();
ATer nLi st makelLi st (ATer m si ngl e) ;
ATer nLi st makeli st (ATer m head, ATernlist tail);
ATer nPl acehol der makePl acehol der (ATer m t ype) ;
ATer nBl ob makeBl ob(byte[] data);
AFun makeAFun(String name, int arity, boolean isQuoted);
ATer mAppl makeAppl (AFun fun);
ATer mAppl makeAppl (AFun fun, ATerm arg);
ATer mAppl makeAppl (AFun fun, ATerm argl, ATerm arg2);
ATer mAppl makeAppl (AFun fun, ATerm argl, ATerm arg2, ATerm arg3);
ATer mAppl makeAppl (AFun fun, ATerm argl, ATerm arg2, ATerm arg3,
ATer m ar g4) ;
ATer mAppl makeAppl (AFun fun, ATerm argl, ATerm arg2, ATerm arg3,
ATer m arg4, ATerm arg5);
ATer mAppl makeAppl (AFun fun, ATerm argl, ATerm arg2, ATerm arg3,
ATer m arg4, ATerm arg5, ATerm arg6);
ATer mAppl makeAppl (AFun fun, ATerni] args);
ATer mAppl makeAppl Li st (AFun fun, ATernlist args);
ATer m r eadFr onTText Fi | e( | nput St r eam str eam
t hrows | CExcepti on;
ATer m r eadFr onShar edText Fi | e( | nput St ream st r eam
t hrows | CExcepti on;
ATerm readFronfil e(String file)
t hrows | CExcepti on;
ATerm i nport Term(ATermterm; /* fromother factory */

See the section called “Making and Matching ATerni§p. 4)for descriptions of the make-like
functions and the section called “Reading and Writing ATernip. 7)for the reading-writing
related functions. Observe that the Javaimplementation does not support reading or writing from BAF
files.

Interface ATer nli st

publ i c bool ean i sEnpty();
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publ i
publ i

ATer nmLi st di ct Put (ATer m key, ATerm val ue);
ATer nmLi st di ct Renove( ATer m key) ;

public int getlLength();
public ATerm getFirst();
public ATerm getLast();
public ATernlLi st get Next();
public int indexOF(ATermel, int start);
public int |astlndexCOf(ATermel, int start);
public ATernlLi st concat (ATernli st rhs);
public ATernlLi st append(ATermel);
public ATerm el ementAt(int i);
public ATernlList renove(ATermel);
public ATernlList renoveEl enentAt(int i);
public ATernLli st renoveAl |l (ATermel);
public ATernLlist insert(ATermel);
public ATernList insertAt(ATermel, int i);
public ATernlist getPrefix();
public ATernlList getSlice(int start, int end);
public ATernlist replace(ATermel, int i);
public ATernlList reverse();
public ATerm di ct Get (ATer m key) ;

c

c

See the section called “Level two: the type ATer nli st’(p. 26)and the section called “Level two:
the type ATer nDi cti onary’' (p. 33)for a descriptions of the corresponding C functions. Note
that ATermIndexSet (see the section called “Level two: the type ATer ml ndexedSet (p. 35)
isnot availablein the Java ATerm library.

Interface ATer nPl acehol der

publ i c ATer m get Pl acehol der () ;

See the section called “Level two: the type ATer nPl acehol der’ (p. 31)for a descriptions of
the corresponding C functions.

Interface | denti fi abl e

public int getUniqueldentifier();

Interface Vi si t abl e

public aterm Visitable accept(aterm Visitor visitor)
throws jjtraveler.VisitFailure;

Thevisitor functionality isunique for the Java ATerm library. See http://homepages.cwi.nl/~daybuild/
daily-docs/aterm-javal for details.

Interface Vi si t or

public aterm Visitabl e visitATern{ATer m ar g)
throws VisitFailure;

public aterm Visitable visitlnt(ATerm nt arg)
throws VisitFailure;

public aterm Visitable visitLong(ATermnLong arg)
throws VisitFailure;

public aterm Visitabl e visitReal (ATer nReal arg)
throws VisitFailure;

public aterm Visitable visitAppl (ATer mppl arg)
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throws VisitFailure;
public aterm Visitable visitList(ATernList arg)
throws VisitFailure;
public aterm Visitabl e visitPl acehol der (ATer nPl acehol der arg)
throws VisitFailure;
public aterm Visitabl e visitBl ob(ATer nBl ob ar g)
throws VisitFailure;
public aterm Visitabl e visitAFun( AFun fun)
throws VisitFailure;

Thevisitor functionality isunique for the Java ATerm library. See http://homepages.cwi.nl/~daybuild/
daily-docs/aterm-javal for details.

Interface ATer m

public static final int INT = 2;

public static final int REAL = 3;

public static final int APPL = 1;

public static final int LIST = 4;

public static final int PLACEHOLDER = 5;
public static final int BLOB = 6;

public static final int AFUN = 7;

public static final int LONG = 8;

public int getType();

public int hashCode();

public List<Cbject> match(String pattern);
public List<Cbject> match(ATerm pattern);
publ i c bool ean hasAnnot ati ons();

publ i c ATer m get Annot ati on( ATerm | abel ) ;

publ i c ATer m set Annot ati on( ATerm | abel , ATer m anno) ;
publ i c ATer m r enoveAnnot ati on( ATer m | abel ) ;
publ i c ATernlLi st get Annotations();

publ i c ATer m set Annot ati ons( ATer nLi st annos) ;
publ i c ATer m r enbveAnnot ati ons();

publ i c bool ean i sEqual (ATermterm;

publ i c bool ean equal s( Cbj ect obj);

public void witeToTextFil e(QutputStream stream

t hrows | CExcepti on;

public void witeToSharedText Fi | e( Qut put Stream strean)
t hrows | CExcepti on;

publ i c ATer m nake(Li st <Obj ect> args);

publ i c ATer nfFactory getFactory();

public String toString();

See the section called “Making and Matching ATerni§p. 4)for descriptions of the make-like

functions and the section called “Reading and Writing ATernip. 7)for the reading-writing
related functions. Observe that LONGis only supported by the Javaimplementation.

Example Using the Java ATerms

To give aflavour of the manipulation of ATermsin Java, Example 1.5, “Using ATerms in Java’ (p.
43) shows the creation of some ATerms and reading of an ATerm from a stream.
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Example 1.5. Using ATermsin Java

i mport java.io.*;
i mport aterm *;

public class Basic

{
private ATernfFactory factory;

public static final void main(String[] args) throws | OException {

Basi ¢ basic = new Basic(args);
}

public Basic(String[] args) throws | OException {
factory = new aterm pure. PureFactory();

ATerm nt i = factory. nakel nt (42);
Systemout.println("i =" +i);

AFun fun = factory. makeAFun("foo", 2, false);
ATer mAppl foo = factory. makeAppl (fun, i, i);
Systemout.printin("foo =" + foo);

ATermt = factory.parse("this(is(a(term(0))))");
Systemout.println("t =" +1t);

try {

ATerm i nput = factory.readFronFil e(Systemin);

Systemout.println("You typed a valid term " + input);
} catch (ParseError error) {

System out. println("Your input was not a valid term");
}

}
}

Differences between C and Java Version of ATerm
Library

The differences between the C and Java version of the ATerm library are summarized in Table 1.7,
“Differences C and Javaversion” (p. 43).

Table 1.7. Differences C and Java version

Feature C Java
(Un)protecting ATerms yes no (automatic)
LONG no yes
ATermTable yes no
AtermlndexedSet yes no
BAF yes no
Digtinction level 1/level 2 yes no
interface
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Historical Notes

The first term structure to be used for data exchange in The Meta-Environment was designed as part
of the ToolBus coordination architecture and is described in [BK94] (p. 44) and was implemented
by Paul Klint. These "ToolBus terms" already provided the make-and-match paradigm (the section
caled “Making and Matching ATernis(p. 4) for constructing and deconstructing terms. They
also provided alinear string representation for the exchange of terms between components as well as
automatic garbage collection.

The ATerms as discussed here are described in detail in [BJKOOQO0] (p. 44) and were implemented
by Hayco de Jong and Pieter Olivier (both in C and Java). They introduced several innovations over
the original design: maximal subterm sharing, annotations, a compressed binary exchange format,
and a two-level Application Programming Interface (API) that enables both simple and efficient
use of ATerms. The Java implementation uses SharedObjects as described in [BMVO05] (p. 44)
and implemented by Pierre-Etienne Moreau. Erik Scheffers adapted the C ATerm Library to 64
bit architectures. Arnold Lankamp added the streamable ATerm format (SAF), performed major
optimizations on both the C and the Java version and made the Java version ready for efficient
execution on multi-core machines.

In order to further control the type safe access to ATerms, the APl generator apigen has been
developed. First in C, described in [JO04] (p. 44) and implemented by Hayco de Jong and Pieter
Olivier. Later in Java, described in [BMVO05] (p. 44) and implemented by Pierre-Etienne Moreau
and Jurgen Vinju.

Since their inception, ATerms have been used in awide range of application:
» Data exchange between interoperating components.

» Implementation of term rewriting languages and engines.

* Source code representation and transformation.

* Software renovation.

 Representation of web ontologies.

» Representation of state spaces that are used for model checking.

» Representation of feature diagrams as used for domain-specific engineering and software product
lines.

An overview of the application of ATerms can be found in [BKO7] (p. 44).
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