Chapter 1. Guide to ToolBus
Programming

Hayco de Jong
Paul Klint
Arnold Lankamp
Pieter Olivier

2007-12-04 15:02:36 +0100 (Tue, 04 Dec 2007)

Table of Contents

Fg1ugoTo [0 oi [l H PP PPPPTRPPPPTI 2
Background and MOLIVELION ..........oiouniiieii e e 2
TOOIBUS FEOUITEIMENTS ... et et eeit e et e et et e et e e e e et e e e e et e e e et e e ea e e et e e eanaaeennns 3
The TOOIBUS @rChiteCIUNE ........ceeieie e 4
HOW t0 O from Nere? ... e e 5

LIS o 11 £ PP 6
LIS 111 PPN 6
= o o1 oo TR 6
B 0= T PPNt 7
TSCHPLS TN AELAIT ..oeeeeeeeeee e et 8

EXAMPIES OF TSCIPLS .. eeeeet ettt e e e et e e e e e et e e e e eaneaes 14
CalCUIALOr EXAMPIE ...t 14
AUCLION BEXAMPIE <. 20
WAVE EXBMPIE ...t e e e 28

Executing TOOIBUS @Nd TO0IS ........cuuiiit i e e e 33
COMIMON BIGUMIETIES ...ttt ee ettt e et et et ettt et e e e e et e e et e et e et e et e en e enaeanns 33
TOOIBUS @rQUMENTS ... eeeteeet ettt e e e e et e et e e et et e e e e e et e e ea e e et e e een e eennaaes 33
TOOl BIQUIMIENES ... ettt ettt et e et e ettt ettt et e e e e et e e et e e et e e etn e eeeneennns 34

TOOIBUS TOOIS ...ttt et e et e et e et e e e e 35
The global structure of a TOOIBUS tOO0 ..........iieuniiiiii e 35
Adapters for tools and 1aNQUBGES ........uueieniiii e 36
Automatic generation of tool INtErfaces ... 37

Writing TOOIBUS t00IS TN € ...ttt e e e e e e e e ea e 38
The include file at D-t1 001 . D oooueii 38
The tool library 11 DATB. @ ... e e 39
ThEe TOOIBUS AP ...t 39
Compiling TooIBUS tOOIS WILEEN iN C ....cuiiiii i eei 42
Automatic generation of C tool iNterfaces ..........couuiiiiiiiii e 43

WIiting TOOIBUS tO0IS IN JAVA .....uieei e e e e e 47
The ADST T aCt TOOI ClaSS ..ouvuiiiiiii e 48
Tool definition in the hello SCHPL ...... oo 48
The hello example iN JAVA .........iiin e 49

Writing ToolBus toolS in Other 1aNQUABGES ...........iiieiiiiie e 50
WIiting tO0IS 1N TCI/TK .oeeieie e 50
Y1100 o PP 51
= 1 PP PP PP PPPPPTTRPPPPIN 51

Reference INFOrMELION .........ooeiii e 51
The SYNaX Of TSCITPS ..ueee it e e e an e 51




Guide to ToolBus Programming

BUITE-IN FUNCHIONS ...t 53
Synopsis of TOOIBUS PIIMITIVES .......cciiiiiiiiiii et 58
HISIOMCEl NOLES ... ettt e et e e e 60
BiIDIIOGIAPNY ...t e 60
TIO DO ettt e aen 61
Warning

This document is in state of creation and will further evolve. It provides a description of
the classic C-based ToolBus as well as of the Java-based ToolBusNG. Eventualy, it will
exclusively focus on ToolBusNG. See the section called “To Do” (p. 61).

Introduction

Background and Motivation

Building large, heterogeneous, distributed software systems poses serious problems for the software
engineer. Systems grow larger because the complexity of the tasks we want to automate increases.
They become heterogeneous because large systems may be constructed by re-using existing software
as components. It is more than likely that these components have been developed using different
implementation languages and run on different hardware platforms. Systems become distributed
because they have to operate in the context of local area networks.

Three aspects of heterogeneous, distributed, systems should be considered: coordination,
representation and computation.

Coordination. Coordination isthe way inwhich program and system partsinteract with each other
using, ordinary procedure calls, remote procedure calls (RPC), remote method invocation (RMI), and
others.

Representation. Representation is the language and machine neutral format for data being
exchanged between components.

Computation. Computation is done by specialized program code that carries out a specific task,
e.g., providing a user-interface, providing database access, and the like.

Our key assumption is asfollows:

I mportant

A rigorous separation of coordination from computation is the key to flexible and reusable
systems.

A system organization that respects this separation is shown in




Guide to ToolBus Programming

Figure 1.1. Separating coor dination from computation

Coordination

Representation Representation

Computation Computation

Single Component Single Component

We propose to get control over the possible interactions between software components (tools) by
forbidding direct inter-tool communication. Instead, all interactions are controlled by a process-
oriented script that formalizes al the desired interactions among tools. This leads to a component
interconnection architecture resembling a hardware communication bus, and therefore we call it a
“ToolBus'.

ToolBus requirements

Given the mativation for the ToolBus we can briefly summarize the requirements that the ToolBus
should satisfy:

Provide aflexible interconnection architecture for software components that are not only writtenin
different languages and executing on different hardware and software platforms, but are al so running
in adistributed fashion on a system of networked computers and devices. Rationale: it is more and
more common that applications are built using existing commercia or open source components.
This reduces implementation effort but increases the need for usable interconnection technology.

Provide good control over the communication between components. Rationale: component
integration requires both control over the communication between components and over the data
that are being exchanged (see next requirement).

Provide a uniform data exchange mechanism between heterogeneous components. Rationale: a
common understanding about dataformatsisneeded in order to exchange databetween components.

The description of communication should be based on existing concurrency theory and provide
the option for formal verification of the cooperation between software components. Rationale:
when components are integrated that run on different machines or on multi-core machines, it is
unavoidable that concurrency is taken into account and to use existing theory to describe it. The
long term perspective of checking formal aspects of these cooperation is appealing for certain,
safety-critical, applications.

Provide relatively simple application descriptions that can be understood by most programmers.
Rationale: we don't want to frighten programmers by using formal notations.

Provide multi-lingual support, at least C, Java, ASF+SDF, Tcl/Tk, and possibly Perl, Python and
Ruby should be supported. Rationale: varioustools of interest are currently implemented in the first
four languages, and the last three languages are interesting for future devel opments.




Guide to ToolBus Programming

The ToolBus architecture

Theglobal architecture of the ToolBusisshownin Figure 1.2, “ Global organization of the ToolBus” (p.
4). The ToolBus serves the purpose of defining the cooperation of a variable number of tools T;
(i =1, ..., m that areto be combined into acomplete system. Theinternal behaviour or implementation
of each toal isirrelevant: they may beimplemented in different programming languages, be generated
from specifications, etc. Tools may, or may not, maintain their own internal state. Here we concentrate
on the external behaviour of each tool. In general an adapter will be needed for each tool to adapt it
to the common data representation and message protocols imposed by the Tool Bus.

Figure 1.2. Global organization of the ToolBus

ToolBus F’ Coordination

Representation
\ :
Tools | - Computation

|

ATerms

COITIILOI

data exchange
format

TheToolBusitself consists of avariable number of processesP; (i =1, ..., n)lThe parallel composition
of the processes P; represents the intended behaviour of the whole system. Tools are external,
computational activities, most likely corresponding with operating system level tasks. They come
into existence either by an execution command issued by the ToolBus or their execution is initiated
externally, in which case an explicit connect command hasto be performed by the ToolBus. Although
a one-to-one correspondence between tools and processes seems simple and desirable, we do not
enforce this and permit tools that are being controlled by more than one process as well as clusters of
tools being controlled by a single process.

Communication inside the ToolBus. Inside the ToolBus, there are two communication
mechanisms available. First, a process can send a message (using snd- msg) which should be
received, synchronously, by one other process (using r ec- nsg). Messages are intended to request
a service from another process. When the receiving process has completed the desired service it may
inform the sender, synchronously, by means of another message (using snd- nsg). The original
sender can receivethereply usingr ec- nsg. By convention, part of the original messageis contained
in the reply (but thisis not enforced).

Second, a process can send a note (using snd- not e) which is broadcasted to other, interested,
processes. The sending process does not expect an answer while the receiving processes read notes
asynchronously (usingr ec- not e). Notesareintended to notify others of state changesin the sending
process. Sending notes amounts to asynchronous selective broadcasting. Processes will only receive
notes to which they have subscribed.

1By ““processes’ we mean here computational activitiesinside the Tool Bus as opposed to, for instance, processes at the operating system level.
When confusing might arise, we will call the former " ToolBus processes" and the latter ““operating system level tasks".




Guide to ToolBus Programming

Figure 1.3. Communication between ToolBus and tools

eval value do event ack-event

Communication between ToolBus and tools. The communication between ToolBus and tools
is based on handshaking communication between a ToolBus process and a tool. A process may
send messages in several formats to a tool (snd- eval , snd- do, and snd- ack- event ) while
atool may send the messages snd- event and snd- val ue to a ToolBus process. There is no
direct communication possible between tools. These communication patterns are shown in Figure 1.3,
“Communication between ToolBus and tools” (p. 5).

The execution and termination of the tools attached to the Tool Bus can be explicitly controlled. It is
also possible to connect or disconnect tools that have been executing independently of the ToolBus.

Knowledge separation. Equipped with the mechanisms provided by the ToolBus, careful control
over application knowledge can be achieved as shown in Figure 1.4, “Knowledge separation in
ToolBus-based application” (p. 5)where an application is depicted consisting of a user-interface
(Ul) and a database (DB). In a more conventional approach, elements of the user-interface, say a
button, would be directly connected with functions in the database component and a strong coupling
between the two components would be the result. Using the ToolBus, the two components can be
completely oblivious of each other. It is only in the ToolBus script that they are configured to work
together. The extra level of indirection introduced by the ToolBus thus leads to extra flexibility and
decoupling.

Figure 1.4. Knowledge separation in ToolBus-based application

Configuration knowledge
only in ToolBus script

Ul and DB are
completely
decoupled

User-interface Database

How to go from here?

After this brief motivation and explanation of the ToolBus architecture it is time to delve into more
details. In the remainder of this chapter, we will have alook at the following topics:

» ToolBus scripts (or Tscripts, for short).

» How to write ToolBus tools.




Guide to ToolBus Programming

* A brief peek at the ToolBus implementation.

» Historical notes

Tscripts

Tscripts describe how the tools in an application cooperate. They alow the definition of a collection
of concurrent processes that can communicate with each other and with the tools in the application.

Terms

Tscripts make heavy use of terms, simple prefix expressions that are used to exchange structured data
between processes and tools. Terms are recursively defined as follows:

» A Boolean constant, integer constant, real constant, or string constant is a term, e.g., t r ue, 37,
314e-12,0r"rose".

» A value occurrence of avariableisaterm, e.g., X, I ni ti al Anount , or Hi ghest - Bi d.
| mportant

Variables always start with a capital letter. A value occurrence serves the purpose of using
the current value of avariable.

A result occurrence of avariableisaterm, e.g., X?, 1 ni t i al Anount ? or Hi ghest - Bi d?.

| mpor tant
A result occurrence of avariable plays arole when thisterm is matched with another term.
In the case that the match succeeds, the corresponding part of the other term is assigned
to the result variable.

e A singleidentifier isaterm, eg.,f, pai r,or zer o.

| mportant

Identifier always start with alowercase | etter.

A function applicationisaterm, e.g., pai r ("rose", address("STREE", 12345).

Alistisaterm,eg.,[a, b, c] or[a, 1.25, "lost"].

A placeholder isaterm, e.g., <i nt > or add( <i nt >, <i nt >).

Matching

Term matching is used for several purposesin the ToolBus:

» To determine which actions can communicate with each other. For instance, a snd- nsg and a
r ec- nsg can only communicate if their arguments match.

 Totransfer information between sender and receiver.
» Todo case analysis, for instance, when receiving events from atool.

Intuitively, the matching between two terms works as follows:

6



Guide to ToolBus Programming

¢ Two terms match if they are structurally identical.
¢ For avalue occurrence of avariable: useits current value.

¢ For aresult occurrence of avariable: assign the matched subterm of the other term to the variable
(but make this only permanent if the overall match succeeds).

This illustrated in Figure 1.5, “Example of term matching(p. 7) Before the match, two contexts
are given. Each context associates some variables with avalue. For instance, Context 1 associates the
value 3 with variable X. For each context aterm is given and the challenge isto match these two terms
and to observe the effects on the two contexts. The matching of the two terms can be understood as
follows:

e Thetop level function names are identical (both f ) and both have the same number of arguments.
The left term and the right term match if their arguments match.

e The first argument in the left term is X and 3 in the right term. Since, X has value 3 in Context
1, they match.

¢ The second argument in the left term is4 and Z? in the right term. By assigning 4 to Z in Context
2 we achieve amatch.

¢ The third argument in the left term is Y? and 5 in the right term. Here we achieve a match by
assigning 5 to Y in Context 1.

¢ Thefourth and last argument of both termsis 6 and thus matches.

The net result is that both terms match and that Context 1 and Context 2 are modified as shown at
the bottom of the figure.

Figure 1.5. Example of term matching

f(X4.Y2.6) and f(3.225.,6)

Ty pes
The ToolBus uses a type system that is a compromise between the safety of static checking and the
flexibility of dynamic typing. Another objective of the type system isto provide sufficient information
to enable the automatic generation of adapter code for tools. Type are defined as follows:
e bool ,int,real andstr arethetypesof the elementary terms.

* | i st isthetype of arbitrary lists.

e |ist(Type) isthetype of lists with elements of type Type. For instance, | i st (i nt) isthe
type of lists of integers.




Guide to ToolBus Programming

I d is the type of al terms with function symbol | d (this allows the declaration of partial types).
Thetypef , thus correspondsto thetermsf ,f (1) ,f ("abc", 3) andthelike.

 1d(Type1, ..., Typepn) isthetype of termswith function symbol | d and the given types
Typey, ..., Typepasargument types. For instance, f (i nt, str) acceptsf (3, "abc") but not
f(3).

* [Typey, ..., Typen] isthe type of alist of elements with the given types Typey, ..., Typen. For
instance, [ i nt, str] accepts[ 1, "abc"],butnot[1, 2, 3].

t er misthe type of an arbitrary term. And is used as escape from the more precise typing by the
preceding types.

Types are used in the following ways:
» All variables have atype.

» Types are statically checked whenever possible. Only in the case of typet er m dynamic checks
are needed.

» Typesplay arole during matching: amatch can aso fail if the types of corresponding subterms are
unequal. For instance, given | asi nt variable, Sasst r variableand T ast er mvariable,

e £(13) andf (I?) will match.
o £(13) andf (S?) will fail.

e f(13) andf (T?) will succeed.
Tscripts in detail
Overall structure

A Tscript can define the following ingredients:

» A process definition consisting of a process name, optional parameters and a process expression
that describes the behaviour of this process.

A tool definition consisting of atool name and some operational details, such as the command to
execute when the tool is started.

» A ToolBus configuration consisting of one or more process names (optionally followed by actual
parameters) that will be created when the application is started. A Tscript may contain more than
one ToolBus configuration.

Aninclude file that contains another Tscript that will be literally included.

A constant definition.

A conditional that allows the conditional inclusion or exclusion of parts of the Tscript.

A first example

Before delving into the details of Tscripts, it is good to have a look at the hello world application
hel | ol. t b shownin Example 1.1, “hellol.tb” (p. 9).




Guide to ToolBus Programming

Example 1.1. hellol.tb

process HELLO
is B

printf(“Hello world, ny first Tscript!\n”) (3]
t ool bus( HELLO)

Notes:

Here starts the definition of a process with name HELLO.

(7] After the keyword i s follows the process expression that defines the behaviour of this process.
(3] The process expression consists of a single action that prints a string.

Define the initial ToolBus configuration, in this case only process HELL O will be started.

Running this example will yield the following command line dialog:
1> tool bus hellol.tb

Hell o world, ny first Tscript!

2>

Becoming more courageous, we show now a more ambitious Tscript hel | 02. t b in Example 1.2,
“hello2.tb” (p. 10) that does not print the hello string itself, but executes atool to compute it.




Guide to ToolBus Programming

Example 1.2. hello2.tb

process HELLO i s
let H: hello,

S str (3
in
execut e(hel l o, H?) . 5
snd-eval (H, get text) .
rec-value(H, text(S?)). 7
printf(s) B
endl et

tool hello is {conmmand = “hello” }

t 0ol bus( HELLO) LA

Notes:

Define aprocess HELLO.

(7] Usealet ... in ... endl et constructtodeclareloca variables. Variable His declared
with type hel | o.

3] Variable S is declared with type st r .

Execute the hel | o tool (according to the tool definition at (9 (p. 10). The resulting tool
identifier is assigned to variable H. Observe that the name of the tool and the type of H are
identical.

5] Use the sequential composition operator . to combine atom actions into a larger process
expression.

Send an evaluation reguest to the tool we have just executed. Hidentifies the tool instance, and
get _t ext istheterm to be sent to the hello tool.

(7] In response to the eval uation request, the hello tool returns avalue of theformt ext (" Hel | o
world fromny first tool").Theactua textisextracted by the result variable S?.

0 Print the string value of S.

The definition for the hello tool. It contains the name of an executable program to be run when

thistool is executed.
(A Theinitial ToolBus configuration consisting of just the HELL O process.

All the Tscript primitives (including the ones that occur in these two simple examples) will now be
described in more depth.

Process primitives

During execution, the ToolBus consists of a parallel composition of processes. The ToolBus
configurations define the processes that are created at the start of the start of the application, but later
on processes may die and new ones may be created.

Each process has a local state in the form of private local variables. These variables get their value
through assignment and matching. They are only visible inside each process.

Processes are built-in up from atomic actions (detailed below) and atomic actions can be combined
into process expressions using the following operators:

» Sequential composition P, . Ps. First the actionsin  P,are executed and then the onesin P.

e Choice P; + P,. A choice is made between the first action in P1and the first action in P,. This
choiceis based on two criteria:

10



Guide to ToolBus Programming

» Anaction to be selected must be enabled.

* |f more than one action is enabled, a random choice is made.

There are various ways in which an action can be enabled (this depends on the precise action):
» An associated condition evaluates to true (see conditional and guarded command, below).

« An associated timing constraint istrue.

» Required external tool results are available.

» Communication conditions are satisfied.

Once the choice for the first action has been made all remaining actions of the selected process
expression Py or P, are executed as well.

e Parallel composition P; || P2. The actions in P;and P, are executed in parallel. This means
that the sequential order of the actions in Pyrespectively P is respected but that apart from this
constraint the actions can be executed in arbitrary order.

e lteration P; * P,. Py is executed repeatedly, until an action of P, is executed. Execution then
continues with the remaining actions of Pa.

e Conditionalif T then P; else P, fi.Thetest T isevauated and if the result istrue then
P is executed, otherwise P, is executed. Note that the evaluation of the test does not count as a
separate atomic action; the test is effectively attached to the first atom of Pyrespectively Po.

e Guardedcommandif T then P fi.Thetest T isevauated and if the result is true then P,
is executed, otherwise this command deadlocks.

Local variables

As we have seen local variables play a key role in the execution of Tscripts. They are defined using
thel et construct:

e letVarl: Typel,...inPendlet. VariablesVarl, ... are declared with respective type Typel, .... These
variables act as local variables during the execution of the process expression P. P may contain
other | et constructs.

Primitive actions

» Deadlockdel t a. Thisconstant representsthe processthat cannot execute any further steps. During
execution deadlock is always avoided as long as this is possible. A process that end in deadlock
effectively terminates and disappears.

e Slent step t au. This constant represents one internal step in a process and resemble a dummy
statement in a conventional programming language.

 Print printf. An action for generating formatted output.

e AssignmentV : = T.Theterm T isevauated as expression (using the built-in functions) and the
result is assigned to the local variable V.

Messages: synchronous communication primitives

Synchronous communication resembles an ordinary phone call: it involves two processes that can
communicate at the same instant in time. In Tool Bus terminology messages are used for synchronous
communication. There are two primitives involved:

11



Guide to ToolBus Programming

* snd- msg sends a message to another process.

e rec-ns(g receives amessage from another process.

Two requirements have to be satisfied before communication can take place:
e Theargumentsof snd- nsg and r ec- msg match with each other.
 Inaddition, snd- nmsg respectively r ec- msg are enabled in each process.

When communication takes place, the effects of the argument matching is recorded in the local state
of each process and both continue execution. The observant reader may have noticed that sending
and receiving is actually symmetric: by way of result variables in the arguments of snd- nsg and
r ec- meg information may flow from sender to receiver and vice versa.

Notes: asynchronous broadcasting primitives

Asynchronous communication resembles conventional e-mail: it involves one sending and zero or
more receiving processes that read the communicated information at alater instant in time. In ToolBus
terminology notes are used for asynchronous communication. There four primitives involved:

» subscri be(T) . Subscribes aprocess to notes that match theterm T.
e unsubscri be(T) . Unsubscribes a process from notes that match T.

* snd- not e( T) . Broadcast the term T to all subscribed processes. Effectively, T is placed in the
private inbox of each subscribed processto be read at alater moment.

e rec-not e(T). Receive a note that matches T. Effectively, the private inbox is searched for a
note that matches T.

* no- not e( T) . Thereis no note that matches T in the private inbox.

Using named processes

A process definition associates a name Pnm (optimally followed by parameters) with a process
expression P. These process hames can be used in two ways in process expressions:

* Aninline process expression Pnn{ . . . ) : Effectively, this amount to macro substitution: Pnmis
replaced by the process expression P (after proper parameter substitution).

» Aprocesscreationcreat e(Pnm(...), Pid?):acompletely new processis created that runs
in parallel with all other processes currently running in the ToolBus. The process identifier of this
new processis assigned to Pi d.

Tool primitives

There two possible scenarios for a ToolBustool. In scenario 1, thetool is executed from the Tool Bus,
thetool receivesanumber of eval uation requests and/or generates an number of events, and finally, the
Tool Bus decidesto terminate the execution of thetool. A variation of scenario 1 isthat thetool decides
to disconnect from the Tool Bus and continues execution disconnect from the Tool Bus application. In
scenario 2, the tool is executed separately and starts its cooperation by requesting a connection with
the ToolBus. Once connected, it follows the same steps as in scenario 1. The following primitives
achieve this (also see Figure 1.3, “Communication between ToolBus and tools{p. 5)for the
various communication patterns between Tool Bus and tools):

» execute(Tnm Ti d?): Execute atool with name Tnm The result is a tool identifier that is
bound to Ti d. Tool identifiers are unique; if more than one instance of the same tool is executing
they can be distinguished viatheir tool identifier. There are two additional constraints:

e The Tscript should contain atool definition for Tnm

12



Guide to ToolBus Programming

» Thevariable Tid should have atypethat correspondswith thetool name, i.e., it should be declared
asTid : Tnm Why?Well thisin thisway the implementation can track viathe type of the tool
identifier in each tool request, which tool it isand that information is essential for the automatic
generation of adapter code.

snd-term nate(Tid, T): terminatesthe execution of the tool instance Ti d. The term T
contains areason for the termination and is usually printed by the tool on termination.

rec-connect (Tnm Ti d?) : receive a connection request for atool with name Tnm r ec-
connect isvery similar to execut e. The only difference is the initiating party: for execut e
the ToolBus and for r ec- connect thetool.

rec-di sconnect ( Ti d?) : receive a disconnection request from a tool. It does not matter
whether the connection with the tool was originally established viaexecut e orr ec- connect .

snd-eval (Tid, T): sendan evaluation request to atool. All value occurrencesin T are first
replaced by their value before sending T to thetool. It isup to thetool to interpret theterm. The usual
scenario isthat the outermost function symbol of T isidentical to the name of aprocedurein thetool
and that procedureiscalled. The Tool Bus can only send one eval uation request at atime. Only when
the request is cancelled, or avalueis returned by the tool, the next request can be sent to the tool.

rec-val ue(Tid, T):receiveavaluefromatool inresponsetoaprevioussnd- eval request.
T hasto match the value from the tool; thisis useful for case distinctions. In many case, T consists
of asingle result variable, or aisaterm that contains result variables.

snd-do(Tid, T):sendanevaluationrequesttoatool but do not expect areturnvalue. Typicaly
used to implement printing or logging activities.

rec-event (Tid, Tq, ...):receiveanevent from atool. Events need not be handled one-
by-one. The same tool may generate more than one event provided that the value of argument T,
differs. T1 thus serves asidentification for this event.

snd- ack-event (Ti d, T1) : acknowledge the completion of the handling of a previous event.
Since, Ty isidentical to the T, in apreceding snd- event and is used to identify that event.

Timing primitives

Time can play an important rolein applications, beit asingredient in aprotocol that prescribes certain
time constraints, beit aswatchdog that certain operations are carried out in time. The general approach
in Tscriptsisthat adelay or timeout may be attached to every atom action. Delays and timeouts may
be relative to the current time or they may be specified in absolute time. The primitives are asfollows
(for arbitrary atomic action A):

» Relativedelay: A del ay( E) . Atom A can only become enabled after E seconds have passed.

e Absolutedelay: A abs-del ay(Year, Month, Day, Hour, Mn, Sec).AtomAcan
only become enabled after the specified absolute date and time.

» Relativetimeout: A ti meout ( E) . Atom Aiis only enabled during the next E seconds.

e Absolutetimeout: A abs-ti neout (Year, Mnth, Day, Hour, Mn, Sec).AtomA
isonly enabled until the specified absolute date and time.

Expressions

Terms can occur in Tscripts on various locations. In the majority of casesthese terms are used as such;
only variables are replaced by their value but no further evaluation of terms take place. There are,
however, two exceptions to this general rule. In three cases, terms are eval uated:

13



Guide to ToolBus Programming

e Thetestinif T then ... fi andif T then ... else ... fi.
» Theright-hand side of the assignmentV : = T.
* Indelays or timeouts.

Thetermis evaluated in a bottom-up manner, i.e., first arguments are evaluated and then the function
isapplied. Here are some examples:

* not (true) evaluatestof al se.

add(nul (2,3), 4) evaluatesto10.

greater(6,5) evauatestot r ue.

first([9, 8, 7]) evauatesto9.
A detailed overview of all built-in functionsis given in XXX. They can be summarized as follows:
 Functions on Booleans: not , and, or .

» Functionson Integers: add, sub, mul ,di v, nod, | ess, | ess- equal ,great er,greater-
equal .

* Functionsonlists: fi rst,next,get,put,joi n,menber,subset,diff,inter,size.

» Miscellaneous functions: equal , not - equal , process-i d, process- nane, current -
time, quot e.

Examples of Tscripts

We are now ready to have alook at some larger examples of Tscripts.

Calculator Example

The calculator exampleillustrates how acal culator tool that can compute simple arithmetic expressions
is shared by cooperating processes. The overall architecture is shown in Figure 1.6, “ Architecture of
the clock application” (p. 15). The application consists of the following 5 processes:

» CALC: thecaculator processthat regul ates the access to the calculator tool cal ¢, see Example 1.4,
“Process CALCand tool cal c” (p. 16).

» BATCH: abatch processthat usesthetool bat ch to read an expression from file, calculateitsvalue
and write the result back to file, see Example 1.5, “Process BATCH and tool bat ch” (p. 16).

» Ul : auser-interface process that uses the tool ui to allow a user to enter an expression and get its
value back, see Example 1.6, “Process Ul and tool ui "(p. 17) Observe that the processes
BATCHand Ul are both competing for the shared resource calculator (implemented by the process
CALCand thetool cal c).

* LOG alogging process that maintains a log of all calculations that have been performed by the
application, see Example 1.11, “Process LOGand tool | og” (p. 19).

» CLOCK: aclock process that uses the tool cl ock to provide the current time, see Example 1.13,
“Process CLOCK and tool cl ock™ (p. 20).

14



Guide to ToolBus Programming

Figure 1.6. Architecture of the clock application

00lBus

Tools

The global structure of the Tscript cal c. t b is sketched in Example 1.3, “Globa structure of
cal c.tb” (p. 15).

Example 1.3. Global structureof cal c. tb

process CALC is ...
tool calc is ...
See Exanple 1.4, “Process CALC and t ool
calc” (p. 16)

process BATCH is ...
tool batch is ...
See Exanple 1.5, “Process BATCH and t ool
batch” (p. 16)

process U is ...
See Exanple 1.6, “Process U and tool
ui” (p. 17)

process CALC-BUTTON is ...
See Exanple 1.7, “Process CALC- BUTTON' (p. 18)

process LOG BUTTON is ...
See Exanple 1.8, “Process LOG BUTTON' (p. 18)

process TIME-BUTTON is ...
See Exanple 1.8, “Process LOG BUTTON' (p. 18)

process QU T-BUTTON is ...
See Exanple 1.10, “Process QU T-BUTTON' (p. 19)

process LOGis ...
See Exanple 1.11, “Process LOG and t ool

log” (p. 19)

process CLOCK is ...
See Exanple 1.13, “Process CLOCK and t ool
cl ock” (p. 20)

tool bus(CALC, BATCH, U, LOG CLOCK)
See Exanple 1.14, “Tool Bus configuration for cal cul ator denn” (p. 20)

15



Guide to ToolBus Programming

Example 1.4. Process CALC and tool cal ¢

process CALC is
let Tid : calc, E: str, V: term

in
execute(calc, Tid?).
(B3
rec-msg(conpute, E?) . (3
snd-eval (Tid, expr(E)) . rec-value(Tid, val (V?))
snd- nsg(conpute, E, V) . snd-note(conmpute(E, V))
)* delta
endl et
tool calc is { command = “cal c”}

Notes:

Executethe cal c tool. Thetool identifier isassigned to the variable Ti d, that is of typecal c.

Begin of endless loop.

Send an evaluation request to the cal ¢ tool and receive its value back.

Send areply to the original compute request. By convention, the original messageisincluded in

) Receiveacompute message.
e

the reply. Also send a note regarding this (expression,result) pair for the sake of logging.

End of the endless|oop.

Example 1.5. Process BATCH and tool bat ch

process BATCH is
let Tid : batch, E : str, V: int

in
execut e(bat ch, Tid?).
(
snd-eval (Tid, fronFile) . rec-value(Tid, expr(E?))
snd- nsg(conpute, E) . rec-nsg(conpute, E, V?)
snd-do(Tid, toFile(E V)) B
) * delta
endl et
tool batch is {conmand = “batch”}

Notes:

Send an evaluation request to the bat ch tool and receive an expression back.

ra

(7] Communicate with the CALC process (and thus with the cal ¢ tool) to get the expression

evaluated.
ﬂ Send the result back to the bat ch tool.

The user-interface is shown in Figure 1.7, “The calc GUI” (p. 17) and behaves as follows:

» When the user presses Calc, a dialog window appears to enter an expression. The result is shown

in a separate window. See Figure 1.8, “Dialog resulting from CALC- BUTTON’ (p. 18).

16



Guide to ToolBus Programming

» Pressing showL og displays all calculations so far.
» Pressing showTime displays the current time in a separate window.

* Pressing Quit end the application.
Figure 1.7. The calc GUI

Calc
show Loy
showTime

Quit

Example 1.6. Process Ul and tool ui

process U is

let Tid : ui

in
execute(ui, Tid?)
( CALGC-BUTTON(Tid) + LOG BUTTON(Tid))* delta
| |
TI ME-BUTTON(Ti d) * delta
| |
QUI T-BUTTON(Ti d) 8

endl et

tool ui is { command = w sh-adapter -script calc.tcl” }
Notes:

CALC- BUTTON and LOG BUTTON are mutually exclusive and they can be activated
indefinitely.
(7] TI ME- BUTTON isindependent and can also be repeated indefinitely.

(3] QUI T- BUTTON is aso independent but be activated only once (for obvious reasons).

Also observe the extensive use of named process expressions like, for instance, CALC- BUTTON
to give an high-level overview of the Ul process. See Example 1.7, “Process CALC- BUTTON (p.
18), Example 1.8, “Process LOG- BUTTON{p. 18)Example 1.9, “Process TI ME- BUTTON’

(p- 19), and Example 1.10, “Process QUI T- BUTTON’ (p. 19) for their definitions.

17



Guide to ToolBus Programming

Example 1.7. Process CALC- BUTTON

process CALC-BUTTON(Tid : ui) is
let N: int, E: str, V: term

in
rec-event (Tid, N?, button(calc))
snd- eval (Tid, get-expr-dial og) 8
( rec-value(Tid, cancel) (3]
+ rec-value(Tid, expr(E?))
snd- nsg(conpute, E)
rec-nmsg(conpute, E V?)
snd- do(Tid, display-value(V)) 5]
) . snd-ack-event(Tid, N)
endl et
Notes:
The Calc button is pressed; the ui tool generates an event.
Ask the ui tool for an expression, see Figure 1.8, “Dialog resulting from CALC- BUTTON’ (p.

18) for examples.
The user cancels the dialog; no further actions are needed.

The user has entered an expression. Communicate with the CALC process to compute a value.

Ask theui tool to display the value.

200®

Acknowledge the event to the tool.

Figure 1.8. Dialog resulting from CALC- BUTTON

getExpr gl ligbrnss,
Give expression: Yaleis: 7T
pluz(3.4) ok
Cancel

Example 1.8. Process LOG- BUTTON

process LOG BUTTON(Tid : ui) is
let N: int, L : term

in
rec-event (Tid, N?, button(show_,og))
snd- nsg( showlLog)
rec- nsg(showiLog, L?)
snd-do(Tid, display-Iog(L))
snd- ack-event (Tid, N)
endl et

18



Guide to ToolBus Programming

Example 1.9. Process Tl ME- BUTTON

process TIME-BUTTON(Tid : ui) is

let N: int, T: str

in rec-event (Tid, N?, button(showTine))
snd- nsg( showTi ne)
rec-msg(showTi ne, T?) .
snd-do(Tid, display-tine(T))
snd- ack-event (Tid, N)

endl et

Example 1.10. Process QUI T- BUTTON
process QU T-BUTTON(Tid : ui) is

rec-event (Tid, button(quit))
shut down("End of cal c denp")

Example 1.11. Process LOGand tool | og

process LOG is
let Tid : log, E: str, V: term L : term

in subscri be(conpute(<str>, <terne))
execut e(l og, Tid?).
( rec-note(conpute(E?, V?)) .
snd-do(Tid, witeLog(E, V))
+
rec- msg(showLog) . (7
snd-eval (Ti d, readlLog)
rec-val ue(Tid, history(L?))
snd- neg(showlLog, history(L))
) * delta
endl et
Notes:

Receive a note about a computation that has taken place and log it.
Receive amessage to show the value of the current log. Retrieve it from thel og tool and return
the result.

An alternative way to describe the LOG process is shown in Example 1.12, “Process LOGL:
maintaining the log inside the ToolBus'(p. 19) Instead of running a separate log tool, the process
LOG1 maintainsthelogin alocal process variable Thel og. See the section called “ Built-in functions”
(p. 53) for adescription of the functionj oi n that is used this example.

Example 1.12. Process LOGL: maintaining thelog inside the ToolBus

process LOGL is

|l et TheLog : list, E: str, V: term
in subscri be(comput e(<str>, <ternp))
TheLog : =[] .
( rec- not e(conput e( E?, V?))
ThelLog : = join(TheLog, [[E V]])
+
rec- msg( showlog)
snd- nsg(showiLog, Thelog)
) * delta

endl et

19



Guide to ToolBus Programming

Example 1.13. Process CLOCK and tool cl ock

process CLOCK is
let Tid : clock, T : str

in
execut e(cl ock, Tid?).
( rec- nsg( showTi ne)

snd- eval (Tid, readTi ne)

rec-value(Tid, time(T?))

snd- msg( showTi ne, T)

) * delta

endl et

The complete ToolBus configuration that describes the start of the calculator demo is shown in
Example 1.14, “ToolBus configuration for calculator demo’(p. 20) It starts the mentioned
processesin parallel and from that moment on user-interaction and the activities of the BATCH process
will drive the execution.

Example 1.14. ToolBus configuration for calculator demo

tool bus (CALC, BATCH, U, LOG CLOCK)

Auction Example

In the classical auction, the auction master and all bidders are in the same room and interact with
each other according to a fixed protocol. It is shown in Figure 1.9, “Classical auction” (p. 20)
The stepsin the protocol are:

1. Theauction master introduces a new item for sale and sets an initial price for it.

2. Next, biddersraisetheir hand and shout anew bid that isto be acknowledged by the auction master.
3. Step 2 isrepeated aslong as new bids comein.

4. When no new bids are being made, the auction master asks for "any higher bid?" and waits during
afixed period.

5. If no new bids come in during this period, the auction master declares the item for sale to be sold
to the highest bidder.

6. If anew bid comesin during this period, the procedure continues with step 2.

Figure 1.9. Classical auction

Auction
Master

20



Guide to ToolBus Programming

A striking aspect of the classical auction is that the auction master and the bidders can see each
other. Thisis a great communication and synchronization tool. In the case of a distributed auction,
auction master and bidders are on different locations and can only communicate via the Internet, see
Figure 1.10, “Distributed auction” (p. 21).

Figure 1.10. Distributed auction

Bidder Bidder

Auction
Master

Bidder Bidder

The communication and synchronization in a distributed auction has to be described explicitly and
requires answers to questions like:

» How are bids synchronized?

* How to inform bidders about the highest bid?

» How to decide when bidding is over and the item is to be sold?
» How to handle bidders that come and go during the auction?

The auction application to be described answers these questions and has an architecture as shown in
Figure 1.11, “Architecture of the auction example” (p. 21).

Figure 1.11. Architecture of the auction example

ToolBus

Tools

The auction application consists of a variable number of processes:

* Auct i on: the process Auction orchestrates the complete auction and is controlled by the tool
mast er that enables the auction master to offer new items for sale and to monitor the progress
of the auction.

» Bi dder : for each new bidder that entersthe auction anew process Bi dder andtool bi dder are
created. The tool bidder keep the user informed and allows her or him to submit new bids.

The global structure of the Tscript auction.tb is sketched in Example 1.15, “Global structure of
auction.tbh” (p. 22).

21



Guide to ToolBus Programming

Example 1.15. Global structureof auction. tb

process Auction is ...
See Exanple 1.16, “Process Auction” (p. 22)

tool nmster is ...

process ConnectBi dder is ...
See Exanple 1.17, “Process ConnectBidder” (p. 23)

tool batch is ...

process OneSale is ...
See Exanple 1.18, “Process OneSale” (p. 24)

process Bidder is ...
See Exanple 1.22, “Process Bidder” (p. 27)

t ool bus(Aucti on)
Example 1.16. Process Auct i on

process Auction is
let Md : naster, Bid : bidder

in
execute(master, Md?) .
( ConnectBidder(Md, Bid?) B
+
OneSal e(M d)
) *
rec-event(Md, quit) . (3]
shut down(" Auction is closed")
endl et
tool master is { command = "w sh-adapter -script master.tcl" }
Notes:

Execute the nast er tool.
(7] Repeat:
* Add new bidders between sales, or

e Perform one sale.
(3] Until auction master quits

Close the auction application.

22



Guide to ToolBus Programming

Example 1.17. Process Connect Bi dder

process ConnectBi dder(Md : nmaster, Bid : bidder?) is
let Pid: int, Name : str
in
rec-connect (Bi d?) .
creat e(Bi dder (Bi d), Pid?) 8
e

snd- eval (Bi d, get-nane)
rec-val ue(Bi d, name(Nane?))

snd- do(M d, new- bi dder (Bi d, Nane))
endl et

Notes:

Receive a connection request from anew bi dder tool.
Create anew Bi dder process that orchestrates the behaviour of this bidder.
Ask bi dder for its name.

o000

Send the name of the bidder to the mast er tool.

23



Guide to ToolBus Programming

Example 1.18. ProcessOneSal e

process OneSale(Md : master) is

| et Descr : str,
| nAnount : int, 8
Anount : int, (3
Hi ghestBid : int,
Fi nal : bool, E
Sol d : bool,
Bid : bidder
in rec-event(Md, newitemDescr?, |nAmunt?)) . (7
Hi ghestBi d : = | nAmount
snd- not e( new-i t en( Descr, |nAnmpunt)) . 8
Final := false . Sold := fal se .
(
Here is the main | ogi c of OneSal e

) * if Sold then
snd- ack- event (M d, new-itemDescr, |nAnount))
fi
endl et

Notes:

Descr contains atextual description of the current item for sale.
I nAmount istheinitial amount asked for the item.

Anount isthe value of the current bid.

Hi ghest Bi d isthe highest bid so far for thisitem.

Qo000 @

Two Boolean values control the logic of the bidding process. Fi nal is true when the call for
final bids has been issued and Sol d is true when the item has been sold.
=y Bidder isanew bidder tool that has connected during the sale.

The auction master wants to initiate the sale of a new item.
Inform all connected bidders about the new item that is for sale.

The detailed logic is explained in Example 1.19, “Process OneSal e, main logic’(p. 25)
Example 1.20, “Process OneSal e, handling one bid(p. 25) and Example 1.21, “Process
OneSale, handling other cases” (p. 26).

OO

24



Guide to ToolBus Programming

Example 1.19. Process OneSal e, main logic

( if not(Sold) then ... & fi

+ if not(or(Final, Sold)) then ... B
+ if and(Final, not(Sold)) then ... B i
+ Connect Bi dder (M d, Bid?) ...

) * if Sold then ... fi

The main process logic consists of four parts:

Handle oneincoming bid, see Example 1.20, “ProcessOneSal e, handling onebid” (p. 25).

Start the "any higher bid" procedure, see Example 1.21, “ Process OneSal e, handling other cases’

e (p. 26).

(3] Sell the item when no further bids are received, see Example 1.21, “ Process OneSale, handling
other cases’ (p. 26).

Connect a bidder during the sale, see Example 1.21, “Process OneSale, handling other cases’

(p. 26).
Example 1.20. Process OneSal e, handling one bid

( if not(Sold) then
rec- msg( bi d( Bi d?, Anopunt ?))

snd-do(M d, new- bi d(Bi d, Ampbunt))
if | ess-equal (Anobunt, HighestBid) then

snd- nsg(Bi d, rejected)
el se

Hi ghestBid : = Amount
snd- nsg( Bi d, accept ed)
snd- not e( updat e- bi d( Anrount ) )

snd- do(M d, update- hi ghest-bi d(Bid, Amunt)) . 7
Final := fal se

200 ® OO

fi
fi
+ if not(or(Final, Sold)) then B O
+ if and(Final, not(Sold)) then ... fi
+ Connect Bi dder (M d, Bi d?)
) * if Sold then ... fi

Notes:

Receive a bid from a bidder.

)

Inform the auction master about the new bid.

Reject the bid when it istoo low.

Remember this bid as the highest bid so far.

Inform the bidder that his bid is accepted.

Inform all connected bidders that there is higher bid.
Update the status of the auction master.

000D

25



Guide to ToolBus Programming

Example 1.21. Process OneSale, handling other cases

(if not(Sold) then ... fi
+ if not(or(Final, Sold)) t hen
snd- not e( any- hi gher - bi d) del ay(sec(10)) 8
snd-do(M d, any- hi gher-bi d(10))
Final := true (3
fi
+ if and(Final, not(Sold)) t hen
snd- not e(sol d( Hi ghestBi d)) del ay(sec(10)) 5]
Sold := true
fi
+ Connect Bi dder (M d, Bi d?) (7
snd- nsg(Bi d, newitem Descr, Hi ghestBid)) 8
Final := false
) * if Sold then ... fi
Notes:

Theitem isnot yet sold, but we have not yet asked for afinal bid.

Wait for 10 seconds and then ask for final bids.

Inform the auction master and remember that we asked for final bids.
Theitem is not yet sold but we have already asked for final bids.

Wait another 10 seconds and inform all bidders that the item has been sold.
Record that theitem is sold.

During the sale a new bidder wants to connect.

Inform the new bidder about the progress of the auction.

Restart the bidding procedure; this overrulesthe call for final bids.

ol ol e 5

26



Guide to ToolBus Programming

Example 1.22. Process Bi dder

process Bidder(Bid : bidder) is
et Descr : str, Anopunt : int, Acceptance : term
in
subscri be(newiten(<str>, <int>)) .
subscri be(updat e- bi d(<i nt >))
subscri be(sol d(<i nt>))
subscri be(any- hi gher - bi d)
( ( rec-meg(Bid, newitem Descr?, Amount?)) 8
+ rec-note(newitenDescr?, Anpunt?)) (3]

+ rec-di sconnect ( Bi d) B delta

)
snd-do(Bi d, newiten(Descr, Amount))
( rec-event(Bid, bid(Amunt?))

snd- nsg( bi d(Bi d, Anount))
rec-msg(Bi d, Acceptance?)
snd- do(Bi d, accept (Accept ance))
snd- ack- event (Bi d, bi d( Anmount))
)*
+ rec-not e(updat e- bi d(Anount ?)) . 8
snd- do(Bi d, updat e- bi d( Anobunt))
+ rec-not e(any- hi gher - bi d)
snd- do(Bi d, any- hi gher - bi d)
+ rec-disconnect (Bid) . delta
) *
rec-not e(sol d( Anount ?)) . LA
snd- do(Bi d, sol d( Anmount))

)* delta
endl et

Dod

Notes:

Subscribe to al relevant notes.

Get information about the current item for sale, directly after connecting.

Get information about the current item for sale during regular progress of the auction.
Disconnect between sales.

Inform the bidder tool by updating the information about the item for sale.

This bidder want to bid on the current item for sale.

Pass this bid on and await its acceptance. The result is returned to the bidder tool and the event
is acknowledged.

Handle the informative notes about the update of the highest bid and the request for any higher
bids.

Disconnect during asale.

Theitemis sold.

o0 0O 2Oo000Qe

27



Guide to ToolBus Programming

Wave Example

Have you ever considered a (guitar) string that is attached at both ends and wondered how the
movements of the strings can be simulated? Although this is a completely atypical application of the
ToolBus, it isfun to do so we will delve into the details.

In mathematical physics, the vibrating string is described by the so-called one-dimensional wave
equation that describes a discrete approximation of the continuous string. The discretization is
achieved by sampling the amplitude of the string at certain pointsi =1, ... N, where N is the number
of points. The amplitude at pointi attimet can now be described by y; +1(t ) (see also Figure 1.12,
“One-dimensional wave equation” (p. 28)) that is defined as follows:

yi(t+8) =F(yi (t),yi (t-#t),yiat),yi+«lt))

In other words, the amplitude at pointi andtimet dependson:
* the current amplitude,
* the previous amplitude at this point,

« the current amplitude of the left neighbour, and

the current amplitude of the right neighbour.

It also depends on the function F defined as follows:

F(Zl,Zz,Z3,Z4)=221-22+(C#T/#X)2 (Z3 - 2zt Z4)

where
» #x isthe (small) interval between sampling points, and

* cisaconstant representing the propagation velocity of the wave.

Figure 1.12. One-dimensional wave equation

y(t) n [

1 2 3 45 6 N-1

After these preparations, we have to define the architecture of a ToolBus application that can simulate
the behaviour of astring. The key ideaisto use a separate ToolBus process to represent the behaviour
of each sampling point. The architecture is shown in Figure 1.13, “ Architecture of the wave example’
(p- 29) and consists of the following processes and tools:

28



Guide to ToolBus Programming

* Process Pend models an end point of the string, see Example 1.26, “Process Pend” (p. 31)
.Two instances are used to model the left and right end point.

» Process P models one sampling point, see Example 1.27, “Process P”(p. 32) N-1 instances are
used to model all intermediate points.

» The auxiliary process F computes the function F discussed above, see Example 1.28, “Auxiliary
process F” (p. 33).

» ProcessmakeWave constructs N connected instances of processes P and two end points Pend, see
Example 1.24, “Process MakeWave” (p. 30).

» Thetool display visualizes the simulation.

Figure 1.13. Architecture of the wave example

ToolBus

Tools

The global structure of the Tscript wave. t b is shown in Example 1.23, “Global structure of
wave. t b” (p. 29).

Example 1.23. Global structureof wave. tb

process MakeWave ... See Exanple 1.24, “Process MakeWave” (p. 30)
process Pend ... See Exanple 1.26, “Process Pend” (p. 31)
process P ... See Exanple 1.27, “Process P’ (p. 32)

process F ... See Exanple 1.28, “Auxiliary process F' (p. 33)

t ool bus( MakeWave(...))

29



Guide to ToolBus Programming

Example 1.24. Process MakeWave

process MakeWave(N : int) is
let Tid : display, Id: int, I : int, L: int, R: int
in
execut e(di splay, Tid?) .
snd-do(Tid, nk-wave(N))

create(Pend(Tid, 0, 1), 1d?). B
L := sub(N, 1)
create(Pend(Tid, N, L), 1d?)
| =1 . (3]
if less(l, N) then
L :=sub(l, 1) . R:= add(l, 1)
I, R 1.0,

create(P(Tid, L, 1.0), 1d?)
| := add(l, 1)
fi *
shut down("end") del ay(sec(60))
endl et
tool display is { command = "wi sh-adapter -script ui-wave.tcl"}
Notes:

Execute the display tool and initialize it to show N points. Figure 1.14, “ User-interface of wave

demo” (p. 30) shows the display tool in action during alater stage of the simulation.
(7] Create the two end points with index 0 and N.

(3] Create the intermediate points 1,..., N-1 in aloop.
Run the demo for one minute.

Figure 1.14. User-interface of wave demo

Example 1.25. ToolBus configuration for wave

t ool bus( MakeWave(8))

30



Guide to ToolBus Programming

Example 1.26. Process Pend

process Pend(Tid : display, I (15 int, NB 8. int) is
let W: real

in
( rec-msg(NB, I, W) || snd-nsg(l, NB, 0.0) || B
snd-do(Tid, update(l, 0.0))
) * delta
endl et
Notes:

| isthe index of thisend point.
NB is theindex of the neighbouring point.

2]
(3] Receive the amplitude of the neighbour and send our own zero amplitude to the neighbour. Since
aparalel operator | | is used, these communications can appear in any order.

Display the zero amplitude of this end point on the display.

31



Guide to ToolBus Programming

Example 1.27. Process P

process P(Tid : display,
L : int, E
I : int, (3]
R: int,
Dstart : real, E
Estart : real
) is
let AL : real, AR : real, D: real, D1 : real, E : real
in
D:= Dstart . E := Estart
( ( rec-msg(L, I, AL?) (7
|| rec-msg(R 1, AR?)
|| snd-nsg(l, L, E) 8
|| snd-nmsg(l, R E)
|| snd-do(Tid, update(l, E))
) .
DI := E .
F(E, D, AL, AR E?) . LA
D:= D1
) * delta
endl et
Notes:

Ti d isthetool identifier of the display tool.

L isthe index of the |eft neighbour of this point.

| isthe index of this point.

Ristheindex of the right neighbour of this point.

Dst ar t isthe previous amplitude of this point.

Est ar t isthe current amplitude of this point.
Receive amplitudes from our neighbours.

Send our own amplitude to our neighbours.

Show current amplitude on the display.

Compute a new value for our amplitude by applying F.

Q000000 O

32



Guide to ToolBus Programming

Example 1.28. Auxiliary process F

process F(Z1 : real, Z2 : real, Z3 : real, Z4 : real, Res : real?) is
et CAdTdX2 : real

in
CdTdX2 : = 0.01 .
Res := radd(rsub(rmul (2.0, Z1), Z2), 3]
rul (CdTdX2,

radd(rsub(z3, rmul (2.0, z1)), z4))) B
endl et

Notes:

Recall that we are computing 2z1- z, + (C #t /#x)2 (z3 - 221+ z4) and that the main challenge
isto write thisformulain prefix form.
Take an arbitrary (small) value for (c #t /#x) 2.
271-75 +...

(7]
(3]
(C#t [t#x) % * ...
(5]

+ (23 - 221+ Z4)

Executing ToolBus and tools

The ToolBusinterpreter (ToolBus) and all tools have some standard program arguments in common,
but they have some specific arguments as well. In this section we describe all possible program
arguments and the way to execute ToolBus and tools.

Common arguments

ToolBus and tools have the following optional argumentsin common:
* - hel p: prints adescription of all arguments of the ToolBus or tool.

e -Pport _nane: defines the "well known socket" port namne to which al tools temporarily
connect in order to set up their own private socket that connects them permanently to the ToolBus
interpreter. When omitted, socket 8998 will be used.

Warning

Not yet implemented.

Note that explicit arguments defining the sockets are only needed when several ToolBus interpreters
are running simultaneously on the same host machine.

ToolBus arguments

The scri pt _nane (see below) given as argument to the ToolBus is aways preprocessed by a
preprocessor beforeit is parsed asa Tscript. Inthisway, directiveslike, e.g., #def i ne, #i ncl ude
and #i f def can be used freely in Tscripts. The following preprocessor arguments are accepted by
the ToolBus command:

e -1dir:appenddirectory di r tothelist of directories searched for include files.
» - Dnane: definesnane withthestring " 1" asits definition.

* Dnane=def n: defines nanme with def n as definition.

33



Guide to ToolBus Programming

Other arguments specific for the Tool Bus command are:

Warning
The following arguments will probably be supported differently in ToolBusNG.

* - Vi ewer : execute the ToolBus viewer that enables step-by-step execution and inspection of the
state of each process state.

» -genti fs: only generate tool interfaces for all tools used in the script in alanguage independent
format. For ascript filenamed scri pt . t b thetool interfacesarewrittentoscri pt.tifs. Do
not execute the script.

Warning

Not yet implemented.

» -fixed- seed: use afixed seed for the random generator used by the interpreter for scheduling
processes and selecting alternatives in processes. By default, the random generator is initialized
with the current time the ToolBus command is given. Using the- f i xed- seed option makesthe
execution of the script reproducible across multiple runs of the ToolBus command.

Warning
Not yet implemented.
» -Sscri pt _name: any other argument is the name of the ToolBus script to be interpreted.
As an example, consider first
t ool bus -Shello.tb
which starts interpreting the script hel | 0. t b. Next, consider
t ool bus -1 my-include-dir -DCNT=33 -Swave.tb

which searchesthedirectory my- i ncl ude- di r for filesused in#i ncl ude directivesin the script
wave. t b and it will define the name CNT with value 33. All occurrences of CNT in the script will
be replaced by this value before parsing it as a Tscript. Finaly,

tool bus -gentifs -Shello.tb

produces the tool interfacesfilehel | 0. ti fs.

Tool arguments

Warning

This section needs some work.
Arguments specific for tools are:

e -TB_HOST host _name: defines the host machine host _nane on which the ToolBus
interpreter is running and to which the tool should be connected. When omitted, the ToolBus
interpreter should be running on the same host as the tool.

e« -TB_TOOL_NAME t ool nane: the tool name as defined in the Tscript (added automatically,
when atool is executed by the ToolBus).

e -TB_TOOL_I D Id: internal tool identifier of this tool execution (added automatically, when a
tool is executed by the ToolBus).




Guide to ToolBus Programming

The execution of atool can start in two ways:
» Thetool is started by an execut e command in the Tscript.

» Theinitiative to execute the tool istaken outside the ToolBus. This requires that the script contains
arec-connect for thisparticular tool.

When ToolBus and tool are running on different host machines, it is important to define the host
machine on which the ToolBus interpreter is running when starting the execution of the tool. As an
example, consider the hello application described in Example 1.2, “hello2.tb” (p. 10) The hello
tool will be executed by the ToolBus using the command

hell o -P8998 -TB HOST hostl.institute.nl

when running on machinehost 1. i nsti t ut e. nl . Suppose, we replace the explicit execut e in
Example 1.2, “hello2.tb” (p. 10)by ar ec- connect as shown in Figure~\ref{fig:hello3.tb}. We
may then manually start the hello tool by typing

hell o

where we use the default values for the input/output sockets and assume that tool and ToolBus
interpreter are both running on the same host (i.e, host 1. i nsti t ut e. nl ). Starting the execution
from another host is achieved by typing (on, say, host 2. i nsti tute. nl):

hell o - TB_HOST host1.institute.nl

ToolBus tools

There are some genera issues to understand about ToolBus tools and we cover them here. First,
the global structure of atool is explained in the section called “The global structure of a ToolBus
tool” (p. 35) Next, we describe how tool adapters work in the section caled “Adapters for
tools and language$ (p. 36) Finally, we cover in the section called “Automatic generation of

tool interfaces’ (p. 37) the automatic generation of tool interfaces that is needed for some tool

implementation languages .

The global structure of a ToolBus tool

Figure 1.15. Global tool organization

ToolBus

Term Ports Character Ports

In its simplest form, atool is a box connected via an input and an output port to a ToolBus. In the
most general case, atool has

* oneinput port from the ToolBus to the tool and can receive tree structures (terms) viathis port;

35



Guide to ToolBus Programming

* oneoutput port from the tool to the ToolBus and can send terms to the Tool Bus via this port;
* zero or more term ports to receive terms from other sources,
 zero or more character ports to receive character data from other sources.

This global, architectural, structure of atool is shown in Figure 1.15, “Global tool organization” (p.
35). With each input port, an event handler is associated that takes care of the processing of the
datareceived viathat port and is responsible for returning aresult (if any). One tool may thus contain
several event handlers. When arequest is received, the following steps are taken:

» Thedatareceived are parsed to check that they form alegal ToolBusterm T. (If thisisimpossible,
awarning message is generated).

» Theevent handler iscaled with T as argument.

» Theevent handler can do arbitrary processing needed to decompose T, to determine what hasto be
done, and perform any desired computation.

» The event handler returns either:
« alega ToolBusterm representing areply to be sent back to the ToolBus.
e NULL indicating that thereis no reply.
The global mode of operation of atool is now:
* receivedataon any input port and respond to thisby sending someterm (or NULL) to the ToolBus; or

* taketheinitiativeto send atermto the ToolBus (typically toinform the Tool Busabout some external
event).

A tool isthuson the one hand areactive engine that respondsto arequest from the ToolBus and returns
the result back to the ToolBusin the form of aterm (e.g., calculate the value of some expression), but
on the other hand it can also take the initiative to send aterm to the ToolBus (e.g., generate an event
when a user pushes some button).

Adapters for tools and languages

Figure 1.16. Two organizations of atool adapter

ToolBus

Program
Program

(a) (®)

The main purpose of adaptersisto act as small wrappers around existing programs or programming
languages in order to transform them into tools that can be connected to the ToolBus. There exist two
global strategies for constructing adapters:

36



Guide to ToolBus Programming

» Theadapter and the program to be adapted are executed as separate (Unix) processes. This structure
is sketched in Figure 1.16, “Two organizations of a tool adapter'(p. 36) The advantage of
this approach is that no access is needed to the source code of the program: it can remain a black
box. Another advantage is that adapters may be reused for the adaptation of different programs. A
possible disadvantage is some lossin efficiency.

In this category afurther subdivision is possible:
e The program is executed once as a child process of the adapter and all snd- eval /snd- do
requests are directed to this child process. The program can thus maintain an internal state

between requests.

* The same program is executed as a child process of the adapter for each snd- eval /snd- do
request.

« A different program is executed as a child process of the adapter for each snd- eval /snd- do
request.

* Integrate the adapter and the software to be adapted into a single (Unix) process. This approach
permits the most detailed adaptation of the program and is also the most efficient solution. This
approach leads, however, to potentially less reusable adapters than the previous approach.

In order to achieve some uniformity, the current collection of adapters have the following optional
program arguments in common:

» - cnd: the (default) program to be executed by the adapter. All arguments of the adapter that follow
- cmd are interpreted as the name and arguments of the program to be executed.

« All tool arguments, see the section called “ Tool arguments’ (p. 34).
Automatic generation of tool interfaces

Figure 1.17. Automatic generation of tool interfaces

toolbus -gentifs S.tb

Theinterface code for each tool depends on the particulars of the Tscript in which it isused. Changing
the number of argumentsin an eval uation request to thetool, or adding anew request, requires making
changes to the interface code that are easily forgotten and therefore error prone. Another observation
isthat theinterface codefor different tools hasalot in common. An obvious solution to both problems

37



Guide to ToolBus Programming

is to generate tool interfaces automatically, given a Tscript. This generation process is shown in
Figure 1.17, “ Automatic generation of tool interfaces’” (p. 37) and consists of two steps:

» Generate alanguage-independent description of all tool interfaces used in the script. This amounts
to astatic analysis of all tool communication in the script. It is achieved by using the- genti f s
option of the ToolBus interpreter. For instance,

tool bus -gentifs hello2.th
will createafilehel | 02. ti f s containing the tool interfaces.

» Use the language independent interface description to generate a tool interface for a specific tool
in aspecific implementation language. The generator tifstoc exists for generating C tool interfaces.
Itiscaled asfollows:

tifstoc -tool Nane TifsFile
and generates afile named Nane. ti f . c. For the hello example, we would have, for instance;
tifstoc -tool hello hello2.tifs

Theresulting filehel | 0. ti f. c isshowninExample1.30, “Thegenerated filehel | 0. ti f. c”
(p. 45).

In Figure 1.17, “Automatic generation of tool interfaces(p. 37)it is aso shown how tool interface
generatorsfor other languages (e.g., Java, Cobol) fit into this scheme. In addition to tifstoc, we used to
support the generation of Javainterfaces by way of tifstojava. In the current Tool Busimplementation,
thisis no longer necessary, see the section called “Writing ToolBustoolsin Java” (p. 47).

Writing ToolBus tools in C

Although ToolBus tools can be implemented in many languages (including Java, C++, Tcl/Tk,
ASF+SDF, and others) we start explaining how tools can be written in C. In other languages identical
notionswill be used with only minor adjustmentsto language-specific featuresand limitations. Writing
toolsin C amounts to:

» ATerms; the essential datatype that is used to exchange information between tool and TB

Note
Add ref to ATerms

» The global structure of a ToolBus tool, see the section called “ The global structure of a ToolBus
tool” (p. 35).

» The ToolBus Application Programmer's Interface , see the section called “The ToolBus API” (p.
39).

» Compiling ToolBus tools written in C, the section called “Compiling ToolBus tools written in C”
(p. 42).

» Generating tool interfaces with {\tt tifstoc}, the section called “Automatic generation of tool
interfaces’ (p. 37).

The include file at b-t ool . h

Each tool needs to include the file at b- t ool . h which defines some basic types as well as the set
of library functions available. It consists of

* Anincludeof <at er mlL. h>.

38



Guide to ToolBus Programming

» Defines ATBhandl er : the type of event handlers.

 Definesthe prototypes of dl library functions

The tool library | i bATB. a

When compiling tools, the library | i bATB. a must be specified in order to make the tool library
available (using the -| ATB option of the C compiler). It provides the following functions:

» ATBiI ni t : tool initialization, see the section called “ATBi ni t " (p. 39).
» ATBconnect : to connect thetool to the ToolBus, the section called “ATBconnect ” (p. 40).

» ATBdi sconnect : to disconnect the tool from the ToolBus, the section called “ATBconnect ”
(p. 40).

» ATBevent | oop: a standard event loop for a tool, see the section called “ ATBeventloop” (p.
40).

» ATBpostEvent send an event to the ToolBus, see the section called “ ATBpostEvent” (p. 41).

In the following section, we will describe these functions.

The ToolBus API

During the initialization of each tool, some preparations have to made before the tool can be properly
connected to the Tool Bus. These preparations include

* Defining the name of the tool asit is known from atool declaration in a Tscript.

* Parsing standard program arguments that are passed to the tool when it is started.

» Creating apair of socket connections with a ToolBus interpreter.

 Starting an event loop.

During execution of the event loop, the tool can either receive terms from the ToolBus or it can take

the initiative to send terms to the ToolBus. It is thus possible for a tool to both respond to ToolBus
requests and asynchronously send terms to the Tool Bus.

ATBI ni t
Theinitiaization of the ToolBus API is achieved by
int ATBinit(int argc, char *argv[], ATerm *bottonOf Stack).
Thisinitializes the ToolBus APl aswell asthe ATerm library that is used by it.
The standard program arguments that are passed (via ar gc and ar gv) are fully described in the
section called “Executing ToolBus and tools (p. 33) Particularly important is that the tool is
initialized with a proper name. It should beliterally equal (including the case of letters) to atool name
as appearing in a tool declaration in the Tscript. This is important since the tool name will be used

when the tool is connected to the ToolBus. Note that ATBi ni t aso initializes the ATerm library
(hencethebot t onf St ack argument, see

Note

Ref to Section \ref{ ATinit}) in ATerm manual.

39



Guide to ToolBus Programming

The return value indicates whether or not the ToolBus host could be found: O indicates that all iswell,
and -1 indicates an error, in which case the standard variable er r no of the C run-time system is set
to indicate which error.

ATBconnect

A tool can be connected to the ToolBus using t erm ports that can be using for sending and
receiving dataintheform of completeterms. Two aspects of term portsareimportant: theinput channel
used for the actual data transfer and the handler that takes care of processing input terms when they
arrive. The connection is established as follows:

i nt ATBconnect (char *tool name, char *host,
i nt port, ATBhandler h);

Here, t ool nane isthetool nameto be used, host isthe machine where the ToolBus is executing,
port isthe file descriptor of the channel to be used, and h is the handler to associated with this
connection. If value NULL is passed ast ool name or host , default values are used that are taken
from ar gv that was passed to ATBi ni t . Thesameistruewhen - 1 ispassed asvauefor port . The
return value of ATBconnect iseither - 1 (failure) or a positive number (the connection succeeded
and the result is the file descriptor of the resulting socket connection with the ToolBus). Handlers for
term ports are functions from ATerm to ATerm and have the type:

ATer m sone_handl er (i nt conn, ATerm i nput)

The argument conn is the connection along which the input term was received and i nput is the
actual termreceived. Theterm returned by the handler isthereply to be sent to the ToolBusin response
to thisinput event, or NULL if no reply is needed. In this fashion, an arbitrary number of term input
ports can be set up which will be read in parallel: as soon as a term arrives at one of the ports the
associated handler is activated. A connection can be terminated as follows:

voi d ATBdi sconnect (i nt conn)

where conn isaconnection that has been created earlier using ATBconnect .

ATBeventloop

Many tools first establish a number of term ports and then enter an infinite loop that processes input
events. The function

i nt ATBevent| oop(voi d)

captures this idea. It never returns, unless something goes wrong. We can now give a skeleton that
many tools have in common:

#include "my_tool .tif.c"

ATerm nmy_t ool _handl er (i nt conn, ATerm i nput)
{ ... handle input and return a termor NULL ... }

int main(int argc, char *argv[])
{ ATer m bott omC¥ St ack;

ATBi nit (argc, argv, &bottonm Stack);
i f (ATBconnect (NULL, NULL, -1, ny_tool_handler) >= 0)
{

ATBevent | oop() ;
} el se

fprintf(stderr,

"my_tool: Could not connect to the Tool Bus, giving up!\n");

ATBevent | oop() ;

40



Guide to ToolBus Programming

return O;

}
ATBpostEvent

So far, we have seen primitives for tools that only receive terms from the ToolBus. In the case of
events that are generated by atool, a term needs to be sent from the tool to the ToolBus. This can
be achieved using

i nt ATBpost Event (i nt conn, ATermtern
which sendst er malong the port conn. Failureisindicated by thereturnvalue- 1. A typical usageis.

ATBpost Event (conn, ATnake(button("ok"))).

Primitives for advanced control flow

Tool programming amounts, in essence, to event driven programming: most of the time a tool is
awaiting thearrival of dataon oneof itsports and when the dataare there, areply issent to the ToolBus
by the handl er associated with that port. |n computation-intensive tools, the need may ariseto check for
theavailability of incoming datafrom the Tool Busduring computations. | n those cases, ATBeventloop
may not offer enough flexibility. More customized control flow can be achieved using the following
functions. Observe that these function are parameterized with a specific ToolBus connection (as
returned by ATBconnect ) and can be used to handle situations where asingle tool is connected with
more than one ToolBus.

Checking if thereisinput awaiting on a Tool Bus connection is done by:

ATbool ATBpeekOne(int conn)

Thisfunctionreturns ATt r ue if incoming datafrom aToolBus are available on the connection conn.
Similarly, the availability of data on any connection may be checked by:

i nt ATBpeekAny(voi d)

If input is waiting, the appropriate connection is returned. Otherwise - 1 is returned. The sequence
of activities needed for handling (once) the data available from a specific connection is captured by
the function

voi d ATBhandl eOne(i nt conn)

Thisamounts to calling the handler associated with connection conn with the available data as input
term. Similarly, the data from any connection is handled by

i nt ATBhandl eAny(voi d)

which returns -1 if anything goes wrong.

Finaly, the function

i nt ATBget Descriptors(fd_set *set)

Gathers all ToolBus connection file descriptors in a single descriptor set. The return value indicates
the maximum value of any descriptor in the set.

Control flow patterns

Given, the control flow primitives in the previous section, we can express various common control
flow patterns.

The function ATBevent | oop can be expressed with the primitives just introduced:

41



Guide to ToolBus Programming

i nt ATBevent| oop(Vvoi d)
{ int conn;
whi | e( ATt rue)

{
n = ATBhandl eAny();
if(n < 0)
return -1;
}

}

Another style mixes the handling of input from the Tool Bus, with other computations:

whi | e( ATt r ue)

{
if(n = ATBpeekAny() >= 0) /* if there is an incom ng event */
ATBhandl eOne(n) ; /* handle it */
el se {
[* perform other conputation */
}
}

In sometools, amixture of passively awaiting input and actively sending terms to the ToolBus can be
seen. Using ATBwr i t eTer m the most general global event loop of atool becomes:

whi | e( ATt r ue)

{
ATBwriteTern(cl,el); ...; ATBwiteTern(cn,en);
ATBhandl eAny() ;
}

In other words, each iteration starts by sending zero or more terms to the ToolBus
(using ATBwr i t eTer m) and ends with processing one event coming from some port (using
ATBhand| eAny). The Tscript being used should, of course, be able to receive such events.

Compiling ToolBus tools written in C

When compiling atool written in C the following questions should be answered:

* Whereistheincludefileat er mlL. h (or at er n2. h if you use the more sophisticated parts of the
ATerm library)?

* Whereistheincludefileat b-t ool . h?
 Whereisthe ATermlibrary | i bATer m a?

* Whereisthe ToolBus APl library | i bATB. a?

» Which other libraries are needed to compile the tool ?

The answersto these questions are clearly system dependent. There are two strategiesto answer them.
Strategy 1: find the desired locations on your system and hard code them in the compilation command.
Thiswill lead to acall to the C compiler with the following arguments:

* -ldir-where-aterntl. h-is
e -ldir-where-ATB-tool . h-is
* hello.c -0 hello

e -Ldir-where-libATerma-is

e -| ATerm

42



Guide to ToolBus Programming

e -Ldir-where-1ibATB. a-is
- -| ATB
 other libraries.

Strategy 2: write a make file that encodes this information. As a result, the location information is
hardwired in the make file rather than in a command that has to be repeated over and over again.

Automatic generation of C tool interfaces

As aready explained in the section called “Automatic generation of tool interfaces(p. 37) tool
interfaces can be generated from a given Tscript for a given tool name. The ToolBus can generate a
language-independent . ti f s file, when it is started with the - gent i f s option. In the case of C,
the command tifstoc generates atool interface in C for use with the ATerm library. The generated
interface consists of two files:

» aCsourcefile(hel | 02.ti f. c inthe example below), and

e aCheader file(hel | 02. ti f. hinthe example below).

Inthe header fileanumber of interface functionsisdeclared, onefor each element intheinput signature
of the toal. It is up to the writer of the tool to provide an implementation for these functions. The
generated C file contains a handler function that analyzes incoming terms from the ToolBus, and
delegates actual processing to the appropriate interface function.

We will use the Tscript hel | 02.t b shown earlier in Example 1.2, “hello2.th” (p. 10) and
describe all the steps needed to write and compile the hello toal.

Step 1: generate tifs
Using the command:
tool bus -gentifs hello2.tb

we generate afile called hel |1 02. ti f s. It contains information amount the interfaces for all tools
that are used in agiven Tscript.

Warning

The -gentifsflag is not yet implemented.

Step 2: generate C tool interface

Using the command:
tifstoc -tool hello test.tifs
we generate two files:

« the header file hello.tif.h, see Example 1.29, “The generated header file hel | o. tif. h” (p.
44).

 the source file hel l 0. tif.c, see Example 1.30, “The generated file hel l o.tif.c” (p.
45).

43



Guide to ToolBus Programming

Example 1.29. The generated header filehel l 0. tif. h

* %

* This file is generated by tifstoc. Do not edit!
* CGenerated fromtifs for tool 'hello (prefix="")
*/

#i fndef _HELLO H
#define _HELLO H

#i ncl ude <at b-tool . h>

/* Prototypes for functions called fromthe event handler */
ATer m get _text (int conn);

void rec_terminate(int conn, ATerm;

extern ATerm hel |l o_handl er (i nt conn, ATermternj;

extern ATerm hel | o_checker (i nt conn, ATerm sigs);

#endi f

Only the functions get _t ext and r ec_t er ni nat e together with a simple nai n function have
to be implemented to build afully functional ToolBustool.




Guide to ToolBus Programming

Example 1.30. The generated filehel l 0. tif. c

/**

* This file is generated by tifstoc. Do not edit!
* CGenerated fromtifs for tool 'hello (prefix="")
*/

#include "hello.tif.h"

#define NR S| G ENTRIES 2

static char *signature[ NR SI G ENTRIES] = {
"rec-eval (<hel | 0>, get _text)",
"rec-term nate(<hello> <ternp)",

i

/* Event handler for tool 'hello */

ATerm hel | o_handl er (i nt conn, ATermtern 8
{

ATermin, out;
/* W& need sone tenporary variabl es during matching */
ATermtO;

i f(ATmatch(term "rec-eval (get_text)")) {
return get _text(conn);
}
i f(ATmatch(term "rec-termnate(<terne)", & 0)) {
rec_term nate(conn, t0);
return NULL;
}
i f(ATmatch(term
"rec-do(signature(<terne,<ternp))", & n, &out)) {
ATermresult = hello_checker(conn, in);
i f(!'ATmatch(result, "[]"))
ATfprintf(stderr,
"warning: not in input signature:\n\t%n\tl\n",
result);
return NULL;

}

ATerror ("tool hello cannot handle term %", tern);
return NULL; /* Silence the compiler */

}

/* Check the signature of the tool 'hello */

ATer m hel | o_checker (int conn, ATermsiglist) (3]

{
}

Notes:

An array of signature definitions (si gnat ur e) that contains the argument and return types of
each interface function.

7] The handler function (hel | o_handl er), that differentiates between the different possible
input terms coming from the Tool Bus, and delegates the actual work to the appropriate function.

3] The signature checker hel | o_checker usesthe assembled signatureinformation in the array
si gnat ur e and compares it with si gl i st, an ATerm that encodes the tool's signature as
expected by the ToolBus.

return ATBcheckSi gnature(siglist, signature, NR SI G ENTRIES);

45



Guide to ToolBus Programming

Step 3: write main
Asmentioned earlier, the only thing needed to implement the actual hello tool, is the implementation
of thetwo interface functionsget _t xt andr ec_t er mi nat e, and theimplementation of nmai n to

get things going. We will first take alook at the initialization stuff that the mai n function of the hello
tool hasto do, see Example 1.31, “mai n function of hello tool” (p. 46).

Example 1.31. mai n function of hello tool

#i ncl ude <stdlib. h>
#i nclude "hello.tif.h"

int main(int argc, char *argv[])

{
ATer m bot t onTX St ack;
ATBi nit (argc, argv, &bottonmX Stack); 8
i f (ATBconnect (NULL, NULL, -1, testing handler) >= 0) { (3]
ATBevent | oop() ;
} else {
fprintf(stderr,
"Coul d not connect to the Tool Bus, giving up!'\n");
return -1;
}
return O;
}
Notes:

Thevariable bot t omOF St ack isneeded by the ATerm library to determine where to look for
the stack. It is passed as argument to ATBi ni t .

B The variablesar gc and ar gv are passed unchanged to ATBi ni t , so the ToolBus library can
look for default values for things like the ToolBus' well-known socket address and the Tool Bus
host name.

(3] The call to ATBconnect connects to a running ToolBus, and requires four arguments. a
character string representing the tool name, a character string representing the host name of the
ToolBus to connect to, the port number of the ToolBus to connect to, and a handler function.
Passing NULL, NULL, and -1 respectively as the tool name, the host name, and the port number
cause the defaults for these values to be used instead.

When al goeswell, the call to ATBevent | oop startsthe main ToolBus eventloop and the tool
will be ready to receive requests from the ToolBus.

Step 4: implement interface functions

Finaly, we only need the implementation of the two interface functions get _t xt and
rec_term nate, see Example 1.32, “Implementation of interface functions of hello tool” (p.
47)

46



Guide to ToolBus Programming

Example 1.32. Implementation of interface functions of hello tool

ATer m get _text (int conn)
{
return
ATmake(
"snd-val ue(text(\"Hello World, nmy first tool in Cl\n\"))"
)
}
void rec_term nate(int conn, ATerm nsg){ (7
exit(0);
}
Notes:

get_text: generate the greeting text. The conn argument identifies the ToolBus connection,
making it possible to distinguish which ToolBus made the request. This enables connecting to
more than one ToolBus at the same time.

(7] Mandatory function that is called to terminate the tool.

Writing ToolBus tools in Java

Now we will show how ToolBus tools can be implemented in Java. The overal organization is
shown in Figure 1.18, “Global organization of a tool implemented in Jav&p. 47) The actua
communication between ToolBus and tool istaken care of by an instance of the class Tool Bri dge
that takes care of low-level communication details. The ToolBridge is used by Abst ract Tool ,
an abstract class that defines the possible interactions between ToolBus and tool. The actual tool, in
the figure My Tool , extends Abst r act Tool , gives implementations for its abstract methods, and
implements tool-specific behaviour.

Compared to writing atool in C, using Javais simpler because there is no need for generating a tool
interface using atif file.?

Figure 1.18. Global organization of atool implemented in Java

ToolBus

AbstractTool

MyTool

an
=
=
=
=)
o
=

Java Application

2Thisis due to the use of Javareflection in the class Tool Bridge. In older versions, a generation step was also needed for Java tools.

47



Guide to ToolBus Programming

Before showing the Java implementation of the hello tool, we first explain the AbstractTool class.

The Abstr act Tool class

public abstract class Abstract Tool inplenents | Operations {

public AbstractTool (){ ... }

public void connect(String[] args) throws Exception{ ... }
publ i c Tool Bri dge get Tool Bridge(){ ... } 3]

public PureFactory getFactory(){ ... }

public void sendEvent (ATerm aTerm{ ... } 5

public void di sconnect (ATerm aTerm{ ... }

public abstract void recei veAckEvent (ATer m aTernj; 7]

public abstract void receiveTerm nate(ATerm aTerm ; B

}

Notes:

The default constructor of AbstractTool.
a8

Connect to the ToolBus. The argument ar gs contains the required information for running a
tool (name, id and additionally the host and port of the ToolBus, depending on how thistool is
connected to the ToolBus). An exception is thrown when something goes wrong during parsing
of the arguments or while establishing the connection.

Returns areference to the tool bridge that thistool instance is using.

Returns areference to the ATerm factory that is being used.
Send an event to the ToolBus.

200®

Send a disconnect request to the ToolBus. The argument aTer mgives additional information
about the request.

Receive an acknowledgement (in response to a previous event generated by thistool instance by
way of sendEvent ). The argument aTer mgives further details about the acknowledgement.
Receive arequest from the Tool Bus to terminate the execution of thistool instance.

Tool definition in the hello script

The hello script from Example 1.2, “hello2.tb” (p. 10) can be used as is, except that the definition
of the hello tool has to be changed to reflect the Javaimplementation:

tool hello is { kind = "javaNG' class = "tool bus. tool.java. hel | 0. Hel | oTool "}

48



Guide to ToolBus Programming

The hello example in Java

Example 1.33. Hello tool implemented in Java

package t ool bus. tool.java. hell o;

i mport tool bus. adapt er. Abst ract Tool ;
i mport aterm ATerm
i mport aterm ATer nfFact ory;

public class Hell oTool extends Abstract Tool

{

}

public HelloTool (String[] args){

}

super () ;
try {
connect (args);
} catch(Exception ex){
t hr ow new Runti meExcepti on(ex);

}

protected ATerm get Text () { 3]

}

ATer nFactory factory = getFactory();
return factory. nake("text(<str>)",
"Hello world in Java!\n");

public voi d recei veAckEvent (ATerm aTer m {
/1 Left blank intentionally.

}

public void receiveTermnm nat e( ATer m nsg) {

Systemout.print("rec-term nate received: + nBQ) ;

public static void main(String[] args) {

}

new Hel | oTool (args);

Notes:

e

TheclassHel | oTool extendsAbst r act Tool and providesan implementation for the hello
tool.

Theconstructor for Hel 1 oTool first callsitssuper classand then attempt to make aconnection.
The arguments of the constructor are passed to the connect call.

The evaluation request snd- eval (H, get_text) inthe Tscript is implemented by the
method get Text . It constructs the required ATerm that text ("Hello world in
Java! \ n") andreturnsit asresult. Thisresult will passed to the ToolBus and will be accepted
by the atomr ec- val ue(H, text(S?)) inthe Tscript. Note that in this example His the
tool identifier of the hello tool.

49



Guide to ToolBus Programming

Writing ToolBus tools in other languages
Writing tools in Tcl/TK

Writing ToolBustoolsin Tcl is greatly simplified by the wish-adapter to be explained in the section
called “wish-adapter” (p. 50) Next, a small set of predefined Tcl functions is described that are
alwaysloaded by thewish-adapter and canbeused inany Tcl script, seethe section called * Predefined
Tcl functions’ (p. 50) Finally, we present the Tcl version of the hello tool in the section called
“The hello examplein Tcl” (p. 51).

wish-adapter
The purpose of the wish-adapter isto execute Tcl/Tk's windowing shell wish as atool. For instance,
wi sh- adapt er -script cal cul ator.tcl
executes wish as a TooBus tool and executesthe Tcl script cal cul ator. tcl .
In addition to the common tool arguments, wish-adapter has the following specific arguments:
» -wi sh Nane: Use Name rather than wish as Tcl/Tk's windowing shell.
» -1l azy- exec: Postpone execution of wish until needed.
e -script: TheTcl script to be executed.

e -script-args: Theargumentsfor the Tcl script to be executed. These arguments are available
to the Tcl script throught the variablesar gc and ar gv.

Various communication patterns are supported by wish-adapter. Communication is described here
from the point of view of the ToolBus, i.e., snd- andr ec- mean, respectively, send by ToolBusand
receive by ToolBus. The communication patterns are:

* snd-do(Tid, Fun(A;, ..., Ap)peformtheTcl functioncal Fun(A;, ..., A).Here
Ti d isatool identifier (asproduced by execut e or r ec- connect ) for an instance of the wish-
adapter.

* snd-do(Tid, Fun(Ai, ...,An): peformtheTcl functioncal Fun( Ay, ..., A,).Here

Ti d isatool identifier (as produced by execut e or r ec- connect ) for an instance of the wish-
adapter. Note that the function Fun must send an answer back to the ToolBus (using TBsend
"snd-eval (...)").

* rec-val ue(Tid, Res):thereturnvauefor apreviousevauation request.
e rec-event(Tid, Ay, ..., Ay): event generated by wish.

 snd-ack-event(Ti d, A1): acknowledgement of apreviously generated event.

» snd-terminate(Ti d, A): terminate execution of wish-adapter.

The command wish isexecuted once, aninitial Tcl scriptisread, and all further requestsare directed to
thisincarnation of wish. A small set of Tcl proceduresisavailablefor unpacking and packing ToolBus
terms (see below).

Predefined Tcl functions

Thefollowing Tcl functions are predefined and can be used freely in Tcl script executed viathe wish-
adapter:

* TBstring Str: convertsaTcl string to a ToolBus string by surrounding it with double quotes
and escaping double quotes occurring inside St r .

50



Guide to ToolBus Programming

e TCLstring Str: convertsaToolBus string into a Tcl string by removing surrounding double
quotes.

e TBli st List:convertsaTcl listtoaToolBuslist by separating the elements with commas and
surrounding the list by curly braces.

e TBerror Msg: constructs an error message that can be sent to the ToolBus.
e« TBsend Tr m send Tr mback to the ToolBus.
« TBevent Event: sendevent Event to the ToolBus.

e TBrequire Tool Nanme ProcName Nar gs: check that the Tcl codefor Tool Nane contains
a procedure declaration for Pr ocNane with Nar gs formal parameters. This function is mainly
used by the wish-adapter to check compatibility of the Tcl code with the expected input signature
of the tool.

Warning

All communication between wish-adapter and a tool written in Tcl is done via standard
input/output. Only use the standard error stream for print statements in the Tcl script, since
using standard output will disrupt the communication with the ToolBus.

The hello example in Tcl

Writing the hello toal in Tcl requires two steps:

» Writethereguired Tcl codehel | 0. t cl . Theresultisshownin Example 1.34, “hello.tcl: the hello
tool in Tcl” (p. 51).

* Replace hello'stool definitioninhel | 02. t b (see Example 1.2, “hello2.th” (p. 10)) by:

tool hello is {command = "w sh-adapter -script hello.tcl"}

Example 1.34. hello.tcl: the hellotool in Tcl

# hello.tcl -- hello tool in Tcl/Tk

proc get-text {} {
TBsend "snd-val ue(text(\"Hello World, nmy first Tool Bus tool in Tcl!\n\"))"
}

proc rec-termnate { n } {
exi t
}

Python

A Python adapter is only available for older versions of the ToolBus. It is currently not supported.

Perl

A Perl adapter is only available for older versions of the ToolBus. It is currently not supported.

Reference Information

The syntax of Tscripts

A Tscript may contain directives like, e.g., #def i ne, #i ncl ude and#i f def that are replaced by
apreprocessor similar to the C preprocessor. We summarize the most frequently used directives:

51



Guide to ToolBus Programming

» #define I dentifier Token-sequence causesthepreprocessor toreplaceal occurrences
of I denti fi er by Token- sequence.

* #include "Fil enane" will bereplaced by the entire contents of the named file.

» #i fdef and #i f ndef can be used for the conditional incorporation or exclusion of parts of a
script.

The syntax of Tscripts (without preprocessor directives) is asfollows:

Warning

This definition is dightly out-of-date.

exports
sorts BOOL NAT |INT SI GN EXP UNSI GNED- REAL REAL STRING I D
NAMVE VNAME BSTR TERM TERM LI ST VAR GEN- VAR TYPE ATOM
ATOM C- FUN PROC PROC- APPL FORMALS Tl MER- FUN
FEATURE- ASG FEATURES TB- CONFI G DEF T- SCRI PT
| exi cal syntax

[ \t\n] -> LAYOQUT

"0®6 ~[\n]* -> LAYOQUT

[0-9] + -> NAT

NAT -> | NT

SI GN NAT -> | NT

[+\-] -> SIGN

[ eE] NAT -> EXP

[eE] SIGN NAT -> EXP

NAT "." NAT - > UNSI GNED- REAL

NAT "." NAT EXP - > UNSI GNED- REAL

UNSI GNED- REAL -> REAL

S| GN UNSI GNED- REAL -> REAL

[a-z] [ A-Za-z0-9\-]* -> | D

B T A I W -> STRI NG

[A-Z] [ A-Za-z0-9\ -] * -> NAME

[A-Z] [ A-Za-z0-9\ -] * - > VNAME

[a-z][a-2z\-]* -> ATOM C- FUN

del ay -> Tl MER- FUN

abs- del ay -> TI MER- FUN

ti meout -> TI MER- FUN

abs-ti neout -> TI MER- FUN
cont ext-free syntax

true -> BOOL

fal se -> BOOL

BOCL -> TERM

| NT -> TERM

REAL -> TERM

STRI NG -> TERM

TERM -> TYPE

VNANE -> VAR

VNAME ":" TYPE -> VAR

VAR -> GEN- VAR

52



Guide to ToolBus Programming

VAR " ?" -> CGEN VAR
GEN- VAR -> TERM
"<" TERM " >" -> TERM
1D -> TERM
ID"(" TERMLIST ")" -> TERM
{TERM ", "}* -> TERM LI ST
“[" TERMLIST "]" -> TERM
NAME -> VNAME
ATOM C-FUN " (" TERM LI ST ")" -> ATOM
delta -> ATOM
tau -> ATOM
create "(" NAME "(" TERMLIST ")" ", "

TERM ") " -> ATOM
ATOM TI MER- FUN " (" TERM ")" -> ATOM
VNAME ": =" TERM -> ATOM
ATOM -> PROC
PROC "+" PROC -> PROC {left}
PRCC "." PROC -> PROC {right}
PROCC "||" PROC -> PROC {right}
PRCC "*" PROC -> PROC {left}
"(" PROC ")" -> PROC {bracket}
if TERMthen PROC el se PROC fi -> PRCC
if TERM then PROC fi -> PROC
execut e( TERM LI ST) -> PROC
let {VAR ","}* in PROC endl et -> PRCC
NANVE -> PROC- APPL
NAME " (" TERMHLIST ")" -> PROC- APPL
PROC- APPL -> PRCC
(" {GENVAR ", "EF )" -> FORMALS

-> FORMALS

process NAME FORMALS i s PROC -> DEF
ID "=" STRI NG - > FEATURE- ASG
"{" { FEATURE-ASG ";"}* "}" - > FEATURES
tool I D FORVALS is FEATURES -> DEF
t ool bus "("{PROC-APPL ", "}+ ")" -> TB- CONFI G
DEF* TB- CONFI G -> T- SCRI PT

priorities
PROC "*" PROC -> PROC > PROC "." PROC -> PROC >
PROC "+" PROC -> PROC > PROC "||" PROC -> PROC

Built-in functions

Tscripts provide a limited form of built-in functions that are summarized here. Recall that built-in
functions are only evaluated at the following syntactic positions in a Tscript:

» Theright-hand side of an assignment.
» Thetest in an if-then or if-then-else construct.

» Theexpression in time-related constructs.

53



Guide to ToolBus Programming

Boolean functions

Table 1.1. Boolean functions

Function Result type Description
not (<bool >1) <bool > - <bool >;
and( <bool >;, <bool >;) <bool > <bool >; and <bool >,
or (<bool >1, <bool >) <bool > <bool >; OR <bool >,
equal (<termpy, <ternpy) <bool > <ternp; =<terne;
not - equal (<termpy, <terney) <bool > <ternmp; NE <ternp;

Integer functions

Table 1.2. Integer functions

Function Result type Description
add(<i nt >1, <int>)) <i nt> <int>;+<int>
sub(<int>1, <int>)) <int> <int>;-<int>
mul (<i nt>;, <int>p) <int> <i nt>1 TIMES<i nt >,
di v(<int>1, <int>)) <i nt> <int>;/<int>,
mod( <i nt>1, <int>y) <int> <i nt > mod <i nt >,
abs(<int>;) <i nt> [<int>q|
| ess(<int>g, <int>)) <bool > <int>;<<int>
| ess-equal (<int>;, <int>)) <bool > <int>; LEQ<int>;
greater(<int>;, <int>jp) <bool > <int>;><int>;
greater-equal (<i nt>1, <int>)) <bool > <i nt >; GEQ<i nt >,

Real functions

Table 1.3. Real functions

Function Result type Description
radd(<real >;, <real >)) <real > <real >; +<real >
rsub(<real >;, <real>)) <real > <real >; -<real >,
rmul (<real >1, <real >)) <real > <real >; x<real >
rdiv(<real >;, <real >)) <real > <real >;/<real >
nmod( <real >1, <real >,) <real > <r eal >; mod <r eal >,
rabs(<real >;) <real > |<real >1|
rless(<real >1, <real >)) <bool > <real >; <<real >
rl ess-equal (<real >, <real >y) <bool > <real >>; #<real >
rgreater(<real >, <real >)) <bool > <real >; ><real >
rgreater-equal (<real >, <real >;) |<bool> <r eal >>1 #<real >,




Guide to ToolBus Programming

Goniometric functions

Table 1.4. Goniometric functions

Function Result type Description
si n(<real >) <real > sin(<r eal >1)
cos(<real >1) <real > cos(<r eal >;)
atan(<real >1) <real > tan”(<r eal >,) intherange [-
#12, #2]
atan2(<real >1, <real >)) <real > tan'}(<r eal >y/<r eal >) in
the range [-#, #]
exp(<real >1) <real > g<real>y
| og( <real >) <real > natural logarithm In(<r eal >4),
with<real >; >0
| 0g10( <real >1) <real > base 10 logarithm
logig(<r eal >1), with
<real > >0
sqrt(<real >;) <real > #<r eal >, with<real >; #0
Functions on lists
Table 1.5. Functionson lists
Function Result type Description
first(<list>g) <ternp First element of <l i st >1; The
empty list[ ] when applied to
non-list or empty list.
next (<list>q) <list> Remaining elements of
<list>;.
join(<ternmp,, <ternpy) <list> Concatenation of <t er n>4
and <t er n>,. When both
arguments are lists their
elements are spliced into a new
list. A non-list argument is
included as single element in
the new list.
si ze(<list>)) <int> The number of elementsin
<list>.
Table 1.6. Functionson listsasarrays
Function Result type Description
i ndex(<list>1, <int>) <t erne The<i nt >;-th element of
<l i st >,,if it exists; otherwise
[1.
repl ace(<list>y, <inti>, <termnmpq) <list> If the <i nt >;-the element

exists, replaceit by <t er n»y
and returned the modified list;
otherwisereturn<l i st >;
unmodified.

55




Guide to ToolBus Programming

Table 1.7. Functions on lists as symbol tables

Function Result type Description
get(<list>1, <ternpy) <ternp If <l'i st >;containsapair
[<ternmpi, <ternpq']
thenreturn<t er n>{' ;
otherwise[].
put (<list>1, <ternmpy, <ternpy) <list> If <I'i st >;containsapair

[<termpy, <ternpy']
thenreplaceit by [ <t er nPq,
<t er np;] ; otherwise add a
new pair [<term>1, <term>;] to
<list>1.

Table 1.8. Functionson lists as multi-sets

Function Result type Description

menber (<ternpy, <list>g) <bool > <ternp; IN<list>;
(membership in multi-set)

subset (<l ist>g, <list>)) <bool > <list> SUBSET <l i st>,
(subset on multi-set)

di ff(<list>q,<list>)) <list> <list> DIFF<list>;
(difference on multi-set)

inter(<list>q,<list>)) <list> <list> INTER<Iist>,
(intersection on multi-set)

56




Guide to ToolBus Programming

Functions on terms

Table 1.9. Functionson ATerms

Function Result type Description

i s-bool (<ternp) <bool > If <ternpisof typebool
thent r ue; otherwisef al se.

is-int(<ternp) <bool > If <ternpisoftypei nt then
t r ue; otherwisef al se.

i s-real (<ternp) <bool > If <ternpisoftyper eal
thent r ue; otherwisef al se.

is-str(<ternp) <bool > If <ternpisoftypestr then
t rue; otherwisef al se.

i s-bstr(<ternp) <bool > If <ternpisoftypebstr
thent r ue; otherwisef al se.

i s-appl (<ternp) <bool > If <t ernisanapplication
thent r ue; otherwisef al se.

is-list(<ternp) <bool > If <ternpisalistthentrue;
otherwisef al se.

i s-enpty(<ternp) <bool > If <ternpisequato]]
thent r ue; otherwisef al se.

i s-var(<ternp) <bool > If <t ernrisavariablethen
t rue; otherwisef al se.

i s-var(<ternp) <bool > If <ternpisavariablethen
t r ue; otherwisef al se.

is-result-var(<ternp) <bool > If <ternpisaresultvariable
thent r ue; otherwisef al se.

is-formal (<ternp) <bool > If <ternpkisaformal variable
thent r ue; otherwisef al se.

fun(<ternp) <str> If <ternpisafunction
application then its function
symbol; otherwise" " .

args(<ternp) <list> If <ternrisafunction
application then its argument;
otherwise[] .

Time-related functions
Table 1.10. Time-related functions
Function Result type Description

current-time <list> Six-tuple describing the current
absolute time

sec(<int>) <i nt > Convert <int> into seconds

57




Guide to ToolBus Programming

Miscellaneous functions

Table 1.11. Miscellaneous functions

Function Result type Description
process-id <i nt > Process id of the current process
process-nane <str> Name of the current process
quot e( <t er n») <ternp Quoted (unevaluated) term;

only variables are replaced by
their values
functions <list> List of al built-in functions

Synopsis of ToolBus primitives

In the following two sections al primitives are summarized that can occur in a Tscript.

58




Guide to ToolBus Programming

Process-related primitives in Tscripts

Table 1.12. Process-related primitivesin Tscripts

Primitive Synopsis

delta Inaction (deadlock)

tau Internal step

PL+Py Choice between P, and P,
Pi.Ps P, followed by P,

Pyl P2 P, paralle with P,

P1* P2 Repeat P, until P,

if Tthen P fi Guarded command

if T then P, else Py
fi

Conditiona

create(Pnm(T, ...), Create new process

Pi d?)

V:=T Assign T ( seen as expression) to V
snd- nsg(T) Send synchronous message
rec-msg(T) Receive a synchronous message

snd- not e(T)

Broadcast an asynchronous note

rec-note(T)

Receive an asynchronous note

no- not e(T) No note available
subscri be(T) Subscribe to notes
A del ay(T) Relative delay of atom execution

A abs-del ay(T)

Absolute delay of atom execution

A timeout(T)

Relative timeout of atom execution

A abs-tineout(T)

Absolute timeout of atom execution

shut down(T)

Terminate ToolBus application

printf(s, T, ...)

Print terms according to format string S

read(Ty, Ty)

Give prompt Tiand read term that should match
with T,

process Pnn(F, ...) Define process Pnm

is P

let F, ... inP Declarelocal variablesin P
endl et

Tool Bus(Pnm(T,...),
cel)

Define initial ToolBus process configuration

59




Guide to ToolBus Programming

Tool-related primitives in Tscripts

Table 1.13. Tool-related primitivesin Tscripts

Primitive Synopsis See

rec-connect (Ti d?) Receive connection regquest from tool

rec-di sconnect (Ti d?) |Receive disconnection request from tool

execute(Tnm(T,...), Execute a tool
Ti d?)
snd-term nate(Tid, T) |Terminateexecution of atool
snd-eval (Tid, T) Send evaluation request to tool
snd- cancel (Ti d) Cancel previous evaluation request
rec-value(Tid, T) Receive answer to evaluation request
snd-do(Tid, T) Send evaluation request to tool (no return value)
rec-event(Tid, T, Receive event from tool
)

snd- ack-event (Tid, T) [Acknowledge previousevent from tool
tool Tnmis { Feat, Definetool Tnm

}
host = Str Host feature in tool definition
comand = Str Command feature in tool definition

Historical notes

The first generation ToolBus is described in [BK94] (p. 60) In addition to the design, the complete
C implementation is discussed in detail. The second generation ("discrete time") ToolBus includes
timing primitives as well as built-in functions. It has been formally described using ASF+SDF, see
[BK95] (p. 60)and [BK98] (p. 60)In [Oli00] (p. 61)a framework for the debugging of
ToolBus applicationsis presented. Initial thoughts about a next generation Tool Buswere published in
[dIKO3] (p. 60). [dJO7] (p. 60) describes architectural aspects of ToolBus-based applications.

Warning

Add: theses of Peter Heibrink, Arnold Lankamp, Dennis Hendriks.
Bibliography
[BK94] JA. Bergstra and P. Klint. The toolbus: a component interconnection architecture. Technical

ReportP9408. University of Amsterdam, Programming Research Group. 1994.

[BK95] JA. Bergstraand P. Klint. The discrete time toolbus. Technical ReportP9502. University of Amsterdam,
Programming Research Group. 1995.

[BK98] JA. Bergstraand P. Klint. The discrete time ToolBus -- a software coordination architecture. 205--229.
Science of Computer Programming. 31. 2-3. July 1998.

[dIKO3] H.A. de Jong and P. Klint. Toolbus: the next generation. 220--241. Formal Methods for Components and
Objects. . F.S. deBoer, M. Bonsangue, S. Graf, and W.P de Roever. Lecture Notesin Computer Science.
<seriesvolnum>2852</seriesvolnum>
2003. Springer.

[dJO7] H.A. de Jong. Flexible Heterogeneous Software Systems. PhD thesis. University of Amsterdam. 2007.

60



Guide to ToolBus Programming

[O1i00] P.A. Olivier. A Framework for Debugging Heterogeneous Applications. PhD thesis. University of
Amsterdam. 2000.

To Do

» What do we do with the other adapters?

» Describe current viewer.

* Describe console commands.

» Do we describe the global structure of the Javaimplementation (or partially refer to online docs)?

» Describe viewer interface.

61



