A Guide to TooLBUS Programming

P. Klint!?

April 22, 2002

1 Programming Research Group, University of Amsterdam
P.O. Box 41882, 1009 DB Amsterdam, The Netherlands
2 Department of Software Technology
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

The TooLBUS is a new software architecture intended for building cooperating, distributed ap-
plications. This guide aims at providing a comprehensive but complete explanation of “ToOLBUS
programming”: writing TOOLBUS scripts (or T scripts for short) describing the overall architecture
of an application and writing tools that actually implement the application’s functionality.

Contents
1 Introduction 3
1.1 Background and motivationo L Lo 3
1.2 The ToOLBUS architecture e 3
1.3 Purpose of thisguide L e 4
1.4 Hello world e e)
1.5 Further reading e e 6
2 Executing TooLBUS and tools 6
2.1 Common arguments o e e e e e e e e e e e e e 7
2.2 TooLBUS argumentsl 7
2.3 Toolarguments L.l 8
3 Adapters for tools and languages 9
4 Writing tools in C 9
4.1 ATerms: Composing and decomposing terms 9
4.1.1 Term patterns e e e 10
4.1.2 ATmake o o e e e e e e e e e e e e e 10
4.1.3 ATmatch e e e e e e 11
4.1.4 Input and output of ATerms e 12
4.1.5 Reading and writing ATerms 12
4.1.6 ATfprintfl 12
4.1.7 Further ATerm manipulation functions 13
4.1.8 Memory Management of ATerms e 13
4.1.9 Initializing and using the ATerm library, 14
4.2 The global structure of a TooLBUS tool L. 14
4.2.1 The include file atb-tool.ho 15
4.2.2 The tool library 1ibATB.a 15

4.3 The TooLBUS API e

4.3.1 ATBinit e e e e
4.3.2 ATBcomnnect and ATBdisconnect o v v v v v i e
4.3.3 ATBeventloOop v v v it
4.3.4 ATBwriteTerm and ATBreadTerm v v v v v v v v e,
4.3.5 Advanved control flow oL
4.4 Compiling ToOLBUS tools writtenin C
4.5 Generating C tool interfaces with tifstoc Lo

Using arbitrary Unix commands as tool
5.1 gen-adapter
5.2 Example: pipe communication between two Unix commands.

Writing tools in Perl

6.1 perl-adapter. L
6.2 Predefined Perl functions Lo e
6.3 The hello example in Perl: hello.perl,
Writing tools in Python

7.1 Building a TooLBUS-aware Python interpreter.
7.2 Using the TooLBuUS-aware python interpreter,
7.3 Predefined Python functions L
7.4 Methods of the class term L
7.5 termexample oL L e e
7.6 The hello example in Python: hello.py
Writing tools in Tcl/Tk

8.1 tcltk-adapter L
8.2 Predefined Tcl functions L e
8.3 The hello example in tcl: hello.tcl oL vt v ittt e e e e

Incompatibilities with older TooLBUS versions
A.1 Include files, Libraries and API’s i

Limitations/extensions current implementation

C The syntax of T scripts

C.1 Preprocessor directives e e e e e e e
C.2 Context-free syntax Lo e

Expressions in T scripts

D.1 Boolean and arithmetic functions
D.2 Functions on lists and multi-sets
D.3 Predicates and functions on terms e e e
D.4 Miscellaneous functions e e e e e

Synopsis of primitives available in T scripts

20
20
21

21
21
22
22

22
22
23
23
24
25
25

26
26
27
27

29
29

29

31
31
31

34
34
35
35
36

37

‘/snd\ snd

TooLBuUs:
A A A
eval value
do
ack-event event
\ \
Adapters: : :

i
TOOIS: h

Figure 1: Global organization of the ToorLBUS

1 Introduction

1.1 Background and motivation

Building large, heterogeneous, distributed software systems poses serious problems for the software en-
gineer. Systems grow larger because the complexity of the tasks we want to automate increases. They
become heterogeneous because large systems may be constructed by re-using existing software as compo-
nents. It is more than likely that these components have been developed using different implementation
languages and run on different hardware platforms. Systems become distributed because they have to
operate in the context of local area networks.

We propose to get control over the possible interactions between software components (“tools”) by
forbidding direct inter-tool communication. Instead, all interactions are controlled by a process-oriented
“script” that formalizes all the desired interactions among tools. This leads to a component interconnec-
tion architecture resembling a hardware communication bus, and therefore we call it a “TooLBUS”.

1.2 The TooLBusS architecture

The global architecture of the TooLBUS is shown in Figure 1. The TooLBUS serves the purpose of
defining the cooperation of a variable number of tools T; (i = 1,...,m) that are to be combined into
a complete system. The internal behaviour or implementation of each tool is irrelevant: they may be
implemented in different programming languages, be generated from specifications, etc. Tools may, or
may not, maintain their own internal state. Here we concentrate on the external behaviour of each tool.
In general an adapter will be needed for each tool to adapt it to the common data representation and
message protocols imposed by the TooLBuUSs.

The ToOLBUS itself consists of a variable number of processes’ P; (i = 1,...,n). The parallel com-
position of the processes P; represents the intended behaviour of the whole system. Tools are external,
computational activities, most likely corresponding with operating system level processes. They come
into existence either by an execution command issued by the TOOLBUS or their execution is initiated

1By “processes” we mean here computational activities inside the TOOLBUS as opposed to, for instance, processes at the
operating system level. When confusing might arise, we will call the former TOOLBUS processes” and the latter “operating
system level processes”.

/* hellol.tb -- Our first ToolBus script */
process HELLO is printf("Hello world, my first T script!\n")

toolbus (HELLO)

Figure 2: hellol: first script for the hello application.

externally, in which case an explicit connect command has to be performed by the TooLBuUS. Although
a one-to-one correspondence between tools and processes seems simple and desirable, we do not enforce
this and permit tools that are being controlled by more than one process as well as clusters of tools being
controlled by a single process.

Communication inside the TooLBuUs. Inside the TooLBUS, there are two communication mech-
anisms available. First, a process can send a message (using snd-msg) which should be received, syn-
chronously, by one other process (using rec-msg). Messages are intended to request a service from
another process. When the receiving process has completed the desired service it may inform the sender,
synchronously, by means of another message (using snd-msg). The original sender can receive the reply
using rec-msg. By convention, part of the the original message is contained in the reply (but this is not
enforced).

Second, a process can send a note (using snd-note) which is broadcasted to other, interested, pro-
cesses. The sending process does not expect an answer while the receiving processes read notes asyn-
chronously (using rec-note) at a low priority. Notes are intended to notify others of state changes in
the sending process. Sending notes amounts to asynchronous selective broadcasting. Processes will only
receive notes to which they have subscribed.

Communication between TOOLBUS and tools. The communication between TOOLBUS and tools
is based on handshaking communication between a TOOLBUS process and a tool. A process may send
messages in several formats to a tool (snd-eval, snd-do, and snd-ack-event) while a tool may send the
messages snd-event and snd-value to a TOOLBUS process. There is no direct communication possible
between tools.

The execution and termination of the tools attached to the TOOLBUS can be explicitly controlled. It
is also possible to connect or disconnect tools that have been executing independently of the ToOOLBUS.

1.3 Purpose of this guide

This guide is a companion to the various TOOLBUS papers? fully describing the motivation and overall
architecture of the TOOLBUS and explaining the T scripts used to describe cooperating sets of tools. The
reader is also referred to these reports for several examples of systems that have been described using the
TooLBuUs approach.

Here, the main emphasis is on explaining all details needed to actually implement systems using the
ToorLBus. First, we will give a “hello world” example in the context of the TooLBUS.

2The most comprehensive publication is J.A. Bergstra and P. Klint, “The discrete time ToolBus — a software coordination
architecture”, Science of Computer Programming, 31(2-3):205-229, July 1998.

Technical reports giving detailed descriptions of the semantics (using ASF+SDF specifications) and implementation of
the ToorL.Bus are: J.A. Bergstra and P. Klint, “The ToolBus—a component interconnection architecture”, Report P9408,
Programming Research Group, University of Amsterdam, 1994, and J.A. Bergstra and P. Klint, “The Discrete Time
ToolBus”, Report P9502, Programming Research Group, University of Amsterdam, 1995.

/* hello2.tb -- hello script using a separate hello tool */

process HELLO is

let H : hello, %% H will represent the hello tool
S : str %% S is a string valued variable

in
execute(hello, H?) . %% Execute hello, H gets a tool id as value
snd-eval(H, get-text) . %/ Request a text from the hello tool
rec-value(H, text(S7)). %) Receive it, S gets the text as value
printf(S) %% Print it

endlet

tool hello is {command = "hello"}

toolbus (HELLO)

Figure 3: hello2: second script for the hello application.

1.4 Hello world

The most simple program that is frequently used to learn a new programming language is a program
which prints some string (e.g., “hello world”) as proof of competence of its author to write, compile, and
execute a program in the language in question. Clearly, it is the road to arrive at this result that counts
and not the result itself (as the old proverb says).

The simplest hello program possible is shown in Figure 2. Typing the command

toolbus hellol.tb

will simply print the desired message.

Let’s now be more ambitious. In the above example, the text to be printed appears as a literal string
in the script. We complicate the example by introducing a “hello” tool that will provide the text to be
printed. This results in the script given in Figure 3. But how do we implement the hello tool itself?
We will explain in this guide the range of implementation languages that can be used (i.e., C, Tcl, Perl,
ASF+SDF ...). For the sake of this example we only show what a C implementation will look like.

In Figure 4 a first, simple, version of the hello tool is shown. It consists of the following parts®:

e An include of a standard header file (atb-tool.h) that contains common definitions for all tools.

e A declaration of a function hello_handler that is called when there is input available from the
TooLBUS: its argument inp is the input term, and its result (either a term or NULL) will be sent
back to the ToorLBuUs.* The input is analyzed by using ATmatch, a library function for matching
terms. For the get-text case, the term

snd-value ("Hello World, my first ToolBus tool in C!\n")
is constructed and returned to the TooLBUS.
e A main program that calls an initialization function and then enters an event loop.

Although it is not yet clear from the examples given so far, it turns out that there is much commonality
among the handlers written for different tools. In particular, the code for analyzing terms coming from

3You are not yet supposed to understand every detail of these listings, but you will be able to do so after reading this
guide!
41t is important to stress that the handler should always return a value: either a term or NULL.

the ToOLBUS is similar. This code also duplicates information in the script concerning the requests sent
to each tool. For this reason, we also provide a tool interface generator that automatically generates tool
interfaces from a given script.

This approach is shown in a second version of the hello tool (Figure 5). From the script hello2.tb
we generate automatically® the following two files:

e hello.tif.h: this includes necessary header files, and declares prototypes for application func-
tions get_text, rec_terminate and the ToolBus interfacing functions hello_handler (handles all
requests coming from the TOOLBUS) and hello_checker (checks that the interface as expected by
the TOOLBUS is compatible with the interface as provided by the tool).

e hello.tif.c: includes hello.tif.h and contains the declarations for hello_handler and
hello_checker.

The actual program hello.c consists of the following parts:
e An include of hello.tif.c

e A declaration of the function get_text that handles the eval request coming from the TooLBuUS
Note that get_text is called by hello_handler and that its return value will be sent back to the
TooLBuUs.

e A declaration of the function rec_terminate that is always called on termination of a tool.
e A main program that calls an initialization function and then enters an event loop.

What we see in these examples is that building an application with the ToOLBUS requires the following
steps:

e Design the overall behaviour of the application by writing a T script (hello2.tb).

e Write and compile the tools needed by the script (hello.c). The required interfacing code can be
written by hand or be generated automatically from the T script (hello.tif.c).

e Execute the TOOLBUS interpreter with the script as input.

1.5 Further reading

If you have come this far, you may be interested to learn more about the details of TOOLBUS programming.
In Section 2 the ways to execute the TOOLBUS interpreter and tools are described. Next follows an
intermezzo explaining the overall structure of ToOLBUS adapters (Section 3). In Section 4 you will find
a complete description of the library functions provided for writing tools in C.

In the sections that follow we explain how to write tools in various languages and systems: arbi-
trary Unix commands (Section 5), Java (Section ??), Perl (Section 6), Python (Section 7), and Tcl/Tk
(Section 8).

Four appendices with summaries conclude this guide.

2 Executing TooLBUS and tools

The TooLBUS interpreter (toolbus) and all tools have some standard program arguments in common,
but they have some specific arguments as well. In this section we describe all possible program arguments
and the way to execute toolbus and tools.

51n section 4.5 this is fully explained.

2.1 Common arguments
ToorBus and tools have the following optional arguments in common:
e -help: prints a description of all arguments of the toolbus or tool.

e -verbose: produces a log of steps taken by toolbus or tool that may be useful to debug your script
or tool. The same effect may be obtained by setting the environment variable TB_VERBOSE to true
and export it. In the Korn shell this can, for instance, be achieved by:

TB_VERBOSE=true
export TB_VERBOSE

e -TB_PORT port_name: defines the “well known socket” port_name to which all tools temporarily
connect in order to set up their own private socket that connects them permanently to the TooLBUS
interpreter. When omitted, socket 8998 will be used.

Note that explicit arguments defining the sockets are only needed when several TOOLBUS interpreters

are running simultaneously on the same host machine.

2.2 ToorLBus arguments

The script_name (see below) given as argument to the TOOLBUS is always preprocessed by the C prepro-
cessor before it is parsed as a T script. In this way, directives like, e.g., #define, #include and #ifdef
can be used freely in T scripts. The following preprocessor arguments are accepted by the toolbus
command:

e -Idir: append directory dir to the list of directories searched for include files.
e -Dmacro: define macro macro with the string “1” as its definition.

e -Dmacro=defn: define macro macro with defn as definition.

Other arguments specific for the toolbus command are:

e -logger: execute a logger tool that will be attached to all processes in the TooLBuUs. If the script
contains a tool definition for a tool named “logger”, that will be used for executing the logger.
Otherwise a default tool definition is used.

e -viewer: similar as above, for a viewer tool. The default viewer is the “TOOLBUS viewer” (previ-
ously known as the TooLBUs debugger).

e —controller: similar as above, for a controller tool. Currently, no default controller tool is pro-
vided.

e —gentifs: only generate tool interfaces for all tools used in the script in a language independent
format. For a script file named script.tb the tool interfaces are written to script.tifs. Do not
execute the script.

e -fixed-seed: use a fixed seed for the random generator used by the interpreter for scheduling
processes and selecting alternatives in processes. By default, the random generator is initialized
with the current time the toolbus command is given. Using the -fixed-seed option makes the
execution of the script reproducible across multiple runs of the toolbus command.

e script_name: any other argument is the name of the TOOLBUS script to be interpreted.

As an example, consider first

toolbus hello.tb

which starts interpreting the script “hello.tb”. Next, consider
toolbus -TB_PORT 4000 hello.tb

which interprets the same script, but uses socket 4000 to find the ToolBus. Next, consider,
toolbus -Imy-include-dir -DCNT=33 wave.tb

which searches the directory my-include-dir for files used in #include directives in the script wave.tb
and it will define the macro CNT with value 33. All occurrences of CNT in the script will be replaced by
this value before parsing it as a T script. Finally,

toolbus -gentifs hello.tb

produces the tool interfaces file hello.tifs.

2.3 Tool arguments
Arguments specific for tools are:

e -TB_HOST host_name: defines the host machine host_name on which the TOOLBUS interpreter is
running and to which the tool should be connected. When omitted, the TOOLBUS interpreter
should be running on the same host as the tool.

e —-TB_TOOL_NAME tool_name: the tool name as defined in the T script (added automatically, when a
tool is executed by the ToOLBUS).

e -TB_TOOL_ID /d: internal tool identifier of this tool execution (added automatically, when a tool is
executed by the ToOLBUS).

e -TB_SINGLE: execute the tool stand-alone and do not connect it with the TooLBuUS.
The execution of a tool can start in two ways:
e The tool is started by an execute command in the T script.

e The initiative to execute the tool is taken outside the TooLBuUS. This requires that the script
contains a rec-connect for this particular tool.

When TooLBuUS and tool are running on different host machines, it is important to define the host
machine on which the TOOLBUS interpreter is running when starting the execution of the tool. As an
example, consider the “hello” application described in Section 1.4. The hello tool will be executed by
the TooLBUS using the command

hello -TB_PORT 8998 -TB_HOST hostl.institute.nl

when running on machine host1.institute.nl.
Suppose, we replace the explicit execute in Figure 3 by a rec-connect as shown in Figure 6. We
may then manually start the hello tool by typing

hello

where we use the default values for the input/output sockets and assume that tool and TooLBUS in-
terpreter are both running on the same host (i.e., host1.institute.nl). Starting the execution from
another host is achieved by typing (on, say, host2.institute.nl):

hello -TB_HOST hostl.institute.nl

3 Adapters for tools and languages

The main purpose of adapters is to act as small “wrappers” around existing programs or programming
languages in order to transform them into tools that can be connected to the TOOLBUS. There exist two
global strategies for constructing adapters:

e The adapter and the program to be adapted are executed as separate (Unix) processes. This
structure is sketched in Figure 7. The advantage of this approach is that no access is needed to the
source code of the program: it can remain a black box. Another advantage is that adapters may be
reused for the adaptation of different programs. A possible disadvantage is some loss in efficiency.

e Integrate the adapter and the software to be adapted into a single (Unix) process. This approach
permits the most detailed adaptation of the program and is also the most efficient solution. This
approach leads, however, to potentially less reusable adapters than the previous approach.

Our experience so far is restricted to adapters of the first category. In this category a further subdi-
vision is possible:

e The program is executed once as a child process of the adapter and all snd-eval/snd-do requests
are directed to this child process. The program can thus maintain an internal state between requests.

e The same program is executed as a child process of the adapter for each snd-eval/snd-do request.

e A different program is executed as a child process of the adapter for each snd-eval/snd-do request.
Common arguments of adapters. In order to achieve some uniformity, the current collection of
adapters have the following optional program arguments in common:

e —cmd: the (default) program to be executed by the adapter. All arguments of the adapter that
follow —cmd are interpreted as the name and arguments of the program to be executed.

e all tool arguments (see Section 2.3.)

4 Writing tools in C

Although TooLBUS tools can be implemented in many languages (including Java, C++, Perl, Tcl/Tk,
Prolog, ASF+SDF, Cobol and others) we start explaining how tools can be written in C. In other
languages identical notions will be used with only minor adjustements to language-specific features and
limitations. Writing tools in C amounts to:

e ATerms: the essential data type that is used to exchange information between tool and ToOLBUS
(Section 4.1).

The global structure of a TooLBUS tool (Section 4.2).

The TooLBuUs Application Programmer’s Interface (Section 4.3).

Compiling TooLBUS tools written in C (Section 4.4).

Generating tool interfaces with tifstoc (Section 4.5).

4.1 ATerms: Composing and decomposing terms

We use a datatype called ATerms for creating, matching, reading and writing terms. ATerms are fully
described elsewhere.® Here we only give a brief overview.

6H. A. de Jong and P. A. Olivier, “ATerm Library User Manual” and M.G.J. van den Brand, H.A. de Jong, P. Klint
and P.A. Olivier, “Efficient Annotated Terms”, Software Practice and Ezperience, 30:259-291, 2000.

10

4.1.1 Term patterns

Composition and decomposition of terms is not based on the direct manipulation of the underlying repre-
sentation of terms. Instead, term patterns are used to guide composition and decomposition. Such term
patterns play the same role as format strings in the printf/scanf paradigm in C. In first approximation,
a term pattern is a literal string that would be obtained by a preorder traversal of a term. For instance,
the term pattern "or (true, false)", corresponds to a term whose root is labeled with the symbol or,
and whose children are labeled with, respectively, true and false. In this way, term patterns can be
used to construct and to match terms.

Term patterns become, however, much more useful if they can be parameterized with subterms that
have been computed separately. To this end, we introduce the notion of directives as follows:

<int> : corresponds to an integer (in C: int);
<str> : corresponds to a string (in C: char *);

<blob> : corresponds to a binary string (in C: a (length, pointer) pair represented by two values of types,
respectively, int and void *);

<term> : corresponds to an aterm (in C: ATerm);
<appl> : corresponds to one function application(in C: char *pattern, followed by arguments);
<list> : corresponds to a list of terms (in C: ATerm).

The precise interpretation of these directives depends on the context in which they are used. When
constructing a term, directives indicate that a subterm should be obtained from some given variable.
When matching a term, directives indicate the assignment of subterms to given variables. For the
implications of these directives for memory management, see Section 4.1.8.

4.1.2 ATmake
The function

term *ATmake (char *Pattern, ...)

constructs a term according to Pattern, where occurrences of directives are replaced by the values of the
variables occurring in
For instance, assuming the declarations

int n = 10;
char *fun = "pair", name = "any";
ATerm yellow = ATmake("yellow"), t;

the call

t = ATmake("exam(<appl(<term>,9)>,<int>,<str>)", fun, yellow, n, 10, name)
will construct the term t with value

exam(pair(yellow,9),10,10,"any")

Binary strings (Binary Large OBjects or blobs) are used to represent arbitrary length, binary data
that cannot be represented by ordinary C strings because they may contain “null” characters. A binary
string is represented by a character pointer and a length. For instance, given

char buf[12];
ATerm bstr;
buf [0] = 0; buf[1] = 1; buf[2] = 2;

11

the call
bstr = ATmake("exam(<blob>)", 3, buf);

will construct a term with function symbol “exam” and as single argument a binary string of length 3
consisting of the three values 0, 1, and 2.

4.1.3 ATmatch

Matching terms amounts to
e determining whether there is a match or not,
e selectively assigning matched subterms to given variables.
This is precisely what the function
ATbool ATmatch(ATerm Trm, const char *Pattern, ...)

does. It matches Trm against Pattern and, when a submatch is found that corresponds to a directive, it
makes assignments to variables whose addresses appear in For most directives, the values assigned to
these variables are pointers to subterms of Trm. Pattern should be a well-formed, textual representation
of a term which may contain any of the directives described earlier. For instance, in the context

ATerm t = ATmake("exam(pair(yellow,9),10, \"any\")");
ATerm ti;
int n;
char *ex, *s;
the call

ATmatch(t, "appl(<term>,<int>,<str>)", &ex, &tl, &n, &s);

yields true and is equivalent to the following assignments:

ex = "exam";

t1l = ATmake("pair(yellow,9)");
n = 10;

s = nanyn;

As explained in full detail in Section 4.1.8, memory is managed automatically by the ATerm library. As
a general rule, the values for ex, t1, and s are pointers into the original term t rather than newly created
values. As a result, they have a life time that is equal to that of t.

Matching binary strings is the inverse of constructing them. Given the term bstr constructed at the
end of the previous paragraph, its size and contents can be extracted as follows:

int n;
char *p;

ATmatch(bstr, "exam(<blob>)", &n, &p);

ATmatch will succeed and will assign 3 to the variable n and will assign a pointer to the character data
in the binary string to the variable p.
Here, again, the value of p is a pointer into the term bstr rather than a newly allocated string.

12

Notes

e Double quotes (“"”) appearing inside the pattern argument of both ATmake and ATmatch have to
be escaped using “\"”.

e The number and type of the variables whose addresses appear as arguments of ATmatch should
correspond, otherwise disaster will strike (as usual when using C).

e Assignments are being made during matching. As a result, some assignments may be performed,
even if the match as a whole fails.

4.1.4 Input and output of ATerms

We make a distinction between the “raw” input and output of terms as they are, for instance, being
sent through communication channels between TOOLBUS and tools, versus formatted input and output
of terms. Raw term i/o is provided by TBwrite and TBread. Formatted term output is provided by
TBprintf and TBsprintf. There are currently no primitives for formatted term input.

4.1.5 Reading and writing ATerms

ATerms can be read from and written to strings and files. Two formats are supported: a human-readable
but verbose textual format and a very concise binarry format. Here we only discuss the textual variant.
The function

void ATwriteToTextFile(ATerm Trm, FILE *File)
writes ATerm Trm to the file File. For instance, in the context:

FILE *f = fopen("foo", "wb");
ATerm Trmil = ATmake("<appl(red,<int>)>", "freq", 17);

the statement
ATwriteToTextFile(Trml, f);

will write the value of Trm1 (i.e., freq(red,17)) to file “foo”.
The function

ATerm ATreadFromFile(FILE *File)

is the inverse of ATwriteToFile: it reads a term (either in textual format or in internal format) from a
file and returns it as value. When end of file is encountered or the term could not be read, the operation
is aborted.”

4.1.6 ATfprintf

The function
int ATfprintf(FILE *File, const char *Pattern, ...)

writes formatted output to File. Pattern is printed literally except for occurrences of directives which
are replaced by the textual representation of the values appearing in For instance,

ATfprintf(stderr, "Wrong event \"/t\" ignored\n", ATmake("failure(<int>)", 13));
will print:
Wrong event "failure(13)" ignored

Note that ATprintf uses the normal printf conversion specifiers extended with aterm-specific spec-
ifiers. The most frequently used specifier is %t which stands for an aterm argument whose textual
representation is to be inserted in the output stream.

"The user can redefine this behaviour using ATsetAbortHandler, which allows the definition of a user-defined abort
handler. See the ATerm Library User Manual for further details.

13

4.1.7 Further ATerm manipulation functions

The ATerm library acutally provides two interfaces:

e The level 1 interface: a simple but expressive interface as just sketched.

e The level 2 interface: a more detailed interface that allows the very efficient coding of operations
on ATerms. We will not further discuss here the level 2 interface.

4.1.8 Memory Management of ATerms

The functions in the ATerm library provide automatic memory management of terms. Terms that have
been created but are no longer referenced are removed by a method called garbage collection. The
global model is that there is a set of protected terms that are guaranteed to survive a garbage collection.
Effectively, all protected terms (and their subterms) are conserved and all other terms are considered as
garbage and can be collected.

It is guaranteed that no garbage collection takes place during the execution of an event handler,
hence it is not necessary to protect temporary terms that are constructed during the execution of an
event handler. However, terms that should have a longer life time must be protected in order to survive.

In order to protect terms from being collected, the function

void ATprotect(ATerm *TrmPtr)

can be used that has as single argument a pointer to a variable with an ATerm as value. The protection
can be undone by the function

void ATunprotect(ATerm *TrmPtr)

The interplay between garbage collection and program variables is subtle. The following points are
therefore worth mentioning:

e Functions that return a term as value (e.g., TBreadTermfromFile) do not explicitly protect it but
the result may, of course, be protected because it is a subterm of an already protected term.

e The function ATmake uses strings and terms and includes them into a new term 7. The implications
for memory management are:

— All string arguments (using <str>, <blob> or <appl>) are copied before they are included into
T. They can thus safely be deallocated (e.g., using free) by the C program.

— All term arguments (using <term>) are included into 7' by means of a pointer. They thus
become reachable from T and their life time becomes at least as large as that of T'; it is
unnecessary to explicitly protect them.

e The function ATmatch assigns strings and terms to program variables by extracting them from an
existing term 7T'. The general rule here is that extracted values have a life time that is equal to that
of T. The implications for memory management are:

— All string values (obtained using <str>, <blob> or <appl>) should be copied if they should
survive T'.

— All term values (obtained using <term>) should be explicitly protected if they should survive
T.

14

4.1.9 Initializing and using the ATerm library
Using the ATerm library requires the following:

e Include the header file aterml.h (or aterm2.h if you want to use the level 2 interface). aterml.h
defines:

— ATbool: the boolean data type defined by
typedef enum ATbool {ATfalse=0, ATtrue} ATbool;

It is mainly used as the return value of library functions.

— ATerm: the type definition of ATerms. The ATerm library has been designed in such a way that
only pointers to terms must be passed to or are returned by library functions. The primitives
that are provided for constructing and decomposing terms are of such a high level that it is
unnecessary to know the internal representation of terms. When necessary, you can access the
internal structure of ATerms using the level 2 interface.

e Declare in your main program a local ATerm variable that will be used to determine the bottom of
(C’s runtime stack.

e Call ATinit to initialize the ATerm library.

e Link the ATerm library 1ibATerm.a when compiling your application. This is achieved using the
-1ATerm option of the C compiler.

A typical usage pattern is as follows:

#include <atermi.h>
int main(int argc, char *argv[])
{
ATerm bottomOfStack;
ATinit(argc, argv, &bottom0fStack);
/* ... code that uses ATerms ... */

}

4.2 The global structure of a TooLBUS tool

In its simplest form, a tool is a box connected via an input and an output port to a TooLBUS. In the
most general case, a tool has

e one input port from the ToOLBUS to the tool and can receive tree structures (terms) via this port;
e one output port from the tool to the ToOOLBUS and can send terms to the TOOLBUS via this port;
e zero or more term ports to receive terms from other sources;

e zero or more character ports to receive character data from other sources.

This global, architectural, structure of a tool is shown in Figure 8. With each input port, an event
handler is associated that takes care of the processing of the data received via that port and is responsible
for returning a result (if any). One tool may thus contain several event handlers. When a request is
received, the following steps are taken:

e The data received are parsed to check that they form a legal TOOLBUS term T'. (If this is impossible,
a warning message is generated).

e The event handler is called with 7" as argument.

15

e The event handler can do arbitrary processing needed to decompose T', to determine what has to
be done, and perform any desired computation.

e The event handler returns either:

— a legal TOOLBUS term representing a reply to be sent back to the ToOLBUS.

— NULL indicating that there is no reply.
The global mode of operation of a tool is now:

e receive data on any input port and respond to this by sending some term (or NULL) to the TOOLBUS;
or

e take the initiative to send a term to the ToOOLBUS (typically to inform the TooLBUS about some
external event).

A tool is thus on the one hand a reactive engine that responds to a request from the ToOLBUS
and returns the result back to the TooLBUS in the form of a term (e.g., calculate the value of some
expression), but on the other hand it can also take the initiative to send a term to the TooLBUS (e.g.,
generate an event when a user pushes some button).

At the level of the source code, the global structure of a purely reactive tool without additional term
or character ports has already been illustrated in Figure 4.

4.2.1 The include file atb-tool.h

Each tool needs to include the file atb-tool.h which defines some basic types as well as the set of library
functions available. It consists of

e An include of <aterm1.h>.
e Defines ATBhandler: the type of event handlers.

e Defines the prototypes of all library functions

4.2.2 The tool library 1ibATB.a

When compiling tools, the library 1ibATB.a must be specified in order to make the tool library available
(using the -1ATB option of the C compiler). Tt provides the following functions®:

e ATBinit: tool initialization (Sections 4.3.1).

e ATBconnect: to connect the tool to the ToOLBUS (Sections 4.3.2).

ATBdisconnect: to disconnect the tool from the TooLBUS (Sections 4.3.2).

e ATBeventloop: a standard event loop for a tool (Section 4.3.3).

ATBreadTerm: process one input event on a port (Section 4.3.4).

e ATBwriteTerm: send a term to the TOOLBUS (Section 4.3.4).

In the following section, we will describe these functions.

8For an exhaustive description, see H. A. de Jong and P. A. Olivier, “ATerm Library User Manual”

16

4.3 The ToorLBus API

During the initialization of each tool, some preparations have to made before the tool can be properly
connected to the TooLBUS. These preparations include

e Defining the name of the tool as it is known from a tool declaration in a T script.
e Parsing standard program arguments that are passed to the tool when it is started.
e (Creating a pair of socket connections with a TOOLBUS interpreter.

e Starting an event loop.

During execution of the event loop, the tool can either receive terms from the TOOLBUS or it can take
the initiative to send terms to the TooLBUS. It is thus possible for a tool to both respond to TooLBUS
requests and asynchronously send terms to the TooLBUS.

4.3.1 ATBinit
The initialization of a tool is achieved by
ATBinit (int argc, char *argv[], ATerm *bottomOfStack).

The standard program arguments that are passed (via argc and argv) are fully described in Section 2.
Particularly important is that the tool is initialized with a proper name. It should be literally equal
(including the case of letters) to a tool name as appearing in a tool declaration in the T script. This
is important since the tool name will be used when the tool is connected to the Toor.Bus. Note that
ATBinit also initializes the ATerm library (hence the bottom0fStack argument, see Section 4.1.9).

4.3.2 ATBconnect and ATBdisconnect

A tool can be connected to the ToolBus using term ports that can be using for sending and receiving
data in the form of complete terms. Two aspects of term ports are important: the input channel used
for the actual data transfer and the handler that takes care of processing input terms when they arrive.
The connection is established as follows:

int ATBconnect(char *toolname, char *host, int port, ATBhandler h);

Here, toolname is the tool name to be used, host is the machine where the TOOLBUS is executing,
port is the file descriptior of the channel to be used, and h is the handler to associated with this connection.
If value NULL is passed as toolname or host, default values are used that are taken from argv. The same
is true when -1 is passed as value for port. The return value of ATBconnect is either -1 (failure) or
a positive number (the connection succeeded and the result is the file descriptor of the resulting socket
connection with the TooLBUS).

Handlers for term ports are functions from ATerm to ATerm and have the type:

ATerm some_handler(int conn, ATerm input)

The argument conn is the connection along which the input term was received and input is the actual
term received. The term retruned by the handler is the reply to be sent to the TOOLBUS in response to
this input event, or NULL if no reply is needed.

In this fashion, an arbitrary number of term input ports can be set up which will be read in parallel:
as soon as a term arrives at one of the ports the associated handler is activated.

A connection can be terminated as follows:

void ATBdisconnect(int conn)

where int is a previously created connection.

17

4.3.3 ATBeventloop

Many tools first establish a number of term ports and then enter an infinite loop that processes input
events. The function

int ATBeventloop(void)

captures this idea. It never returns, unless something goes wrong. We can now give a skeleton that many
tools have in common:

#include "my_tool.tif.c"

ATerm my_tool_handler(int conn, ATerm input)
{ ... handle input and return a term or NULL ... }

int main(int argc, char *argv[])
{ ATerm bottomOfStack;

ATBinit(argc, argv, &bottomOfStack);
if (ATBconnect (NULL, NULL, -1, my_tool_handler) >= 0)
{
ATBeventloop() ;
} else
fprintf (stderr, "my_tool: Could not connect to the ToolBus, giving up!\n");
ATBeventloop() ;
return 0;

4.3.4 ATBwriteTerm and ATBreadTerm

So far, we have seen primitives for tools that only receive terms from the ToOLBUS. In the case of, for
instance, events that are generated by a tool, a term needs to be sent from the tool to the TooLBUS.
This can be achieved using

int ATBwriteTerm(int conn, ATerm term)
which sends term along the port conn. Failure is indicated by the return value -1. A typical usage is:
ATBwriteTerm(conn, ATmake(snd-event (button("ok")).
Symmetrically, a term can be read from a TOOLBUS connection as follows:

ATerm ATBreadTerm(int conn).

4.3.5 Advanved control flow

Tool programming amounts, in essence, to event driven programming: most of the time a tool is awaiting
the arrival of data on one of its ports and when the data are there, a reply is sent to the TooLBUS by
the handler associated with that port.

In computation-intensive tools, the need may arise to check for the availability of incoming data from
the TooL.BUS during computations. This is achieved by the function

ATbool ATBpeekOne(int conn)

which returns ATtrue if incoming data from the TOOLBUS are available on the connection conn.
Similarly, the availability of data on any connection may be checked by:

18

int ATBpeekAny(void)

If input is waiting, the appropriate connection is returned. Otherwise -1 is returned.

The sequence of activities needed for handling (once) the data available from a specific connection is
captured by the function

void ATBhandleOne(int conn)

This amounts to calling the handler associated with connection conn with the available data as input
term.

Similarly, the data from any connection is handled by
void ATBhandleAny(void)

The function ATBeventloop can be expressed with the primitives just introduced:

int ATBeventloop(void)
{ int conn;

while (ATtrue)
{
n = ATBhandleAny();
if(n < 0)
return -1;

Another style mixes the handling of input from the TooLBUS, with other computations:

while (ATtrue)
{
if(n = ATBpeekAny() >= 0) /* if there is an incoming event */
ATBhandleOne(n) ; /* handle it */
else {
/* perform other computation */
}
}

In some tools, a mixture of passively awaiting input and actively sending terms to the TOOLBUS can
be seen.

Using ATBwriteTerm, the most general global event loop of a tool becomes:

while (ATtrue)
{
. ATBwriteTerm(cl,el); ...; ATBwriteTerm(cn,en);
ATBhandleAny() ;
}

In other words, each iteration starts by sending zero or more terms to the TOOLBUS (using ATBwriteTerm)
and ends with processing one event coming from some port (using ATBhandleAny). The T script being
used should, of course, be able to receive such events.

19

4.4 Compiling TooLBUS tools written in C

When compiling a tool written in C the following questions should be answered:
e Where is the include file aterm1.h?

e Where is the include file atb-tool.h?

Where is the ATerm library 1ibATerm.a?

Where is the TooLBUS API library 1ibATB.a?

Which other libraries are needed to compile the tool?

The answers to these questions are clearly system dependent. There are two strategies to answer
them.

Strategy 1: find the desired locations on your system and hard code them in the compilation command.
This will lead to a call to the C compiler with the following arguments:

o -Idir-where-aterm1.h-is
o —Idir-where-ATB-tool.h-is
e hello.c -o hello

o -Ldir-where-libATerm.a-is
o —-1ATerm

e -Ldir-where-libATB.a-is
e -1ATB

e other libraries.

Strategy 2: write a make file that encodes this information. As a result, the location information is
hardwired in the make file rather than in a command that has to be repeated over and over again.

4.5 Generating C tool interfaces with tifstoc

The interface code for each tool depends on the particulars of the T script in which it is used. Changing
the number of arguments in an evaluation request to the tool, or adding a new request, requires making
changes to the interface code that are easily forgotten and therefore error prone.

As already mentioned in Section 1.4, another observation is that the interface code for different tools
has a lot in common.

An obvious solution to both problems is to generate tool interfaces automatically, given a T script.
This generation process is shown in Figure 9 and consists of two steps:

e Generate a language-independent description of all tool interfaces used in the script. This amounts

to a static analysis of all tool communication in the script. It is achieved by using the “-gentifs”
option of the TOOLBUS interpreter. For instance,

toolbus -gentifs hello2.tb

will create a file hello2.tifs containing the tool interfaces.

20

e Use the language independent interface description to generate a tool interface for a specific tool in
a specific implementation language. The generator tifstoc? exists for generating C tool interfaces.
It is called as follows:

tifstoc -tool Name TifsFile

and generates a file named Name :.tif.c. For the hello example, we would have, for instance:
tifstoc -tool hello hello2.tifs

In Figure 9 it is also shown how tool interface generators for other languages (e.g., Java, Cobol) fit
into this scheme. In addition to tifstoc, we alo support the generation of Java interfaces by way of
javatif (See Section ?7).

5 Using arbitrary Unix commands as tool
Using arbitrary Unix commands as TOOLBUS tool is achieved by the gen-adapter to be explained in

Section 5.1. An example of its is use is given in Section 5.2.

5.1 gen-adapter

Synopsis. Execute an arbitrary Unix command as tool.
Example. gen-adapter -cmd 1ls -1

Specific arguments.
e -addnewline: always add a newline character to the standard input for the command.

e -keepnewline: keep the last newline character in the output generated by the command. Without
this argument, the last newline character is always removed.

e -string-output: return the output of the command as string (type: <str>). When no output
format options has been specified, ~string-output is used.

e -binary-output: return the output of the command as a binary string (type: <bstr>).

e —term-output: return the output of the command as term (type: <term>).

Communication. '°

e snd-eval(7Tid, cmd(Cmd, input(Str)): execute the Unix command
Cmd < Str

i.e., execute C'md with Str as standard input. The output of this command execution is captured
and will be returned by default as string value (see below). Other output formats can be selected
using command line options. T'id is a tool identifier (as produced by execute or rec-connect) for
an instance of the gen-adapter.

9This is an ATerm-compatible version of a similar generator called ctif. ctif is still in use for some older tools but will
be gradually phased out.

10Communication is described from the point of view of the ToOLBUS, i.e., snd- and rec- mean, respectively, send by
TooLBuUS and receive by TooLBUS.

21

e snd-eval(Tid, cmd(Cmd, input(Bstr)): same as above, except that a binary string is used as
standard input for Cmd.

e rec-value(7'id,output (Res)): the return value for a previous evaluation request. Res is a string
containing the output produced by the command execution. By default gen-adapter returns the
output of the executed command as ordinary string. Other output formats can be specified using
command line options. Note: in the current implementation of gen-adapter there is an arbitrary
limit (10000) on the size of the output produced by the command.

e snd-terminate(7T'id, A;): terminate execution of gen-adapter.

5.2 Example: pipe communication between two Unix commands

Suppose we want to count how many words there are in a listing of the current file directory. At the
Unix level, this can be achieved by

1s -1 | wc

where “ls -1” produces the directory listing and “wc -w” counts the number of words in this listing.
The same effect is achieved by the script given in Figure 10.

6 Writing tools in Perl

Writing ToOLBUS tools in Perl is greatly simplified by the perl-adapter to be explained in Section 6.1.
Next, a small set of predefined Perl functions is described that are always loaded by the perl-adapter
and can be used in any Perl script (Section 6.2). Finally, we present in Section 6.3 the Perl version of
the hello tool.

6.1 perl-adapter

Synopsis. Execute a Perl script as tool.
Example. perl-adapter -script hello.perl

Specific arguments.

e -script: The Perl script to be executed.

Communication. !

e snd-eval(Tid, Fun(Ay, ..., A,): perform the Perl subroutine call do Fun(A4;, ..., A,).
Here Tid is tool identifier (as produced by execute or rec-comnect) for an instance of the
perl-adapter.

e rec-value(Tid, Res): the return value for a previous evaluation request.

e rec-event(Tid, Ay, ..., Ap): event generated by Perl.

e snd-ack-event(Tid, A;): acknowledgement of a previously generated event.
e snd-terminate(7Tid, Ap): terminate execution of perl-adapter.

The command perl is executed once, an initial Perl script is read, and all further requests are directed to
this incarnation of perl. A small set of Perl procedures is available for unpacking and packing Toor.BUS
terms (see below).

1 Communication is described from the point of view of the ToOLBUS, i.e., snd- and rec- mean, respectively, send by
TooLBuUS and receive by TooLBuUS.

22

6.2 Predefined Perl functions

The following Perl functions are predefined and can be used freely in Perl script executed via the perl-
adapter:

e TBstring Str: converts a Perl string to a TOOLBUS string by surrounding it with double quotes
and escaping double quotes occurring inside Str.

e PERLstring Str: converts a TOOLBUS string into a Perl string by removing surrounding double
quotes.

e TBerror Msg: constructs an error message that can be send back to the TooLBuUS.

e TBsend Trm: send Trm back to the TooLBUS.

6.3 The hello example in Perl: hello.perl

Writing the hello tool in Perl requires two steps:
e Write the required Perl code hello.perl. The result is shown in Figure 11.

e Replace hello’s tool definition in hello2.tb by:

tool hello is {command = "perl-adapter -script hello.perl"}

7 Writing tools in Python

You can write TOOLBUS tools in Python using a TooLBUs-aware Python interpreter. How to build such
a TooLBuUs-aware Python interpreter is explained in Section 7.1. Section 7.2 explains how to connect
your python scripts that are executed by a TooLBus-aware Python interpreter to the TooLBUS.

7.1 Building a TooLBus-aware Python interpreter.

Before adding TooLBUS support to Python, you first have to retrieve and install Python, version 1.3.
If you need more information about Python or more specific information about installing Python, you
can visit the Python home page at http://www.python.org/. In this document we assume you have
succesfully installed python and are only interested in adding TOOLBUS support.

The first thing to do, is to copy the file adapters/python-adapter/TBmodule.c, located in this
TooLBuUs distribution to the Python Modules directory:

cp ToolBus/python-adapter/TBmodule.c Python-1.3/Modules

Now you have to add the two lines to the file Setup in the Python Modules directory. If you have enabled
the tkinter module in the Setup file, these lines are:

TBBASE=<your ToolBus location>
TB TBmodule.c -I$(TBBASE)/include -I/home/olivierp/include $(TBBASE)/1ib/libtb.a

If you do not have the tkinter module enabled in the Setup file, you have to add the following two lines
instead:

TBBASE=<your ToolBus location>
TB TBmodule.c -DNO_TK -I$(TBBASE)/include TBBASE)/lib/libtb.a

Now type make and keep your fingers crossed. If all goes well, a new ToOLBUS-aware python interpreter
will be build, which you can install using the command make install.

The script python-adapter, located in adapters/python-adapter, is used by your TOOLBUS scripts
to start the TooLBuUS-aware python interpreter with the right arguments. This script is automatically
moved to the TOOLBUS bin directory during the ToolBus installation.

7.2

23

Using the ToorBus-aware python interpreter

Synopsis. Start a python script as a tool.

Example. python-adapter -script hello.py

Specific arguments.

Communication.

7.3

-program Name: Use Name rather than python as the (TOOLBUS-aware) python interpreter.

-trace-calls: Trace the calls made by the python-adapter. a list of function calls is printed to
stderr.

-script Seript: Execute the python script Script.

-arg Arg: Pass the argument Arg as a command line option to the python interpreter. This option
can be repeated multiple times.

-script-args Argl, Arg2, ...: This must be the last option. The arguments Argl, Arg2, ...
are passed to the python script in the variable TB.argv.

12

snd-do(Tid, Fun(A;, ..., An)): perform the Python function call Fun(cid, Ay, ..., Ap).
Here Tid is a tool identifier (as produced by execute or rec-connect) for an instance of the
python-adapter, and cid is the connection id for this tool instance as returned by TB.parseArgs
or TB.newConnection.

snd-eval (Tid, Fun(A;, ..., Ap)): perform the Python function call Fun(Tid, Ay, ...,
A,. Tid and cid as above. Note that the function Fun must send an anser back to the ToolBus
using return TB.make("snd-value(...)", ...).

rec-value(Tid, Res): the return value for a previous evaluation request.
rec-event (Tid, Ay, ..., A,): event generated by python.

snd-ack-event (Tid, A;): acknowledgement of a previously generated event. Perform the Python
function call rec_ack_event (cid, Ai).

snd-terminate(Tid, Ai): terminate execution of the python tool. Perform the Python function
call rec_terminate(cid, Ay).

Predefined Python functions

The following Python functions are predefined and can be used freely in Python scripts executed by a
ToorLBus-aware Python interpreter.

TB.parseArgs (Args, Module): Parse the commandline options in Args, and create a new tool
instance. Module is the Python module associated with this tool, for instance "__main__". The

tool is not yet connected to the ToOLBUS, until TB.connect is called. This function returns the
new tool instance id, or raises an exception.

TB.newConnection(Tool, Host, Port, Module): An alternate way to create a new tool instance.
Tool, Host, and Module are strings, Port is an integer. Host can also be None, in which case the
local host is always used. This function returns the new tool instance id, or raises an exception.

12Communication is described from the point of view of the ToOLBUS, i.e., snd- and rec- mean, respectively, send by
TooLBuUS and receive by TooLBuUS.

24

e TB.connect (Cid): Create the actual connection with the TOO1L.BUS, or raise an exception.

e TB.eventloop(): Start the ToolBus eventloop. Please do not use this function when you use the
Tkinter module. If you use Tkinter, use TB.enableTk in combination with the Tkinter eventloop.

e TB.enableTk(): Instruct the TB module to register its callback functions with Tkinter, so the
Tkinter eventloop can be used instead of the TOOLBUS eventloop.

e TB.send(cid, Term): Send a term to the ToolBus. Term must be a Python term object.

e TB.make(Fmt, ...): Build a new term object. You can use the following format directives in
Fmt:

— <bool>: Build a boolean term. This directive consumes one Python object from the argument
list. If this object happens to be None, the created term is false, else the created term is
true.

— <int>: Build an integer term. This directive consumes one Python integer object from the
argument list.

— <str>: Build a string term. This directive consumes one Python string object from the
argument list.

— <bstr>: Build a binary string term. This directive consumes one Python string object from
the argument list.

— <real>: Build a real term. This directive consumes one Python float object from the argument
list.

— <appl>: Build a term application. This directive consumes two arguments: a string defining
the function symbol, and a Python list of terms giving the arguments.

— <1list>: Build a list of terms. This directive consumes one argument: a Python list of terms.

— <term>: Build a term. This directive consumes one argument: a Python term object.

7.4 Methods of the class term

The module TB introduces a new Python class called term. This class supports the following methods:

e Term.kind(): Returns the type of the term. This type is represented by one of the following
strings:
— bool
— int
— real
— str
— bstr
— bstr
— appl
— list
e Value retrieval functions. Strictly speaking, these are not functions, but rather ’context sensitive
attributes’. These attributes are only valid when the term is of the appropriate type.
— Term.bool: Term must be a boolean. Returns 1 if the term is true, None otherwise.

— Term.int: Term must be a integer. Returns a Python integer object representing the same
value.

25

— Term.real: Term must be a real. Returns a Python float object representing the same value.

— Term.str: Term must be a string. Returns a Python string object representing the same
string.

— Term.bstr: Term must be a binary string. Returns a Python string object representing the
same string.

— Term.appl: Term must be a application. Returns a tuple containing the function symbol as
a string and the arguments as a Python list of terms.

— Term.list: Term must be a list. Returns a Python list of terms.

e Term.simplify(): Maps the term onto a native Python object. For instance, a term of type
<str> is translated into a Python string object.

e T .match(Fmt): Check if a term matches with a certain string. The string F'mt is first parsed into
a term and then the two terms are matched. The function returns None when the two terms do not
match. When the two terms do match, a list is returned that contains the subterms of 7" matching
with the placeholders of F'mt.

e T .matchTerm(F'mt): As T.match, but Fmt is now a term containing placeholders, and does not
have to be parsed before matching.

7.5 term example

Python 1.3 (Jun 6 1996) [GCC 2.6.3]
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import TB

>>> T = TB.make("[1,2,3]")

>>> print T

<term, [1,2,3]>

>>> print T.list

[<term, 1>, <term, 2>, <term, 3>]

>>> L = T.match("[<int>,2,<term>]")
>>> print L

[1, <term, 3>]

>>> print L[1].str

Traceback (innermost last):

File "<stdin>", line 1, in ?
TB.error: term is not of type str
>>> print L[1].int
3

7.6 The hello example in Python: hello.py

Writing the hello tool in Python requires two steps:
e Write the required Python code hello.py. The result is shown in Figure 12.

e Replace hello’s tool definition in hello2.tb by:

tool hello is {command = "python-adapter -script hello.py"}

26

8 Writing tools in Tcl/Tk

There are two ways to connect tools written in Tcl/Tk (see Figure 13):

e Connect wish, Tcl/Tk’s windowing shell, to the TooLBUS via an adapter sends commands to
wish via a pipe and receives the outpt of wish via another pipe. This strategy is used in the
wish-adapter (available, but not further described in this guide).

e Use an adapter that is completely integrated with a Tcl/Tk interpreter. This is more efficient, but
less flexible than the previous approach.

When the ToolBus distribution has been configured using the option ~—with-tcltk=<tcl/tk-basepath>,
the tcltk-adapter is build.

8.1 tcltk-adapter

Synopsis. Execute Tcl/Tk’s windowing shell wish as a tool.
Example. tcltk-adapter -script calculator.tcl

Specific arguments.
e -wish Name: Use Name rather than wish as Tcl/Tk’s windowing shell.
e -lazy-exec: Postpone execution of wish until needed.
e -script: The Tcl script to be executed.

e -script-args: The arguments for the Tcl script to be executed. These arguments are available to
the Tcl script throught the variables argc and argv.

Communication. 13

e snd-do(Tid, Fun(A;, ..., Ap)): perform the Tcl function call Fun A; ... A,. Here Tid
is a tool identifier (as produced by execute or rec-connect) for an instance of the wish-adapter.

e snd-eval(Tid, Fun(Ay, ..., A,)): perform the Tcl function call Fun A; ... A,. HereTid
is a tool identifier (as produced by execute or rec-connect) for an instance of the wish-adapter.
Note that the function Fun must send an anser back to the ToolBus (using TBsend "snd-eval(...)").

e rec-value(T'id, Res): the return value for a previous evaluation request.

e rec-event(Tid, Ay, ..., Ap): event generated by wish.

e snd-ack-event(7T'id, A;): acknowledgement of a previously generated event.
e snd-terminate(7id, A;): terminate execution of wish-adapter.

e snd-monitor (Trm): in this case the Tcl function monitor_atom {ProcId AtFun, Src Blino Bpos
Elino Epos} is called where Procld is the process-id of the process to which this atom belongs,
AtFun is the action function name of the atom (printf, tau, snd-do, snd-eval, rec-msg etc.), Src the
source file where the atom is defined, Blino the number of the line where the atom starts, Bpos
the column of the line where the atom starts, Elino the number of the line where the atom ends
and Epos is the column of the line where the atom ends (this information can be used for example
for highlightning a piece of source code). After calling this function the term is further analyzed,
possibly resulting in (several) other Tcl function calls. The following situations are considered:

13Communication is described from the point of view of the ToOLBUS, i.e., snd- and rec- mean, respectively, send by
TooLBuUS and receive by TooLBuUS.

27

— process creation: create proc {ProcId ProclName} is called.

— tool creation: create_tool {ToolId ToollName} is called.

process to tool communication: proc_tool_comm {ToolId ProcId} is called.

tool to process communication: tool_proc_comm {ProcId ToolId} is called.

process to process communication: proc_proc_comm {ProcIdl ProcId2} is called.
— update the value of a variable in a process: update _var {ProcId VarName NewValue} is called.
— update the list of subscribtions of a process: update_subs {ProcId Subs} is called.
— update the list of notes of a process: update notes {ProcId Notes} is called.

The command wish is executed once, an initial Tcl script is read, and all further requests are directed to

this incarnation of wish. A small set of Tcl procedures is available for unpacking and packing TooLBUS
terms (see below).

8.2 Predefined Tcl functions

The following Tcl functions are predefined and can be used freely in Tcl script executed via the wish-
adapter:

e TBstring Str: converts a Tcl string to a TOOLBUS string by surrounding it with double quotes
and escaping double quotes occurring inside Str.

e TCLstring Str: converts a TOOLBUS string into a Tcl string by removing surrounding double
quotes.

e TBlist List: converts a Tcl list to a TOOLBUS list by separating the elements with commas and
surrounding the list by curly braces.

e TBerror Msg: constructs an error message that can be sent to the TooLBUS.
e TBsend T'rm: send Trm back to the TooLBuUS.
e TBevent Fwent: send event Event to the TOOLBUS.

e TBrequire ToolName ProcName Nargs check that the Tcl code for Tool Name contains a pro-
cedure declaration for ProcName with Nargs formal parameters. This function is mainly used by
the wish-adapter to check compatibility of the Tcl code with the expected input signature of the
tool.

Note. All communication between wish-adapter and a tool written in Tcl is done via standard in-
put/output. Only use the standard error stream for print statements in the Tcl script, since
using standard output will disrupt the communication with the TooLBuUs.

8.3 The hello example in tcl: hello.tcl

Writing the hello tool in Tcl requires two steps:
e Write the required Tcl code hello.tcl. The result is shown in Figure 14.

e Replace hello’s tool definition in hello2.tb by:

tool hello is {command = "tcltk-adapter -script hello.tcl"}

28

Acknowledgements

Hayco de Jong and Pieter Olivier made major contributions to the documentation of the ToOLBUS in
their “Aterm Library User Manual”. Information from that manual has been used in this guide as well.
Simon Gray and Mark van den Brand commented on drafts of this guide.

29

A Incompatibilities with older T0OO1LBUS versions

A.1 Include files, Libraries and API’s

In older versions, tools had to include the file TB.h. Currently, this is atb-tool.h.

In older versions, the TooLBUS API was provided by 1ibTB. Currently, this is split over to libraries:
libATerm.a (the ATerm functions) and 1ibATB.a (the TooLBus API). As a consequence, older tools
have to be compiled with the compiler flag -1TB.

In the older APT’s, all functions begin with the prefix TB. Currently, functions begin with either AT
(ATerms) or ATB (TooLBus API).

The old and the new API’s can be compared as follows:

I(Hd | New
TBinit ATinit
TBmake ATmake
TBmatch ATmatch
TBwrite ATwriteTerm
TBread ATreadTerm
TBreadTerm —
TBprintf ATprintf
TBsprintf ATsprintf
TBprotect ATprotect
TBunprotect ATunprotect
TBcollect —
TBinit ATBinit
— ATBconnect
— ATBdisconnect
TBaddTermPort | —
TBaddCharPort | —
TBreceive ATBreadTerm
TBsend ATBwriteTerm
TBeventloop ATBeventloop
TBpeek ATBpeekAny
ATBpeekOne
— ATBhandleOne
— ATBhandleAny
— ATBgetDescriptors

In addition, the new API’s provide other functions taht are not listed in this table.

B Limitations/extensions current implementation

The current implementation is a faithful implementation of the system described in “The Discrete Time
TooLBus”. There are some minor differences that are summarized here.

Extensions
e The types <bstr> and <real>.

e The atomic actions printf and read.

30

Limitations
e Certain functions in expressions have not yet been implemented (see Appendix D).

e The atomic actions attach-monitor, detach-monitor, and reconfigure have not yet been im-
plemented.

31

C The syntax of T scripts

C.1 Preprocessor directives

The script_name given as argument to the TOOLBUS is always preprocessed by the C preprocessor before
it is parsed as T script. In this way, directives like, e.g., #define, #include and #ifdef can be used
freely in T scripts. We summarize the most frequently used directives:

e #define identifier token-sequence causes the preprocessor to replace all occurrences of iden-
tifier by token-sequence.

e #define identifier (identifier-list) token-sequence is a macro definition with param-
eters given by identifier-list. Textual occurrences of the identifier followed by an argument list con-
taining an appropriate number of tokens separated by comma’s will be replaced by token-sequence
after parameter substitution.

e #include "filename" will be replaced by the entire contents of the named file.

o #if #ifdef, and #ifndef can be used for the conditional incorporation or exclusion of parts of a
script.

We refer to any ANSIT C manual for a detailed description of these directives.
See Section 2.2 for a description of the preprocessor related arguments -Idir, -Dmacro, and ~-Dmacro=de fn
of the toolbus command.

C.2 Context-free syntax

exports
sorts BOOL NAT INT SIGN EXP UNSIGNED-REAL REAL STRING ID NAME VNAME BSTR
TERM TERM-LIST VAR GEN-VAR TYPE ATOM ATOMIC-FUN PROC PROC-APPL FORMALS
TIMER-FUN FEATURE-ASG FEATURES TB-CONFIG DEF T-SCRIPT
lexical syntax

[\t\n] -> LAYQUT

"Uht ~ [\n]x* -> LAYOUT

[0-9]+ -> NAT

NAT -> INT

SIGN NAT -> INT

[+\-] -> SIGN

[eE] NAT -> EXP

[eE] SIGN NAT -> EXP

NAT "." NAT -> UNSIGNED-REAL
NAT "." NAT EXP -> UNSIGNED-REAL
UNSIGNED-REAL -> REAL

SIGN UNSIGNED-REAL -> REAL

[a-z] [A-Za-z0-9\-]* -> ID

n\n n o~ [\II] * u\u n -> STRING

[A-Z] [A-Za-z0-9\-]* -> NAME

[A-Z] [A-Za-z0-9\-]* -> VNAME

[a-z] [a-z\-]* -> ATOMIC-FUN
delay -> TIMER-FUN
abs-delay -> TIMER-FUN
timeout -> TIMER-FUN

abs-timeout -> TIMER-FUN

32

context-free syntax

true ->
false ->
BOOL ->
INT ->
REAL ->
STRING ->
TERM ->
VNAME ->
VNAME ":" TYPE ->
VAR ->
VAR "?" ->
GEN-VAR ->
ngn TERM ">" ->
ID ->
ID "(" TERM-LIST ")" ->
{TERM ","}* ->
"[" TERM-LIST "1" ->
NAME ->
ATOMIC-FUN " (" TERM-LIST ")" ->
delta ->
tau e
create "(" NAME "(" TERM-LIST ")" "," TERM ")" ->
ATOM TIMER-FUN "(" TERM ")" ->
VNAME ":=" TERM ->
ATOM ->
PROC "+" PROC ->
PROC "." PROC ->
PROC "||" PROC ->
PROC "x" PROC ->
" (n PROC ||) n ->
if TERM then PROC else PROC fi ->
if TERM then PROC fi ->
execute (TERM-LIST) ->
let {VAR ","}* in PROC endlet ->
NAME ->
NAME " (" TERM-LIST ")" ->
PROC-APPL ->
n (II {GEN_VAR n s II}* ||) n ->
->

process NAME FORMALS is PROC ->
ID "=" STRING ->
u{u { FEATURE-ASG " ; n}* u}u ->
tool ID FORMALS is FEATURES ->
toolbus "("{PROC-APPL ","}+ ")" ->

DEF* TB-CONFIG ->

BOOL
BOOL
TERM
TERM
TERM
TERM

TYPE

VAR
VAR

GEN-VAR
GEN-VAR
TERM

TERM

TERM

TERM
TERM-LIST
TERM

VNAME

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

PROC

PROC {left}
PROC {right}
PROC {right}
PROC {left}
PROC {bracket}
PROC

PROC

PROC

PROC

PROC-APPL
PROC-APPL
PROC

FORMALS
FORMALS

DEF
FEATURE-ASG
FEATURES
DEF
TB-CONFIG
T-SCRIPT

priorities
PROC "x" PROC -> PROC > PROC "." PROC -> PROC >
PROC "+" PROC -> PROC > PROC "||" PROC -> PROC

33

34

D Expressions in T scripts

D.1 Boolean and arithmetic functions

Function Result type | Description

not (<bool>q) <bool> - <bool>;

and (<bool>;,<bool>;) <bool> <bool>; A <bool>g

or (<bool>;,<bool>y) <bool> <bool>; V <bool>,

equal (<term>;, <term>;) <bool> <term>; = <term>y; for lists multi-set equality
not-equal (<term>;, <term>;) <bool> not (equal (<term>;, <term>;y))

add (<int>;,<int>3) <int> <int>; + <int>,

sub(<int>;,<int>3) <int> <int>; — <int>;

mul (<int>;,<int>j) <int> <int>; X <int>y

div(<int>;,<int>y) <int> <int>; / <int>y

mod (<int>{,<int>j) <int> <int>; mod <int>,

abs(<int>;) <int> absolute value | <int>;
less(<int>;,<int>3) <bool> <int>; < <int>,
less—equal(<int>;,<int>s) <bool> <int>; < <int>,

greater (<int>;,<int>;) <bool> <int>; > <int>,

greater-equal (<int>;,<int>jy) <bool> <int>; > <int>,
radd(<real>;,<real>jy) <real> <real>; + <real>;
rsub(<real>;,<real>;) <real> <real>; — <real>;

rmul (<real>;,<real>;) <real> <real>; X <real>y
rdiv(<real>;,<real>j) <real> <real>; / <real>,

rabs(<real>;) <real> absolute value |<real>;
rless(<real>;,<real>j) <bool> <real>; < <real>;

rless-equal (<real>; ,<real>;) <bool> <real>; < <real>;
rgreater(<real>;,<real>;) <bool> <real>; > <real>;

rgreater-equal (<real>;,<real>;) | <bool> <real>; > <real>y

sin(<real>;) <real> sin(<real>;)

cos(<real>;) <real> cos(<real>)

atan(<real>;) <real> tan~!(<real>) in range [—7/2, 7/2]
atan2(<real>;, <real>;) <real> tan~!(<real>;/<real>;) in range [—m, 7]
exp(<real>;) <real> exponential function e<T€21>1
log(<real>) <real> natural logarithm In(<real>;), <real>; > 0
logl0(<real>y) <real> base 10 logarithm logig(<real>y), <real>; > 0
sqrt (<real>;) <real> \/<real>y, <real>; > 0

35

D.2 Functions on lists and multi-sets

Function Result type | Description

first(<list>;) <term> first element of <1ist>;; []1 for non-lists

next (<list>;) <list> remaining elements of <list>;; [] for non-lists

join(<term>;,<term>;) <list> concatenation of <term>; and <term>y; for a list
argument <term>; (i = 1,2), the list elements are
spliced into the new list; non-list arguments are in-
cluded as single element of the new list.

size(<list>;) <int> |[<list>;| (number of elements in list)

index(<1list>;,<int>{) <term> If |<1list>;| < <int>; return the <int>;th element
from <1list>;; otherwise [] and give a warning.

replace(<list>;,<int;>,<term>;) | <list> If I<1list>; | < <int>; replace the <int>;th element
of <list>; by <term>; and return the modified (and
partially copied) version of <list>;; otherwise re-
turn <list>; and give a warning.

get (<1list>;,<term>;) <term> If <1ist>; contains a pair [<term>;, <term>]] then
<term>}; otherwise [].

put (<list>q,<term>;, <term>;) <list> If <1list>; contains a pair [<term>;, <term>}] then
replace it by [<term>;, <term>s]; otherwise add a
new pair [<term>;, <term>;] to <list>;.

member (<term>;,<list>y) <bool> <term>; € <list>; (membership in multi-set)

subset(<list>;, <list>s) <bool> <list>; C <list>y (subset on multi-sets)

diff(<list>;, <list>j) <list> <list>; — <list>y (difference on multi-sets)

inter (<list>;, <list>j) <list> <list>; N <list>, (intersection on multi-sets)

D.3 Predicates and functions on terms

Function

Result type

Description

is-bool(<term>)
is-int (<term>)
is-real(<term>)
is-str(<term>)
is-bstr(<term>)
is-appl(<term>)

is-list (<term>)
is-empty (<term>)
is-var (<term>)
is-result-var (<term>)
is-formal (<term>)

fun(<term>)

args(<term>)

<bool>
<bool>
<bool>
<bool>
<bool>
<bool>

<bool>
<bool>
<bool>
<bool>
<bool>

<str>

<list>

If <term> is of type bool then true; otherwise false.
If <term> is of type int then true; otherwise false.
If <term> is of type real then true; otherwise false.
If <term> is of type str then true; otherwise false.
If <term> is of type bstr then true; otherwise false.
If <term> is an application then true; otherwise
false.

If <term> is a list then true; otherwise false.

If <term> equals [] then true; otherwise false.

If <term> is a variable then true; otherwise false.
If <term> is a result variable then true; otherwise
false.

If <term> is a formal variable then true; otherwise
false.

If <term> is an application then its function symbol;
otherwise "".

If <term> is an application then its argument list;
otherwise [].

36

D.4 Miscellaneous functions

Function Result type | Description

process-id <int> id of current process

process-name <str> name of current process

quote (<term>) | <term> quoted (unevaluated) term, only variables are re-
placed by their value

functions <list> list of built-in functions

current-time <list> six-tuple describing current absolute time

sec(<int>;) <int> convert <int>; in seconds

msec(<int>;)} | <int> convert <int>; in milli-seconds

tNot yet implemented in the current version

37

E Synopsis of primitives available in T scripts

Primitive | Description

delta inaction (deadlock)
tau internal step

Pi+Py choice

P. Py sequential composition
PP parallel composition
PixPy iteration

if T then P fi guarded command

if T then P; else P, fi conditional

create(Pnm(T,...), Pid?)

process creation!

V =T

assignment, T' expression (see D)

snd-msg(T', ...)
rec-msg(7T,...)
snd-note(T)
rec-note(T)

send a message (binary, synchronous)
receive a message (binary, synchronous)
send a note (broadcast, asynchronous)
receive a note (asynchronous)

no-note(T) no notes available for process
subscribe (T) subscribe to notes
unsubscribe (T) unsubscribe from notes
delay(T) relative time delay of atom
abs-delay(T,...) absolute time delay of atom?
timeout (T') relative timeout of atom

abs—-timeout (7, ...)

absolute timeout of atom?

rec—connect (T%d?)
rec-disconnect (Tid?)
execute(Tnm(T,...), Tid?)
snd-terminate (Tid, T)
shutdown(T)

reconfigure

receive a connection request from a tool
receive a disconnection request form a tool
execute a tooll

terminate the execution of a tool
terminate ToOLBUS

reconfigure TOOLBUST

attach-monitor
detach-monitor

attach a monitoring tool to a processt
detach a monitoring tool from a processt

snd-eval(Tid, T)
snd-cancel (Tid)
rec-value(7Tid, T)
snd-do(Tid, T)

send evaluation request to tool
cancel an evaluation request to tool}
receive a value from a tool

send request to tool (no return value)

rec-event(Tid, T, ...)
snd-ack-event (Tid, T)

receive event from tool
acknowledge a previous event from a tool

printf(S, T, ...)
read(T;, Ty)

print terms (after variable replacement) according to format S
give prompt 77, read term, should match with T3

process Pnm(F, ...) is P process definition?®

let F, in P endlet declare variables in P

tool Tnm(F,...) is { Feat, 1 | tool definition®

host = Str host feature in tool definition
command = Str command feature in tool definition
details = << Lines >> details feature in tool definition
toolbus (Pnm(T,...), ...) TooLBUS configuration

38

Notes

! (T, ...) is optional

2 Absolute time described by a 6-tuple (year, month, day, hour, minutes, seconds)
with year > 95, 1 < month <12, 1 < day < 31, 0 < hour < 23, 0 < minutes < 59,
and 0 < seconds < 61 (seconds can be greater than 59 to allow leap seconds).
Absolute time may be abbreviated, by omitting, at most, the first three elements
of the 6-tuple. Omitted elements default to their current value.

3 (F, ...) is optional

t Not yet implemented

Legendum

T term

T, list of terms separated by comma’s

1% variable

F declaration of formal or local variable of the form V :Type

P, P, P, process expression

Tid tool identifier, a variable of type Tnm (with Tnm declared as tool name)

Tnm tool name

Pnm process name

Pid process identifier, a variable of type int

Str a string constant

list of lines

39

/%

hello.c —- hello tool in C */

#include <stdio.h>

#include <stdlib.h>

#include <aterml.h> /* ATerms, level 1 interface */
#include <atb-tool.h> /* ToolBus tool interface */

ATerm hello_handler(int conn, ATerm inp) /* Handle input from ToolBus */

{

ATerm arg, isig, osig;

if (ATmatch(inp, "rec-eval(get-text)"))
return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");
if (ATmatch(inp, "rec-terminate(<term>)", &arg))

exit(0);
if (ATmatch(inp, "rec-do(signature(<term>,<term>))", &isig, &osig)){
return NULL; /* we don’t do a signature check */

}

ATerror ("hello: wrong input %t received\n", inp);
return NULL;

}
int main(int argc, char *argv[]) /* main program of hello tool */
{ ATerm bottom0OfStack; /* marks stack bottom for ATerms */

ATBinit (argc, argv, &bottomOfStack); /+* initialize ToolBus library */

if (ATBconnect (NULL, NULL, -1, hello_handler) >= 0){
ATBeventloop() ;

} else {
fprintf(stderr, "hello: Could not connect to the ToolBus, giving up!\n");
return -1;

}

return O;

Figure 4: hello.c: simple C code for the hello tool.

40

/* hello-gen.c -- hello tool in C using generated interface hello.tif.c */

#include <stdlib.h>

#include "hello.tif.h" /* Include generated tool interface */
ATerm get_text(int conn) /* Generate a hello text */
{

return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");
}

void rec_terminate(int conn, ATerm msg) /* Mandatory function to terminate tool */
{

exit (0);
3

int main(int argc, char *argv[]) /* main program of hello tool */

{
ATerm bottomOfStack;

ATBinit (argc, argv, &bottomOfStack);

if (ATBconnect (NULL, NULL, -1, hello_handler) >= 0) {
ATBeventloop() ;

} else {
fprintf (stderr, "Could not connect to the ToolBus, giving up!\n");
return -1;

}

return 0O;

Figure 5: hello-gen.c: C code for the hello tool using a generated tool interface.

/* hello3.tb -- hello script with explicit rec-connect */

process HELLO is

let H : hello, %% H will represent the hello tool
S : str %% S is a string valued variable
in
rec-connect (H?) . %% Connect to a hello tool, H gets a tool id as value
snd-eval(H, get-text) . %/ Request a text from the hello tool
rec-value(H, text(S?)) . /% Receive it, S gets the text as value
printf(S) %% Print it
endlet

tool hello is {command = "hello"}

toolbus (HELLO)

Figure 6: hello3: hello application with rec-connect

41

ToorLBuUSs

1

\

Adapter

Program

Figure 7: General structure of a tool adapter

ToorLBuUs

1

Term R.orts —

Tool

e - - - - Character Ports

s

Figure 8: Global organization of a tool

42

\

toolbus -gentifs S.tb

_ 4 S.tifs L

\

tifstoc -tool Nm S.tifs

\

Nm.tif.c

Figure 9: Automatic generation of tool interfaces.

43

/* pipe.tb -- Unix pipes simulated in a ToolBus script */

process PIPE(Tid : gen, Cmdl : str, Inp : str, Cmd2 : str, Res : str?) is
let Outl : str
in
snd-eval(Tid, cmd(Cmdl, input(Inp)))
rec-value(Tid, output(Outi?))
snd-eval(Tid, cmd(Cmd2, input(Outil)))
rec-value(Tid, output(Res?))
endlet

process A is
let Tid : gen, R : str
in
execute(gen, Tid?)
PIPE(Tid, "1s -1", "", "wc -w", R?)
printf (R)
endlet

tool gen is {command = "gen-adapter"}
toolbus(4)

Figure 10: pipe.tb: Executing the pipe line 1s -1 | wc in a script.

hello.perl —-- hello tool in Perl
sub get_text {

do TBsend("snd-value(\"Hello World, my first ToolBus tool in Perl!\n\")");
}

sub rec_terminate {
local($n) = @_;

exit(0);

Figure 11: hello.perl: the hello tool in Perl

44

hello.py -- hello tool in Python

import TB
import sys
import __main__ # Don’t forget this one!

def rec_terminate(cid, A):
sys.exit(0)

def get_text(cid):
return TB.make("snd-value(text(<str>))",
"Hello World, my first ToolBus tool in Python!\n")

cid = TB.parseArgs(sys.argv, __main__)
TB.connect(cid)

TB.eventloop()

Figure 12: hello.py: the hello tool in Python

Wish adapter architecture Tcl/Tk adapter architecture

ToolBus ToolBus
ToolBus <—= Tool communication ToolBys <—= Tool communication
(sockets) (sockets)
wish—adapter tcltk—adapter

4+

wish—adapter <—>= wish communication
integrated

(pipes)

wish Tcl/Tk interpreter

Tcl/Tk interpreter

Figure 13: The wish-adapter and the tcltk-adapter

hello.tcl -- hello tool in Tcl/Tk

proc get-text {} {
TBsend "snd-value(text(\"Hello World, my first ToolBus tool in Tcl!\n\"))"
}

proc rec-terminate { n } {
exit

}

Figure 14: hello.tcl: the hello tool in Tcl

