
A Guide to ToolBus ProgrammingP. Klint1;2April 22, 2002
1 Programming Resear
h Group, University of AmsterdamP.O. Box 41882, 1009 DB Amsterdam, The Netherlands2 Department of Software Te
hnologyCentre for Mathemati
s and Computer S
ien
eP.O. Box 4079, 1009 AB Amsterdam, The NetherlandsAbstra
tThe ToolBus is a new software ar
hite
ture intended for building
ooperating, distributed ap-pli
ations. This guide aims at providing a
omprehensive but
omplete explanation of \ToolBusprogramming": writing ToolBus s
ripts (or T s
ripts for short) des
ribing the overall ar
hite
tureof an appli
ation and writing tools that a
tually implement the appli
ation's fun
tionality.

Contents1 Introdu
tion 31.1 Ba
kground and motivation . 31.2 The ToolBus ar
hite
ture . 31.3 Purpose of this guide . 41.4 Hello world . 51.5 Further reading . 62 Exe
uting ToolBus and tools 62.1 Common arguments . 72.2 ToolBus arguments . 72.3 Tool arguments . 83 Adapters for tools and languages 94 Writing tools in C 94.1 ATerms: Composing and de
omposing terms . 94.1.1 Term patterns . 104.1.2 ATmake . 104.1.3 ATmat
h . 114.1.4 Input and output of ATerms . 124.1.5 Reading and writing ATerms . 124.1.6 ATfprintf . 124.1.7 Further ATerm manipulation fun
tions . 134.1.8 Memory Management of ATerms . 134.1.9 Initializing and using the ATerm library . 144.2 The global stru
ture of a ToolBus tool . 144.2.1 The in
lude �le atb-tool.h . 154.2.2 The tool library libATB.a . 151

2
4.3 The ToolBus API . 164.3.1 ATBinit . 164.3.2 ATB
onne
t and ATBdis
onne
t . 164.3.3 ATBeventloop . 174.3.4 ATBwriteTerm and ATBreadTerm . 174.3.5 Advanved
ontrol
ow . 174.4 Compiling ToolBus tools written in C . 194.5 Generating C tool interfa
es with tifsto
 . 195 Using arbitrary Unix
ommands as tool 205.1 gen-adapter . 205.2 Example: pipe
ommuni
ation between two Unix
ommands 216 Writing tools in Perl 216.1 perl-adapter . 216.2 Prede�ned Perl fun
tions . 226.3 The hello example in Perl: hello.perl . 227 Writing tools in Python 227.1 Building a ToolBus-aware Python interpreter. 227.2 Using the ToolBus-aware python interpreter . 237.3 Prede�ned Python fun
tions . 237.4 Methods of the
lass term . 247.5 term example . 257.6 The hello example in Python: hello.py . 258 Writing tools in T
l/Tk 268.1 t
ltk-adapter . 268.2 Prede�ned T
l fun
tions . 278.3 The hello example in t
l: hello.t
l . 27A In
ompatibilities with older ToolBus versions 29A.1 In
lude �les, Libraries and API's . 29B Limitations/extensions
urrent implementation 29C The syntax of T s
ripts 31C.1 Prepro
essor dire
tives . 31C.2 Context-free syntax . 31D Expressions in T s
ripts 34D.1 Boolean and arithmeti
 fun
tions . 34D.2 Fun
tions on lists and multi-sets . 35D.3 Predi
ates and fun
tions on terms . 35D.4 Mis
ellaneous fun
tions . 36E Synopsis of primitives available in T s
ripts 37

3
P1 P2 P3 ::: Pnsnd sndToolBus:

T1 T2 ::: Tm

evaldoa
k-event valueevent
Tools:Adapters:

Figure 1: Global organization of the ToolBus
1 Introdu
tion1.1 Ba
kground and motivationBuilding large, heterogeneous, distributed software systems poses serious problems for the software en-gineer. Systems grow larger be
ause the
omplexity of the tasks we want to automate in
reases. Theybe
ome heterogeneous be
ause large systems may be
onstru
ted by re-using existing software as
ompo-nents. It is more than likely that these
omponents have been developed using di�erent implementationlanguages and run on di�erent hardware platforms. Systems be
ome distributed be
ause they have tooperate in the
ontext of lo
al area networks.We propose to get
ontrol over the possible intera
tions between software
omponents (\tools") byforbidding dire
t inter-tool
ommuni
ation. Instead, all intera
tions are
ontrolled by a pro
ess-oriented\s
ript" that formalizes all the desired intera
tions among tools. This leads to a
omponent inter
onne
-tion ar
hite
ture resembling a hardware
ommuni
ation bus, and therefore we
all it a \ToolBus".1.2 The ToolBus ar
hite
tureThe global ar
hite
ture of the ToolBus is shown in Figure 1. The ToolBus serves the purpose ofde�ning the
ooperation of a variable number of tools Ti (i = 1; :::;m) that are to be
ombined intoa
omplete system. The internal behaviour or implementation of ea
h tool is irrelevant: they may beimplemented in di�erent programming languages, be generated from spe
i�
ations, et
. Tools may, ormay not, maintain their own internal state. Here we
on
entrate on the external behaviour of ea
h tool.In general an adapter will be needed for ea
h tool to adapt it to the
ommon data representation andmessage proto
ols imposed by the ToolBus.The ToolBus itself
onsists of a variable number of pro
esses1 Pi (i = 1; :::; n). The parallel
om-position of the pro
esses Pi represents the intended behaviour of the whole system. Tools are external,
omputational a
tivities, most likely
orresponding with operating system level pro
esses. They
omeinto existen
e either by an exe
ution
ommand issued by the ToolBus or their exe
ution is initiated1By \pro
esses" we mean here
omputational a
tivities inside the ToolBus as opposed to, for instan
e, pro
esses at theoperating system level. When
onfusing might arise, we will
all the former ToolBus pro
esses" and the latter \operatingsystem level pro
esses".

4
/* hello1.tb -- Our first ToolBus s
ript */pro
ess HELLO is printf("Hello world, my first T s
ript!\n")toolbus(HELLO) Figure 2: hello1: �rst s
ript for the hello appli
ation.
externally, in whi
h
ase an expli
it
onne
t
ommand has to be performed by the ToolBus. Althougha one-to-one
orresponden
e between tools and pro
esses seems simple and desirable, we do not enfor
ethis and permit tools that are being
ontrolled by more than one pro
ess as well as
lusters of tools being
ontrolled by a single pro
ess.
Communi
ation inside the ToolBus. Inside the ToolBus, there are two
ommuni
ation me
h-anisms available. First, a pro
ess
an send a message (using snd-msg) whi
h should be re
eived, syn-
hronously, by one other pro
ess (using re
-msg). Messages are intended to request a servi
e fromanother pro
ess. When the re
eiving pro
ess has
ompleted the desired servi
e it may inform the sender,syn
hronously, by means of another message (using snd-msg). The original sender
an re
eive the replyusing re
-msg. By
onvention, part of the the original message is
ontained in the reply (but this is notenfor
ed).Se
ond, a pro
ess
an send a note (using snd-note) whi
h is broad
asted to other, interested, pro-
esses. The sending pro
ess does not expe
t an answer while the re
eiving pro
esses read notes asyn-
hronously (using re
-note) at a low priority. Notes are intended to notify others of state
hanges inthe sending pro
ess. Sending notes amounts to asyn
hronous sele
tive broad
asting. Pro
esses will onlyre
eive notes to whi
h they have subs
ribed.
Communi
ation between ToolBus and tools. The
ommuni
ation between ToolBus and toolsis based on handshaking
ommuni
ation between a ToolBus pro
ess and a tool. A pro
ess may sendmessages in several formats to a tool (snd-eval, snd-do, and snd-a
k-event) while a tool may send themessages snd-event and snd-value to a ToolBus pro
ess. There is no dire
t
ommuni
ation possiblebetween tools.The exe
ution and termination of the tools atta
hed to the ToolBus
an be expli
itly
ontrolled. Itis also possible to
onne
t or dis
onne
t tools that have been exe
uting independently of the ToolBus.
1.3 Purpose of this guideThis guide is a
ompanion to the various ToolBus papers2 fully des
ribing the motivation and overallar
hite
ture of the ToolBus and explaining the T s
ripts used to des
ribe
ooperating sets of tools. Thereader is also referred to these reports for several examples of systems that have been des
ribed using theToolBus approa
h.Here, the main emphasis is on explaining all details needed to a
tually implement systems using theToolBus. First, we will give a \hello world" example in the
ontext of the ToolBus.2The most
omprehensive publi
ation is J.A. Bergstra and P. Klint, \The dis
rete time ToolBus { a software
oordinationar
hite
ture", S
ien
e of Computer Programming, 31(2-3):205{229, July 1998.Te
hni
al reports giving detailed des
riptions of the semanti
s (using ASF+SDF spe
i�
ations) and implementation ofthe ToolBus are: J.A. Bergstra and P. Klint, \The ToolBus|a
omponent inter
onne
tion ar
hite
ture", Report P9408,Programming Resear
h Group, University of Amsterdam, 1994, and J.A. Bergstra and P. Klint, \The Dis
rete TimeToolBus", Report P9502, Programming Resear
h Group, University of Amsterdam, 1995.

5
/* hello2.tb -- hello s
ript using a separate hello tool */pro
ess HELLO islet H : hello, %% H will represent the hello toolS : str %% S is a string valued variablein exe
ute(hello, H?) . %% Exe
ute hello, H gets a tool id as valuesnd-eval(H, get-text) . %% Request a text from the hello toolre
-value(H, text(S?)). %% Re
eive it, S gets the text as valueprintf(S) %% Print itendlettool hello is {
ommand = "hello"}toolbus(HELLO) Figure 3: hello2: se
ond s
ript for the hello appli
ation.
1.4 Hello worldThe most simple program that is frequently used to learn a new programming language is a programwhi
h prints some string (e.g., \hello world") as proof of
ompeten
e of its author to write,
ompile, andexe
ute a program in the language in question. Clearly, it is the road to arrive at this result that
ountsand not the result itself (as the old proverb says).The simplest hello program possible is shown in Figure 2. Typing the
ommandtoolbus hello1.tbwill simply print the desired message.Let's now be more ambitious. In the above example, the text to be printed appears as a literal stringin the s
ript. We
ompli
ate the example by introdu
ing a \hello" tool that will provide the text to beprinted. This results in the s
ript given in Figure 3. But how do we implement the hello tool itself?We will explain in this guide the range of implementation languages that
an be used (i.e., C, T
l, Perl,Asf+Sdf ...). For the sake of this example we only show what a C implementation will look like.In Figure 4 a �rst, simple, version of the hello tool is shown. It
onsists of the following parts3:� An in
lude of a standard header �le (atb-tool.h) that
ontains
ommon de�nitions for all tools.� A de
laration of a fun
tion hello handler that is
alled when there is input available from theToolBus: its argument inp is the input term, and its result (either a term or NULL) will be sentba
k to the ToolBus.4 The input is analyzed by using ATmat
h, a library fun
tion for mat
hingterms. For the get-text
ase, the termsnd-value("Hello World, my first ToolBus tool in C!\n")is
onstru
ted and returned to the ToolBus.� A main program that
alls an initialization fun
tion and then enters an event loop.Although it is not yet
lear from the examples given so far, it turns out that there is mu
h
ommonalityamong the handlers written for di�erent tools. In parti
ular, the
ode for analyzing terms
oming from3You are not yet supposed to understand every detail of these listings, but you will be able to do so after reading thisguide!4It is important to stress that the handler should always return a value: either a term or NULL.

6
the ToolBus is similar. This
ode also dupli
ates information in the s
ript
on
erning the requests sentto ea
h tool. For this reason, we also provide a tool interfa
e generator that automati
ally generates toolinterfa
es from a given s
ript.This approa
h is shown in a se
ond version of the hello tool (Figure 5). From the s
ript hello2.tbwe generate automati
ally5 the following two �les:� hello.tif.h: this in
ludes ne
essary header �les, and de
lares prototypes for appli
ation fun
-tions get text, re
 terminate and the ToolBus interfa
ing fun
tions hello handler (handles allrequests
oming from the ToolBus) and hello
he
ker (
he
ks that the interfa
e as expe
ted bythe ToolBus is
ompatible with the interfa
e as provided by the tool).� hello.tif.
: in
ludes hello.tif.h and
ontains the de
larations for hello handler andhello
he
ker.The a
tual program hello.

onsists of the following parts:� An in
lude of hello.tif.
� A de
laration of the fun
tion get text that handles the eval request
oming from the ToolBusNote that get text is
alled by hello handler and that its return value will be sent ba
k to theToolBus.� A de
laration of the fun
tion re
 terminate that is always
alled on termination of a tool.� A main program that
alls an initialization fun
tion and then enters an event loop.What we see in these examples is that building an appli
ation with theToolBus requires the followingsteps:� Design the overall behaviour of the appli
ation by writing a T s
ript (hello2.tb).� Write and
ompile the tools needed by the s
ript (hello.
). The required interfa
ing
ode
an bewritten by hand or be generated automati
ally from the T s
ript (hello.tif.
).� Exe
ute the ToolBus interpreter with the s
ript as input.1.5 Further readingIf you have
ome this far, you may be interested to learn more about the details ofToolBus programming.In Se
tion 2 the ways to exe
ute the ToolBus interpreter and tools are des
ribed. Next follows anintermezzo explaining the overall stru
ture of ToolBus adapters (Se
tion 3). In Se
tion 4 you will �nda
omplete des
ription of the library fun
tions provided for writing tools in C.In the se
tions that follow we explain how to write tools in various languages and systems: arbi-trary Unix
ommands (Se
tion 5), Java (Se
tion ??), Perl (Se
tion 6), Python (Se
tion 7), and T
l/Tk(Se
tion 8).Four appendi
es with summaries
on
lude this guide.
2 Exe
uting ToolBus and toolsThe ToolBus interpreter (toolbus) and all tools have some standard program arguments in
ommon,but they have some spe
i�
 arguments as well. In this se
tion we des
ribe all possible program argumentsand the way to exe
ute toolbus and tools.5In se
tion 4.5 this is fully explained.

7
2.1 Common argumentsToolBus and tools have the following optional arguments in
ommon:� -help: prints a des
ription of all arguments of the toolbus or tool.� -verbose: produ
es a log of steps taken by toolbus or tool that may be useful to debug your s
riptor tool. The same e�e
t may be obtained by setting the environment variable TB VERBOSE to trueand export it. In the Korn shell this
an, for instan
e, be a
hieved by:TB_VERBOSE=trueexport TB_VERBOSE� -TB PORT port name: de�nes the \well known so
ket" port name to whi
h all tools temporarily
onne
t in order to set up their own private so
ket that
onne
ts them permanently to the ToolBusinterpreter. When omitted, so
ket 8998 will be used.Note that expli
it arguments de�ning the so
kets are only needed when several ToolBus interpretersare running simultaneously on the same host ma
hine.2.2 ToolBus argumentsThe s
ript name (see below) given as argument to the ToolBus is always prepro
essed by the C prepro-
essor before it is parsed as a T s
ript. In this way, dire
tives like, e.g., #define, #in
lude and #ifdef
an be used freely in T s
ripts. The following prepro
essor arguments are a

epted by the toolbus
ommand:� -Idir: append dire
tory dir to the list of dire
tories sear
hed for in
lude �les.� -Dma
ro: de�ne ma
ro ma
ro with the string \1" as its de�nition.� -Dma
ro=defn: de�ne ma
ro ma
ro with defn as de�nition.Other arguments spe
i�
 for the toolbus
ommand are:� -logger: exe
ute a logger tool that will be atta
hed to all pro
esses in the ToolBus. If the s
ript
ontains a tool de�nition for a tool named \logger", that will be used for exe
uting the logger.Otherwise a default tool de�nition is used.� -viewer: similar as above, for a viewer tool. The default viewer is the \ToolBus viewer" (previ-ously known as the ToolBus debugger).� -
ontroller: similar as above, for a
ontroller tool. Currently, no default
ontroller tool is pro-vided.� -gentifs: only generate tool interfa
es for all tools used in the s
ript in a language independentformat. For a s
ript �le named s
ript.tb the tool interfa
es are written to s
ript.tifs. Do notexe
ute the s
ript.� -fixed-seed: use a �xed seed for the random generator used by the interpreter for s
hedulingpro
esses and sele
ting alternatives in pro
esses. By default, the random generator is initializedwith the
urrent time the toolbus
ommand is given. Using the -fixed-seed option makes theexe
ution of the s
ript reprodu
ible a
ross multiple runs of the toolbus
ommand.� s
ript name: any other argument is the name of the ToolBus s
ript to be interpreted.As an example,
onsider �rst

8
toolbus hello.tbwhi
h starts interpreting the s
ript \hello.tb". Next,
onsidertoolbus -TB_PORT 4000 hello.tbwhi
h interprets the same s
ript, but uses so
ket 4000 to �nd the ToolBus. Next,
onsider,toolbus -Imy-in
lude-dir -DCNT=33 wave.tbwhi
h sear
hes the dire
tory my-in
lude-dir for �les used in #in
lude dire
tives in the s
ript wave.tband it will de�ne the ma
ro CNT with value 33. All o

urren
es of CNT in the s
ript will be repla
ed bythis value before parsing it as a T s
ript. Finally,toolbus -gentifs hello.tbprodu
es the tool interfa
es �le hello.tifs.2.3 Tool argumentsArguments spe
i�
 for tools are:� -TB HOST host name: de�nes the host ma
hine host name on whi
h the ToolBus interpreter isrunning and to whi
h the tool should be
onne
ted. When omitted, the ToolBus interpretershould be running on the same host as the tool.� -TB TOOL NAME tool name: the tool name as de�ned in the T s
ript (added automati
ally, when atool is exe
uted by the ToolBus).� -TB TOOL ID Id: internal tool identi�er of this tool exe
ution (added automati
ally, when a tool isexe
uted by the ToolBus).� -TB SINGLE: exe
ute the tool stand-alone and do not
onne
t it with the ToolBus.The exe
ution of a tool
an start in two ways:� The tool is started by an exe
ute
ommand in the T s
ript.� The initiative to exe
ute the tool is taken outside the ToolBus. This requires that the s
ript
ontains a re
-
onne
t for this parti
ular tool.When ToolBus and tool are running on di�erent host ma
hines, it is important to de�ne the hostma
hine on whi
h the ToolBus interpreter is running when starting the exe
ution of the tool. As anexample,
onsider the \hello" appli
ation des
ribed in Se
tion 1.4. The hello tool will be exe
uted bythe ToolBus using the
ommandhello -TB_PORT 8998 -TB_HOST host1.institute.nlwhen running on ma
hine host1.institute.nl.Suppose, we repla
e the expli
it exe
ute in Figure 3 by a re
-
onne
t as shown in Figure 6. Wemay then manually start the hello tool by typinghellowhere we use the default values for the input/output so
kets and assume that tool and ToolBus in-terpreter are both running on the same host (i.e., host1.institute.nl). Starting the exe
ution fromanother host is a
hieved by typing (on, say, host2.institute.nl):hello -TB_HOST host1.institute.nl

9
3 Adapters for tools and languagesThe main purpose of adapters is to a
t as small \wrappers" around existing programs or programminglanguages in order to transform them into tools that
an be
onne
ted to the ToolBus. There exist twoglobal strategies for
onstru
ting adapters:� The adapter and the program to be adapted are exe
uted as separate (Unix) pro
esses. Thisstru
ture is sket
hed in Figure 7. The advantage of this approa
h is that no a

ess is needed to thesour
e
ode of the program: it
an remain a bla
k box. Another advantage is that adapters may bereused for the adaptation of di�erent programs. A possible disadvantage is some loss in eÆ
ien
y.� Integrate the adapter and the software to be adapted into a single (Unix) pro
ess. This approa
hpermits the most detailed adaptation of the program and is also the most eÆ
ient solution. Thisapproa
h leads, however, to potentially less reusable adapters than the previous approa
h.Our experien
e so far is restri
ted to adapters of the �rst
ategory. In this
ategory a further subdi-vision is possible:� The program is exe
uted on
e as a
hild pro
ess of the adapter and all snd-eval/snd-do requestsare dire
ted to this
hild pro
ess. The program
an thus maintain an internal state between requests.� The same program is exe
uted as a
hild pro
ess of the adapter for ea
h snd-eval/snd-do request.� A di�erent program is exe
uted as a
hild pro
ess of the adapter for ea
h snd-eval/snd-do request.Common arguments of adapters. In order to a
hieve some uniformity, the
urrent
olle
tion ofadapters have the following optional program arguments in
ommon:� -
md: the (default) program to be exe
uted by the adapter. All arguments of the adapter thatfollow -
md are interpreted as the name and arguments of the program to be exe
uted.� all tool arguments (see Se
tion 2.3.)
4 Writing tools in CAlthough ToolBus tools
an be implemented in many languages (in
luding Java, C++, Perl, T
l/Tk,Prolog, ASF+SDF, Cobol and others) we start explaining how tools
an be written in C. In otherlanguages identi
al notions will be used with only minor adjustements to language-spe
i�
 features andlimitations. Writing tools in C amounts to:� ATerms: the essential data type that is used to ex
hange information between tool and ToolBus(Se
tion 4.1).� The global stru
ture of a ToolBus tool (Se
tion 4.2).� The ToolBus Appli
ation Programmer's Interfa
e (Se
tion 4.3).� Compiling ToolBus tools written in C (Se
tion 4.4).� Generating tool interfa
es with tifsto
 (Se
tion 4.5).4.1 ATerms: Composing and de
omposing termsWe use a datatype
alled ATerms for
reating, mat
hing, reading and writing terms. ATerms are fullydes
ribed elsewhere.6 Here we only give a brief overview.6H. A. de Jong and P. A. Olivier, \ATerm Library User Manual" and M.G.J. van den Brand, H.A. de Jong, P. Klintand P.A. Olivier, \EÆ
ient Annotated Terms", Software Pra
ti
e and Experien
e, 30:259{291, 2000.

10
4.1.1 Term patternsComposition and de
omposition of terms is not based on the dire
t manipulation of the underlying repre-sentation of terms. Instead, term patterns are used to guide
omposition and de
omposition. Su
h termpatterns play the same role as format strings in the printf/s
anf paradigm in C. In �rst approximation,a term pattern is a literal string that would be obtained by a preorder traversal of a term. For instan
e,the term pattern "or(true, false)",
orresponds to a term whose root is labeled with the symbol or,and whose
hildren are labeled with, respe
tively, true and false. In this way, term patterns
an beused to
onstru
t and to mat
h terms.Term patterns be
ome, however, mu
h more useful if they
an be parameterized with subterms thathave been
omputed separately. To this end, we introdu
e the notion of dire
tives as follows:<int> :
orresponds to an integer (in C: int);<str> :
orresponds to a string (in C:
har *);<blob> :
orresponds to a binary string (in C: a (length, pointer) pair represented by two values of types,respe
tively, int and void *);<term> :
orresponds to an aterm (in C: ATerm);<appl> :
orresponds to one fun
tion appli
ation(in C:
har *pattern, followed by arguments);<list> :
orresponds to a list of terms (in C: ATerm).The pre
ise interpretation of these dire
tives depends on the
ontext in whi
h they are used. When
onstru
ting a term, dire
tives indi
ate that a subterm should be obtained from some given variable.When mat
hing a term, dire
tives indi
ate the assignment of subterms to given variables. For theimpli
ations of these dire
tives for memory management, see Se
tion 4.1.8.4.1.2 ATmakeThe fun
tionterm *ATmake(
har *Pattern, ...)
onstru
ts a term a

ording to Pattern, where o

urren
es of dire
tives are repla
ed by the values of thevariables o

urring inFor instan
e, assuming the de
larationsint n = 10;
har *fun = "pair", name = "any";ATerm yellow = ATmake("yellow"), t;the
allt = ATmake("exam(<appl(<term>,9)>,<int>,<str>)", fun, yellow, n, 10, name)will
onstru
t the term t with valueexam(pair(yellow,9),10,10,"any")Binary strings (Binary Large OBje
ts or blobs) are used to represent arbitrary length, binary datathat
annot be represented by ordinary C strings be
ause they may
ontain \null"
hara
ters. A binarystring is represented by a
hara
ter pointer and a length. For instan
e, given
har buf[12℄;ATerm bstr;buf[0℄ = 0; buf[1℄ = 1; buf[2℄ = 2;

11
the
allbstr = ATmake("exam(<blob>)", 3, buf);will
onstru
t a term with fun
tion symbol \exam" and as single argument a binary string of length 3
onsisting of the three values 0, 1, and 2.4.1.3 ATmat
hMat
hing terms amounts to� determining whether there is a mat
h or not,� sele
tively assigning mat
hed subterms to given variables.This is pre
isely what the fun
tionATbool ATmat
h(ATerm Trm,
onst
har *Pattern, ...)does. It mat
hes Trm against Pattern and, when a submat
h is found that
orresponds to a dire
tive, itmakes assignments to variables whose addresses appear in For most dire
tives, the values assigned tothese variables are pointers to subterms of Trm. Pattern should be a well-formed, textual representationof a term whi
h may
ontain any of the dire
tives des
ribed earlier. For instan
e, in the
ontextATerm t = ATmake("exam(pair(yellow,9),10, \"any\")");ATerm t1;int n;
har *ex, *s;the
allATmat
h(t, "appl(<term>,<int>,<str>)", &ex, &t1, &n, &s);yields true and is equivalent to the following assignments:ex = "exam";t1 = ATmake("pair(yellow,9)");n = 10;s = "any";As explained in full detail in Se
tion 4.1.8, memory is managed automati
ally by the ATerm library. Asa general rule, the values for ex, t1, and s are pointers into the original term t rather than newly
reatedvalues. As a result, they have a life time that is equal to that of t.Mat
hing binary strings is the inverse of
onstru
ting them. Given the term bstr
onstru
ted at theend of the previous paragraph, its size and
ontents
an be extra
ted as follows:int n;
har *p;ATmat
h(bstr, "exam(<blob>)", &n, &p);ATmat
h will su

eed and will assign 3 to the variable n and will assign a pointer to the
hara
ter datain the binary string to the variable p.Here, again, the value of p is a pointer into the term bstr rather than a newly allo
ated string.

12
Notes� Double quotes (\"") appearing inside the pattern argument of both ATmake and ATmat
h have tobe es
aped using \\"".� The number and type of the variables whose addresses appear as arguments of ATmat
h should
orrespond, otherwise disaster will strike (as usual when using C).� Assignments are being made during mat
hing. As a result, some assignments may be performed,even if the mat
h as a whole fails.4.1.4 Input and output of ATermsWe make a distin
tion between the \raw" input and output of terms as they are, for instan
e, beingsent through
ommuni
ation
hannels between ToolBus and tools, versus formatted input and outputof terms. Raw term i/o is provided by TBwrite and TBread. Formatted term output is provided byTBprintf and TBsprintf. There are
urrently no primitives for formatted term input.4.1.5 Reading and writing ATermsATerms
an be read from and written to strings and �les. Two formats are supported: a human-readablebut verbose textual format and a very
on
ise binarry format. Here we only dis
uss the textual variant.The fun
tionvoid ATwriteToTextFile(ATerm Trm, FILE *File)writes ATerm Trm to the �le File. For instan
e, in the
ontext:FILE *f = fopen("foo", "wb");ATerm Trm1 = ATmake("<appl(red,<int>)>", "freq", 17);the statementATwriteToTextFile(Trm1, f);will write the value of Trm1 (i.e., freq(red,17)) to �le \foo".The fun
tionATerm ATreadFromFile(FILE *File)is the inverse of ATwriteToFile: it reads a term (either in textual format or in internal format) from a�le and returns it as value. When end of �le is en
ountered or the term
ould not be read, the operationis aborted.74.1.6 ATfprintfThe fun
tionint ATfprintf(FILE *File,
onst
har *Pattern, ...)writes formatted output to File. Pattern is printed literally ex
ept for o

urren
es of dire
tives whi
hare repla
ed by the textual representation of the values appearing in For instan
e,ATfprintf(stderr, "Wrong event \"%t\" ignored\n", ATmake("failure(<int>)", 13));will print:Wrong event "failure(13)" ignoredNote that ATprintf uses the normal printf
onversion spe
i�ers extended with aterm-spe
i�
 spe
-i�ers. The most frequently used spe
i�er is %t whi
h stands for an aterm argument whose textualrepresentation is to be inserted in the output stream.7The user
an rede�ne this behaviour using ATsetAbortHandler, whi
h allows the de�nition of a user-de�ned aborthandler. See the ATerm Library User Manual for further details.

13
4.1.7 Further ATerm manipulation fun
tionsThe ATerm library a
utally provides two interfa
es:� The level 1 interfa
e: a simple but expressive interfa
e as just sket
hed.� The level 2 interfa
e: a more detailed interfa
e that allows the very eÆ
ient
oding of operationson ATerms. We will not further dis
uss here the level 2 interfa
e.
4.1.8 Memory Management of ATermsThe fun
tions in the ATerm library provide automati
 memory management of terms. Terms that havebeen
reated but are no longer referen
ed are removed by a method
alled garbage
olle
tion. Theglobal model is that there is a set of prote
ted terms that are guaranteed to survive a garbage
olle
tion.E�e
tively, all prote
ted terms (and their subterms) are
onserved and all other terms are
onsidered asgarbage and
an be
olle
ted.It is guaranteed that no garbage
olle
tion takes pla
e during the exe
ution of an event handler,hen
e it is not ne
essary to prote
t temporary terms that are
onstru
ted during the exe
ution of anevent handler. However, terms that should have a longer life time must be prote
ted in order to survive.In order to prote
t terms from being
olle
ted, the fun
tionvoid ATprote
t(ATerm *TrmPtr)
an be used that has as single argument a pointer to a variable with an ATerm as value. The prote
tion
an be undone by the fun
tionvoid ATunprote
t(ATerm *TrmPtr)The interplay between garbage
olle
tion and program variables is subtle. The following points aretherefore worth mentioning:� Fun
tions that return a term as value (e.g., TBreadTermfromFile) do not expli
itly prote
t it butthe result may, of
ourse, be prote
ted be
ause it is a subterm of an already prote
ted term.� The fun
tion ATmake uses strings and terms and in
ludes them into a new term T . The impli
ationsfor memory management are:{ All string arguments (using <str>, <blob> or <appl>) are
opied before they are in
luded intoT . They
an thus safely be deallo
ated (e.g., using free) by the C program.{ All term arguments (using <term>) are in
luded into T by means of a pointer. They thusbe
ome rea
hable from T and their life time be
omes at least as large as that of T ; it isunne
essary to expli
itly prote
t them.� The fun
tion ATmat
h assigns strings and terms to program variables by extra
ting them from anexisting term T . The general rule here is that extra
ted values have a life time that is equal to thatof T . The impli
ations for memory management are:{ All string values (obtained using <str>, <blob> or <appl>) should be
opied if they shouldsurvive T .{ All term values (obtained using <term>) should be expli
itly prote
ted if they should surviveT .

14
4.1.9 Initializing and using the ATerm libraryUsing the ATerm library requires the following:� In
lude the header �le aterm1.h (or aterm2.h if you want to use the level 2 interfa
e). aterm1.hde�nes:{ ATbool: the boolean data type de�ned bytypedef enum ATbool {ATfalse=0, ATtrue} ATbool;It is mainly used as the return value of library fun
tions.{ ATerm: the type de�nition of ATerms. The ATerm library has been designed in su
h a way thatonly pointers to terms must be passed to or are returned by library fun
tions. The primitivesthat are provided for
onstru
ting and de
omposing terms are of su
h a high level that it isunne
essary to know the internal representation of terms. When ne
essary, you
an a

ess theinternal stru
ture of ATerms using the level 2 interfa
e.� De
lare in your main program a lo
al ATerm variable that will be used to determine the bottom ofC's runtime sta
k.� Call ATinit to initialize the ATerm library.� Link the ATerm library libATerm.a when
ompiling your appli
ation. This is a
hieved using the-lATerm option of the C
ompiler.A typi
al usage pattern is as follows:#in
lude <aterm1.h>int main(int arg
,
har *argv[℄){ ATerm bottomOfSta
k;ATinit(arg
, argv, &bottomOfSta
k);/* ...
ode that uses ATerms ... */}4.2 The global stru
ture of a ToolBus toolIn its simplest form, a tool is a box
onne
ted via an input and an output port to a ToolBus. In themost general
ase, a tool has� one input port from the ToolBus to the tool and
an re
eive tree stru
tures (terms) via this port;� one output port from the tool to the ToolBus and
an send terms to the ToolBus via this port;� zero or more term ports to re
eive terms from other sour
es;� zero or more
hara
ter ports to re
eive
hara
ter data from other sour
es.This global, ar
hite
tural, stru
ture of a tool is shown in Figure 8. With ea
h input port, an eventhandler is asso
iated that takes
are of the pro
essing of the data re
eived via that port and is responsiblefor returning a result (if any). One tool may thus
ontain several event handlers. When a request isre
eived, the following steps are taken:� The data re
eived are parsed to
he
k that they form a legal ToolBus term T . (If this is impossible,a warning message is generated).� The event handler is
alled with T as argument.

15
� The event handler
an do arbitrary pro
essing needed to de
ompose T , to determine what has tobe done, and perform any desired
omputation.� The event handler returns either:{ a legal ToolBus term representing a reply to be sent ba
k to the ToolBus.{ NULL indi
ating that there is no reply.The global mode of operation of a tool is now:� re
eive data on any input port and respond to this by sending some term (or NULL) to the ToolBus;or� take the initiative to send a term to the ToolBus (typi
ally to inform the ToolBus about someexternal event).A tool is thus on the one hand a rea
tive engine that responds to a request from the ToolBusand returns the result ba
k to the ToolBus in the form of a term (e.g.,
al
ulate the value of someexpression), but on the other hand it
an also take the initiative to send a term to the ToolBus (e.g.,generate an event when a user pushes some button).At the level of the sour
e
ode, the global stru
ture of a purely rea
tive tool without additional termor
hara
ter ports has already been illustrated in Figure 4.4.2.1 The in
lude �le atb-tool.hEa
h tool needs to in
lude the �le atb-tool.h whi
h de�nes some basi
 types as well as the set of libraryfun
tions available. It
onsists of� An in
lude of <aterm1.h>.� De�nes ATBhandler: the type of event handlers.� De�nes the prototypes of all library fun
tions4.2.2 The tool library libATB.aWhen
ompiling tools, the library libATB.a must be spe
i�ed in order to make the tool library available(using the -lATB option of the C
ompiler). It provides the following fun
tions8:� ATBinit: tool initialization (Se
tions 4.3.1).� ATB
onne
t: to
onne
t the tool to the ToolBus (Se
tions 4.3.2).� ATBdis
onne
t: to dis
onne
t the tool from the ToolBus (Se
tions 4.3.2).� ATBeventloop: a standard event loop for a tool (Se
tion 4.3.3).� ATBreadTerm: pro
ess one input event on a port (Se
tion 4.3.4).� ATBwriteTerm: send a term to the ToolBus (Se
tion 4.3.4).In the following se
tion, we will des
ribe these fun
tions.8For an exhaustive des
ription, see H. A. de Jong and P. A. Olivier, \ATerm Library User Manual"

16
4.3 The ToolBus APIDuring the initialization of ea
h tool, some preparations have to made before the tool
an be properly
onne
ted to the ToolBus. These preparations in
lude� De�ning the name of the tool as it is known from a tool de
laration in a T s
ript.� Parsing standard program arguments that are passed to the tool when it is started.� Creating a pair of so
ket
onne
tions with a ToolBus interpreter.� Starting an event loop.During exe
ution of the event loop, the tool
an either re
eive terms from the ToolBus or it
an takethe initiative to send terms to the ToolBus. It is thus possible for a tool to both respond to ToolBusrequests and asyn
hronously send terms to the ToolBus.4.3.1 ATBinitThe initialization of a tool is a
hieved byATBinit(int arg
,
har *argv[℄, ATerm *bottomOfSta
k).The standard program arguments that are passed (via arg
 and argv) are fully des
ribed in Se
tion 2.Parti
ularly important is that the tool is initialized with a proper name. It should be literally equal(in
luding the
ase of letters) to a tool name as appearing in a tool de
laration in the T s
ript. Thisis important sin
e the tool name will be used when the tool is
onne
ted to the ToolBus. Note thatATBinit also initializes the ATerm library (hen
e the bottomOfSta
k argument, see Se
tion 4.1.9).4.3.2 ATB
onne
t and ATBdis
onne
tA tool
an be
onne
ted to the ToolBus using term ports that
an be using for sending and re
eivingdata in the form of
omplete terms. Two aspe
ts of term ports are important: the input
hannel usedfor the a
tual data transfer and the handler that takes
are of pro
essing input terms when they arrive.The
onne
tion is established as follows:int ATB
onne
t(
har *toolname,
har *host, int port, ATBhandler h);Here, toolname is the tool name to be used, host is the ma
hine where the ToolBus is exe
uting,port is the �le des
riptior of the
hannel to be used, and h is the handler to asso
iated with this
onne
tion.If value NULL is passed as toolname or host, default values are used that are taken from argv. The sameis true when -1 is passed as value for port. The return value of ATB
onne
t is either -1 (failure) ora positive number (the
onne
tion su

eeded and the result is the �le des
riptor of the resulting so
ket
onne
tion with the ToolBus).Handlers for term ports are fun
tions from ATerm to ATerm and have the type:ATerm some_handler(int
onn, ATerm input)The argument
onn is the
onne
tion along whi
h the input term was re
eived and input is the a
tualterm re
eived. The term retruned by the handler is the reply to be sent to the ToolBus in response tothis input event, or NULL if no reply is needed.In this fashion, an arbitrary number of term input ports
an be set up whi
h will be read in parallel:as soon as a term arrives at one of the ports the asso
iated handler is a
tivated.A
onne
tion
an be terminated as follows:void ATBdis
onne
t(int
onn)where int is a previously
reated
onne
tion.

17
4.3.3 ATBeventloopMany tools �rst establish a number of term ports and then enter an in�nite loop that pro
esses inputevents. The fun
tionint ATBeventloop(void)
aptures this idea. It never returns, unless something goes wrong. We
an now give a skeleton that manytools have in
ommon:#in
lude "my_tool.tif.
"ATerm my_tool_handler(int
onn, ATerm input){ ... handle input and return a term or NULL ... }int main(int arg
,
har *argv[℄){ ATerm bottomOfSta
k;ATBinit(arg
, argv, &bottomOfSta
k);if(ATB
onne
t(NULL, NULL, -1, my_tool_handler) >= 0){ ATBeventloop();} elsefprintf(stderr, "my_tool: Could not
onne
t to the ToolBus, giving up!\n");ATBeventloop();return 0;}4.3.4 ATBwriteTerm and ATBreadTermSo far, we have seen primitives for tools that only re
eive terms from the ToolBus. In the
ase of, forinstan
e, events that are generated by a tool, a term needs to be sent from the tool to the ToolBus.This
an be a
hieved usingint ATBwriteTerm(int
onn, ATerm term)whi
h sends term along the port
onn. Failure is indi
ated by the return value -1. A typi
al usage is:ATBwriteTerm(
onn, ATmake(snd-event(button("ok")).Symmetri
ally, a term
an be read from a ToolBus
onne
tion as follows:ATerm ATBreadTerm(int
onn).4.3.5 Advanved
ontrol
owTool programming amounts, in essen
e, to event driven programming: most of the time a tool is awaitingthe arrival of data on one of its ports and when the data are there, a reply is sent to the ToolBus bythe handler asso
iated with that port.In
omputation-intensive tools, the need may arise to
he
k for the availability of in
oming data fromthe ToolBus during
omputations. This is a
hieved by the fun
tionATbool ATBpeekOne(int
onn)whi
h returns ATtrue if in
oming data from the ToolBus are available on the
onne
tion
onn.Similarly, the availability of data on any
onne
tion may be
he
ked by:

18
int ATBpeekAny(void)If input is waiting, the appropriate
onne
tion is returned. Otherwise -1 is returned.The sequen
e of a
tivities needed for handling (on
e) the data available from a spe
i�

onne
tion is
aptured by the fun
tionvoid ATBhandleOne(int
onn)This amounts to
alling the handler asso
iated with
onne
tion
onn with the available data as inputterm.Similarly, the data from any
onne
tion is handled byvoid ATBhandleAny(void)The fun
tion ATBeventloop
an be expressed with the primitives just introdu
ed:int ATBeventloop(void){ int
onn;while(ATtrue){ n = ATBhandleAny();if(n < 0)return -1;}}Another style mixes the handling of input from the ToolBus, with other
omputations:while(ATtrue){ if(n = ATBpeekAny() >= 0) /* if there is an in
oming event */ATBhandleOne(n); /* handle it */else {... /* perform other
omputation */}}In some tools, a mixture of passively awaiting input and a
tively sending terms to the ToolBus
anbe seen.Using ATBwriteTerm, the most general global event loop of a tool be
omes:while(ATtrue){ ... ATBwriteTerm(
1,e1); ...; ATBwriteTerm(
n,en); ...ATBhandleAny();}In other words, ea
h iteration starts by sending zero or more terms to theToolBus (using ATBwriteTerm)and ends with pro
essing one event
oming from some port (using ATBhandleAny). The T s
ript beingused should, of
ourse, be able to re
eive su
h events.

19
4.4 Compiling ToolBus tools written in CWhen
ompiling a tool written in C the following questions should be answered:� Where is the in
lude �le aterm1.h?� Where is the in
lude �le atb-tool.h?� Where is the ATerm library libATerm.a?� Where is the ToolBus API library libATB.a?� Whi
h other libraries are needed to
ompile the tool?The answers to these questions are
learly system dependent. There are two strategies to answerthem.Strategy 1: �nd the desired lo
ations on your system and hard
ode them in the
ompilation
ommand.This will lead to a
all to the C
ompiler with the following arguments:� -Idir-where-aterm1.h-is� -Idir-where-ATB-tool.h-is� hello.
 -o hello� -Ldir-where-libATerm.a-is� -lATerm� -Ldir-where-libATB.a-is� -lATB� other libraries.Strategy 2: write a make �le that en
odes this information. As a result, the lo
ation information ishardwired in the make �le rather than in a
ommand that has to be repeated over and over again.4.5 Generating C tool interfa
es with tifsto
The interfa
e
ode for ea
h tool depends on the parti
ulars of the T s
ript in whi
h it is used. Changingthe number of arguments in an evaluation request to the tool, or adding a new request, requires making
hanges to the interfa
e
ode that are easily forgotten and therefore error prone.As already mentioned in Se
tion 1.4, another observation is that the interfa
e
ode for di�erent toolshas a lot in
ommon.An obvious solution to both problems is to generate tool interfa
es automati
ally, given a T s
ript.This generation pro
ess is shown in Figure 9 and
onsists of two steps:� Generate a language-independent des
ription of all tool interfa
es used in the s
ript. This amountsto a stati
 analysis of all tool
ommuni
ation in the s
ript. It is a
hieved by using the \-gentifs"option of the ToolBus interpreter. For instan
e,toolbus -gentifs hello2.tbwill
reate a �le hello2.tifs
ontaining the tool interfa
es.

20
� Use the language independent interfa
e des
ription to generate a tool interfa
e for a spe
i�
 tool ina spe
i�
 implementation language. The generator tifsto
9 exists for generating C tool interfa
es.It is
alled as follows:tifsto
 -tool Name TifsF ileand generates a �le named Name :.tif.
. For the hello example, we would have, for instan
e:tifsto
 -tool hello hello2.tifsIn Figure 9 it is also shown how tool interfa
e generators for other languages (e.g., Java, Cobol) �tinto this s
heme. In addition to tifsto
, we alo support the generation of Java interfa
es by way ofjavatif (See Se
tion ??).

5 Using arbitrary Unix
ommands as toolUsing arbitrary Unix
ommands as ToolBus tool is a
hieved by the gen-adapter to be explained inSe
tion 5.1. An example of its is use is given in Se
tion 5.2.5.1 gen-adapterSynopsis. Exe
ute an arbitrary Unix
ommand as tool.Example. gen-adapter -
md ls -lSpe
i�
 arguments.� -addnewline: always add a newline
hara
ter to the standard input for the
ommand.� -keepnewline: keep the last newline
hara
ter in the output generated by the
ommand. Withoutthis argument, the last newline
hara
ter is always removed.� -string-output: return the output of the
ommand as string (type: <str>). When no outputformat options has been spe
i�ed, -string-output is used.� -binary-output: return the output of the
ommand as a binary string (type: <bstr>).� -term-output: return the output of the
ommand as term (type: <term>).Communi
ation. 10� snd-eval(Tid,
md(Cmd, input(Str)): exe
ute the Unix
ommandCmd < Stri.e., exe
ute Cmd with Str as standard input. The output of this
ommand exe
ution is
apturedand will be returned by default as string value (see below). Other output formats
an be sele
tedusing
ommand line options. Tid is a tool identi�er (as produ
ed by exe
ute or re
-
onne
t) foran instan
e of the gen-adapter.9This is an ATerm-
ompatible version of a similar generator
alled
tif.
tif is still in use for some older tools but willbe gradually phased out.10Communi
ation is des
ribed from the point of view of the ToolBus, i.e., snd- and re
- mean, respe
tively, send byToolBus and re
eive by ToolBus.

21
� snd-eval(Tid,
md(Cmd, input(Bstr)): same as above, ex
ept that a binary string is used asstandard input for Cmd.� re
-value(Tid,output(Res)): the return value for a previous evaluation request. Res is a string
ontaining the output produ
ed by the
ommand exe
ution. By default gen-adapter returns theoutput of the exe
uted
ommand as ordinary string. Other output formats
an be spe
i�ed using
ommand line options. Note: in the
urrent implementation of gen-adapter there is an arbitrarylimit (10000) on the size of the output produ
ed by the
ommand.� snd-terminate(Tid, A1): terminate exe
ution of gen-adapter.5.2 Example: pipe
ommuni
ation between two Unix
ommandsSuppose we want to
ount how many words there are in a listing of the
urrent �le dire
tory. At theUnix level, this
an be a
hieved byls -l | w
where \ls -l" produ
es the dire
tory listing and \w
 -w"
ounts the number of words in this listing.The same e�e
t is a
hieved by the s
ript given in Figure 10.

6 Writing tools in PerlWriting ToolBus tools in Perl is greatly simpli�ed by the perl-adapter to be explained in Se
tion 6.1.Next, a small set of prede�ned Perl fun
tions is des
ribed that are always loaded by the perl-adapterand
an be used in any Perl s
ript (Se
tion 6.2). Finally, we present in Se
tion 6.3 the Perl version ofthe hello tool.6.1 perl-adapterSynopsis. Exe
ute a Perl s
ript as tool.Example. perl-adapter -s
ript hello.perlSpe
i�
 arguments.� -s
ript: The Perl s
ript to be exe
uted.Communi
ation. 11� snd-eval(Tid, Fun(A1, ..., An): perform the Perl subroutine
all do Fun(A1, ..., An).Here Tid is tool identi�er (as produ
ed by exe
ute or re
-
onne
t) for an instan
e of theperl-adapter.� re
-value(Tid,Res): the return value for a previous evaluation request.� re
-event(Tid, A1, ..., An): event generated by Perl.� snd-a
k-event(Tid, A1): a
knowledgement of a previously generated event.� snd-terminate(Tid, A1): terminate exe
ution of perl-adapter.The
ommand perl is exe
uted on
e, an initial Perl s
ript is read, and all further requests are dire
ted tothis in
arnation of perl. A small set of Perl pro
edures is available for unpa
king and pa
king ToolBusterms (see below).11Communi
ation is des
ribed from the point of view of the ToolBus, i.e., snd- and re
- mean, respe
tively, send byToolBus and re
eive by ToolBus.

22
6.2 Prede�ned Perl fun
tionsThe following Perl fun
tions are prede�ned and
an be used freely in Perl s
ript exe
uted via the perl-adapter:� TBstring Str:
onverts a Perl string to a ToolBus string by surrounding it with double quotesand es
aping double quotes o

urring inside Str.� PERLstring Str:
onverts a ToolBus string into a Perl string by removing surrounding doublequotes.� TBerror Msg:
onstru
ts an error message that
an be send ba
k to the ToolBus.� TBsend Trm: send Trm ba
k to the ToolBus.6.3 The hello example in Perl: hello.perlWriting the hello tool in Perl requires two steps:� Write the required Perl
ode hello.perl. The result is shown in Figure 11.� Repla
e hello's tool de�nition in hello2.tb by:tool hello is {
ommand = "perl-adapter -s
ript hello.perl"}
7 Writing tools in PythonYou
an write ToolBus tools in Python using a ToolBus-aware Python interpreter. How to build su
ha ToolBus-aware Python interpreter is explained in Se
tion 7.1. Se
tion 7.2 explains how to
onne
tyour python s
ripts that are exe
uted by a ToolBus-aware Python interpreter to the ToolBus.7.1 Building a ToolBus-aware Python interpreter.Before adding ToolBus support to Python, you �rst have to retrieve and install Python, version 1.3.If you need more information about Python or more spe
i�
 information about installing Python, you
an visit the Python home page at http://www.python.org/. In this do
ument we assume you havesu

esfully installed python and are only interested in adding ToolBus support.The �rst thing to do, is to
opy the �le adapters/python-adapter/TBmodule.
, lo
ated in thisToolBus distribution to the Python Modules dire
tory:
p ToolBus/python-adapter/TBmodule.
 Python-1.3/ModulesNow you have to add the two lines to the �le Setup in the Python Modules dire
tory. If you have enabledthe tkinter module in the Setup �le, these lines are:TBBASE=<your ToolBus lo
ation>TB TBmodule.
 -I$(TBBASE)/in
lude -I/home/olivierp/in
lude $(TBBASE)/lib/libtb.aIf you do not have the tkinter module enabled in the Setup �le, you have to add the following two linesinstead:TBBASE=<your ToolBus lo
ation>TB TBmodule.
 -DNO_TK -I$(TBBASE)/in
lude TBBASE)/lib/libtb.aNow type make and keep your �ngers
rossed. If all goes well, a new ToolBus-aware python interpreterwill be build, whi
h you
an install using the
ommand make install.The s
ript python-adapter, lo
ated in adapters/python-adapter, is used by your ToolBus s
riptsto start the ToolBus-aware python interpreter with the right arguments. This s
ript is automati
allymoved to the ToolBus bin dire
tory during the ToolBus installation.

23
7.2 Using the ToolBus-aware python interpreterSynopsis. Start a python s
ript as a tool.Example. python-adapter -s
ript hello.pySpe
i�
 arguments.� -program Name: Use Name rather than python as the (ToolBus-aware) python interpreter.� -tra
e-
alls: Tra
e the
alls made by the python-adapter. a list of fun
tion
alls is printed tostderr.� -s
ript S
ript: Exe
ute the python s
ript S
ript.� -arg Arg: Pass the argument Arg as a
ommand line option to the python interpreter. This option
an be repeated multiple times.� -s
ript-args Arg1, Arg2, ...: This must be the last option. The arguments Arg1, Arg2, ...are passed to the python s
ript in the variable TB.argv.Communi
ation. 12� snd-do(Tid, Fun(A1, ..., An)): perform the Python fun
tion
all Fun(
id,A1, ..., An).Here Tid is a tool identi�er (as produ
ed by exe
ute or re
-
onne
t) for an instan
e of thepython-adapter, and
id is the
onne
tion id for this tool instan
e as returned by TB.parseArgsor TB.newConne
tion.� snd-eval(Tid, Fun(A1, ..., An)): perform the Python fun
tion
all Fun(Tid, A1, ...,An. Tid and
id as above. Note that the fun
tion Fun must send an anser ba
k to the ToolBususing return TB.make("snd-value(...)", ...).� re
-value(Tid,Res): the return value for a previous evaluation request.� re
-event(Tid, A1, ..., An): event generated by python.� snd-a
k-event(Tid, A1): a
knowledgement of a previously generated event. Perform the Pythonfun
tion
all re
 a
k event(
id, A1).� snd-terminate(Tid, A1): terminate exe
ution of the python tool. Perform the Python fun
tion
all re
 terminate(
id, A1).7.3 Prede�ned Python fun
tionsThe following Python fun
tions are prede�ned and
an be used freely in Python s
ripts exe
uted by aToolBus-aware Python interpreter.� TB.parseArgs(Args, Module): Parse the
ommandline options in Args, and
reate a new toolinstan
e. Module is the Python module asso
iated with this tool, for instan
e "__main__". Thetool is not yet
onne
ted to the ToolBus, until TB.
onne
t is
alled. This fun
tion returns thenew tool instan
e id, or raises an ex
eption.� TB.newConne
tion(Tool, Host, Port, Module): An alternate way to
reate a new tool instan
e.Tool, Host, and Module are strings, Port is an integer. Host
an also be None, in whi
h
ase thelo
al host is always used. This fun
tion returns the new tool instan
e id, or raises an ex
eption.12Communi
ation is des
ribed from the point of view of the ToolBus, i.e., snd- and re
- mean, respe
tively, send byToolBus and re
eive by ToolBus.

24
� TB.
onne
t(Cid): Create the a
tual
onne
tion with the ToolBus, or raise an ex
eption.� TB.eventloop(): Start the ToolBus eventloop. Please do not use this fun
tion when you use theTkinter module. If you use Tkinter, use TB.enableTk in
ombination with the Tkinter eventloop.� TB.enableTk(): Instru
t the TB module to register its
allba
k fun
tions with Tkinter, so theTkinter eventloop
an be used instead of the ToolBus eventloop.� TB.send(
id, Term): Send a term to the ToolBus. Term must be a Python term obje
t.� TB.make(Fmt, ...): Build a new term obje
t. You
an use the following format dire
tives inFmt:{ <bool>: Build a boolean term. This dire
tive
onsumes one Python obje
t from the argumentlist. If this obje
t happens to be None, the
reated term is false, else the
reated term istrue.{ <int>: Build an integer term. This dire
tive
onsumes one Python integer obje
t from theargument list.{ <str>: Build a string term. This dire
tive
onsumes one Python string obje
t from theargument list.{ <bstr>: Build a binary string term. This dire
tive
onsumes one Python string obje
t fromthe argument list.{ <real>: Build a real term. This dire
tive
onsumes one Python
oat obje
t from the argumentlist.{ <appl>: Build a term appli
ation. This dire
tive
onsumes two arguments: a string de�ningthe fun
tion symbol, and a Python list of terms giving the arguments.{ <list>: Build a list of terms. This dire
tive
onsumes one argument: a Python list of terms.{ <term>: Build a term. This dire
tive
onsumes one argument: a Python term obje
t.7.4 Methods of the
lass termThe module TB introdu
es a new Python
lass
alled term. This
lass supports the following methods:� Term.kind(): Returns the type of the term. This type is represented by one of the followingstrings:{ bool{ int{ real{ str{ bstr{ bstr{ appl{ list� Value retrieval fun
tions. Stri
tly speaking, these are not fun
tions, but rather '
ontext sensitiveattributes'. These attributes are only valid when the term is of the appropriate type.{ Term.bool: Term must be a boolean. Returns 1 if the term is true, None otherwise.{ Term.int: Term must be a integer. Returns a Python integer obje
t representing the samevalue.

25
{ Term.real: Term must be a real. Returns a Python
oat obje
t representing the same value.{ Term.str: Term must be a string. Returns a Python string obje
t representing the samestring.{ Term.bstr: Term must be a binary string. Returns a Python string obje
t representing thesame string.{ Term.appl: Term must be a appli
ation. Returns a tuple
ontaining the fun
tion symbol asa string and the arguments as a Python list of terms.{ Term.list: Term must be a list. Returns a Python list of terms.� Term.simplify(): Maps the term onto a native Python obje
t. For instan
e, a term of type<str> is translated into a Python string obje
t.� T.mat
h(Fmt): Che
k if a term mat
hes with a
ertain string. The string Fmt is �rst parsed intoa term and then the two terms are mat
hed. The fun
tion returns None when the two terms do notmat
h. When the two terms do mat
h, a list is returned that
ontains the subterms of T mat
hingwith the pla
eholders of Fmt.� T.mat
hTerm(Fmt): As T.mat
h, but Fmt is now a term
ontaining pla
eholders, and does nothave to be parsed before mat
hing.

7.5 term examplePython 1.3 (Jun 6 1996) [GCC 2.6.3℄Copyright 1991-1995 Sti
hting Mathematis
h Centrum, Amsterdam>>> import TB>>> T = TB.make("[1,2,3℄")>>> print T<term, [1,2,3℄>>>> print T.list[<term, 1>, <term, 2>, <term, 3>℄>>> L = T.mat
h("[<int>,2,<term>℄")>>> print L[1, <term, 3>℄>>> print L[1℄.strTra
eba
k (innermost last):File "<stdin>", line 1, in ?TB.error: term is not of type str>>> print L[1℄.int3
7.6 The hello example in Python: hello.pyWriting the hello tool in Python requires two steps:� Write the required Python
ode hello.py. The result is shown in Figure 12.� Repla
e hello's tool de�nition in hello2.tb by:tool hello is {
ommand = "python-adapter -s
ript hello.py"}

26
8 Writing tools in T
l/TkThere are two ways to
onne
t tools written in T
l/Tk (see Figure 13):� Conne
t wish, T
l/Tk's windowing shell, to the ToolBus via an adapter sends
ommands towish via a pipe and re
eives the outpt of wish via another pipe. This strategy is used in thewish-adapter (available, but not further des
ribed in this guide).� Use an adapter that is
ompletely integrated with a T
l/Tk interpreter. This is more eÆ
ient, butless
exible than the previous approa
h.When the ToolBus distribution has been
on�gured using the option --with-t
ltk=<t
l/tk-basepath>,the t
ltk-adapter is build.8.1 t
ltk-adapterSynopsis. Exe
ute T
l/Tk's windowing shell wish as a tool.Example. t
ltk-adapter -s
ript
al
ulator.t
lSpe
i�
 arguments.� -wish Name: Use Name rather than wish as T
l/Tk's windowing shell.� -lazy-exe
: Postpone exe
ution of wish until needed.� -s
ript: The T
l s
ript to be exe
uted.� -s
ript-args: The arguments for the T
l s
ript to be exe
uted. These arguments are available tothe T
l s
ript throught the variables arg
 and argv.Communi
ation. 13� snd-do(Tid, Fun(A1, ..., An)): perform the T
l fun
tion
all Fun A1 ... An. Here Tidis a tool identi�er (as produ
ed by exe
ute or re
-
onne
t) for an instan
e of the wish-adapter.� snd-eval(Tid, Fun(A1, ..., An)): perform the T
l fun
tion
all Fun A1 ... An. Here Tidis a tool identi�er (as produ
ed by exe
ute or re
-
onne
t) for an instan
e of the wish-adapter.Note that the fun
tion Funmust send an anser ba
k to the ToolBus (using TBsend "snd-eval(...)").� re
-value(Tid,Res): the return value for a previous evaluation request.� re
-event(Tid, A1, ..., An): event generated by wish.� snd-a
k-event(Tid, A1): a
knowledgement of a previously generated event.� snd-terminate(Tid, A1): terminate exe
ution of wish-adapter.� snd-monitor(Trm): in this
ase the T
l fun
tion monitor atom fPro
Id AtFun, Sr
 Blino BposElino Eposg is
alled where Pro
Id is the pro
ess-id of the pro
ess to whi
h this atom belongs,AtFun is the a
tion fun
tion name of the atom (printf, tau, snd-do, snd-eval, re
-msg et
.), Sr
 thesour
e �le where the atom is de�ned, Blino the number of the line where the atom starts, Bposthe
olumn of the line where the atom starts, Elino the number of the line where the atom endsand Epos is the
olumn of the line where the atom ends (this information
an be used for examplefor highlightning a pie
e of sour
e
ode). After
alling this fun
tion the term is further analyzed,possibly resulting in (several) other T
l fun
tion
alls. The following situations are
onsidered:13Communi
ation is des
ribed from the point of view of the ToolBus, i.e., snd- and re
- mean, respe
tively, send byToolBus and re
eive by ToolBus.

27
{ pro
ess
reation:
reate pro
 fPro
Id Pro
Nameg is
alled.{ tool
reation:
reate tool fToolId ToolNameg is
alled.{ pro
ess to tool
ommuni
ation: pro
 tool
omm fToolId Pro
Idg is
alled.{ tool to pro
ess
ommuni
ation: tool pro

omm fPro
Id ToolIdg is
alled.{ pro
ess to pro
ess
ommuni
ation: pro
 pro

omm fPro
Id1 Pro
Id2g is
alled.{ update the value of a variable in a pro
ess: update var fPro
Id VarName NewValueg is
alled.{ update the list of subs
ribtions of a pro
ess: update subs fPro
Id Subsg is
alled.{ update the list of notes of a pro
ess: update notes fPro
Id Notesg is
alled.The
ommand wish is exe
uted on
e, an initial T
l s
ript is read, and all further requests are dire
ted tothis in
arnation of wish. A small set of T
l pro
edures is available for unpa
king and pa
king ToolBusterms (see below).8.2 Prede�ned T
l fun
tionsThe following T
l fun
tions are prede�ned and
an be used freely in T
l s
ript exe
uted via the wish-adapter:� TBstring Str:
onverts a T
l string to a ToolBus string by surrounding it with double quotesand es
aping double quotes o

urring inside Str.� TCLstring Str:
onverts a ToolBus string into a T
l string by removing surrounding doublequotes.� TBlist List:
onverts a T
l list to a ToolBus list by separating the elements with
ommas andsurrounding the list by
urly bra
es.� TBerror Msg:
onstru
ts an error message that
an be sent to the ToolBus.� TBsend Trm: send Trm ba
k to the ToolBus.� TBevent Event: send event Event to the ToolBus.� TBrequire ToolName Pro
Name Nargs
he
k that the T
l
ode for ToolName
ontains a pro-
edure de
laration for Pro
Name with Nargs formal parameters. This fun
tion is mainly used bythe wish-adapter to
he
k
ompatibility of the T
l
ode with the expe
ted input signature of thetool.Note. All
ommuni
ation between wish-adapter and a tool written in T
l is done via standard in-put/output. Only use the standard error stream for print statements in the T
l s
ript, sin
eusing standard output will disrupt the
ommuni
ation with the ToolBus.8.3 The hello example in t
l: hello.t
lWriting the hello tool in T
l requires two steps:� Write the required T
l
ode hello.t
l. The result is shown in Figure 14.� Repla
e hello's tool de�nition in hello2.tb by:tool hello is {
ommand = "t
ltk-adapter -s
ript hello.t
l"}

28
A
knowledgementsHay
o de Jong and Pieter Olivier made major
ontributions to the do
umentation of the ToolBus intheir \Aterm Library User Manual". Information from that manual has been used in this guide as well.Simon Gray and Mark van den Brand
ommented on drafts of this guide.

29
A In
ompatibilities with older ToolBus versionsA.1 In
lude �les, Libraries and API'sIn older versions, tools had to in
lude the �le TB.h. Currently, this is atb-tool.h.In older versions, the ToolBus API was provided by libTB. Currently, this is split over to libraries:libATerm.a (the ATerm fun
tions) and libATB.a (the ToolBus API). As a
onsequen
e, older toolshave to be
ompiled with the
ompiler
ag -lTB.In the older API's, all fun
tions begin with the pre�x TB. Currently, fun
tions begin with either AT(ATerms) or ATB (ToolBus API).The old and the new API's
an be
ompared as follows:Old NewTBinit ATinitTBmake ATmakeTBmat
h ATmat
hTBwrite ATwriteTermTBread ATreadTermTBreadTerm |TBprintf ATprintfTBsprintf ATsprintfTBprote
t ATprote
tTBunprote
t ATunprote
tTB
olle
t |TBinit ATBinit| ATB
onne
t| ATBdis
onne
tTBaddTermPort |TBaddCharPort |TBre
eive ATBreadTermTBsend ATBwriteTermTBeventloop ATBeventloopTBpeek ATBpeekAnyATBpeekOne| ATBhandleOne| ATBhandleAny| ATBgetDes
riptorsIn addition, the new API's provide other fun
tions taht are not listed in this table.
B Limitations/extensions
urrent implementationThe
urrent implementation is a faithful implementation of the system des
ribed in \The Dis
rete TimeToolBus". There are some minor di�eren
es that are summarized here.
Extensions� The types <bstr> and <real>.� The atomi
 a
tions printf and read.

30
Limitations� Certain fun
tions in expressions have not yet been implemented (see Appendix D).� The atomi
 a
tions atta
h-monitor, deta
h-monitor, and re
onfigure have not yet been im-plemented.

31
C The syntax of T s
riptsC.1 Prepro
essor dire
tivesThe s
ript name given as argument to the ToolBus is always prepro
essed by the C prepro
essor beforeit is parsed as T s
ript. In this way, dire
tives like, e.g., #define, #in
lude and #ifdef
an be usedfreely in T s
ripts. We summarize the most frequently used dire
tives:� #define identifier token-sequen
e
auses the prepro
essor to repla
e all o

urren
es of iden-ti�er by token-sequen
e.� #define identifier (identifier-list) token-sequen
e is a ma
ro de�nition with param-eters given by identi�er-list. Textual o

urren
es of the identi�er followed by an argument list
on-taining an appropriate number of tokens separated by
omma's will be repla
ed by token-sequen
eafter parameter substitution.� #in
lude "filename" will be repla
ed by the entire
ontents of the named �le.� #if, #ifdef, and #ifndef
an be used for the
onditional in
orporation or ex
lusion of parts of as
ript.We refer to any ANSII C manual for a detailed des
ription of these dire
tives.See Se
tion 2.2 for a des
ription of the prepro
essor related arguments -Idir, -Dma
ro, and -Dma
ro=defnof the toolbus
ommand.C.2 Context-free syntaxexportssorts BOOL NAT INT SIGN EXP UNSIGNED-REAL REAL STRING ID NAME VNAME BSTRTERM TERM-LIST VAR GEN-VAR TYPE ATOM ATOMIC-FUN PROC PROC-APPL FORMALSTIMER-FUN FEATURE-ASG FEATURES TB-CONFIG DEF T-SCRIPTlexi
al syntax[\t\n℄ -> LAYOUT"%%" ~[\n℄* -> LAYOUT[0-9℄+ -> NATNAT -> INTSIGN NAT -> INT[+\-℄ -> SIGN[eE℄ NAT -> EXP[eE℄ SIGN NAT -> EXPNAT "." NAT -> UNSIGNED-REALNAT "." NAT EXP -> UNSIGNED-REALUNSIGNED-REAL -> REALSIGN UNSIGNED-REAL -> REAL[a-z℄[A-Za-z0-9\-℄* -> ID"\"" ~[\"℄* "\"" -> STRING[A-Z℄[A-Za-z0-9\-℄* -> NAME[A-Z℄[A-Za-z0-9\-℄* -> VNAME[a-z℄[a-z\-℄* -> ATOMIC-FUNdelay -> TIMER-FUNabs-delay -> TIMER-FUNtimeout -> TIMER-FUNabs-timeout -> TIMER-FUN

32

ontext-free syntaxtrue -> BOOLfalse -> BOOLBOOL -> TERMINT -> TERMREAL -> TERMSTRING -> TERMTERM -> TYPEVNAME -> VARVNAME ":" TYPE -> VARVAR -> GEN-VARVAR "?" -> GEN-VARGEN-VAR -> TERM"<" TERM ">" -> TERMID -> TERMID "(" TERM-LIST ")" -> TERM{TERM ","}* -> TERM-LIST"[" TERM-LIST "℄" -> TERMNAME -> VNAMEATOMIC-FUN "(" TERM-LIST ")" -> ATOMdelta -> ATOMtau -> ATOM
reate "(" NAME "(" TERM-LIST ")" "," TERM ")" -> ATOMATOM TIMER-FUN "(" TERM ")" -> ATOMVNAME ":=" TERM -> ATOMATOM -> PROCPROC "+" PROC -> PROC {left}PROC "." PROC -> PROC {right}PROC "||" PROC -> PROC {right}PROC "*" PROC -> PROC {left}"(" PROC ")" -> PROC {bra
ket}if TERM then PROC else PROC fi -> PROCif TERM then PROC fi -> PROCexe
ute(TERM-LIST) -> PROClet {VAR ","}* in PROC endlet -> PROCNAME -> PROC-APPLNAME "(" TERM-LIST ")" -> PROC-APPLPROC-APPL -> PROC"(" {GEN-VAR ","}* ")" -> FORMALS-> FORMALSpro
ess NAME FORMALS is PROC -> DEFID "=" STRING -> FEATURE-ASG"{" { FEATURE-ASG ";"}* "}" -> FEATUREStool ID FORMALS is FEATURES -> DEFtoolbus "("{PROC-APPL ","}+ ")" -> TB-CONFIGDEF* TB-CONFIG -> T-SCRIPT

33
prioritiesPROC "*" PROC -> PROC > PROC "." PROC -> PROC >PROC "+" PROC -> PROC > PROC "||" PROC -> PROC

34
D Expressions in T s
riptsD.1 Boolean and arithmeti
 fun
tionsFun
tion Result type Des
riptionnot(<bool>1) <bool> : <bool>1and(<bool>1,<bool>2) <bool> <bool>1 ^ <bool>2or(<bool>1,<bool>2) <bool> <bool>1 _ <bool>2equal(<term>1, <term>2) <bool> <term>1 � <term>2; for lists multi-set equalitynot-equal(<term>1, <term>2) <bool> not(equal(<term>1, <term>2))add(<int>1,<int>2) <int> <int>1 + <int>2sub(<int>1,<int>2) <int> <int>1 � <int>2mul(<int>1,<int>2) <int> <int>1 � <int>2div(<int>1,<int>2) <int> <int>1 = <int>2mod(<int>1,<int>2) <int> <int>1 mod <int>2abs(<int>1) <int> absolute value j <int>1 jless(<int>1,<int>2) <bool> <int>1 < <int>2less-equal(<int>1,<int>2) <bool> <int>1 � <int>2greater(<int>1,<int>2) <bool> <int>1 > <int>2greater-equal(<int>1,<int>2) <bool> <int>1 � <int>2radd(<real>1,<real>2) <real> <real>1 + <real>2rsub(<real>1,<real>2) <real> <real>1 � <real>2rmul(<real>1,<real>2) <real> <real>1 � <real>2rdiv(<real>1,<real>2) <real> <real>1 = <real>2rabs(<real>1) <real> absolute value j<real>1jrless(<real>1,<real>2) <bool> <real>1 < <real>2rless-equal(<real>1,<real>2) <bool> <real>1 � <real>2rgreater(<real>1,<real>2) <bool> <real>1 > <real>2rgreater-equal(<real>1,<real>2) <bool> <real>1 � <real>2sin(<real>1) <real> sin(<real>1)
os(<real>1) <real>
os(<real>1)atan(<real>1) <real> tan�1(<real>1) in range [��=2; �=2℄atan2(<real>1, <real>2) <real> tan�1(<real>1=<real>2) in range [��; �℄exp(<real>1) <real> exponential fun
tion e<real>1log(<real>1) <real> natural logarithm ln(<real>1), <real>1 > 0log10(<real>1) <real> base 10 logarithm log10(<real>1), <real>1 > 0sqrt(<real>1) <real> p<real>1, <real>1 � 0

35
D.2 Fun
tions on lists and multi-sets
Fun
tion Result type Des
riptionfirst(<list>1) <term> �rst element of <list>1; [℄ for non-listsnext(<list>1) <list> remaining elements of <list>1; [℄ for non-listsjoin(<term>1,<term>2) <list>
on
atenation of <term>1 and <term>2; for a listargument <term>i (i = 1; 2), the list elements arespli
ed into the new list; non-list arguments are in-
luded as single element of the new list.size(<list>1) <int> j<list>1j (number of elements in list)index(<list>1,<int>1) <term> If |<list>1| � <int>1 return the <int>1th elementfrom <list>1; otherwise [℄ and give a warning.repla
e(<list>1,<int1>,<term>1) <list> If |<list>1| � <int>1 repla
e the <int>1th elementof <list>1 by <term>1 and return the modi�ed (andpartially
opied) version of <list>1; otherwise re-turn <list>1 and give a warning.get(<list>1,<term>1) <term> If <list>1
ontains a pair [<term>1, <term>01℄ then<term>01; otherwise [℄.put(<list>1,<term>1, <term>2) <list> If <list>1
ontains a pair [<term>1, <term>01℄ thenrepla
e it by [<term>1, <term>2℄; otherwise add anew pair [<term>1, <term>2℄ to <list>1.member(<term>1,<list>2) <bool> <term>1 2 <list>2 (membership in multi-set)subset(<list>1, <list>2) <bool> <list>1 � <list>2 (subset on multi-sets)diff(<list>1, <list>2) <list> <list>1 � <list>2 (di�eren
e on multi-sets)inter(<list>1, <list>2) <list> <list>1 \ <list>2 (interse
tion on multi-sets)
D.3 Predi
ates and fun
tions on terms
Fun
tion Result type Des
riptionis-bool(<term>) <bool> If <term> is of type bool then true; otherwise false.is-int(<term>) <bool> If <term> is of type int then true; otherwise false.is-real(<term>) <bool> If <term> is of type real then true; otherwise false.is-str(<term>) <bool> If <term> is of type str then true; otherwise false.is-bstr(<term>) <bool> If <term> is of type bstr then true; otherwise false.is-appl(<term>) <bool> If <term> is an appli
ation then true; otherwisefalse.is-list(<term>) <bool> If <term> is a list then true; otherwise false.is-empty(<term>) <bool> If <term> equals [℄ then true; otherwise false.is-var(<term>) <bool> If <term> is a variable then true; otherwise false.is-result-var(<term>) <bool> If <term> is a result variable then true; otherwisefalse.is-formal(<term>) <bool> If <term> is a formal variable then true; otherwisefalse.fun(<term>) <str> If <term> is an appli
ation then its fun
tion symbol;otherwise "".args(<term>) <list> If <term> is an appli
ation then its argument list;otherwise [℄.

36
D.4 Mis
ellaneous fun
tionsFun
tion Result type Des
riptionpro
ess-id <int> id of
urrent pro
esspro
ess-name <str> name of
urrent pro
essquote(<term>) <term> quoted (unevaluated) term, only variables are re-pla
ed by their valuefun
tions <list> list of built-in fun
tions
urrent-time <list> six-tuple des
ribing
urrent absolute timese
(<int>1) <int>
onvert <int>1 in se
ondsmse
(<int>1)y <int>
onvert <int>1 in milli-se
ondsyNot yet implemented in the
urrent version

37
E Synopsis of primitives available in T s
ripts
Primitive Des
riptiondelta ina
tion (deadlo
k)tau internal stepP1+P2
hoi
eP1.P2 sequential
ompositionP1||P2 parallel
ompositionP1*P2 iterationif T then P fi guarded
ommandif T then P1 else P2 fi
onditional
reate(Pnm(T,...), Pid?) pro
ess
reation1V := T assignment, T expression (see D)snd-msg(T,...) send a message (binary, syn
hronous)re
-msg(T,...) re
eive a message (binary, syn
hronous)snd-note(T) send a note (broad
ast, asyn
hronous)re
-note(T) re
eive a note (asyn
hronous)no-note(T) no notes available for pro
esssubs
ribe(T) subs
ribe to notesunsubs
ribe(T) unsubs
ribe from notesdelay(T) relative time delay of atomabs-delay(T,...) absolute time delay of atom2timeout(T) relative timeout of atomabs-timeout(T,...) absolute timeout of atom2re
-
onne
t(Tid?) re
eive a
onne
tion request from a toolre
-dis
onne
t(Tid?) re
eive a dis
onne
tion request form a toolexe
ute(Tnm(T,...), Tid?) exe
ute a tool1snd-terminate(Tid, T) terminate the exe
ution of a toolshutdown(T) terminate ToolBusre
onfigure re
on�gure ToolBusyatta
h-monitor atta
h a monitoring tool to a pro
essydeta
h-monitor deta
h a monitoring tool from a pro
essysnd-eval(Tid, T) send evaluation request to toolsnd-
an
el(Tid)
an
el an evaluation request to toolyre
-value(Tid, T) re
eive a value from a toolsnd-do(Tid, T) send request to tool (no return value)re
-event(Tid, T, ...) re
eive event from toolsnd-a
k-event(Tid, T) a
knowledge a previous event from a toolprintf(S, T, ...) print terms (after variable repla
ement) a

ording to format Sread(T1, T2) give prompt T1, read term, should mat
h with T2pro
ess Pnm(F, ...) is P pro
ess de�nition3let F, ... in P endlet de
lare variables in Ptool Tnm(F,...) is f Feat, ... g tool de�nition3host = Str host feature in tool de�nition
ommand = Str
ommand feature in tool de�nitiondetails = << Lines >> details feature in tool de�nitiontoolbus(Pnm(T,...), ...) ToolBus
on�guration

38
Notes1 (T, ...) is optional2 Absolute time des
ribed by a 6-tuple (year, month, day, hour, minutes, se
onds)with year � 95, 1 � month � 12, 1 � day � 31, 0 � hour � 23, 0 � minutes � 59,and 0 � se
onds � 61 (se
onds
an be greater than 59 to allow leap se
onds).Absolute time may be abbreviated, by omitting, at most, the �rst three elementsof the 6-tuple. Omitted elements default to their
urrent value.3 (F, ...) is optionaly Not yet implementedLegendumT termT, ... list of terms separated by
omma'sV variableF de
laration of formal or lo
al variable of the form V :TypeP , P1, P2 pro
ess expressionTid tool identi�er, a variable of type Tnm (with Tnm de
lared as tool name)Tnm tool namePnm pro
ess namePid pro
ess identi�er, a variable of type intStr a string
onstantLines list of lines

39

/* hello.
 -- hello tool in C */#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <aterm1.h> /* ATerms, level 1 interfa
e */#in
lude <atb-tool.h> /* ToolBus tool interfa
e */ATerm hello_handler(int
onn, ATerm inp) /* Handle input from ToolBus */{ ATerm arg, isig, osig;if(ATmat
h(inp, "re
-eval(get-text)"))return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");if(ATmat
h(inp, "re
-terminate(<term>)", &arg))exit(0);if(ATmat
h(inp, "re
-do(signature(<term>,<term>))", &isig, &osig)){return NULL; /* we don't do a signature
he
k */}ATerror("hello: wrong input %t re
eived\n", inp);return NULL;}int main(int arg
,
har *argv[℄) /* main program of hello tool */{ ATerm bottomOfSta
k; /* marks sta
k bottom for ATerms */ATBinit(arg
, argv, &bottomOfSta
k); /* initialize ToolBus library */if(ATB
onne
t(NULL, NULL, -1, hello_handler) >= 0){ATBeventloop();} else {fprintf(stderr, "hello: Could not
onne
t to the ToolBus, giving up!\n");return -1;}return 0;} Figure 4: hello.
: simple C
ode for the hello tool.

40
/* hello-gen.
 -- hello tool in C using generated interfa
e hello.tif.
 */#in
lude <stdlib.h>#in
lude "hello.tif.h" /* In
lude generated tool interfa
e */ATerm get_text(int
onn) /* Generate a hello text */{ return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");}void re
_terminate(int
onn, ATerm msg) /* Mandatory fun
tion to terminate tool */{ exit(0);}int main(int arg
,
har *argv[℄) /* main program of hello tool */{ ATerm bottomOfSta
k;ATBinit(arg
, argv, &bottomOfSta
k);if(ATB
onne
t(NULL, NULL, -1, hello_handler) >= 0) {ATBeventloop();} else {fprintf(stderr, "Could not
onne
t to the ToolBus, giving up!\n");return -1;}return 0;} Figure 5: hello-gen.
: C
ode for the hello tool using a generated tool interfa
e.
/* hello3.tb -- hello s
ript with expli
it re
-
onne
t */pro
ess HELLO islet H : hello, %% H will represent the hello toolS : str %% S is a string valued variablein re
-
onne
t(H?) . %% Conne
t to a hello tool, H gets a tool id as valuesnd-eval(H, get-text) . %% Request a text from the hello toolre
-value(H, text(S?)) . %% Re
eive it, S gets the text as valueprintf(S) %% Print itendlettool hello is {
ommand = "hello"}toolbus(HELLO) Figure 6: hello3: hello appli
ation with re
-
onne
t.

41

ToolBus

Adapter

Program
Figure 7: General stru
ture of a tool adapter

ToolBus

ToolTerm Ports Chara
ter Ports

Figure 8: Global organization of a tool

42

S.tb
toolbus -gentifs S.tb

S.tifs
tifsto
 -tool Nm S.tifs

Nm.tif.

javatif
oboltif

Figure 9: Automati
 generation of tool interfa
es.

43

/* pipe.tb -- Unix pipes simulated in a ToolBus s
ript */pro
ess PIPE(Tid : gen, Cmd1 : str, Inp : str, Cmd2 : str, Res : str?) islet Out1 : strin snd-eval(Tid,
md(Cmd1, input(Inp))) .re
-value(Tid, output(Out1?)) .snd-eval(Tid,
md(Cmd2, input(Out1))) .re
-value(Tid, output(Res?))endletpro
ess A islet Tid : gen, R : strin exe
ute(gen, Tid?) .PIPE(Tid, "ls -l", "", "w
 -w", R?) .printf(R)endlettool gen is {
ommand = "gen-adapter"}toolbus(A) Figure 10: pipe.tb: Exe
uting the pipe line ls -l | w
 in a s
ript.

hello.perl -- hello tool in Perlsub get_text {do TBsend("snd-value(\"Hello World, my first ToolBus tool in Perl!\n\")");}sub re
_terminate {lo
al($n) = �_;exit(0);} Figure 11: hello.perl: the hello tool in Perl

44

hello.py -- hello tool in Pythonimport TBimport sysimport __main__ # Don't forget this one!def re
_terminate(
id, A):sys.exit(0)def get_text(
id):return TB.make("snd-value(text(<str>))","Hello World, my first ToolBus tool in Python!\n")
id = TB.parseArgs(sys.argv, __main__)TB.
onne
t(
id)TB.eventloop() Figure 12: hello.py: the hello tool in Python

45

Tcl/Tk adapter architecture

ToolBus <−> Tool communication
(sockets)

wish−adapter <−> wish communication

(pipes)

ToolBusToolBus

=

Tcl/Tk interpreter

tcltk−adapter

+

integrated

Tcl/Tk interpreter

ToolBus <−> Tool communication
(sockets)

wish

Wish adapter architecture

wish−adapter

Figure 13: The wish-adapter and the t
ltk-adapter
hello.t
l -- hello tool in T
l/Tkpro
 get-text {} {TBsend "snd-value(text(\"Hello World, my first ToolBus tool in T
l!\n\"))"}pro
 re
-terminate { n } {exit} Figure 14: hello.t
l: the hello tool in T
l

