
A Guide to ToolBus ProgrammingP. Klint1;2April 22, 2002
1 Programming Researh Group, University of AmsterdamP.O. Box 41882, 1009 DB Amsterdam, The Netherlands2 Department of Software TehnologyCentre for Mathematis and Computer SieneP.O. Box 4079, 1009 AB Amsterdam, The NetherlandsAbstratThe ToolBus is a new software arhiteture intended for building ooperating, distributed ap-pliations. This guide aims at providing a omprehensive but omplete explanation of \ToolBusprogramming": writing ToolBus sripts (or T sripts for short) desribing the overall arhitetureof an appliation and writing tools that atually implement the appliation's funtionality.

Contents1 Introdution 31.1 Bakground and motivation . 31.2 The ToolBus arhiteture . 31.3 Purpose of this guide . 41.4 Hello world . 51.5 Further reading . 62 Exeuting ToolBus and tools 62.1 Common arguments . 72.2 ToolBus arguments . 72.3 Tool arguments . 83 Adapters for tools and languages 94 Writing tools in C 94.1 ATerms: Composing and deomposing terms . 94.1.1 Term patterns . 104.1.2 ATmake . 104.1.3 ATmath . 114.1.4 Input and output of ATerms . 124.1.5 Reading and writing ATerms . 124.1.6 ATfprintf . 124.1.7 Further ATerm manipulation funtions . 134.1.8 Memory Management of ATerms . 134.1.9 Initializing and using the ATerm library . 144.2 The global struture of a ToolBus tool . 144.2.1 The inlude �le atb-tool.h . 154.2.2 The tool library libATB.a . 151

2
4.3 The ToolBus API . 164.3.1 ATBinit . 164.3.2 ATBonnet and ATBdisonnet . 164.3.3 ATBeventloop . 174.3.4 ATBwriteTerm and ATBreadTerm . 174.3.5 Advanved ontrol ow . 174.4 Compiling ToolBus tools written in C . 194.5 Generating C tool interfaes with tifsto . 195 Using arbitrary Unix ommands as tool 205.1 gen-adapter . 205.2 Example: pipe ommuniation between two Unix ommands 216 Writing tools in Perl 216.1 perl-adapter . 216.2 Prede�ned Perl funtions . 226.3 The hello example in Perl: hello.perl . 227 Writing tools in Python 227.1 Building a ToolBus-aware Python interpreter. 227.2 Using the ToolBus-aware python interpreter . 237.3 Prede�ned Python funtions . 237.4 Methods of the lass term . 247.5 term example . 257.6 The hello example in Python: hello.py . 258 Writing tools in Tl/Tk 268.1 tltk-adapter . 268.2 Prede�ned Tl funtions . 278.3 The hello example in tl: hello.tl . 27A Inompatibilities with older ToolBus versions 29A.1 Inlude �les, Libraries and API's . 29B Limitations/extensions urrent implementation 29C The syntax of T sripts 31C.1 Preproessor diretives . 31C.2 Context-free syntax . 31D Expressions in T sripts 34D.1 Boolean and arithmeti funtions . 34D.2 Funtions on lists and multi-sets . 35D.3 Prediates and funtions on terms . 35D.4 Misellaneous funtions . 36E Synopsis of primitives available in T sripts 37

3
P1 P2 P3 ::: Pnsnd sndToolBus:

T1 T2 ::: Tm

evaldoak-event valueevent
Tools:Adapters:

Figure 1: Global organization of the ToolBus
1 Introdution1.1 Bakground and motivationBuilding large, heterogeneous, distributed software systems poses serious problems for the software en-gineer. Systems grow larger beause the omplexity of the tasks we want to automate inreases. Theybeome heterogeneous beause large systems may be onstruted by re-using existing software as ompo-nents. It is more than likely that these omponents have been developed using di�erent implementationlanguages and run on di�erent hardware platforms. Systems beome distributed beause they have tooperate in the ontext of loal area networks.We propose to get ontrol over the possible interations between software omponents (\tools") byforbidding diret inter-tool ommuniation. Instead, all interations are ontrolled by a proess-oriented\sript" that formalizes all the desired interations among tools. This leads to a omponent interonne-tion arhiteture resembling a hardware ommuniation bus, and therefore we all it a \ToolBus".1.2 The ToolBus arhitetureThe global arhiteture of the ToolBus is shown in Figure 1. The ToolBus serves the purpose ofde�ning the ooperation of a variable number of tools Ti (i = 1; :::;m) that are to be ombined intoa omplete system. The internal behaviour or implementation of eah tool is irrelevant: they may beimplemented in di�erent programming languages, be generated from spei�ations, et. Tools may, ormay not, maintain their own internal state. Here we onentrate on the external behaviour of eah tool.In general an adapter will be needed for eah tool to adapt it to the ommon data representation andmessage protools imposed by the ToolBus.The ToolBus itself onsists of a variable number of proesses1 Pi (i = 1; :::; n). The parallel om-position of the proesses Pi represents the intended behaviour of the whole system. Tools are external,omputational ativities, most likely orresponding with operating system level proesses. They omeinto existene either by an exeution ommand issued by the ToolBus or their exeution is initiated1By \proesses" we mean here omputational ativities inside the ToolBus as opposed to, for instane, proesses at theoperating system level. When onfusing might arise, we will all the former ToolBus proesses" and the latter \operatingsystem level proesses".

4
/* hello1.tb -- Our first ToolBus sript */proess HELLO is printf("Hello world, my first T sript!\n")toolbus(HELLO) Figure 2: hello1: �rst sript for the hello appliation.
externally, in whih ase an expliit onnet ommand has to be performed by the ToolBus. Althougha one-to-one orrespondene between tools and proesses seems simple and desirable, we do not enforethis and permit tools that are being ontrolled by more than one proess as well as lusters of tools beingontrolled by a single proess.
Communiation inside the ToolBus. Inside the ToolBus, there are two ommuniation meh-anisms available. First, a proess an send a message (using snd-msg) whih should be reeived, syn-hronously, by one other proess (using re-msg). Messages are intended to request a servie fromanother proess. When the reeiving proess has ompleted the desired servie it may inform the sender,synhronously, by means of another message (using snd-msg). The original sender an reeive the replyusing re-msg. By onvention, part of the the original message is ontained in the reply (but this is notenfored).Seond, a proess an send a note (using snd-note) whih is broadasted to other, interested, pro-esses. The sending proess does not expet an answer while the reeiving proesses read notes asyn-hronously (using re-note) at a low priority. Notes are intended to notify others of state hanges inthe sending proess. Sending notes amounts to asynhronous seletive broadasting. Proesses will onlyreeive notes to whih they have subsribed.
Communiation between ToolBus and tools. The ommuniation between ToolBus and toolsis based on handshaking ommuniation between a ToolBus proess and a tool. A proess may sendmessages in several formats to a tool (snd-eval, snd-do, and snd-ak-event) while a tool may send themessages snd-event and snd-value to a ToolBus proess. There is no diret ommuniation possiblebetween tools.The exeution and termination of the tools attahed to the ToolBus an be expliitly ontrolled. Itis also possible to onnet or disonnet tools that have been exeuting independently of the ToolBus.
1.3 Purpose of this guideThis guide is a ompanion to the various ToolBus papers2 fully desribing the motivation and overallarhiteture of the ToolBus and explaining the T sripts used to desribe ooperating sets of tools. Thereader is also referred to these reports for several examples of systems that have been desribed using theToolBus approah.Here, the main emphasis is on explaining all details needed to atually implement systems using theToolBus. First, we will give a \hello world" example in the ontext of the ToolBus.2The most omprehensive publiation is J.A. Bergstra and P. Klint, \The disrete time ToolBus { a software oordinationarhiteture", Siene of Computer Programming, 31(2-3):205{229, July 1998.Tehnial reports giving detailed desriptions of the semantis (using ASF+SDF spei�ations) and implementation ofthe ToolBus are: J.A. Bergstra and P. Klint, \The ToolBus|a omponent interonnetion arhiteture", Report P9408,Programming Researh Group, University of Amsterdam, 1994, and J.A. Bergstra and P. Klint, \The Disrete TimeToolBus", Report P9502, Programming Researh Group, University of Amsterdam, 1995.

5
/* hello2.tb -- hello sript using a separate hello tool */proess HELLO islet H : hello, %% H will represent the hello toolS : str %% S is a string valued variablein exeute(hello, H?) . %% Exeute hello, H gets a tool id as valuesnd-eval(H, get-text) . %% Request a text from the hello toolre-value(H, text(S?)). %% Reeive it, S gets the text as valueprintf(S) %% Print itendlettool hello is {ommand = "hello"}toolbus(HELLO) Figure 3: hello2: seond sript for the hello appliation.
1.4 Hello worldThe most simple program that is frequently used to learn a new programming language is a programwhih prints some string (e.g., \hello world") as proof of ompetene of its author to write, ompile, andexeute a program in the language in question. Clearly, it is the road to arrive at this result that ountsand not the result itself (as the old proverb says).The simplest hello program possible is shown in Figure 2. Typing the ommandtoolbus hello1.tbwill simply print the desired message.Let's now be more ambitious. In the above example, the text to be printed appears as a literal stringin the sript. We ompliate the example by introduing a \hello" tool that will provide the text to beprinted. This results in the sript given in Figure 3. But how do we implement the hello tool itself?We will explain in this guide the range of implementation languages that an be used (i.e., C, Tl, Perl,Asf+Sdf ...). For the sake of this example we only show what a C implementation will look like.In Figure 4 a �rst, simple, version of the hello tool is shown. It onsists of the following parts3:� An inlude of a standard header �le (atb-tool.h) that ontains ommon de�nitions for all tools.� A delaration of a funtion hello handler that is alled when there is input available from theToolBus: its argument inp is the input term, and its result (either a term or NULL) will be sentbak to the ToolBus.4 The input is analyzed by using ATmath, a library funtion for mathingterms. For the get-text ase, the termsnd-value("Hello World, my first ToolBus tool in C!\n")is onstruted and returned to the ToolBus.� A main program that alls an initialization funtion and then enters an event loop.Although it is not yet lear from the examples given so far, it turns out that there is muh ommonalityamong the handlers written for di�erent tools. In partiular, the ode for analyzing terms oming from3You are not yet supposed to understand every detail of these listings, but you will be able to do so after reading thisguide!4It is important to stress that the handler should always return a value: either a term or NULL.

6
the ToolBus is similar. This ode also dupliates information in the sript onerning the requests sentto eah tool. For this reason, we also provide a tool interfae generator that automatially generates toolinterfaes from a given sript.This approah is shown in a seond version of the hello tool (Figure 5). From the sript hello2.tbwe generate automatially5 the following two �les:� hello.tif.h: this inludes neessary header �les, and delares prototypes for appliation fun-tions get text, re terminate and the ToolBus interfaing funtions hello handler (handles allrequests oming from the ToolBus) and hello heker (heks that the interfae as expeted bythe ToolBus is ompatible with the interfae as provided by the tool).� hello.tif.: inludes hello.tif.h and ontains the delarations for hello handler andhello heker.The atual program hello. onsists of the following parts:� An inlude of hello.tif.� A delaration of the funtion get text that handles the eval request oming from the ToolBusNote that get text is alled by hello handler and that its return value will be sent bak to theToolBus.� A delaration of the funtion re terminate that is always alled on termination of a tool.� A main program that alls an initialization funtion and then enters an event loop.What we see in these examples is that building an appliation with theToolBus requires the followingsteps:� Design the overall behaviour of the appliation by writing a T sript (hello2.tb).� Write and ompile the tools needed by the sript (hello.). The required interfaing ode an bewritten by hand or be generated automatially from the T sript (hello.tif.).� Exeute the ToolBus interpreter with the sript as input.1.5 Further readingIf you have ome this far, you may be interested to learn more about the details ofToolBus programming.In Setion 2 the ways to exeute the ToolBus interpreter and tools are desribed. Next follows anintermezzo explaining the overall struture of ToolBus adapters (Setion 3). In Setion 4 you will �nda omplete desription of the library funtions provided for writing tools in C.In the setions that follow we explain how to write tools in various languages and systems: arbi-trary Unix ommands (Setion 5), Java (Setion ??), Perl (Setion 6), Python (Setion 7), and Tl/Tk(Setion 8).Four appendies with summaries onlude this guide.
2 Exeuting ToolBus and toolsThe ToolBus interpreter (toolbus) and all tools have some standard program arguments in ommon,but they have some spei� arguments as well. In this setion we desribe all possible program argumentsand the way to exeute toolbus and tools.5In setion 4.5 this is fully explained.

7
2.1 Common argumentsToolBus and tools have the following optional arguments in ommon:� -help: prints a desription of all arguments of the toolbus or tool.� -verbose: produes a log of steps taken by toolbus or tool that may be useful to debug your sriptor tool. The same e�et may be obtained by setting the environment variable TB VERBOSE to trueand export it. In the Korn shell this an, for instane, be ahieved by:TB_VERBOSE=trueexport TB_VERBOSE� -TB PORT port name: de�nes the \well known soket" port name to whih all tools temporarilyonnet in order to set up their own private soket that onnets them permanently to the ToolBusinterpreter. When omitted, soket 8998 will be used.Note that expliit arguments de�ning the sokets are only needed when several ToolBus interpretersare running simultaneously on the same host mahine.2.2 ToolBus argumentsThe sript name (see below) given as argument to the ToolBus is always preproessed by the C prepro-essor before it is parsed as a T sript. In this way, diretives like, e.g., #define, #inlude and #ifdefan be used freely in T sripts. The following preproessor arguments are aepted by the toolbusommand:� -Idir: append diretory dir to the list of diretories searhed for inlude �les.� -Dmaro: de�ne maro maro with the string \1" as its de�nition.� -Dmaro=defn: de�ne maro maro with defn as de�nition.Other arguments spei� for the toolbus ommand are:� -logger: exeute a logger tool that will be attahed to all proesses in the ToolBus. If the sriptontains a tool de�nition for a tool named \logger", that will be used for exeuting the logger.Otherwise a default tool de�nition is used.� -viewer: similar as above, for a viewer tool. The default viewer is the \ToolBus viewer" (previ-ously known as the ToolBus debugger).� -ontroller: similar as above, for a ontroller tool. Currently, no default ontroller tool is pro-vided.� -gentifs: only generate tool interfaes for all tools used in the sript in a language independentformat. For a sript �le named sript.tb the tool interfaes are written to sript.tifs. Do notexeute the sript.� -fixed-seed: use a �xed seed for the random generator used by the interpreter for shedulingproesses and seleting alternatives in proesses. By default, the random generator is initializedwith the urrent time the toolbus ommand is given. Using the -fixed-seed option makes theexeution of the sript reproduible aross multiple runs of the toolbus ommand.� sript name: any other argument is the name of the ToolBus sript to be interpreted.As an example, onsider �rst

8
toolbus hello.tbwhih starts interpreting the sript \hello.tb". Next, onsidertoolbus -TB_PORT 4000 hello.tbwhih interprets the same sript, but uses soket 4000 to �nd the ToolBus. Next, onsider,toolbus -Imy-inlude-dir -DCNT=33 wave.tbwhih searhes the diretory my-inlude-dir for �les used in #inlude diretives in the sript wave.tband it will de�ne the maro CNT with value 33. All ourrenes of CNT in the sript will be replaed bythis value before parsing it as a T sript. Finally,toolbus -gentifs hello.tbprodues the tool interfaes �le hello.tifs.2.3 Tool argumentsArguments spei� for tools are:� -TB HOST host name: de�nes the host mahine host name on whih the ToolBus interpreter isrunning and to whih the tool should be onneted. When omitted, the ToolBus interpretershould be running on the same host as the tool.� -TB TOOL NAME tool name: the tool name as de�ned in the T sript (added automatially, when atool is exeuted by the ToolBus).� -TB TOOL ID Id: internal tool identi�er of this tool exeution (added automatially, when a tool isexeuted by the ToolBus).� -TB SINGLE: exeute the tool stand-alone and do not onnet it with the ToolBus.The exeution of a tool an start in two ways:� The tool is started by an exeute ommand in the T sript.� The initiative to exeute the tool is taken outside the ToolBus. This requires that the sriptontains a re-onnet for this partiular tool.When ToolBus and tool are running on di�erent host mahines, it is important to de�ne the hostmahine on whih the ToolBus interpreter is running when starting the exeution of the tool. As anexample, onsider the \hello" appliation desribed in Setion 1.4. The hello tool will be exeuted bythe ToolBus using the ommandhello -TB_PORT 8998 -TB_HOST host1.institute.nlwhen running on mahine host1.institute.nl.Suppose, we replae the expliit exeute in Figure 3 by a re-onnet as shown in Figure 6. Wemay then manually start the hello tool by typinghellowhere we use the default values for the input/output sokets and assume that tool and ToolBus in-terpreter are both running on the same host (i.e., host1.institute.nl). Starting the exeution fromanother host is ahieved by typing (on, say, host2.institute.nl):hello -TB_HOST host1.institute.nl

9
3 Adapters for tools and languagesThe main purpose of adapters is to at as small \wrappers" around existing programs or programminglanguages in order to transform them into tools that an be onneted to the ToolBus. There exist twoglobal strategies for onstruting adapters:� The adapter and the program to be adapted are exeuted as separate (Unix) proesses. Thisstruture is skethed in Figure 7. The advantage of this approah is that no aess is needed to thesoure ode of the program: it an remain a blak box. Another advantage is that adapters may bereused for the adaptation of di�erent programs. A possible disadvantage is some loss in eÆieny.� Integrate the adapter and the software to be adapted into a single (Unix) proess. This approahpermits the most detailed adaptation of the program and is also the most eÆient solution. Thisapproah leads, however, to potentially less reusable adapters than the previous approah.Our experiene so far is restrited to adapters of the �rst ategory. In this ategory a further subdi-vision is possible:� The program is exeuted one as a hild proess of the adapter and all snd-eval/snd-do requestsare direted to this hild proess. The program an thus maintain an internal state between requests.� The same program is exeuted as a hild proess of the adapter for eah snd-eval/snd-do request.� A di�erent program is exeuted as a hild proess of the adapter for eah snd-eval/snd-do request.Common arguments of adapters. In order to ahieve some uniformity, the urrent olletion ofadapters have the following optional program arguments in ommon:� -md: the (default) program to be exeuted by the adapter. All arguments of the adapter thatfollow -md are interpreted as the name and arguments of the program to be exeuted.� all tool arguments (see Setion 2.3.)
4 Writing tools in CAlthough ToolBus tools an be implemented in many languages (inluding Java, C++, Perl, Tl/Tk,Prolog, ASF+SDF, Cobol and others) we start explaining how tools an be written in C. In otherlanguages idential notions will be used with only minor adjustements to language-spei� features andlimitations. Writing tools in C amounts to:� ATerms: the essential data type that is used to exhange information between tool and ToolBus(Setion 4.1).� The global struture of a ToolBus tool (Setion 4.2).� The ToolBus Appliation Programmer's Interfae (Setion 4.3).� Compiling ToolBus tools written in C (Setion 4.4).� Generating tool interfaes with tifsto (Setion 4.5).4.1 ATerms: Composing and deomposing termsWe use a datatype alled ATerms for reating, mathing, reading and writing terms. ATerms are fullydesribed elsewhere.6 Here we only give a brief overview.6H. A. de Jong and P. A. Olivier, \ATerm Library User Manual" and M.G.J. van den Brand, H.A. de Jong, P. Klintand P.A. Olivier, \EÆient Annotated Terms", Software Pratie and Experiene, 30:259{291, 2000.

10
4.1.1 Term patternsComposition and deomposition of terms is not based on the diret manipulation of the underlying repre-sentation of terms. Instead, term patterns are used to guide omposition and deomposition. Suh termpatterns play the same role as format strings in the printf/sanf paradigm in C. In �rst approximation,a term pattern is a literal string that would be obtained by a preorder traversal of a term. For instane,the term pattern "or(true, false)", orresponds to a term whose root is labeled with the symbol or,and whose hildren are labeled with, respetively, true and false. In this way, term patterns an beused to onstrut and to math terms.Term patterns beome, however, muh more useful if they an be parameterized with subterms thathave been omputed separately. To this end, we introdue the notion of diretives as follows:<int> : orresponds to an integer (in C: int);<str> : orresponds to a string (in C: har *);<blob> : orresponds to a binary string (in C: a (length, pointer) pair represented by two values of types,respetively, int and void *);<term> : orresponds to an aterm (in C: ATerm);<appl> : orresponds to one funtion appliation(in C: har *pattern, followed by arguments);<list> : orresponds to a list of terms (in C: ATerm).The preise interpretation of these diretives depends on the ontext in whih they are used. Whenonstruting a term, diretives indiate that a subterm should be obtained from some given variable.When mathing a term, diretives indiate the assignment of subterms to given variables. For theimpliations of these diretives for memory management, see Setion 4.1.8.4.1.2 ATmakeThe funtionterm *ATmake(har *Pattern, ...)onstruts a term aording to Pattern, where ourrenes of diretives are replaed by the values of thevariables ourring inFor instane, assuming the delarationsint n = 10;har *fun = "pair", name = "any";ATerm yellow = ATmake("yellow"), t;the allt = ATmake("exam(<appl(<term>,9)>,<int>,<str>)", fun, yellow, n, 10, name)will onstrut the term t with valueexam(pair(yellow,9),10,10,"any")Binary strings (Binary Large OBjets or blobs) are used to represent arbitrary length, binary datathat annot be represented by ordinary C strings beause they may ontain \null" haraters. A binarystring is represented by a harater pointer and a length. For instane, givenhar buf[12℄;ATerm bstr;buf[0℄ = 0; buf[1℄ = 1; buf[2℄ = 2;

11
the allbstr = ATmake("exam(<blob>)", 3, buf);will onstrut a term with funtion symbol \exam" and as single argument a binary string of length 3onsisting of the three values 0, 1, and 2.4.1.3 ATmathMathing terms amounts to� determining whether there is a math or not,� seletively assigning mathed subterms to given variables.This is preisely what the funtionATbool ATmath(ATerm Trm, onst har *Pattern, ...)does. It mathes Trm against Pattern and, when a submath is found that orresponds to a diretive, itmakes assignments to variables whose addresses appear in For most diretives, the values assigned tothese variables are pointers to subterms of Trm. Pattern should be a well-formed, textual representationof a term whih may ontain any of the diretives desribed earlier. For instane, in the ontextATerm t = ATmake("exam(pair(yellow,9),10, \"any\")");ATerm t1;int n;har *ex, *s;the allATmath(t, "appl(<term>,<int>,<str>)", &ex, &t1, &n, &s);yields true and is equivalent to the following assignments:ex = "exam";t1 = ATmake("pair(yellow,9)");n = 10;s = "any";As explained in full detail in Setion 4.1.8, memory is managed automatially by the ATerm library. Asa general rule, the values for ex, t1, and s are pointers into the original term t rather than newly reatedvalues. As a result, they have a life time that is equal to that of t.Mathing binary strings is the inverse of onstruting them. Given the term bstr onstruted at theend of the previous paragraph, its size and ontents an be extrated as follows:int n;har *p;ATmath(bstr, "exam(<blob>)", &n, &p);ATmath will sueed and will assign 3 to the variable n and will assign a pointer to the harater datain the binary string to the variable p.Here, again, the value of p is a pointer into the term bstr rather than a newly alloated string.

12
Notes� Double quotes (\"") appearing inside the pattern argument of both ATmake and ATmath have tobe esaped using \\"".� The number and type of the variables whose addresses appear as arguments of ATmath shouldorrespond, otherwise disaster will strike (as usual when using C).� Assignments are being made during mathing. As a result, some assignments may be performed,even if the math as a whole fails.4.1.4 Input and output of ATermsWe make a distintion between the \raw" input and output of terms as they are, for instane, beingsent through ommuniation hannels between ToolBus and tools, versus formatted input and outputof terms. Raw term i/o is provided by TBwrite and TBread. Formatted term output is provided byTBprintf and TBsprintf. There are urrently no primitives for formatted term input.4.1.5 Reading and writing ATermsATerms an be read from and written to strings and �les. Two formats are supported: a human-readablebut verbose textual format and a very onise binarry format. Here we only disuss the textual variant.The funtionvoid ATwriteToTextFile(ATerm Trm, FILE *File)writes ATerm Trm to the �le File. For instane, in the ontext:FILE *f = fopen("foo", "wb");ATerm Trm1 = ATmake("<appl(red,<int>)>", "freq", 17);the statementATwriteToTextFile(Trm1, f);will write the value of Trm1 (i.e., freq(red,17)) to �le \foo".The funtionATerm ATreadFromFile(FILE *File)is the inverse of ATwriteToFile: it reads a term (either in textual format or in internal format) from a�le and returns it as value. When end of �le is enountered or the term ould not be read, the operationis aborted.74.1.6 ATfprintfThe funtionint ATfprintf(FILE *File, onst har *Pattern, ...)writes formatted output to File. Pattern is printed literally exept for ourrenes of diretives whihare replaed by the textual representation of the values appearing in For instane,ATfprintf(stderr, "Wrong event \"%t\" ignored\n", ATmake("failure(<int>)", 13));will print:Wrong event "failure(13)" ignoredNote that ATprintf uses the normal printf onversion spei�ers extended with aterm-spei� spe-i�ers. The most frequently used spei�er is %t whih stands for an aterm argument whose textualrepresentation is to be inserted in the output stream.7The user an rede�ne this behaviour using ATsetAbortHandler, whih allows the de�nition of a user-de�ned aborthandler. See the ATerm Library User Manual for further details.

13
4.1.7 Further ATerm manipulation funtionsThe ATerm library autally provides two interfaes:� The level 1 interfae: a simple but expressive interfae as just skethed.� The level 2 interfae: a more detailed interfae that allows the very eÆient oding of operationson ATerms. We will not further disuss here the level 2 interfae.
4.1.8 Memory Management of ATermsThe funtions in the ATerm library provide automati memory management of terms. Terms that havebeen reated but are no longer referened are removed by a method alled garbage olletion. Theglobal model is that there is a set of proteted terms that are guaranteed to survive a garbage olletion.E�etively, all proteted terms (and their subterms) are onserved and all other terms are onsidered asgarbage and an be olleted.It is guaranteed that no garbage olletion takes plae during the exeution of an event handler,hene it is not neessary to protet temporary terms that are onstruted during the exeution of anevent handler. However, terms that should have a longer life time must be proteted in order to survive.In order to protet terms from being olleted, the funtionvoid ATprotet(ATerm *TrmPtr)an be used that has as single argument a pointer to a variable with an ATerm as value. The protetionan be undone by the funtionvoid ATunprotet(ATerm *TrmPtr)The interplay between garbage olletion and program variables is subtle. The following points aretherefore worth mentioning:� Funtions that return a term as value (e.g., TBreadTermfromFile) do not expliitly protet it butthe result may, of ourse, be proteted beause it is a subterm of an already proteted term.� The funtion ATmake uses strings and terms and inludes them into a new term T . The impliationsfor memory management are:{ All string arguments (using <str>, <blob> or <appl>) are opied before they are inluded intoT . They an thus safely be dealloated (e.g., using free) by the C program.{ All term arguments (using <term>) are inluded into T by means of a pointer. They thusbeome reahable from T and their life time beomes at least as large as that of T ; it isunneessary to expliitly protet them.� The funtion ATmath assigns strings and terms to program variables by extrating them from anexisting term T . The general rule here is that extrated values have a life time that is equal to thatof T . The impliations for memory management are:{ All string values (obtained using <str>, <blob> or <appl>) should be opied if they shouldsurvive T .{ All term values (obtained using <term>) should be expliitly proteted if they should surviveT .

14
4.1.9 Initializing and using the ATerm libraryUsing the ATerm library requires the following:� Inlude the header �le aterm1.h (or aterm2.h if you want to use the level 2 interfae). aterm1.hde�nes:{ ATbool: the boolean data type de�ned bytypedef enum ATbool {ATfalse=0, ATtrue} ATbool;It is mainly used as the return value of library funtions.{ ATerm: the type de�nition of ATerms. The ATerm library has been designed in suh a way thatonly pointers to terms must be passed to or are returned by library funtions. The primitivesthat are provided for onstruting and deomposing terms are of suh a high level that it isunneessary to know the internal representation of terms. When neessary, you an aess theinternal struture of ATerms using the level 2 interfae.� Delare in your main program a loal ATerm variable that will be used to determine the bottom ofC's runtime stak.� Call ATinit to initialize the ATerm library.� Link the ATerm library libATerm.a when ompiling your appliation. This is ahieved using the-lATerm option of the C ompiler.A typial usage pattern is as follows:#inlude <aterm1.h>int main(int arg, har *argv[℄){ ATerm bottomOfStak;ATinit(arg, argv, &bottomOfStak);/* ... ode that uses ATerms ... */}4.2 The global struture of a ToolBus toolIn its simplest form, a tool is a box onneted via an input and an output port to a ToolBus. In themost general ase, a tool has� one input port from the ToolBus to the tool and an reeive tree strutures (terms) via this port;� one output port from the tool to the ToolBus and an send terms to the ToolBus via this port;� zero or more term ports to reeive terms from other soures;� zero or more harater ports to reeive harater data from other soures.This global, arhitetural, struture of a tool is shown in Figure 8. With eah input port, an eventhandler is assoiated that takes are of the proessing of the data reeived via that port and is responsiblefor returning a result (if any). One tool may thus ontain several event handlers. When a request isreeived, the following steps are taken:� The data reeived are parsed to hek that they form a legal ToolBus term T . (If this is impossible,a warning message is generated).� The event handler is alled with T as argument.

15
� The event handler an do arbitrary proessing needed to deompose T , to determine what has tobe done, and perform any desired omputation.� The event handler returns either:{ a legal ToolBus term representing a reply to be sent bak to the ToolBus.{ NULL indiating that there is no reply.The global mode of operation of a tool is now:� reeive data on any input port and respond to this by sending some term (or NULL) to the ToolBus;or� take the initiative to send a term to the ToolBus (typially to inform the ToolBus about someexternal event).A tool is thus on the one hand a reative engine that responds to a request from the ToolBusand returns the result bak to the ToolBus in the form of a term (e.g., alulate the value of someexpression), but on the other hand it an also take the initiative to send a term to the ToolBus (e.g.,generate an event when a user pushes some button).At the level of the soure ode, the global struture of a purely reative tool without additional termor harater ports has already been illustrated in Figure 4.4.2.1 The inlude �le atb-tool.hEah tool needs to inlude the �le atb-tool.h whih de�nes some basi types as well as the set of libraryfuntions available. It onsists of� An inlude of <aterm1.h>.� De�nes ATBhandler: the type of event handlers.� De�nes the prototypes of all library funtions4.2.2 The tool library libATB.aWhen ompiling tools, the library libATB.a must be spei�ed in order to make the tool library available(using the -lATB option of the C ompiler). It provides the following funtions8:� ATBinit: tool initialization (Setions 4.3.1).� ATBonnet: to onnet the tool to the ToolBus (Setions 4.3.2).� ATBdisonnet: to disonnet the tool from the ToolBus (Setions 4.3.2).� ATBeventloop: a standard event loop for a tool (Setion 4.3.3).� ATBreadTerm: proess one input event on a port (Setion 4.3.4).� ATBwriteTerm: send a term to the ToolBus (Setion 4.3.4).In the following setion, we will desribe these funtions.8For an exhaustive desription, see H. A. de Jong and P. A. Olivier, \ATerm Library User Manual"

16
4.3 The ToolBus APIDuring the initialization of eah tool, some preparations have to made before the tool an be properlyonneted to the ToolBus. These preparations inlude� De�ning the name of the tool as it is known from a tool delaration in a T sript.� Parsing standard program arguments that are passed to the tool when it is started.� Creating a pair of soket onnetions with a ToolBus interpreter.� Starting an event loop.During exeution of the event loop, the tool an either reeive terms from the ToolBus or it an takethe initiative to send terms to the ToolBus. It is thus possible for a tool to both respond to ToolBusrequests and asynhronously send terms to the ToolBus.4.3.1 ATBinitThe initialization of a tool is ahieved byATBinit(int arg, har *argv[℄, ATerm *bottomOfStak).The standard program arguments that are passed (via arg and argv) are fully desribed in Setion 2.Partiularly important is that the tool is initialized with a proper name. It should be literally equal(inluding the ase of letters) to a tool name as appearing in a tool delaration in the T sript. Thisis important sine the tool name will be used when the tool is onneted to the ToolBus. Note thatATBinit also initializes the ATerm library (hene the bottomOfStak argument, see Setion 4.1.9).4.3.2 ATBonnet and ATBdisonnetA tool an be onneted to the ToolBus using term ports that an be using for sending and reeivingdata in the form of omplete terms. Two aspets of term ports are important: the input hannel usedfor the atual data transfer and the handler that takes are of proessing input terms when they arrive.The onnetion is established as follows:int ATBonnet(har *toolname, har *host, int port, ATBhandler h);Here, toolname is the tool name to be used, host is the mahine where the ToolBus is exeuting,port is the �le desriptior of the hannel to be used, and h is the handler to assoiated with this onnetion.If value NULL is passed as toolname or host, default values are used that are taken from argv. The sameis true when -1 is passed as value for port. The return value of ATBonnet is either -1 (failure) ora positive number (the onnetion sueeded and the result is the �le desriptor of the resulting soketonnetion with the ToolBus).Handlers for term ports are funtions from ATerm to ATerm and have the type:ATerm some_handler(int onn, ATerm input)The argument onn is the onnetion along whih the input term was reeived and input is the atualterm reeived. The term retruned by the handler is the reply to be sent to the ToolBus in response tothis input event, or NULL if no reply is needed.In this fashion, an arbitrary number of term input ports an be set up whih will be read in parallel:as soon as a term arrives at one of the ports the assoiated handler is ativated.A onnetion an be terminated as follows:void ATBdisonnet(int onn)where int is a previously reated onnetion.

17
4.3.3 ATBeventloopMany tools �rst establish a number of term ports and then enter an in�nite loop that proesses inputevents. The funtionint ATBeventloop(void)aptures this idea. It never returns, unless something goes wrong. We an now give a skeleton that manytools have in ommon:#inlude "my_tool.tif."ATerm my_tool_handler(int onn, ATerm input){ ... handle input and return a term or NULL ... }int main(int arg, har *argv[℄){ ATerm bottomOfStak;ATBinit(arg, argv, &bottomOfStak);if(ATBonnet(NULL, NULL, -1, my_tool_handler) >= 0){ ATBeventloop();} elsefprintf(stderr, "my_tool: Could not onnet to the ToolBus, giving up!\n");ATBeventloop();return 0;}4.3.4 ATBwriteTerm and ATBreadTermSo far, we have seen primitives for tools that only reeive terms from the ToolBus. In the ase of, forinstane, events that are generated by a tool, a term needs to be sent from the tool to the ToolBus.This an be ahieved usingint ATBwriteTerm(int onn, ATerm term)whih sends term along the port onn. Failure is indiated by the return value -1. A typial usage is:ATBwriteTerm(onn, ATmake(snd-event(button("ok")).Symmetrially, a term an be read from a ToolBus onnetion as follows:ATerm ATBreadTerm(int onn).4.3.5 Advanved ontrol owTool programming amounts, in essene, to event driven programming: most of the time a tool is awaitingthe arrival of data on one of its ports and when the data are there, a reply is sent to the ToolBus bythe handler assoiated with that port.In omputation-intensive tools, the need may arise to hek for the availability of inoming data fromthe ToolBus during omputations. This is ahieved by the funtionATbool ATBpeekOne(int onn)whih returns ATtrue if inoming data from the ToolBus are available on the onnetion onn.Similarly, the availability of data on any onnetion may be heked by:

18
int ATBpeekAny(void)If input is waiting, the appropriate onnetion is returned. Otherwise -1 is returned.The sequene of ativities needed for handling (one) the data available from a spei� onnetion isaptured by the funtionvoid ATBhandleOne(int onn)This amounts to alling the handler assoiated with onnetion onn with the available data as inputterm.Similarly, the data from any onnetion is handled byvoid ATBhandleAny(void)The funtion ATBeventloop an be expressed with the primitives just introdued:int ATBeventloop(void){ int onn;while(ATtrue){ n = ATBhandleAny();if(n < 0)return -1;}}Another style mixes the handling of input from the ToolBus, with other omputations:while(ATtrue){ if(n = ATBpeekAny() >= 0) /* if there is an inoming event */ATBhandleOne(n); /* handle it */else {... /* perform other omputation */}}In some tools, a mixture of passively awaiting input and atively sending terms to the ToolBus anbe seen.Using ATBwriteTerm, the most general global event loop of a tool beomes:while(ATtrue){ ... ATBwriteTerm(1,e1); ...; ATBwriteTerm(n,en); ...ATBhandleAny();}In other words, eah iteration starts by sending zero or more terms to theToolBus (using ATBwriteTerm)and ends with proessing one event oming from some port (using ATBhandleAny). The T sript beingused should, of ourse, be able to reeive suh events.

19
4.4 Compiling ToolBus tools written in CWhen ompiling a tool written in C the following questions should be answered:� Where is the inlude �le aterm1.h?� Where is the inlude �le atb-tool.h?� Where is the ATerm library libATerm.a?� Where is the ToolBus API library libATB.a?� Whih other libraries are needed to ompile the tool?The answers to these questions are learly system dependent. There are two strategies to answerthem.Strategy 1: �nd the desired loations on your system and hard ode them in the ompilation ommand.This will lead to a all to the C ompiler with the following arguments:� -Idir-where-aterm1.h-is� -Idir-where-ATB-tool.h-is� hello. -o hello� -Ldir-where-libATerm.a-is� -lATerm� -Ldir-where-libATB.a-is� -lATB� other libraries.Strategy 2: write a make �le that enodes this information. As a result, the loation information ishardwired in the make �le rather than in a ommand that has to be repeated over and over again.4.5 Generating C tool interfaes with tifstoThe interfae ode for eah tool depends on the partiulars of the T sript in whih it is used. Changingthe number of arguments in an evaluation request to the tool, or adding a new request, requires makinghanges to the interfae ode that are easily forgotten and therefore error prone.As already mentioned in Setion 1.4, another observation is that the interfae ode for di�erent toolshas a lot in ommon.An obvious solution to both problems is to generate tool interfaes automatially, given a T sript.This generation proess is shown in Figure 9 and onsists of two steps:� Generate a language-independent desription of all tool interfaes used in the sript. This amountsto a stati analysis of all tool ommuniation in the sript. It is ahieved by using the \-gentifs"option of the ToolBus interpreter. For instane,toolbus -gentifs hello2.tbwill reate a �le hello2.tifs ontaining the tool interfaes.

20
� Use the language independent interfae desription to generate a tool interfae for a spei� tool ina spei� implementation language. The generator tifsto9 exists for generating C tool interfaes.It is alled as follows:tifsto -tool Name TifsF ileand generates a �le named Name :.tif.. For the hello example, we would have, for instane:tifsto -tool hello hello2.tifsIn Figure 9 it is also shown how tool interfae generators for other languages (e.g., Java, Cobol) �tinto this sheme. In addition to tifsto, we alo support the generation of Java interfaes by way ofjavatif (See Setion ??).

5 Using arbitrary Unix ommands as toolUsing arbitrary Unix ommands as ToolBus tool is ahieved by the gen-adapter to be explained inSetion 5.1. An example of its is use is given in Setion 5.2.5.1 gen-adapterSynopsis. Exeute an arbitrary Unix ommand as tool.Example. gen-adapter -md ls -lSpei� arguments.� -addnewline: always add a newline harater to the standard input for the ommand.� -keepnewline: keep the last newline harater in the output generated by the ommand. Withoutthis argument, the last newline harater is always removed.� -string-output: return the output of the ommand as string (type: <str>). When no outputformat options has been spei�ed, -string-output is used.� -binary-output: return the output of the ommand as a binary string (type: <bstr>).� -term-output: return the output of the ommand as term (type: <term>).Communiation. 10� snd-eval(Tid, md(Cmd, input(Str)): exeute the Unix ommandCmd < Stri.e., exeute Cmd with Str as standard input. The output of this ommand exeution is apturedand will be returned by default as string value (see below). Other output formats an be seletedusing ommand line options. Tid is a tool identi�er (as produed by exeute or re-onnet) foran instane of the gen-adapter.9This is an ATerm-ompatible version of a similar generator alled tif. tif is still in use for some older tools but willbe gradually phased out.10Communiation is desribed from the point of view of the ToolBus, i.e., snd- and re- mean, respetively, send byToolBus and reeive by ToolBus.

21
� snd-eval(Tid, md(Cmd, input(Bstr)): same as above, exept that a binary string is used asstandard input for Cmd.� re-value(Tid,output(Res)): the return value for a previous evaluation request. Res is a stringontaining the output produed by the ommand exeution. By default gen-adapter returns theoutput of the exeuted ommand as ordinary string. Other output formats an be spei�ed usingommand line options. Note: in the urrent implementation of gen-adapter there is an arbitrarylimit (10000) on the size of the output produed by the ommand.� snd-terminate(Tid, A1): terminate exeution of gen-adapter.5.2 Example: pipe ommuniation between two Unix ommandsSuppose we want to ount how many words there are in a listing of the urrent �le diretory. At theUnix level, this an be ahieved byls -l | wwhere \ls -l" produes the diretory listing and \w -w" ounts the number of words in this listing.The same e�et is ahieved by the sript given in Figure 10.

6 Writing tools in PerlWriting ToolBus tools in Perl is greatly simpli�ed by the perl-adapter to be explained in Setion 6.1.Next, a small set of prede�ned Perl funtions is desribed that are always loaded by the perl-adapterand an be used in any Perl sript (Setion 6.2). Finally, we present in Setion 6.3 the Perl version ofthe hello tool.6.1 perl-adapterSynopsis. Exeute a Perl sript as tool.Example. perl-adapter -sript hello.perlSpei� arguments.� -sript: The Perl sript to be exeuted.Communiation. 11� snd-eval(Tid, Fun(A1, ..., An): perform the Perl subroutine all do Fun(A1, ..., An).Here Tid is tool identi�er (as produed by exeute or re-onnet) for an instane of theperl-adapter.� re-value(Tid,Res): the return value for a previous evaluation request.� re-event(Tid, A1, ..., An): event generated by Perl.� snd-ak-event(Tid, A1): aknowledgement of a previously generated event.� snd-terminate(Tid, A1): terminate exeution of perl-adapter.The ommand perl is exeuted one, an initial Perl sript is read, and all further requests are direted tothis inarnation of perl. A small set of Perl proedures is available for unpaking and paking ToolBusterms (see below).11Communiation is desribed from the point of view of the ToolBus, i.e., snd- and re- mean, respetively, send byToolBus and reeive by ToolBus.

22
6.2 Prede�ned Perl funtionsThe following Perl funtions are prede�ned and an be used freely in Perl sript exeuted via the perl-adapter:� TBstring Str: onverts a Perl string to a ToolBus string by surrounding it with double quotesand esaping double quotes ourring inside Str.� PERLstring Str: onverts a ToolBus string into a Perl string by removing surrounding doublequotes.� TBerror Msg: onstruts an error message that an be send bak to the ToolBus.� TBsend Trm: send Trm bak to the ToolBus.6.3 The hello example in Perl: hello.perlWriting the hello tool in Perl requires two steps:� Write the required Perl ode hello.perl. The result is shown in Figure 11.� Replae hello's tool de�nition in hello2.tb by:tool hello is {ommand = "perl-adapter -sript hello.perl"}
7 Writing tools in PythonYou an write ToolBus tools in Python using a ToolBus-aware Python interpreter. How to build suha ToolBus-aware Python interpreter is explained in Setion 7.1. Setion 7.2 explains how to onnetyour python sripts that are exeuted by a ToolBus-aware Python interpreter to the ToolBus.7.1 Building a ToolBus-aware Python interpreter.Before adding ToolBus support to Python, you �rst have to retrieve and install Python, version 1.3.If you need more information about Python or more spei� information about installing Python, youan visit the Python home page at http://www.python.org/. In this doument we assume you havesuesfully installed python and are only interested in adding ToolBus support.The �rst thing to do, is to opy the �le adapters/python-adapter/TBmodule., loated in thisToolBus distribution to the Python Modules diretory:p ToolBus/python-adapter/TBmodule. Python-1.3/ModulesNow you have to add the two lines to the �le Setup in the Python Modules diretory. If you have enabledthe tkinter module in the Setup �le, these lines are:TBBASE=<your ToolBus loation>TB TBmodule. -I$(TBBASE)/inlude -I/home/olivierp/inlude $(TBBASE)/lib/libtb.aIf you do not have the tkinter module enabled in the Setup �le, you have to add the following two linesinstead:TBBASE=<your ToolBus loation>TB TBmodule. -DNO_TK -I$(TBBASE)/inlude TBBASE)/lib/libtb.aNow type make and keep your �ngers rossed. If all goes well, a new ToolBus-aware python interpreterwill be build, whih you an install using the ommand make install.The sript python-adapter, loated in adapters/python-adapter, is used by your ToolBus sriptsto start the ToolBus-aware python interpreter with the right arguments. This sript is automatiallymoved to the ToolBus bin diretory during the ToolBus installation.

23
7.2 Using the ToolBus-aware python interpreterSynopsis. Start a python sript as a tool.Example. python-adapter -sript hello.pySpei� arguments.� -program Name: Use Name rather than python as the (ToolBus-aware) python interpreter.� -trae-alls: Trae the alls made by the python-adapter. a list of funtion alls is printed tostderr.� -sript Sript: Exeute the python sript Sript.� -arg Arg: Pass the argument Arg as a ommand line option to the python interpreter. This optionan be repeated multiple times.� -sript-args Arg1, Arg2, ...: This must be the last option. The arguments Arg1, Arg2, ...are passed to the python sript in the variable TB.argv.Communiation. 12� snd-do(Tid, Fun(A1, ..., An)): perform the Python funtion all Fun(id,A1, ..., An).Here Tid is a tool identi�er (as produed by exeute or re-onnet) for an instane of thepython-adapter, and id is the onnetion id for this tool instane as returned by TB.parseArgsor TB.newConnetion.� snd-eval(Tid, Fun(A1, ..., An)): perform the Python funtion all Fun(Tid, A1, ...,An. Tid and id as above. Note that the funtion Fun must send an anser bak to the ToolBususing return TB.make("snd-value(...)", ...).� re-value(Tid,Res): the return value for a previous evaluation request.� re-event(Tid, A1, ..., An): event generated by python.� snd-ak-event(Tid, A1): aknowledgement of a previously generated event. Perform the Pythonfuntion all re ak event(id, A1).� snd-terminate(Tid, A1): terminate exeution of the python tool. Perform the Python funtionall re terminate(id, A1).7.3 Prede�ned Python funtionsThe following Python funtions are prede�ned and an be used freely in Python sripts exeuted by aToolBus-aware Python interpreter.� TB.parseArgs(Args, Module): Parse the ommandline options in Args, and reate a new toolinstane. Module is the Python module assoiated with this tool, for instane "__main__". Thetool is not yet onneted to the ToolBus, until TB.onnet is alled. This funtion returns thenew tool instane id, or raises an exeption.� TB.newConnetion(Tool, Host, Port, Module): An alternate way to reate a new tool instane.Tool, Host, and Module are strings, Port is an integer. Host an also be None, in whih ase theloal host is always used. This funtion returns the new tool instane id, or raises an exeption.12Communiation is desribed from the point of view of the ToolBus, i.e., snd- and re- mean, respetively, send byToolBus and reeive by ToolBus.

24
� TB.onnet(Cid): Create the atual onnetion with the ToolBus, or raise an exeption.� TB.eventloop(): Start the ToolBus eventloop. Please do not use this funtion when you use theTkinter module. If you use Tkinter, use TB.enableTk in ombination with the Tkinter eventloop.� TB.enableTk(): Instrut the TB module to register its allbak funtions with Tkinter, so theTkinter eventloop an be used instead of the ToolBus eventloop.� TB.send(id, Term): Send a term to the ToolBus. Term must be a Python term objet.� TB.make(Fmt, ...): Build a new term objet. You an use the following format diretives inFmt:{ <bool>: Build a boolean term. This diretive onsumes one Python objet from the argumentlist. If this objet happens to be None, the reated term is false, else the reated term istrue.{ <int>: Build an integer term. This diretive onsumes one Python integer objet from theargument list.{ <str>: Build a string term. This diretive onsumes one Python string objet from theargument list.{ <bstr>: Build a binary string term. This diretive onsumes one Python string objet fromthe argument list.{ <real>: Build a real term. This diretive onsumes one Python oat objet from the argumentlist.{ <appl>: Build a term appliation. This diretive onsumes two arguments: a string de�ningthe funtion symbol, and a Python list of terms giving the arguments.{ <list>: Build a list of terms. This diretive onsumes one argument: a Python list of terms.{ <term>: Build a term. This diretive onsumes one argument: a Python term objet.7.4 Methods of the lass termThe module TB introdues a new Python lass alled term. This lass supports the following methods:� Term.kind(): Returns the type of the term. This type is represented by one of the followingstrings:{ bool{ int{ real{ str{ bstr{ bstr{ appl{ list� Value retrieval funtions. Stritly speaking, these are not funtions, but rather 'ontext sensitiveattributes'. These attributes are only valid when the term is of the appropriate type.{ Term.bool: Term must be a boolean. Returns 1 if the term is true, None otherwise.{ Term.int: Term must be a integer. Returns a Python integer objet representing the samevalue.

25
{ Term.real: Term must be a real. Returns a Python oat objet representing the same value.{ Term.str: Term must be a string. Returns a Python string objet representing the samestring.{ Term.bstr: Term must be a binary string. Returns a Python string objet representing thesame string.{ Term.appl: Term must be a appliation. Returns a tuple ontaining the funtion symbol asa string and the arguments as a Python list of terms.{ Term.list: Term must be a list. Returns a Python list of terms.� Term.simplify(): Maps the term onto a native Python objet. For instane, a term of type<str> is translated into a Python string objet.� T.math(Fmt): Chek if a term mathes with a ertain string. The string Fmt is �rst parsed intoa term and then the two terms are mathed. The funtion returns None when the two terms do notmath. When the two terms do math, a list is returned that ontains the subterms of T mathingwith the plaeholders of Fmt.� T.mathTerm(Fmt): As T.math, but Fmt is now a term ontaining plaeholders, and does nothave to be parsed before mathing.

7.5 term examplePython 1.3 (Jun 6 1996) [GCC 2.6.3℄Copyright 1991-1995 Stihting Mathematish Centrum, Amsterdam>>> import TB>>> T = TB.make("[1,2,3℄")>>> print T<term, [1,2,3℄>>>> print T.list[<term, 1>, <term, 2>, <term, 3>℄>>> L = T.math("[<int>,2,<term>℄")>>> print L[1, <term, 3>℄>>> print L[1℄.strTraebak (innermost last):File "<stdin>", line 1, in ?TB.error: term is not of type str>>> print L[1℄.int3
7.6 The hello example in Python: hello.pyWriting the hello tool in Python requires two steps:� Write the required Python ode hello.py. The result is shown in Figure 12.� Replae hello's tool de�nition in hello2.tb by:tool hello is {ommand = "python-adapter -sript hello.py"}

26
8 Writing tools in Tl/TkThere are two ways to onnet tools written in Tl/Tk (see Figure 13):� Connet wish, Tl/Tk's windowing shell, to the ToolBus via an adapter sends ommands towish via a pipe and reeives the outpt of wish via another pipe. This strategy is used in thewish-adapter (available, but not further desribed in this guide).� Use an adapter that is ompletely integrated with a Tl/Tk interpreter. This is more eÆient, butless exible than the previous approah.When the ToolBus distribution has been on�gured using the option --with-tltk=<tl/tk-basepath>,the tltk-adapter is build.8.1 tltk-adapterSynopsis. Exeute Tl/Tk's windowing shell wish as a tool.Example. tltk-adapter -sript alulator.tlSpei� arguments.� -wish Name: Use Name rather than wish as Tl/Tk's windowing shell.� -lazy-exe: Postpone exeution of wish until needed.� -sript: The Tl sript to be exeuted.� -sript-args: The arguments for the Tl sript to be exeuted. These arguments are available tothe Tl sript throught the variables arg and argv.Communiation. 13� snd-do(Tid, Fun(A1, ..., An)): perform the Tl funtion all Fun A1 ... An. Here Tidis a tool identi�er (as produed by exeute or re-onnet) for an instane of the wish-adapter.� snd-eval(Tid, Fun(A1, ..., An)): perform the Tl funtion all Fun A1 ... An. Here Tidis a tool identi�er (as produed by exeute or re-onnet) for an instane of the wish-adapter.Note that the funtion Funmust send an anser bak to the ToolBus (using TBsend "snd-eval(...)").� re-value(Tid,Res): the return value for a previous evaluation request.� re-event(Tid, A1, ..., An): event generated by wish.� snd-ak-event(Tid, A1): aknowledgement of a previously generated event.� snd-terminate(Tid, A1): terminate exeution of wish-adapter.� snd-monitor(Trm): in this ase the Tl funtion monitor atom fProId AtFun, Sr Blino BposElino Eposg is alled where ProId is the proess-id of the proess to whih this atom belongs,AtFun is the ation funtion name of the atom (printf, tau, snd-do, snd-eval, re-msg et.), Sr thesoure �le where the atom is de�ned, Blino the number of the line where the atom starts, Bposthe olumn of the line where the atom starts, Elino the number of the line where the atom endsand Epos is the olumn of the line where the atom ends (this information an be used for examplefor highlightning a piee of soure ode). After alling this funtion the term is further analyzed,possibly resulting in (several) other Tl funtion alls. The following situations are onsidered:13Communiation is desribed from the point of view of the ToolBus, i.e., snd- and re- mean, respetively, send byToolBus and reeive by ToolBus.

27
{ proess reation: reate pro fProId ProNameg is alled.{ tool reation: reate tool fToolId ToolNameg is alled.{ proess to tool ommuniation: pro tool omm fToolId ProIdg is alled.{ tool to proess ommuniation: tool pro omm fProId ToolIdg is alled.{ proess to proess ommuniation: pro pro omm fProId1 ProId2g is alled.{ update the value of a variable in a proess: update var fProId VarName NewValueg is alled.{ update the list of subsribtions of a proess: update subs fProId Subsg is alled.{ update the list of notes of a proess: update notes fProId Notesg is alled.The ommand wish is exeuted one, an initial Tl sript is read, and all further requests are direted tothis inarnation of wish. A small set of Tl proedures is available for unpaking and paking ToolBusterms (see below).8.2 Prede�ned Tl funtionsThe following Tl funtions are prede�ned and an be used freely in Tl sript exeuted via the wish-adapter:� TBstring Str: onverts a Tl string to a ToolBus string by surrounding it with double quotesand esaping double quotes ourring inside Str.� TCLstring Str: onverts a ToolBus string into a Tl string by removing surrounding doublequotes.� TBlist List: onverts a Tl list to a ToolBus list by separating the elements with ommas andsurrounding the list by urly braes.� TBerror Msg: onstruts an error message that an be sent to the ToolBus.� TBsend Trm: send Trm bak to the ToolBus.� TBevent Event: send event Event to the ToolBus.� TBrequire ToolName ProName Nargs hek that the Tl ode for ToolName ontains a pro-edure delaration for ProName with Nargs formal parameters. This funtion is mainly used bythe wish-adapter to hek ompatibility of the Tl ode with the expeted input signature of thetool.Note. All ommuniation between wish-adapter and a tool written in Tl is done via standard in-put/output. Only use the standard error stream for print statements in the Tl sript, sineusing standard output will disrupt the ommuniation with the ToolBus.8.3 The hello example in tl: hello.tlWriting the hello tool in Tl requires two steps:� Write the required Tl ode hello.tl. The result is shown in Figure 14.� Replae hello's tool de�nition in hello2.tb by:tool hello is {ommand = "tltk-adapter -sript hello.tl"}

28
AknowledgementsHayo de Jong and Pieter Olivier made major ontributions to the doumentation of the ToolBus intheir \Aterm Library User Manual". Information from that manual has been used in this guide as well.Simon Gray and Mark van den Brand ommented on drafts of this guide.

29
A Inompatibilities with older ToolBus versionsA.1 Inlude �les, Libraries and API'sIn older versions, tools had to inlude the �le TB.h. Currently, this is atb-tool.h.In older versions, the ToolBus API was provided by libTB. Currently, this is split over to libraries:libATerm.a (the ATerm funtions) and libATB.a (the ToolBus API). As a onsequene, older toolshave to be ompiled with the ompiler ag -lTB.In the older API's, all funtions begin with the pre�x TB. Currently, funtions begin with either AT(ATerms) or ATB (ToolBus API).The old and the new API's an be ompared as follows:Old NewTBinit ATinitTBmake ATmakeTBmath ATmathTBwrite ATwriteTermTBread ATreadTermTBreadTerm |TBprintf ATprintfTBsprintf ATsprintfTBprotet ATprotetTBunprotet ATunprotetTBollet |TBinit ATBinit| ATBonnet| ATBdisonnetTBaddTermPort |TBaddCharPort |TBreeive ATBreadTermTBsend ATBwriteTermTBeventloop ATBeventloopTBpeek ATBpeekAnyATBpeekOne| ATBhandleOne| ATBhandleAny| ATBgetDesriptorsIn addition, the new API's provide other funtions taht are not listed in this table.
B Limitations/extensions urrent implementationThe urrent implementation is a faithful implementation of the system desribed in \The Disrete TimeToolBus". There are some minor di�erenes that are summarized here.
Extensions� The types <bstr> and <real>.� The atomi ations printf and read.

30
Limitations� Certain funtions in expressions have not yet been implemented (see Appendix D).� The atomi ations attah-monitor, detah-monitor, and reonfigure have not yet been im-plemented.

31
C The syntax of T sriptsC.1 Preproessor diretivesThe sript name given as argument to the ToolBus is always preproessed by the C preproessor beforeit is parsed as T sript. In this way, diretives like, e.g., #define, #inlude and #ifdef an be usedfreely in T sripts. We summarize the most frequently used diretives:� #define identifier token-sequene auses the preproessor to replae all ourrenes of iden-ti�er by token-sequene.� #define identifier (identifier-list) token-sequene is a maro de�nition with param-eters given by identi�er-list. Textual ourrenes of the identi�er followed by an argument list on-taining an appropriate number of tokens separated by omma's will be replaed by token-sequeneafter parameter substitution.� #inlude "filename" will be replaed by the entire ontents of the named �le.� #if, #ifdef, and #ifndef an be used for the onditional inorporation or exlusion of parts of asript.We refer to any ANSII C manual for a detailed desription of these diretives.See Setion 2.2 for a desription of the preproessor related arguments -Idir, -Dmaro, and -Dmaro=defnof the toolbus ommand.C.2 Context-free syntaxexportssorts BOOL NAT INT SIGN EXP UNSIGNED-REAL REAL STRING ID NAME VNAME BSTRTERM TERM-LIST VAR GEN-VAR TYPE ATOM ATOMIC-FUN PROC PROC-APPL FORMALSTIMER-FUN FEATURE-ASG FEATURES TB-CONFIG DEF T-SCRIPTlexial syntax[\t\n℄ -> LAYOUT"%%" ~[\n℄* -> LAYOUT[0-9℄+ -> NATNAT -> INTSIGN NAT -> INT[+\-℄ -> SIGN[eE℄ NAT -> EXP[eE℄ SIGN NAT -> EXPNAT "." NAT -> UNSIGNED-REALNAT "." NAT EXP -> UNSIGNED-REALUNSIGNED-REAL -> REALSIGN UNSIGNED-REAL -> REAL[a-z℄[A-Za-z0-9\-℄* -> ID"\"" ~[\"℄* "\"" -> STRING[A-Z℄[A-Za-z0-9\-℄* -> NAME[A-Z℄[A-Za-z0-9\-℄* -> VNAME[a-z℄[a-z\-℄* -> ATOMIC-FUNdelay -> TIMER-FUNabs-delay -> TIMER-FUNtimeout -> TIMER-FUNabs-timeout -> TIMER-FUN

32
ontext-free syntaxtrue -> BOOLfalse -> BOOLBOOL -> TERMINT -> TERMREAL -> TERMSTRING -> TERMTERM -> TYPEVNAME -> VARVNAME ":" TYPE -> VARVAR -> GEN-VARVAR "?" -> GEN-VARGEN-VAR -> TERM"<" TERM ">" -> TERMID -> TERMID "(" TERM-LIST ")" -> TERM{TERM ","}* -> TERM-LIST"[" TERM-LIST "℄" -> TERMNAME -> VNAMEATOMIC-FUN "(" TERM-LIST ")" -> ATOMdelta -> ATOMtau -> ATOMreate "(" NAME "(" TERM-LIST ")" "," TERM ")" -> ATOMATOM TIMER-FUN "(" TERM ")" -> ATOMVNAME ":=" TERM -> ATOMATOM -> PROCPROC "+" PROC -> PROC {left}PROC "." PROC -> PROC {right}PROC "||" PROC -> PROC {right}PROC "*" PROC -> PROC {left}"(" PROC ")" -> PROC {braket}if TERM then PROC else PROC fi -> PROCif TERM then PROC fi -> PROCexeute(TERM-LIST) -> PROClet {VAR ","}* in PROC endlet -> PROCNAME -> PROC-APPLNAME "(" TERM-LIST ")" -> PROC-APPLPROC-APPL -> PROC"(" {GEN-VAR ","}* ")" -> FORMALS-> FORMALSproess NAME FORMALS is PROC -> DEFID "=" STRING -> FEATURE-ASG"{" { FEATURE-ASG ";"}* "}" -> FEATUREStool ID FORMALS is FEATURES -> DEFtoolbus "("{PROC-APPL ","}+ ")" -> TB-CONFIGDEF* TB-CONFIG -> T-SCRIPT

33
prioritiesPROC "*" PROC -> PROC > PROC "." PROC -> PROC >PROC "+" PROC -> PROC > PROC "||" PROC -> PROC

34
D Expressions in T sriptsD.1 Boolean and arithmeti funtionsFuntion Result type Desriptionnot(<bool>1) <bool> : <bool>1and(<bool>1,<bool>2) <bool> <bool>1 ^ <bool>2or(<bool>1,<bool>2) <bool> <bool>1 _ <bool>2equal(<term>1, <term>2) <bool> <term>1 � <term>2; for lists multi-set equalitynot-equal(<term>1, <term>2) <bool> not(equal(<term>1, <term>2))add(<int>1,<int>2) <int> <int>1 + <int>2sub(<int>1,<int>2) <int> <int>1 � <int>2mul(<int>1,<int>2) <int> <int>1 � <int>2div(<int>1,<int>2) <int> <int>1 = <int>2mod(<int>1,<int>2) <int> <int>1 mod <int>2abs(<int>1) <int> absolute value j <int>1 jless(<int>1,<int>2) <bool> <int>1 < <int>2less-equal(<int>1,<int>2) <bool> <int>1 � <int>2greater(<int>1,<int>2) <bool> <int>1 > <int>2greater-equal(<int>1,<int>2) <bool> <int>1 � <int>2radd(<real>1,<real>2) <real> <real>1 + <real>2rsub(<real>1,<real>2) <real> <real>1 � <real>2rmul(<real>1,<real>2) <real> <real>1 � <real>2rdiv(<real>1,<real>2) <real> <real>1 = <real>2rabs(<real>1) <real> absolute value j<real>1jrless(<real>1,<real>2) <bool> <real>1 < <real>2rless-equal(<real>1,<real>2) <bool> <real>1 � <real>2rgreater(<real>1,<real>2) <bool> <real>1 > <real>2rgreater-equal(<real>1,<real>2) <bool> <real>1 � <real>2sin(<real>1) <real> sin(<real>1)os(<real>1) <real> os(<real>1)atan(<real>1) <real> tan�1(<real>1) in range [��=2; �=2℄atan2(<real>1, <real>2) <real> tan�1(<real>1=<real>2) in range [��; �℄exp(<real>1) <real> exponential funtion e<real>1log(<real>1) <real> natural logarithm ln(<real>1), <real>1 > 0log10(<real>1) <real> base 10 logarithm log10(<real>1), <real>1 > 0sqrt(<real>1) <real> p<real>1, <real>1 � 0

35
D.2 Funtions on lists and multi-sets
Funtion Result type Desriptionfirst(<list>1) <term> �rst element of <list>1; [℄ for non-listsnext(<list>1) <list> remaining elements of <list>1; [℄ for non-listsjoin(<term>1,<term>2) <list> onatenation of <term>1 and <term>2; for a listargument <term>i (i = 1; 2), the list elements aresplied into the new list; non-list arguments are in-luded as single element of the new list.size(<list>1) <int> j<list>1j (number of elements in list)index(<list>1,<int>1) <term> If |<list>1| � <int>1 return the <int>1th elementfrom <list>1; otherwise [℄ and give a warning.replae(<list>1,<int1>,<term>1) <list> If |<list>1| � <int>1 replae the <int>1th elementof <list>1 by <term>1 and return the modi�ed (andpartially opied) version of <list>1; otherwise re-turn <list>1 and give a warning.get(<list>1,<term>1) <term> If <list>1 ontains a pair [<term>1, <term>01℄ then<term>01; otherwise [℄.put(<list>1,<term>1, <term>2) <list> If <list>1 ontains a pair [<term>1, <term>01℄ thenreplae it by [<term>1, <term>2℄; otherwise add anew pair [<term>1, <term>2℄ to <list>1.member(<term>1,<list>2) <bool> <term>1 2 <list>2 (membership in multi-set)subset(<list>1, <list>2) <bool> <list>1 � <list>2 (subset on multi-sets)diff(<list>1, <list>2) <list> <list>1 � <list>2 (di�erene on multi-sets)inter(<list>1, <list>2) <list> <list>1 \ <list>2 (intersetion on multi-sets)
D.3 Prediates and funtions on terms
Funtion Result type Desriptionis-bool(<term>) <bool> If <term> is of type bool then true; otherwise false.is-int(<term>) <bool> If <term> is of type int then true; otherwise false.is-real(<term>) <bool> If <term> is of type real then true; otherwise false.is-str(<term>) <bool> If <term> is of type str then true; otherwise false.is-bstr(<term>) <bool> If <term> is of type bstr then true; otherwise false.is-appl(<term>) <bool> If <term> is an appliation then true; otherwisefalse.is-list(<term>) <bool> If <term> is a list then true; otherwise false.is-empty(<term>) <bool> If <term> equals [℄ then true; otherwise false.is-var(<term>) <bool> If <term> is a variable then true; otherwise false.is-result-var(<term>) <bool> If <term> is a result variable then true; otherwisefalse.is-formal(<term>) <bool> If <term> is a formal variable then true; otherwisefalse.fun(<term>) <str> If <term> is an appliation then its funtion symbol;otherwise "".args(<term>) <list> If <term> is an appliation then its argument list;otherwise [℄.

36
D.4 Misellaneous funtionsFuntion Result type Desriptionproess-id <int> id of urrent proessproess-name <str> name of urrent proessquote(<term>) <term> quoted (unevaluated) term, only variables are re-plaed by their valuefuntions <list> list of built-in funtionsurrent-time <list> six-tuple desribing urrent absolute timese(<int>1) <int> onvert <int>1 in seondsmse(<int>1)y <int> onvert <int>1 in milli-seondsyNot yet implemented in the urrent version

37
E Synopsis of primitives available in T sripts
Primitive Desriptiondelta ination (deadlok)tau internal stepP1+P2 hoieP1.P2 sequential ompositionP1||P2 parallel ompositionP1*P2 iterationif T then P fi guarded ommandif T then P1 else P2 fi onditionalreate(Pnm(T,...), Pid?) proess reation1V := T assignment, T expression (see D)snd-msg(T,...) send a message (binary, synhronous)re-msg(T,...) reeive a message (binary, synhronous)snd-note(T) send a note (broadast, asynhronous)re-note(T) reeive a note (asynhronous)no-note(T) no notes available for proesssubsribe(T) subsribe to notesunsubsribe(T) unsubsribe from notesdelay(T) relative time delay of atomabs-delay(T,...) absolute time delay of atom2timeout(T) relative timeout of atomabs-timeout(T,...) absolute timeout of atom2re-onnet(Tid?) reeive a onnetion request from a toolre-disonnet(Tid?) reeive a disonnetion request form a toolexeute(Tnm(T,...), Tid?) exeute a tool1snd-terminate(Tid, T) terminate the exeution of a toolshutdown(T) terminate ToolBusreonfigure reon�gure ToolBusyattah-monitor attah a monitoring tool to a proessydetah-monitor detah a monitoring tool from a proessysnd-eval(Tid, T) send evaluation request to toolsnd-anel(Tid) anel an evaluation request to toolyre-value(Tid, T) reeive a value from a toolsnd-do(Tid, T) send request to tool (no return value)re-event(Tid, T, ...) reeive event from toolsnd-ak-event(Tid, T) aknowledge a previous event from a toolprintf(S, T, ...) print terms (after variable replaement) aording to format Sread(T1, T2) give prompt T1, read term, should math with T2proess Pnm(F, ...) is P proess de�nition3let F, ... in P endlet delare variables in Ptool Tnm(F,...) is f Feat, ... g tool de�nition3host = Str host feature in tool de�nitionommand = Str ommand feature in tool de�nitiondetails = << Lines >> details feature in tool de�nitiontoolbus(Pnm(T,...), ...) ToolBus on�guration

38
Notes1 (T, ...) is optional2 Absolute time desribed by a 6-tuple (year, month, day, hour, minutes, seonds)with year � 95, 1 � month � 12, 1 � day � 31, 0 � hour � 23, 0 � minutes � 59,and 0 � seonds � 61 (seonds an be greater than 59 to allow leap seonds).Absolute time may be abbreviated, by omitting, at most, the �rst three elementsof the 6-tuple. Omitted elements default to their urrent value.3 (F, ...) is optionaly Not yet implementedLegendumT termT, ... list of terms separated by omma'sV variableF delaration of formal or loal variable of the form V :TypeP , P1, P2 proess expressionTid tool identi�er, a variable of type Tnm (with Tnm delared as tool name)Tnm tool namePnm proess namePid proess identi�er, a variable of type intStr a string onstantLines list of lines

39

/* hello. -- hello tool in C */#inlude <stdio.h>#inlude <stdlib.h>#inlude <aterm1.h> /* ATerms, level 1 interfae */#inlude <atb-tool.h> /* ToolBus tool interfae */ATerm hello_handler(int onn, ATerm inp) /* Handle input from ToolBus */{ ATerm arg, isig, osig;if(ATmath(inp, "re-eval(get-text)"))return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");if(ATmath(inp, "re-terminate(<term>)", &arg))exit(0);if(ATmath(inp, "re-do(signature(<term>,<term>))", &isig, &osig)){return NULL; /* we don't do a signature hek */}ATerror("hello: wrong input %t reeived\n", inp);return NULL;}int main(int arg, har *argv[℄) /* main program of hello tool */{ ATerm bottomOfStak; /* marks stak bottom for ATerms */ATBinit(arg, argv, &bottomOfStak); /* initialize ToolBus library */if(ATBonnet(NULL, NULL, -1, hello_handler) >= 0){ATBeventloop();} else {fprintf(stderr, "hello: Could not onnet to the ToolBus, giving up!\n");return -1;}return 0;} Figure 4: hello.: simple C ode for the hello tool.

40
/* hello-gen. -- hello tool in C using generated interfae hello.tif. */#inlude <stdlib.h>#inlude "hello.tif.h" /* Inlude generated tool interfae */ATerm get_text(int onn) /* Generate a hello text */{ return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");}void re_terminate(int onn, ATerm msg) /* Mandatory funtion to terminate tool */{ exit(0);}int main(int arg, har *argv[℄) /* main program of hello tool */{ ATerm bottomOfStak;ATBinit(arg, argv, &bottomOfStak);if(ATBonnet(NULL, NULL, -1, hello_handler) >= 0) {ATBeventloop();} else {fprintf(stderr, "Could not onnet to the ToolBus, giving up!\n");return -1;}return 0;} Figure 5: hello-gen.: C ode for the hello tool using a generated tool interfae.
/* hello3.tb -- hello sript with expliit re-onnet */proess HELLO islet H : hello, %% H will represent the hello toolS : str %% S is a string valued variablein re-onnet(H?) . %% Connet to a hello tool, H gets a tool id as valuesnd-eval(H, get-text) . %% Request a text from the hello toolre-value(H, text(S?)) . %% Reeive it, S gets the text as valueprintf(S) %% Print itendlettool hello is {ommand = "hello"}toolbus(HELLO) Figure 6: hello3: hello appliation with re-onnet.

41

ToolBus

Adapter

Program
Figure 7: General struture of a tool adapter

ToolBus

ToolTerm Ports Charater Ports

Figure 8: Global organization of a tool

42

S.tb
toolbus -gentifs S.tb

S.tifs
tifsto -tool Nm S.tifs

Nm.tif.
javatif oboltif

Figure 9: Automati generation of tool interfaes.

43

/* pipe.tb -- Unix pipes simulated in a ToolBus sript */proess PIPE(Tid : gen, Cmd1 : str, Inp : str, Cmd2 : str, Res : str?) islet Out1 : strin snd-eval(Tid, md(Cmd1, input(Inp))) .re-value(Tid, output(Out1?)) .snd-eval(Tid, md(Cmd2, input(Out1))) .re-value(Tid, output(Res?))endletproess A islet Tid : gen, R : strin exeute(gen, Tid?) .PIPE(Tid, "ls -l", "", "w -w", R?) .printf(R)endlettool gen is {ommand = "gen-adapter"}toolbus(A) Figure 10: pipe.tb: Exeuting the pipe line ls -l | w in a sript.

hello.perl -- hello tool in Perlsub get_text {do TBsend("snd-value(\"Hello World, my first ToolBus tool in Perl!\n\")");}sub re_terminate {loal($n) = �_;exit(0);} Figure 11: hello.perl: the hello tool in Perl

44

hello.py -- hello tool in Pythonimport TBimport sysimport __main__ # Don't forget this one!def re_terminate(id, A):sys.exit(0)def get_text(id):return TB.make("snd-value(text(<str>))","Hello World, my first ToolBus tool in Python!\n")id = TB.parseArgs(sys.argv, __main__)TB.onnet(id)TB.eventloop() Figure 12: hello.py: the hello tool in Python

45

Tcl/Tk adapter architecture

ToolBus <−> Tool communication
(sockets)

wish−adapter <−> wish communication

(pipes)

ToolBusToolBus

=

Tcl/Tk interpreter

tcltk−adapter

+

integrated

Tcl/Tk interpreter

ToolBus <−> Tool communication
(sockets)

wish

Wish adapter architecture

wish−adapter

Figure 13: The wish-adapter and the tltk-adapter
hello.tl -- hello tool in Tl/Tkpro get-text {} {TBsend "snd-value(text(\"Hello World, my first ToolBus tool in Tl!\n\"))"}pro re-terminate { n } {exit} Figure 14: hello.tl: the hello tool in Tl

