
Java Class Hierarchies with Maximal Sharing

Jurgen Vinju

December 12, 2002

1



Context
• Goal:

Automatic implementation of tree-like data-structures

Compilers, Transformers, Analyzers, XML Processors

Memory Efficiency seems to be a problem

• Maximal Sharing

Works well in functional programming, rewriting

(Where all data representation is automatic)

So let’s carry this over to Java data-structures

• For our purposes:

Meta-Environment tools in Java (AsFix, ATerms)

DocGen-like tools

2



TOC
• Requirements

• Java ATerm

• Generators

• SharedObjectFactory

• Composite subclasses of ATermAppl

• Example

• Experience

• Sales Talk

• Discussion

3



Requirements
• Fast access time, and

• Memory efficient

• Data-hiding:

Documentation

Use of types prevents programming errors

Profiling

Consistency checks

• Extensibility

• Linearization {Debugging, Communication}

4



The Java ATerm library
• Redundancy + Maximal Sharing ≡ Memory Efficiency

• Types of redundancy

Natural (e.g. layout nodes in a parse tree)

Artificial: use redundancy to store data close to use sites

• Annotations ≡ Extensibility

• Textual (Shared) representation

• Data-hiding? Not quite enough.

Lessons learned in the GLT project → ApiGen

5



Algebraic data-types
• Syntax definitions, Tree Grammars, Signatures, ...

• Generate implementations of tree-like data-structures

• Many types ≡ compile-time feedback ≡ safe code

• Refactoring the representation itself becomes feasible

• Extra (hard,boring,expensive) features for free:

Linearization

Traversal

Profiling

Consistency checks

And why not... Maximal Sharing??

6



Generate classes based on the ATerm library
• Just like ApiGen for C...

• Type-system of Java prevents simple aliasing like in C

• Composition → we loose maximal sharing

• Inheritance

Not possible for trivial reasons

Not practical due to code duplication

• Recipe:

Refactoring the ATerm library for extensiblity

Try to keep the efficiency

Generate extensions of PureFactory and ATermAppl

7



ApiGen organization

8



Shared Object Factory
• Maximal Sharing is implemented using hash-consing

• The SOF implements only hash-consing, nothing more

• Design Patterns:

Factory - a class that builds objects from other objects

Prototype - minimize allocations

• HashFunctions - a practical collection of hash functions

9



The Shared Object Factory

public class SharedObjectFactory {

public SharedObject build(SharedObject prototype);

public String toString(); // profile report

}

public interface SharedObject {

SharedObject duplicate(); // clone

boolean equivalent(SharedObject o);

int hashCode();

}

public class HashFunctions {

static int simple(Object[] o);

...

}

10



Inheriting from SharedObjectFactory

public class PureFactory

extends SharedObjectFactory implements ATermFactory {

static ATermApplImpl protoAppl;

...

public PureFactory() {

protoAppl = new ATermApplImpl();

...

}

public ATermAppl makeAppl(AFun fun, ATermList args) {

protoAppl.init(fun, args);

return build(protoAppl);

}

}

11



Composite SubClasses of ATermAppl
• Factory - subclass PureFactory (prototypes and make methods)

• Constructor - subclass ATermAppl to deal with patterns

implements toTerm() and toString()

adds a field: static private ATerm pattern;

• Types - Abstract subclasses of Constructor

delegates fromTerm(ATerm trm) to subclasses

provides default false value for all kinds of static properties

• Operators - subclasses of abstract types

implements fromTerm(ATerm trm) using the pattern

overrides values for static properties

specializes hashFunction() as an optimization

12



The Big Picture
SharedObject SharedObjectFactory

SharedObject build

PureFactory

BooleansFactory

Bool makeBoolAnd

Bool makeBoolOr

Bool_And Bool_Or
isAnd isOr
hashFunction hashFunction

...

ATermAppl

ATermApplImpl

ATermFactory
ATermAppl makeAppl

duplicate
hashCode
equivalent

BoolConstructor

isAnd
hasLhs

Bool

13



Example
{

BooleansFactory f = new BooleansFactory();

Bool b = f.makeBoolAnd(f.makeBoolTrue(),

f.makeBoolFalse());

if (b.hasLeftHandSide()) {

Bool l = b.getLeftHandSide();

System.out.println("This is the lhs:" + l);

}

Bool c = Bool.fromTerm(f.readFromFile("input.trm"));

if (c.isAnd()) {

System.out.println("It’s a conjunction");

}

}

14



Experience
• Benchmarks: EvalTree, EvalExp, Fibonacci, etc...

Compared to (new) ATerm code: slightly faster

Compared to (old) ATerm code: 10-20% slower

Compared to non-shared API: much faster and smaller

Significant reduction in LOC (sometimes 50%)

• Refactoring the Tom compiler

Incremental reverse engineering of TomFix

Detected bugs and design flaws

Reduction in LOC

Bootstrapped (but without support for list matching)

Compared to ATerm code: much faster

15



Sales Department
• Only dependencies: shared-objects and aterm-java

• Coupled with SDF2 via ADT files

Hierarchy provides abstract view,

but linearized representation can be anything (AsFix!)

• Coupled with Tom via generated signature definition

Simple pattern matching for free

• Coupled with JJTraveler (W.I.P.)

Safe Traversal for free

• Generates empty class files

Implementation is hidden in separate package

Empty classes can be filled with user-code

16



Discussion
• Conclusion

Class Hierarchies with Maximal Sharing

• Future work

Specialized support for list types

Applications:

Meta-Environment, Analysis, Reengineering

• Questions?

17


