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Context
• Goal:

Automatic implementation of tree-like data-structures

Compilers, Transformers, Analyzers, XML Processors

Memory Efficiency seems to be a problem

• Maximal Sharing

Works well in functional programming, rewriting

(Where all data representation is automatic)

So let’s carry this over to Java data-structures

• For our purposes:

Meta-Environment tools in Java (AsFix, ATerms)

DocGen-like tools
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Requirements
• Fast access time, and

• Memory efficient

• Data-hiding:

Documentation

Use of types prevents programming errors

Profiling

Consistency checks

• Extensibility

• Linearization {Debugging, Communication}
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The Java ATerm library
• Redundancy + Maximal Sharing ≡ Memory Efficiency

• Types of redundancy

Natural (e.g. layout nodes in a parse tree)

Artificial: use redundancy to store data close to use sites

• Annotations ≡ Extensibility

• Textual (Shared) representation

• Data-hiding? Not quite enough.

Lessons learned in the GLT project → ApiGen
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Algebraic data-types
• Syntax definitions, Tree Grammars, Signatures, ...

• Generate implementations of tree-like data-structures

• Many types ≡ compile-time feedback ≡ safe code

• Refactoring the representation itself becomes feasible

• Extra (hard,boring,expensive) features for free:

Linearization

Traversal

Profiling

Consistency checks

And why not... Maximal Sharing??
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Generate classes based on the ATerm library
• Just like ApiGen for C...

• Type-system of Java prevents simple aliasing like in C

• Composition → we loose maximal sharing

• Inheritance

Not possible for trivial reasons

Not practical due to code duplication

• Recipe:

Refactoring the ATerm library for extensiblity

Try to keep the efficiency

Generate extensions of PureFactory and ATermAppl
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ApiGen organization
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Shared Object Factory
• Maximal Sharing is implemented using hash-consing

• The SOF implements only hash-consing, nothing more

• Design Patterns:

Factory - a class that builds objects from other objects

Prototype - minimize allocations

• HashFunctions - a practical collection of hash functions
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The Shared Object Factory

public class SharedObjectFactory {

public SharedObject build(SharedObject prototype);

public String toString(); // profile report

}

public interface SharedObject {

SharedObject duplicate(); // clone

boolean equivalent(SharedObject o);

int hashCode();

}

public class HashFunctions {

static int simple(Object[] o);

...

}
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Inheriting from SharedObjectFactory

public class PureFactory

extends SharedObjectFactory implements ATermFactory {

static ATermApplImpl protoAppl;

...

public PureFactory() {

protoAppl = new ATermApplImpl();

...

}

public ATermAppl makeAppl(AFun fun, ATermList args) {

protoAppl.init(fun, args);

return build(protoAppl);

}

}
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Composite SubClasses of ATermAppl
• Factory - subclass PureFactory (prototypes and make methods)

• Constructor - subclass ATermAppl to deal with patterns

implements toTerm() and toString()

adds a field: static private ATerm pattern;

• Types - Abstract subclasses of Constructor

delegates fromTerm(ATerm trm) to subclasses

provides default false value for all kinds of static properties

• Operators - subclasses of abstract types

implements fromTerm(ATerm trm) using the pattern

overrides values for static properties

specializes hashFunction() as an optimization
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The Big Picture
SharedObject SharedObjectFactory

SharedObject build

PureFactory

BooleansFactory

Bool makeBoolAnd

Bool makeBoolOr

Bool_And Bool_Or
isAnd isOr
hashFunction hashFunction

...

ATermAppl

ATermApplImpl

ATermFactory
ATermAppl makeAppl

duplicate
hashCode
equivalent

BoolConstructor

isAnd
hasLhs

Bool
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Example
{

BooleansFactory f = new BooleansFactory();

Bool b = f.makeBoolAnd(f.makeBoolTrue(),

f.makeBoolFalse());

if (b.hasLeftHandSide()) {

Bool l = b.getLeftHandSide();

System.out.println("This is the lhs:" + l);

}

Bool c = Bool.fromTerm(f.readFromFile("input.trm"));

if (c.isAnd()) {

System.out.println("It’s a conjunction");

}

}
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Experience
• Benchmarks: EvalTree, EvalExp, Fibonacci, etc...

Compared to (new) ATerm code: slightly faster

Compared to (old) ATerm code: 10-20% slower

Compared to non-shared API: much faster and smaller

Significant reduction in LOC (sometimes 50%)

• Refactoring the Tom compiler

Incremental reverse engineering of TomFix

Detected bugs and design flaws

Reduction in LOC

Bootstrapped (but without support for list matching)

Compared to ATerm code: much faster
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Sales Department
• Only dependencies: shared-objects and aterm-java

• Coupled with SDF2 via ADT files

Hierarchy provides abstract view,

but linearized representation can be anything (AsFix!)

• Coupled with Tom via generated signature definition

Simple pattern matching for free

• Coupled with JJTraveler (W.I.P.)

Safe Traversal for free

• Generates empty class files

Implementation is hidden in separate package

Empty classes can be filled with user-code
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Discussion
• Conclusion

Class Hierarchies with Maximal Sharing

• Future work

Specialized support for list types

Applications:

Meta-Environment, Analysis, Reengineering

• Questions?
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