
1Introduction to the ToolBus Coordination Architecture

Introduction to the ToolBus
Coordination Architecture

Paul Klint

2Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

3Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

4Introduction to the ToolBus Coordination Architecture

The problem: component
interconnection

● Systems become heterogeneous because we want
to couple existing and new software components
– different implementation languages

– different implementation platforms

– different user-interfaces

● Systems become distributed in local area
networks

● Needed: interoperability of heterogenous systems

5Introduction to the ToolBus Coordination Architecture

Component interconnection: reasons

● Reusing existing components decreases
construction costs of new systems

● Decomposing large, monolithic systems into
smaller, cooperating components increases
– modularity

– flexibility

6Introduction to the ToolBus Coordination Architecture

Component interconnection: issues

● Data integration: exchange of data between
components

● Control integration: flow of control between
components

● User-interface integration: how do the user-
interfaces of components cooperate?

7Introduction to the ToolBus Coordination Architecture

Data integration

● Data representations differ per
– machine: word size, byte order, floating point

representation, ...

– language implementation: size of integers, emulation
of IEEE floating point standard, ...

● How can we exchange data between components:
– integers, reals, record => linear encoding

– pointers => impossible in general

8Introduction to the ToolBus Coordination Architecture

Data integration

● Assume a common representation R

● For each component C
i
 (with data domain D

i
)

there exist conversion functions

– f
i
 : D

i
 -> R and f

i

-1: R -> D
i

– Convert a value d
i
from C

i
 to C

j
 by f

j

-1(f
i
(d

i
))

● Examples: IDDL, ASN-1, ...
● ToolBus uses ATerms as common representation

9Introduction to the ToolBus Coordination Architecture

Control integration

● Broadcasting: each component can notify other
components of state changes

● Remote procedure calls: components can call
each other as procedures

● General message passing: the most general
approach

● In the ToolBus Tscripts are used to model the
interactions between components

10Introduction to the ToolBus Coordination Architecture

User-interface integration

● There is a general trend towards multi-threaded
user-interfaces (concurrency)

● There is a general trend to use formal techniques
to specify user-interfaces

● The ToolBus does not address user-interface
integration as separate issue but can be used to
achieve it

11Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

12Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

13Introduction to the ToolBus Coordination Architecture

Brief history of the ToolBus

● Around 1992 the first implementation of the
ASF+SDF Meta-Environment was completed:
– 200 KLOC Lisp code

– Monolithic

– Hard to maintain

● ... all traits of a legacy system

14Introduction to the ToolBus Coordination Architecture

Time line

● 1992: Unsuccessful decomposition experiments
● 1994: First ToolBus
● 1995: Discrete time ToolBus
● 2001: Meta-Environment restructured
● 2002/3: preparing for the next generation ...

15Introduction to the ToolBus Coordination Architecture

1992

Structure & text
editor

Graphical Objects

Other parts Other parts

User-interfaceEmacs

Structure editor

Old New

16Introduction to the ToolBus Coordination Architecture

1993

● Difficult synchronization and communication
problems problems start to appear

● PSF specification of communication; simulation
reveals several deadlocks

● Problems with this specification:
– complex (> 20 pages) and ad hoc

– difficult to extend

– cannot be used to directly coordinate the components

17Introduction to the ToolBus Coordination Architecture

1993/1994

● Idea of a “ToolBus” as general communication
structure appeared

● First design and implementation
● Several experiments

– Feature interaction in telephone switches (RUU/PTT)

– Traffic control (Nederland Haarlem/UvA/CWI/RUU)

– Management of complex bus stations (idem)

– Definition of user interfaces (UvA)

18Introduction to the ToolBus Coordination Architecture

1994/1995

● Fall 1994: redesign based on this experience
● Spring 1995: design and implementation of

Discrete Time ToolBus completed
● First experiments to prototype parts of the Meta-

Environment started

19Introduction to the ToolBus Coordination Architecture

More recently ...

● In 2001 a new implementation of the Meta-
Environment based on the ToolBus was
completed

● End 2002 we have started on a new generation
ToolBus based on these experiences ...

20Introduction to the ToolBus Coordination Architecture

ToolBus requirements

● Flexible interconnection architecture for software
components

● Good control over communication
● Relatively simple descriptions
● Uniform data exchange format
● Multi-lingual: C, Java, Perl, ASF+SDF, ...
● Potential for verification
● Use existing concurrency theory

21Introduction to the ToolBus Coordination Architecture

Coordination, Representation &
Computation

● Coordination: the way in which program and
system parts interact (procedure calls, RMI, ...)

● Representation: language and machine neutral
data exchanged between components

● Computation: program code that carries out a
specialized task

A rigorous separation of coordination
from computation is the key to
flexible and reusable systems

22Introduction to the ToolBus Coordination Architecture

Cooperating Components

Architectural Layers

Single Component

Representation

Computation

Single Component

Representation

Computation

Coordination

23Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

24Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

25Introduction to the ToolBus Coordination Architecture

Generic Representation
Annotated Terms (ATerms)

● Applicative, prefix terms

● Maximal subterm sharing (⇒ DAG)

– cheap equality test, efficient rewriting

– automatic generational garbage collection

● Annotations (text coordinates, dataflow info, ...)
● Very concise, binary, sharing preserving

encoding
● Language & machine independent exchange

format

26Introduction to the ToolBus Coordination Architecture

ATerms
Term and Annotations

Annotations

27Introduction to the ToolBus Coordination Architecture

A term is ...

● a Boolean, integer, real or string

– true, 37, 3.14e-12, “rose”
● a value occurrence of a variable

– X, InitialAmount, Highest-bid
● a result occurrence of a variable

– X?, InitialAmount?

28Introduction to the ToolBus Coordination Architecture

A term is ...

● a single identifier

– f, pair, zero
● a function application

– pair(“rose”, address(“Street”, 12345))
● a list

– [a, b, c], [a, 1.25, “last”], [[a, 1], [b, 2]]
● a placeholder

– <int>, add(<int>,<int>)

29Introduction to the ToolBus Coordination Architecture

Matching of terms

● Term matching is used to
– determine which actions can communicate

– to transfer data between sender and receiver

● Intuition:
– terms match if the are structurally identical

– value occurrence: use variable's value

– result occurrence: assign matched subterm to variable
(only if overall match succeeds!)

30Introduction to the ToolBus Coordination Architecture

Example of term matching

Before match

X : 3
Y : 7

Z : 17
Context 1 Context 2

Match

f(X,4,Y?,6) and f(3,Z?,5,6)

After successful match

X : 3
Y : 5

Z : 4
Context 1 Context 2

31Introduction to the ToolBus Coordination Architecture

Types

● The ToolBus uses its own type system
– static checks & automatic generation of interface code

● bool, int, real, str
● list: list with arbitrary elements

● list(Type): list with Type elements

– list(int)
● term: arbitrary term

32Introduction to the ToolBus Coordination Architecture

Types

● Id: all terms with function symbol Id (allows
partial type declarations)

– f accepts f, f(1), f(“abc”,3), ...

● Id(T
1
, ..., T

n
)

– f(int, str) accepts f(3,”abc”) but not f(3)
● [T

1
, ..., T

n
] : list of elements with given types

– [int, str] accepts [1,”abc”] but not [1,2,3]

33Introduction to the ToolBus Coordination Architecture

Types

● All variables have types
● Types are checked statically when possible
● Types play a role during matching:

– I is int variable, S is str variable, T is term variable

– match f(13) and f(I?)
– match f(13) and f(S?)
– match f(13) and f(T?)

succeeds

succeeds

fails

34Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

35Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

36Introduction to the ToolBus Coordination Architecture

The ToolBus architecture

ToolBus Coordination

Representation

ComputationTools
ATerms
common

data exchange
format

37Introduction to the ToolBus Coordination Architecture

The ToolBus architecture

● Processes inside the ToolBus can communicate
with each other

● Tools can not communicate with each other
● Tools can communicate using a fixed protocol:

ToolBus

Tool

eval value

ToolBus

Tool

do

ToolBus

Tool

ack-eventevent

38Introduction to the ToolBus Coordination Architecture

A typical scenario

UI DB

User-interface Database

Configuration knowledge
only in ToolBus script

UI and DB are
completely
decoupled

39Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

40Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

41Introduction to the ToolBus Coordination Architecture

ToolBus scripts: processes

● The ToolBus: a parallel composition of processes
● Private variables per process

● P
1
+ P

2
 P

1
. P

2
 P

1
|| P

2
 P

1
* P

2

● :=, if then else
● All data are terms that can be matched
● A limited set of built-in operations on terms
● No other support for datatypes

42Introduction to the ToolBus Coordination Architecture

ToolBus scripts: processes

● Send, receive message (handshaking)
● Send/receive notes (broadcasting)
● Subscription to notes
● Dynamic process creation
● Absolute/relative delay, timeout

43Introduction to the ToolBus Coordination Architecture

ToolBus scripts: tools

● Execute/terminate tools
● Connect/disconnect tools
● Communication between process and tool is

synchronous
● Process can send evaluation request to tool

(which returns a value later on)
● Tool can generate events to be handled by the

ToolBus

44Introduction to the ToolBus Coordination Architecture

Define the initial processes
in the application

Hello World

process HELLO is printf(“Hello world, my first Tscript!\n”)

toolbus(HELLO)

Define the process HELLO

It only prints a string

The Tscript hello.tb

Start application with: toolbus hello.tb

45Introduction to the ToolBus Coordination Architecture

Hello World: string generated by tool

process HELLO is
 let H : hello,
 S : str
 in
 execute(hello, H?) .
 snd-eval(H, get-text) .
 rec-value(H, text(S?)) .
 printf(S)
 endlet

tool hello is {command = “hello” }
toolbus(HELLO)

H will represent the tool

S is a string variable

Execute hello,
H gets a tool id as value

Request a text from hello tool

Receive it,
S gets the value assigned

Definition of hello tool:
may be written in any language

46Introduction to the ToolBus Coordination Architecture

Simple clock with user-interface

UI CLOCK

ui clock

User-interface Clock

Provides a readTime
function

User can push
a showTime

button

ToolBus

Tools

47Introduction to the ToolBus Coordination Architecture

Simple clock with user-interface

process CLOCK is process-expression-1
tool clock is tool-definition-1

process UI is process-expression-2
tool ui is tool-definition-2

toolbus(CLOCK, UI)

48Introduction to the ToolBus Coordination Architecture

Clock
process CLOCK is
 let Tid : clock, T : str
 in
 execute(clock, Tid?).
 (
 rec-msg(showTime) .
 snd-eval(Tid, readTime) .
 rec-value(Tid, time(T?)) .
 snd-msg(showTime, T)
) * delta
 endlet

tool clock is { command = “clock” }

Receive a message from
another process

Get time from clock tool

Reply to the message

(...) * delta is an
endless loop

49Introduction to the ToolBus Coordination Architecture

User-interface
process UI is
 let Tid : ui, T : str
 in
 execute(ui, Tid?) .
 (rec-event(Tid, button(showTime)) .
 snd-msg(showTime) .
 rec-msg(showTime, T?) .
 snd-do(Tid, displayTime(T)) .
 snd-ack-event(Tid, button(showTime))
) * delta
 endlet

Receive event from ui tool

Processing of the event
complete: send

acknowledgement

Get the time

Display it in ui tool

tool ui is { command = “wish-adapter -script ui.tcl” }

50Introduction to the ToolBus Coordination Architecture

Tscripts: revisited

● Process communication: messages & notes
● Composite processes
● Expressions & built-in functions
● Time primitives
● Tools

51Introduction to the ToolBus Coordination Architecture

Process communication: messages

● Messages used for synchronous, two-party
communication between processes

● snd-msg and rec-msg synchronize sender/receiver

● Communication is possible if the arguments
match

● There is two-way data transfer between sender
and receiver (using result variables)

52Introduction to the ToolBus Coordination Architecture

Process communication: notes

● Notes used for asynchronous, broadcasting
communication between processes

● Each process must subscribe to the notes it wants
to receive

● Each process has a private note queue on which
snd-note, rec-note and no-note operate

53Introduction to the ToolBus Coordination Architecture

Process communication: notes

● subscribe to notes of a given form

– subscribe(compute(<str>,<int>))
● unsubscribe from certain notes

● snd-note to all subscribers

– snd-note(compute(E,V))
● rec-note: receive a note of a given form

● no-note received of given form

54Introduction to the ToolBus Coordination Architecture

Composite process expressions

● One of the atomic processes mentioned above

● delta (deadlock), tau (silent step)

● P
1
+ P

2
: choice (non-deterministic)

● P
1
. P

2
: sequential composition

● P
1
|| P

2
: parallel composition

● P
1
* P

2
: repetition

55Introduction to the ToolBus Coordination Architecture

Composite process expressions

● P(T
1
, T

2
, ...): a named process (with optional

parameters) will be replaced by its definition

● create(P(T
1
, T

2
, ...), Pid?): dynamic process

creation

● V := Expr: evaluate Expr and assign result to V

● if Expr then P
1
 else P

2
 fi

● if Expr then P
1
 fi = if Expr then P

1
 else delta fi

56Introduction to the ToolBus Coordination Architecture

Expressions

● An expression is evaluated in the current
environment of the process in which it occurs

● Constants evaluate to themselves: a
● Variables evaluate to their current values
● Lists evaluate to a list of their evaluated elements
● Some function symbols have a built-in meaning

57Introduction to the ToolBus Coordination Architecture

Built-in functions

● Booleans: not, and, or
● Integers: add, sub, mul, mod, less, less-equal,

greater, greater-equal
● Lists: first, next, get, put, join, member, subset,

diff, inter, size
● Miscellaneous: equal, not-equal, process-id,

process-name, current-time, quote

58Introduction to the ToolBus Coordination Architecture

Time primitives

● A (relative or absolute) delay or time out may be
associated with each atomic process

● Relative time: delay(Expr) or timeout(Expr)
● Absolute time: abs-delay(y, mon, d, h, min, s) or

abs-timeout(y, mon, d, h, min, s)
● Example:

– printf(“expired”) delay(10)
– printf(“Renew account”) abs-timeout(2004,4,1,12,0,0)

59Introduction to the ToolBus Coordination Architecture

Process definitions

● Process definition: process Pname Formals is P
● Formals are optional and contain a list of formal

parameter names

– process MakeWave(N : int) is ...
● All variables (including formals) must be

declared and have a type

● let VarDecls in P endlet introduces variables:

– let E : str, V : int in ... endlet

60Introduction to the ToolBus Coordination Architecture

Tools

● Tools have to be executed or connected before
they can be used

● Requires a tool definition: tool ui is { ... }
● Introduces a new type, e.g. ui
● Execute a tool: execute(ui, Uid?)
● Receive connection request: rec-connect(ui,

Uid?)
● Tool identification is assigned to Uid (of type uid)

61Introduction to the ToolBus Coordination Architecture

Tools

● snd-terminate: terminate an executing tool

– snd-terminate(Tid)
● rec-disconnect: receive disconnection request

from tool

– rec-disconnect(Uid)
● shutdown: terminate the whole ToolBus

– shutdown(“Auction ends”)

62Introduction to the ToolBus Coordination Architecture

Tools

● snd-eval, rec-value: request tool to evaluate a
term, and receive the resulting value from tool
– initiative: ToolBus

● snd-do: request tool to perform some action, there
is no reply
– initiative: ToolBus

● rec-event, snd-ack-event: receive event from
tool, acknowledge it after appropriate processing
– initiative: tool

63Introduction to the ToolBus Coordination Architecture

Tscripts

● A Tscripts consists of
– a list of process and tool definitions

– a single ToolBus configuration

● A ToolBus configuration describes the initial set
of active processes in the ToolBus:

– toolbus(Pname
1
, ..., Pname

n
)

– Eache Pname is optionally followed by parameters

64Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

65Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

– calculator; auction; waves

66Introduction to the ToolBus Coordination Architecture

Example: calculator

UICALC ToolBus

Tools

CLOCKBATCH

clockuicalc

LOG

logbatch

67Introduction to the ToolBus Coordination Architecture

Example: calculator

● CALC: the calculation process
● BATCH: reads expressions from file, calculates

their value, writes result back to file
● UI: the user-interface
● LOG maintains a log of all calculations
● CLOCK provides current time

68Introduction to the ToolBus Coordination Architecture

Process CALC
process CALC is
 let Tid : calc, E : str, V : term
 in
 execute(calc, Tid?).
 (
 rec-msg(compute, E?) .
 snd-eval(Tid, expr(E)) . rec-value(Tid, val(V?)) .
 snd-msg(compute, E, V) . snd-note(compute(E, V))
)* delta
 endlet

tool calc is { command = “calc”}

Note for the logger

Receive compute message

Let calc do the computation

Reply to compute message

69Introduction to the ToolBus Coordination Architecture

Process BATCH
process BATCH is
 let Tid : batch, E : str, V : int
 in
 execute(batch, Tid?).
 (
 snd-eval(Tid, fromFile) . rec-value(Tid, expr(E?)) .
 snd-msg(compute, E) . rec-msg(compute, E, V?) .
 snd-do(Tid, toFile(E, V))
) * delta
 endlet

tool batch is {command = “batch”}

Get an expression from batch tool

Evaluate expression

Value back to batch tool

70Introduction to the ToolBus Coordination Architecture

User-interface

● When the user presses Calc, a dialog window
appears to enter an expression

● The result is diplayed in a separate window
● Pressing showLog display all calculations so far
● Pressing showTime displays the current time
● Pressing Quit ends the application

71Introduction to the ToolBus Coordination Architecture

User-interface: process UI
process UI is
 let Tid : ui
 in
 execute(ui, Tid?) .
 (CALC-BUTTON(Tid) + LOG-BUTTON(Tid))* delta
 ||
 TIME-BUTTON(Tid) * delta
 ||
 QUIT-BUTTON(Tid)
 endlet

tool ui is { command = wish-adapter -script calc.tcl” }

Calc and Log button are exclusive

Time and Quit button are independent

72Introduction to the ToolBus Coordination Architecture

User-interface: CALC-BUTTON
process CALC-BUTTON(Tid : ui) is
 let N : int, E : str, V : term
 in
 rec-event(Tid, N?, button(calc)) .
 snd-eval(Tid, get-expr-dialog) .
 (rec-value(Tid, cancel)
 + rec-value(Tid, expr(E?)) .
 snd-msg(compute, E) .
 rec-msg(compute, E, V?) .
 snd-do(Tid, display-value(V))
) . snd-ack-event(Tid, N)
 endlet

Calc button is pressed

Ask for an expression

Get cancel or an expression

Compute expression
and display its value

Acknowledge the button event

73Introduction to the ToolBus Coordination Architecture

User-interface: LOG-BUTTON

process LOG-BUTTON(Tid : ui) is
 let N : int, L : term
 in
 rec-event(Tid, N?, button(showLog)) .
 snd-msg(showLog) .
 rec-msg(showLog, L?) .
 snd-do(Tid, display-log(L)) .
 snd-ack-event(Tid, N)
 endlet

74Introduction to the ToolBus Coordination Architecture

User-interface: TIME-BUTTON
process TIME-BUTTON(Tid : ui) is
 let N : int, T : str
 in rec-event(Tid, N?, button(showTime)) .
 snd-msg(showTime) .
 rec-msg(showTime, T?) .
 snd-do(Tid, display-time(T)) .
 snd-ack-event(Tid, N)
 endlet

process QUIT-BUTTON(Tid : ui) is
 rec-event(Tid, button(quit)) .
 shutdown("End of calc demo")

75Introduction to the ToolBus Coordination Architecture

Process LOG
process LOG is
 let Tid : log, E : str, V : term, L : term
 in subscribe(compute(<str>, <term>)) .
 execute(log, Tid?).
 (rec-note(compute(E?, V?)) .
 snd-do(Tid, writeLog(E, V))
 +
 rec-msg(showLog) .
 snd-eval(Tid, readLog) .
 rec-value(Tid, history(L?)) .
 snd-msg(showLog, history(L))
) * delta
 endlet

Log all calculations

Show the log of calculations

76Introduction to the ToolBus Coordination Architecture

Process LOG1

process LOG1 is
 let TheLog : list, E : str, V : term
 in subscribe(compute(<str>, <term>)) .
 TheLog := [] .
 (rec-note(compute(E?, V?)) .
 TheLog := join(TheLog, [[E, V]])
 +
 rec-msg(showLog) .
 snd-msg(showLog, TheLog)
) * delta
 endlet

Alternative definition
of logger: maintain the

log in a list

77Introduction to the ToolBus Coordination Architecture

Process CLOCK

process CLOCK is
 let Tid : clock, T : str
 in
 execute(clock, Tid?).
 (rec-msg(showTime) .
 snd-eval(Tid, readTime) .
 rec-value(Tid, time(T?)) .
 snd-msg(showTime, T)
) * delta
 endlet

78Introduction to the ToolBus Coordination Architecture

ToolBus Configuration

toolbus (CALC, BATCH, UI, LOG, CLOCK)

Creates the processes for the calculator application

Start calculator application:
toolbus calc.tb

79Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

– calculator; auction; waves

80Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

– calculator; auction; waves

81Introduction to the ToolBus Coordination Architecture

Example: distributed auction

Auction
Master

Bidder Bidder

Bidder Bidder

Classical Auction

Auction
Master

Bidder

Bidder Bidder

Bidder

Bidder

Distributed Auction

82Introduction to the ToolBus Coordination Architecture

Example: distributed auction

● How are bids synchronized?
● How to inform bidders about higher bids?
● How to decide when the bidding is over and the

item is sold?
● Bidders may come and go during the auction

83Introduction to the ToolBus Coordination Architecture

Example: distributed auction

Auction ToolBus

Toolsmaster

Bidder

bidder

Bidder

bidder

Bidder

bidder

...

...

84Introduction to the ToolBus Coordination Architecture

Example: distributed auction

● The Auction process

– executes master tool: user-interface of auction master

– connection/disconnection of new bidders

– introduces new items for sale (at the initiative of the
auction master)

– controls the bidding provess via OneSale
● A Bidder process is created for each new bidder

85Introduction to the ToolBus Coordination Architecture

Process Auction
process Auction is
 let Mid : master, Bid : bidder
 in
 execute(master, Mid?) .
 (ConnectBidder(Mid, Bid?)
 +
 OneSale(Mid)
) *
 rec-event(Mid, quit) .
 shutdown("Auction is closed")
 endlet

tool master is { command = "wish-adapter -script master.tcl" }

Execute the master tool

Repeat:
● add new bidder between sales,
or
● perform one sale

Until:
● auction master quits

Close the auction application

86Introduction to the ToolBus Coordination Architecture

Process ConnectBidder

process ConnectBidder(Mid : master, Bid : bidder?)
is
 let Pid : int, Name : str
 in
 rec-connect(Bid?) .
 create(Bidder(Bid), Pid?) .
 snd-eval(Bid, get-name) .
 rec-value(Bid, name(Name?)) .
 snd-do(Mid, new-bidder(Bid, Name))
 endlet

Receive a connection request
from a new bidder tool

Create a new Bidder process

Ask bidder for its name

Send name to master tool

87Introduction to the ToolBus Coordination Architecture

Process OneSale
process OneSale(Mid : master) is
 let Descr : str, %% Description of current item for sale
 InAmount : int, %% Initial amount for item
 Amount : int, %% Current amount
 HighestBid : int, %% Highest bid so far
 Final : bool, %% Did we already issue a final call for bids?
 Sold : bool, %% Is the item sold?
 Bid : bidder %% New bidder tool connected during sale
 in rec-event(Mid, new-item(Descr?, InAmount?)) .
 HighestBid := InAmount .
 snd-note(new-item(Descr, InAmount)) .
 Final := false . Sold := false .
 (...
) * if Sold then snd-ack-event(Mid, new-item(Descr, InAmount)) fi
 endlet

Where the action is ...

88Introduction to the ToolBus Coordination Architecture

Process OneSale

(if not(Sold) then ... fi
+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...
) * if Sold then ... fi

89Introduction to the ToolBus Coordination Architecture

Process OneSale
if not(Sold) then
 rec-msg(bid(Bid?, Amount?)) .
 snd-do(Mid, new-bid(Bid, Amount)) .
 if less-equal(Amount, HighestBid) then
 snd-msg(Bid, rejected)
 else
 HighestBid := Amount .
 snd-msg(Bid, accepted) .
 snd-note(update-bid(Amount)) .
 snd-do(Mid, update-highest-bid(Bid, Amount)) .
 Final := false
 fi
fi

(

+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...
) * if Sold then ... fi

Receive a bid from a bidder

Inform auction master about it

Reject bid if it is too low

Remember as highest bid

Inform bidder: bid is accepted

Inform all bidders

Update auction master

90Introduction to the ToolBus Coordination Architecture

Process OneSale

+ if not(or(Final, Sold)) then
 snd-note(any-higher-bid) delay(sec(10)) .
 snd-do(Mid, any-higher-bid(10)) .
 Final := true
 fi
+ if and(Final, not(Sold)) then
 snd-note(sold(HighestBid)) delay(sec(10)) .
 Sold := true
 fi
+ ConnectBidder(Mid, Bid?) .
 snd-msg(Bid, new-item(Descr, HighestBid)) .
 Final := false

(if not(Sold) then ... fi

) * if Sold then ... fi

Not yet sold, not asked for final bids ...

Wait 10 sec, then ask for final bids

Inform auction master

Yes, now we have asked for final bids

Not yet sold, but asked for final bids ...

Wait 10 sec, then inform
all bidders that item is soldYes, item is now sold

Bidder is connected during sale

Inform new bidder about progress

Restart, final bids (if any)

91Introduction to the ToolBus Coordination Architecture

Process Bidder

process Bidder(Bid : bidder) is
 let Descr : str, Amount : int, Acceptance : term
 in
 subscribe(new-item(<str>, <int>)) . subscribe(update-bid(<int>)) .
 subscribe(sold(<int>)) . subscribe(any-higher-bid) .
 (...
)
 * delta
 endlet

92Introduction to the ToolBus Coordination Architecture

Process Bidder
 ((rec-msg(Bid, new-item(Descr?, Amount?))
 + rec-note(new-item(Descr?, Amount?))
 + rec-disconnect(Bid) . delta
) .
 snd-do(Bid, new-item(Descr, Amount)) .
 (rec-event(Bid, bid(Amount?)) .
 snd-msg(bid(Bid, Amount)) . rec-msg(Bid, Acceptance?) .
 snd-do(Bid, accept(Acceptance)) . snd-ack-event(Bid, bid(Amount))
 + rec-note(update-bid(Amount?)) . snd-do(Bid, update-bid(Amount))
 + rec-note(any-higher-bid) . snd-do(Bid, any-higher-bid)
 + rec-disconnect(Bid) . delta
) *
 rec-note(sold(Amount?)) . snd-do(Bid, sold(Amount))
) *
 delta

Get info about
item for

sale after connection

Same, but normal case

Disconnect between sales

Inform bidder tool

bidder comes with new bid

Inform bidder
Disconnect during sale

End of this sale sale

93Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

– calculator; auction; waves

94Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

– calculator; auction; waves

95Introduction to the ToolBus Coordination Architecture

One-dimensional wave equation

1 2 3 4 5 6 ... N-1
. .. .

.

.

. .
.
. .

i

y
i
(t)

Simulate a string attached at the two end points:

96Introduction to the ToolBus Coordination Architecture

One-dimensional wave equation

y
i
(t+∆t) = F(y

i
(t),y

i
(t-∆t),y

i-1
(t),y

i+1
(t))

F(z
1
,z

2
,z

3
,z

4
) = 2z

1
 ­ z

2
+ (c ∆t/∆x)2 (z

3
­2z

1
+z

4
)

Amplitude at point i at t+∆t is given by:

∆x: the (small) interval between sampling points

c: constant representing the propagation velocity of the wave

and

97Introduction to the ToolBus Coordination Architecture

Example: wave equation

ToolBus

Tools

MakeWave

master

Pend ...Pend P P P P

98Introduction to the ToolBus Coordination Architecture

One-dimensional wave equation

● Auxiliary process F computes function F

● Process P models a sampling point

● Process Pend models the end points

● Process MakeWave constructs N connected
instances of P and two end points

● Tool display visualizes the simulation

99Introduction to the ToolBus Coordination Architecture

Process F
Compute F(z

1
,z

2
,z

3
,z

4
) = 2z

1
 - z

2
+ (c ∆t/∆x)2 (z

3
-2z

1
+z

4
)

process F(Z1 : real, Z2 : real, Z3 : real, Z4 : real, Res : real?) is
 let CdTdX2 : real
 in
 CdTdX2 := 0.01 .
 Res := radd(rsub(rmul(2.0, Z1), Z2),
 rmul(CdTdX2,
 radd(rsub(Z3, rmul(2.0, Z1)), Z4)))
 endlet

Arbitrary value for (c ∆t/∆x)2

 2z
1
 ­ z

2
+

(c ∆t/∆x)2 *

(z
3
­2z

1
+z

4
)

100Introduction to the ToolBus Coordination Architecture

Process P
process P(Tid : display, L : int, I : int, R : int, Dstart : real, Estart : real) is
 let AL : real, AR : real, D : real, D1 : real, E : real
 in
 D := Dstart . E := Estart .
 ((rec-msg(L, I, AL?)
 || rec-msg(R, I, AR?)
 || snd-msg(I, L, E)
 || snd-msg(I, R, E)
 || snd-do(Tid, update(I, E))
) .
 D1 := E .
 F(E, D, AL, AR, E?) .
 D := D1
) * delta
 endlet

L: left, I: this point, R: right

D, E: amplitutes of this point

Receive amplitudes of neighbours

Send our amplitude to neighbours

Update our amplitude on display

Compute new versions of D and E

101Introduction to the ToolBus Coordination Architecture

Process Pend

process Pend(Tid : display, I : int, NB : int) is
 let W : real
 in
 (rec-msg(NB, I, W?) || snd-msg(I, NB, 0.0) ||
 snd-do(Tid, update(I, 0.0))
) * delta
 endlet

Index of this end point

Neighbouring point

Interact with neighbour

Display (constant) amplitude 0 on display

102Introduction to the ToolBus Coordination Architecture

Process MakeWave
process MakeWave(N : int) is
 let Tid : display, Id : int, I : int, L : int, R : int
 in
 execute(display, Tid?) .
 snd-do(Tid, mk-wave(N)) .
 create(Pend(Tid, 0, 1), Id?).
 L := sub(N,1) .
 create(Pend(Tid, N, L), Id?) .
 I := 1 .
 if less(I, N) then
 L := sub(I, 1) . R := add(I, 1) .
 create(P(Tid, L, I, R, 1.0, 1.0), Id?) .
 I := add(I, 1)
 fi *
 shutdown("end") delay(sec(60))
 endlet

Execute display tool
and initialize it

Create the two end points

Create the other points

Shutdown after one minute

103Introduction to the ToolBus Coordination Architecture

Tool definition and ToolBus
configuration

tool display is { command = "wish-adapter -script ui-wave.tcl"}

toolbus(MakeWave(8))

104Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

– calculator; auction; waves

105Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples

– calculator; auction; waves

● Concluding remarks

106Introduction to the ToolBus Coordination Architecture

Not yet discussed: monitors

● A tool can act as a monitor for one or more
ToolBus processes

● Monitors exist in three categories:
– Loggers

– Viewers

– Controllers

● Depending on the category, monitors get all info
about steps of the monitored processes they need

107Introduction to the ToolBus Coordination Architecture

A Monitor

UI ToolBus

Tools

CLOCK

clockuicalc batch mon

CALC BATCH

108Introduction to the ToolBus Coordination Architecture

Loggers

● Non-interactive = processes don't wait for logger
● Non-intrusive = logger can't change process state
● Recording of bahaviour of processes
● Examples:

– System logging

– Generation of play back scripts for UI testing

– Performance measurement

– toolbus -logger calc.tb

109Introduction to the ToolBus Coordination Architecture

Viewers

● Interactive = processes wait for viewer
● Non-intrusive = viewer can't change state
● Viewing of processes
● Monitored processes wait for a continue message

before proceeding
● Example:

– Non-intrusive debugger

– toolbus -viewer calc.tb

110Introduction to the ToolBus Coordination Architecture

Controllers

● Interactive & Intrusive control over processes
● Controlled processes wait for a continue message

(containing new state/process expression)
● Examples:

– Intrusive debugger

– Advanced control applications that perform arbitrary
computations on process expression in tool, but want
to reuse other ToolBus tools

● Not implemented in current version!

