Introduction to the ToolBus
Coordination Architecture

Paul Klint

b4
@ 'ﬁl
UNIVERSITEIT VAN AMSTERDAM

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

The problem: component
interconnection

* Systems become heterogeneous because we want
to couple existing and new software components

— different implementation languages

— different implementation platforms

— different user-interfaces

* Systems become distributed 1n local area
networks

* Needed: interoperability of heterogenous systems

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Component interconnection: reasons

* Reusing existing components decreases
construction costs of new systems

* Decomposing large, monolithic systems 1nto
smaller, cooperating components increases

— modularity
— flexibility

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Component interconnection: 1ssues

* Data integration: exchange of data between
components

* Control integration: flow of control between
components

e User-interface integration: how do the user-
interfaces of components cooperate?

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Data integration

* Data representations differ per

— machine: word size, byte order, floating point
representation, ...

— language implementation: size of integers, emulation
of IEEE floating point standard, ...

* How can we exchange data between components:

— 1ntegers, reals, record => linear encoding

— pointers => impossible 1n general

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Data integration

* Assume a common representation R
o For each component C. (with data domain D)
there exist conversion functions
-f:D ->Randf":R->D,
- Convert a value d, from C, to C by f (f(d))
e Examples: IDDL, ASN-1, ...

* ToolBus uses ATerms as common representation

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Control integration

* Broadcasting: each component can notify other
components of state changes

* Remote procedure calls: components can call
each other as procedures

* (General message passing: the most general
approach

* In the ToolBus Tscripts are used to model the
interactions between components

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

User-interface integration

* There 1s a general trend towards multi-threaded
user-interfaces (concurrency)

* There 1s a general trend to use formal techniques
to specify user-interfaces

* The ToolBus does not address user-interface
integration as separate issue but can be used to
achieve 1t

The lma]-Envirnnment Introduction to the ToolBus Coordination Architecture 10
S

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Brief history of the ToolBus

* Around 1992 the first implementation of the
ASF+SDF Meta-Environment was completed:

- 200 KLOC Lisp code
— Monolithic

— Hard to maintain

e ... all traits of a legacy system

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

13

Time line

* 1992: Unsuccessful decomposition experiments
* 1994: First ToolBus

e 1995: Discrete time ToolBus

e 2001: Meta-Environment restructured

e 2002/3: preparing for the next generation ...

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

=

The @-Envlrnnment

Old

1992

Emacs <«

\

New

User-interface

J

Introduction to the ToolBus Coordination Architecture

15

1993

* Difficult synchronization and communication
problems problems start to appear

* PSF specification of communication; simulation
reveals several deadlocks

* Problems with this specification:

- complex (> 20 pages) and ad hoc
— difficult to extend

— cannot be used to directly coordinate the components

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

16

1993/1994

* Idea of a “ToolBus” as general communication
structure appeared

* First design and implementation

* Several experiments

— Feature 1nteraction in telephone switches (RUU/PTT)
— Traffic control (Nederland Haarlem/UvA/CWI/RUU)
— Management of complex bus stations (1dem)

— Definition of user interfaces (UvA)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

17

1994/1995

e Fall 1994: redesign based on this experience

* Spring 1995: design and implementation of
Discrete Time ToolBus completed

* First experiments to prototype parts of the Meta-
Environment started

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

18

More recently ...

* In 2001 a new implementation of the Meta-
Environment based on the ToolBus was
completed

* End 2002 we have started on a new generation
ToolBus based on these experiences ...

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

19

ToolBus requirements

e Flexible interconnection architecture for software
components

* Good control over communication

* Relatively simple descriptions

* Uniform data exchange format

e Multi-lingual: C, Java, Perl, ASF+SDF, ...
e Potential for verification

e Use existing concurrency theory

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

20

Coordination, Representation &
Computation

* Coordination: the way 1in which program and
system parts interact (procedure calls, RMI, ...)

* Representation: language and machine neutral

data exchanged between components

 Computation: program code that carries out a
specialized task

~

A

A rigorous separation of coordination
from computation is the key to
flexible and reusable systems

~

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

21

Architectural Layers

Coordination

Single Component

Representation

Computation

Representation

Computation

Single Component

Cooperating Components

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

22

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Generic Representation
Annotated Terms (ATerms)

* Applicative, prefix terms

* Maximal subterm sharing (LI DAG)

— cheap equality test, efficient rewriting

— automatic generational garbage collection

* Annotations (text coordinates, dataflow info, ...)

* Very concise, binary, sharing preserving
encoding

* Language & machine independent exchange
format

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

25

ATerms
Term and Annotations

A

Annotations

o -
adh

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

26

A term 1s ...

* a Boolean, integer, real or string

- true, 37, 3.14e-12, "rose”

¢ a value occurrence of a variable

- X, InitialAmount, Highest-bid

e 3 result occurrence of a variable

- X?, InitialAmount?

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture

27

A term 1s ...

* a single identifier

- f, pair, zero
* a function application

- pair("rose”, address("Street”, 12345))
* a list

- [a, b, c], [a, 1.25, “last"], [[a, 1], [b, 2]]
* aplaceholder

- <int>, add(<int> <int>)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Matching of terms

* Term matching 1s used to
— determine which actions can communicate
- to transfer data between sender and receiver
* Intuition:
— terms match 1f the are structurally 1dentical

— value occurrence: use variable's value

— result occurrence: assign matched subterm to variable
(only 1f overall match succeeds!)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

29

Example of term matching

Match
f(X,4Y2,6) and f(3,Z2,5,6)

Introduction to the ToolBus Coordination Architecture

Types

* The ToolBus uses its own type system

— static checks & automatic generation of interface code

* bool, int, real, str
* |ist: list with arbitrary elements

* list(Type): list with Type elements
- list(int)
* ferm: arbitrary term

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 31

Types

* /d: all terms with function symbol Id (allows
partial type declarations)

- f accepts f, f(1), f("abc”,3), ...
.]d(T], el Tn)

- f(int, str) accepts f(3,"abc") but not f(3)
o [T,..,T]: list of elements with given types

n

- [int, str]accepts [1,"abc”] but not [1,2,3]

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

32

Types

e All variables have types
* Types are checked statically when possible
* Types play a role during matching:
— I is int variable, S is str variable, T is term variable
- match f(13) and f(I?)
- match f(13) and f(S?) .
- match f(13) and f(T?)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

33

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

The ToolBus architecture

ToolBus Coordination
A Representation
- - ATerms -
data exchange
format

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 36

The ToolBus architecture

* Processes iside the ToolBus can communicate
with each other

e Too]

S can not communicate with eac]

e Too]

1 other

S can communicate using a fixed

ToolBus I ToolBus

eval

The @-Envirnnment

N

v

| protocol:

ToolBus

value do event ack-event

Introduction to the ToolBus Coordination Architecture 37

A typical scenario

Configuration knowledge

/— only in ToolBus script

Ul and DB are
completely

User-interface Database

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 38

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

ToolBus scripts: processes

* The ToolBus: a parallel composition of processes

* Private variables per process

«P+P P.P P[P P*P

1 2

* .=, if then else

e All data are terms that can be matched

* A limited set of built-in operations on terms

* No other support for datatypes

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

41

ToolBus scripts: processes

Send, receive message (handshaking)

Send/receive notes (broadcasting)
Subscription to notes
Dynamic process creation

Absolute/relative delay, timeout

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

42

ToolBus scripts: tools

e Execute/terminate tools
e Connect/disconnect tools

 Communication between process and tool 1s
synchronous

* Process can send evaluation request to tool
(which returns a value later on)

* Tool can generate events to be handled by the
ToolBus

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

43

Hello World

The Tscript hello.tb

Define the process HELLO

It only prints a string

pr'ocess‘HELLO is prin‘r((“HeIlo world, my first Tscript!\n")

toolbus(HELLO)

Define the initial processes
in the application

Start application with: toolbus hello.tb

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture e
-

Hello World: string generated by tool

g process HELLO is

let H : hello, /

S:str o«

H will represent the tool

S 1s a string variable

In Execute hello,
execute(hello, H?) . H gets a tool id as value
snd-eval(H, get-text) .
rec-value(H, text(5?)) . Request a text from hello tool
printf(S) Receive it,

endlet S gets the value assigned

tool hello is {command = “hello” }

Definition of hello tool:
toolbus(HELLO)

may be written in any language

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 45

Simple clock with user-interface

ToolBus
User can I,)uSh Provides a I"GCIdTi me
d ShOWT|me ﬁlIlCtiOIl
button
Tools

User-interface Clock

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 46

Simple clock with user-interface

process CLOCK is process-expression-1
tool clock is tool-definition-1

process UI is process-expression-2
tool ui is tool-definition-2

toolbus(CLOCK, UI)

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

N

47

Clock

process CLOCK is
let Tid : clock, T: str
in

execute(clock, Tid?).
(
rec-msg(showTime) .
snd-eval(Tid, readTime) .
rec-value(Tid, time(T?)) .
snd-msg(showTime, T)
) * delta

endlet \

Receive a message from
another process

Get time from clock tool

Reply to the message

(..)* deltais an

tool clock is { command = "clock" }

endless loop

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 48

User-interface

p
process UI is

let Tid : ui, T : str

Receive event from ui tool

in
execute(ui, Tid?). /

(rec-event(Tid, button(showTime)) .
snd-msg(showTime) .
rec-msg(showTime, T?) .
snd-do(Tid, display Time(T)) .o
snd-ack-event(Tid, button(showTime))

) * delta

endlet

Get the time

Display it in ui tool

Processing of the event
complete: send
acknowledgement

tool ui is { command = "wish-adapter -script ui.tcl” } .

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 49

Process communication: messages & notes

Tscripts: revisited

Composite processes

Expressions & built-in functions

Time primitives

Tools

The l@a‘;-Envirnnment

Introduction to the ToolBus Coordination Architecture

50

Process communication: messages

* Messages used for synchronous, two-party
communication between processes

* snd-msg and rec-msg synchronize sender/receiver

 Communication 1s possible if the arguments
match

* There 1s two-way data transfer between sender
and receiver (using result variables)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 51

Process communication: notes

* Notes used for asynchronous, broadcasting
communication between processes

* Each process must subscribe to the notes 1t wants
to recerve

* Each process has a private note queue on which
snd-note, rec-note and no-note operate

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 52

Process communication: notes

* subscribe to notes of a given form
- subscribe(compute(<strs> <int>))
* unsubscribe from certain notes
* snd-note to all subscribers
- snd-note(compute(E,V))
* rec-note: receive a note of a given form

* no-note received of given form

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

53

Composite process expressions

* One of the atomic processes mentioned above

* delta (deadlock), tau (silent step)

o P+ P : choice (non-deterministic)
o P.. P : sequential composition

e P || P,: parallel composition

o P * P : repetition

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

54

Composite process expressions

« P(T, T, ..): anamed process (with optional
parameters) will be replaced by its definition

o create(P(T,, T,, ...), Pid?): dynamic process
creation

* V= Expr: evaluate Expr and assign result to V

o if Expr thenP elseP_fi
o if Expr thenP fi=if Expr thenP else delta fi

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

55

Expressions

An expression 1s evaluated in the current
environment of the process in which it occurs

Constants evaluate to themselves: a
Variables evaluate to their current values
Lists evaluate to a list of their evaluated elements

Some function symbols have a built-in meaning

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

56

Built-in functions

* Booleans: not, and, or

* Integers: add, sub, mul, mod, less, less-equal,
greater, greater-equal

* Lists: first, next, get, put, join, member, subset,
diff, inter, size

* Miscellaneous: equal, not-equal, process-id,
process-name, current-time, quote

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

57

Time primitives

* A (relative or absolute) delay or time out may be
associated with each atomic process

* Relative time: delay(Expr) or timeout(Expr)

* Absolute time: abs-delay(y, mon, d, h, min, s) or
abs-timeout(y, mon, d, h, min, s)

* Example:
- printf("expired"”) delay(10)
- printf("Renew account") abs-timeout(2004,4,1,12,0,0)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 58

Process definitions

* Process definition: process Pname Formals is P

* Formals are optional and contain a list of formal
parameter names

- process MakeWave(N : int) is ...

* All variables (including formals) must be
declared and have a type

* let VarDecls in P endlet introduces variables:
- let E:str, V:intin ... endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 59

Tools

e Tools have to be executed or connected before
they can be used

* Requires a tool definition: tool uiis{ ... }
* Introduces a new type, €.g. ui
* Execute a tool: execute(ui, Uid?)

* Recelve connection request: rec-connect(ui,
Uid?)

* Tool identification 1s assigned to Uid (of type uid)

The lM-Envirnnment Introduction to the ToolBus Coordination Architecture 60
pe. o4

Tools

* snd-terminate: terminate an executing tool
- snd-terminate(Tid)

* rec-disconnect: receive disconnection request
from tool

- rec-disconnect(Uid)
* shutdown: terminate the whole ToolBus

- shutdown("Auction ends")

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

61

Tools

* snd-eval, rec-value: request tool to evaluate a
term, and receive the resulting value from tool

— mitiative: ToolBus

* snd-do: request tool to perform some action, there
1s no reply

— mitiative: ToolBus

* rec-event, snd-ack-event: receive event from
tool, acknowledge it after appropriate processing
— 1nitiative: tool

The l@a}-Envirnnment Introduction to the ToolBus Coordination Architecture 62

Tscripts

* A Tscripts consists of

— a list of process and tool definitions

— a single ToolBus configuration

* A ToolBus configuration describes the 1nitial set
of active processes in the ToolBus:

- too bus(Pnamel, Pnamen)

— Eache Pname 1s optionally followed by parameters

The l@a}-Envirnnment Introduction to the ToolBus Coordination Architecture

63

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

— calculator; auction; waves

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Example: calculator

ToolBus

\J
e

The @-Envirnnment

Introduction to the ToolBus Coordination Architecture

66

Example: calculator

* CALC: the calculation process

* BATCH: reads expressions from file, calculates
their value, writes result back to file

e UI: the user-interface
* LOG maintains a log of all calculations

* CLOCK provides current time

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

67

Process CALC

/pr'ocess CALC is]
!e’r Tid : calc, B+ str, V': term Receive compute message
in
execute(calc, Tid?). : ,
(Let calc do the computation

rec-msg(compute, E?) .
snd-eval(Tid, expr(E)) . rec-value(Tid, val(V?)) .
snd-msg(compute, E, V) . snd-note(compute(E, V))

)* delta \—
dlet
endie Note for the logger

Reply to compute message

tool calc is { command = “calc"}

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 68

Process BATCH

process BATCH is

|

let Tid : batch, E: str, V : int

Get an expression from batch tool

in
execute(batch, Tid?).
(

snd-do(Tid, toFile(E, V))

) * delta
endlet

snd-eval(Tid, fromFile) . rec-value(Tid, expr(E?)) .
snd-msg(compute, E) . rec-msg(compute, E, V?).

Evaluate expression

Value back to batch tool

tool batch is {command = "batch"} l

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 69

Calc

show Log

|
User-interface e
|

Quit

* When the user presses Calc, a dialog windqw
appears to enter an expression

* The result 1s diplayed 1n a separate window

Valueis: 7

* Pressing showlog display all calculations so far—

* Pressing showTime displays the current time

* Pressing Quit ends the application

The @t\a‘l-Envirnnment Introduction to the ToolBus Coordination Architecture 70
-/

User-intertace: process UL

~
process UI is
let Tid : ui

In

execute(ui, Tid?).

|

/Calc and Log button are exclusive

(CALC-BUTTON(Tid) + LOG-BUTTON(Tid))* delta

TIME-BUTTON(Tid) * delta

QUIT-BUTTON(Tid)
endlet

e Time and Quit button are independent

tool ui is { command = wish-adapter -script calc.tcl” }

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture 71

User-interface: CALC-BUTTON

"process CALC-BUTTON(Tid : ui) is
!e‘r N:int, E:str, V: term Calc button is pressed
in
rec-event(Tid, N?, button(calc)) . Ask for an expression
snd-eval(Tid, get-expr-dialog) .
(rec-value(Tid, cancel) Get cancel or an expression
+ rec-value(Tid, expr(E?)) .
snd-msg(compute, E) . Compute expression
rec-msg(compute, E, V?). and display its value
snd-do(Tid, display-value(V))
) . snd-ack-event(Tid, N) Acknowledge the button event
endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 72

User-interface: LOG-BUTTON

-
process LOG-BUTTON(Tid : ui) is

let N :int, L : term

In
rec-event(Tid, N?, button(showlLog)) .
snd-msg(showlLog) .
rec-msg(showlLog, L?) .
snd-do(Tid, display-log(L)) .
snd-ack-event(Tid, N)

endlet

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

73

User-interface: TIME-BUTTON

" process TEIME-BUTTON(Tid : ui) is

let N :int, T: str

in rec-event(Tid, N?, button(showTime)) .
snd-msg(showTime) .
rec-msg(showTime, T?) .
snd-do(Tid, display-time(T)) .
snd-ack-event(Tid, N)

endlet

-

process QUIT-BUTTON(Tid : ui) is
rec-event(Tid, button(quit)) .
shutdown("End of calc demo")

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

74

Process LOG

g process LOG is
let Tid : log, E : str, V: term, L : ferm
in subscribe(compute(<str>, <terms)) .
execute(log, Tid?).
(rec-note(compute(E?, V?)) .
snd-do(Tid, writeLog(E, V))
= Show the log of calculations
rec-msg(showlLog) .
snd-eval(Tid, readLog) .
rec-value(Tid, history(L?)) .
snd-msg(showlLog, history(L))
) * delta

Log all calculations

endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 75

Process LOG1

4 . - Alternative definition
processLOGlis o of logger: maintain the
let Thelog : list, E : str, V: term log in a list
in subscribe(compute(<str>, <terms)) .
Thelog = [].

(rec-note(compute(E?, V?)) .
Thelog := join(Thelog, [[E, V]])

rec-msg(showlLog) .
snd-msg(showlLog, ThelLog)
) * delta

endlet

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 76
-

Process CLOCK

| process CLOCK is

let Tid : clock, T: str
In
execute(clock, Tid?).

(rec-msg(showTime) .
snd-eval(Tid, readTime) .
rec-value(Tid, time(T?)) .
snd-msg(showTime, T)

) * delta

endlet

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

77

ToolBus Configuration

The @-Envirnnment

toolbus (CALC, BATCH, UI, LOG, CLOCK)

Creates the processes for the calculator application

Start calculator application:
toolbus calc.tb

Introduction to the ToolBus Coordination Architecture

78

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

— calculator; auction; waves

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

— calculator; auction; waves

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Example: distributed auction

Auction
Master

The @-Envirnnment

Bidder

Auction
Master

Bidder

Distributed Auction

Introduction to the ToolBus Coordination Architecture

Example: distributed auction

* How are bids synchronized?
* How to inform bidders about higher bids?

* How to decide when the bidding 1s over and the
item 1s sold?

* Bidders may come and go during the auction

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

82

Example: distributed auction

Introduction to the ToolBus Coordination Architecture

Tools

83

Example: distributed auction

* The Auction process

— executes master tool: user-interface of auction master
— connection/disconnection of new bidders

— 1ntroduces new items for sale (at the mitiative of the
auction master)

— controls the bidding provess via OneSale

* A Bidder process 1s created for each new bidder

The l@a}-Envirnnment Introduction to the ToolBus Coordination Architecture 84

Process Auction

s .
process Auction is

let Mid : master, Bid : bidder
in

execute(master, Mid?) .
(ConnectBidder(Mid, Bid?)
+

OneSale(Mid)
) x

Execute the master tool

Repeat:

* add new bidder between sales,
or

* perform one sale

rec-event(Mid, quit) .
shutdown("Auction is closed")
endlet

Until:
* auction master quits

Close the auction application

tool master is { command = "wish-adapter -script master.tcl" } '

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture 85

Process ConnectBidder

-

S
let Pid : int, Name : st
in
rec-connect(Bid?) .
create(Bidder(Bid),

endlet

snd-eval(Bid, get-name) . , —

rec-value(Bid, name(Name?)) .
snd-do(Mid, new-bidder(Bid, Name))

process ConnectBidder(Mid : master, Bid : bidder?)

Recelve a connection request
from a new bidder tool

e

Create a new Bidder process

Pid?) .ﬁ

Ask bidder for its name

o

Send name to master tool

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 86

Process OneSale

4 process OneSale(Mid : master) is

let Descr : str, 77 Description of current item for sale
InAmount : inft, 77 Initial amount for item
Amount : int, 77 Current amount
HighestBid : int, %% Highest bid so far
Final : bool, %% Did we already issue a final call for bids?
Sold : bool, %% Is the item sold?
Bid : bidder 77 New bidder tool connected during sale

in rec-event(Mid, new-item(Descr?, InAmount?)) .
HighestBid := InAmount .
snd-note(new-item(Descr, InAmount)) .

Final := false . Sold := false .

(., Where the action 1s ...

) * if Sold then snd-ack-event(Mid, new-item(Descr, InAmount)) fi

87

The | tﬁ-Envirnnment Introduction to the ToolBus Coordination Architecture

Process OneSale

(if not(Sold) then ... fi

+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...

) * if Sold then ... fi

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

88

Process OneSale

“(

if not(Sold) then /— Receixie a bid from a bidder
rec-msg(bid(Bid?, Amount?)) . Inform auction master about it

snd-do(Mid, new-bid(Bid, Amount)) . .ﬁ

if less-equal(Amount, HighestBid) then Reject bid 1f it 1s too low

elssend—msg(Bud, rejected) / Remember as highest bid
HighestBid := Amount . Inform bidder: bid is accepted
snd-msg(Bid, accepted) ‘/ = :
snd-note(update-bid(Amount)) . ¢ Inform a/l bidders
snd-do(Mid, update-highest-bid(Bid, Amount)) . I

Final := false

£i Update auction master

fi
+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...
* if Sold then ... fi
The @-Envirnnment Introduction to the ToolBus Coordination Architecture 89

Process OneSale

(T ror(Eaid) hen Fi Not yet sold, not asked for final bids ...

+ if not(or(Final, Sold)) then Wait 10 sec, then ask for final bids
snd-note(any-higher-bid) delay(sec(10)) . :
snd-do(Mid, any-higher-bid(10)) Inform auction master
Final := true &—— Yes, now we have asked for final bids

fi

+ if and(Final, not(Sold)) then « —— Not yet sold, but asked for final bids ...

snd-note(sold(HighestBid)) delay(sec(10)) . : :
Sold = frue o Wait 10 sec, then inform

fi Yes, item is now sold all bidders that item is sold

+ ConnectBidder(Mid, Bid?) .e—

Bidder is connected during sale

snd-msg(Bid, new-i‘rem(Des@s’rBid)) .

Final := false

Inform new bidder about progress

) * if Sold then ... fi

Restart, final bids (if any)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 90

Process Bidder

process Bidder(Bid : bidder) is
let Descr : str, Amount : int, Acceptance : term
In

subscribe(sold(<int>)) . subscribe(any-higher-bid) .

(..

)
* delta

endlet

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

subscribe(new-item(<str>, <int>)) . subscribe(update-bid(<int>)) .

91

Get 1info about
item for

sale after connection PI’OCCSS B I d d er

Same, but normal case

-~ o
((rec-msg(Bid, new-item(Descr?, Amoun’ryr

Disconnect between sales

+ rec-note(new-item(Descr?, A:myn’r?))_
+ rec-disconnect(Bid) . delta

). -

Inform bidder tool

snd-do(Bid, new-item(Descr, Amount)) .
(rec-event(Bid, bid(Amount?)) .

bidder comes with new bid

snd-msg(bid(Bid, Amount)) . rec-msg(Bid, Acceptance?) .
snd-do(Bid, accept(Acceptance)) . snd-ack-event(Bid, bid(Amount))
+ rec-note(update-bid(Amount?)) . snd-do(Bid, update-bid(Amount))
+ rec-note(any-higher-bid) . snd-do(Bid, any-higher-bid)

Inform bidder

+ rec-disconnect(Bid) . delta o

)*

Disconnect during sale

)* —

rec-note(sold(Amount?)) . snd-do(Bid, sold(Amount))

delta

End of this sale sale

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 92

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

— calculator; auction; waves

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

— calculator; auction; waves

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

One-dimensional wave equation

Simulate a string attached at the two end points:
o
o o
o o
y l(t) ® °
o o
® °
1 2 3 45 6 N-1

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 95
-

One-dimensional wave equation

Amplitude at point i at #+Az 1s given by:

y (i) = Fy () (80, (D, (D))

and

F(z,z,2,2)=2z —z+(c A/A) (z,—2z +z)

Ax: the (small) interval between sampling points

c: constant representing the propagation velocity of the wave

The M-Envirnnment Introduction to the ToolBus Coordination Architecture

|
-

96

Example: wave equation

ToolBus

Introduction to the ToolBus Coordination Architecture

97

One-dimensional wave equation

* Auxiliary process F computes function F
* Process P models a sampling point
* Process Pend models the end points

* Process MakeWave constructs NV connected
instances of P and two end points

* Tool display visualizes the simulation

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

98

The l@a‘;-Envirnnment

Process F

Compute F(z ,z ,z,,z) =2z -z +(c At/Ax)? (z,-2z +z)

/pr'ocess F(Z1: real, Z2 : real, Z3 : real, Z4

: real, Res : real?) is\

let CAdTdX?2 : real

CdTdX2 :=0.01.

/ Arbitrary value for (¢ At/Ax)’
in -

2z —z+
1 2

Res := radd(rsub(rmul(2.0, Z1), Z2),
rmul(CdTdX2, e

(c At/Ax)? *

radd(rsub(Z3, rmul(2.0, Z1)),

Z4)))]

endlet :

(z,—2z +z)

Introduction to the ToolBus Coordination Architecture

99

Process P

n

D := Dstart . E := Estart .
((rec-msg(L, I, AL?) .\

let AL : real, AR : real, D : real, D1 : real, E: realx

/pr'ocess P(Tid : display, L : int, I : int, R : int, Dstart : real, Estart : real) is]

L: left, I: this point, R: right

D, E: amplitutes of this point

rec-msg(R, I, AR?) O
snd-msg(Z, L, E) Receive amplitudes of neighbours
snd-msg(I, R, E) '\ C
snd-do(Tid, update(I, E)) Send our amplitude to neighbours

) . 2

D1:=E. Update our amplitude on display

F(E. D, AL, AR, E?). , .

D := D1 T Compute new versions of D and E

) * delta
endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 100

Process Pend

Index of this end point

Neighbouring point

- o o

process Pend(Tid : display, I : int, NB: int) is

let W : real

Interact with neighbour

Iq
(rec-msg(NB, I, W?) || snd-msg(T, NB, 0.0) ||
snd-do(Tid, update(I, 0.0))

) * delta .¥Display (constant) amplitude 0 on display

endlet '

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 101

Process MakeWave

/pr'ocess MakeWave(N : int) is
let Tid : display, Id : int,I:int,L:int,R:int
in

Execute display tool

execute(display, Tid?). /

snd-do(Tid, mk-wave(N)) .
create(Pend(Tid, 0, 1), Id?).

and 1nitialize it

L := sub(N,1) .
create(Pend(Tid, N, L), Id?).
T:=1.

Create the two end points

PO

if less(I, N) then
L:=sub(I,1).R:=add(I,1).
create(P(Tid, L, I,R, 1.0, 1.0), Id?).

Create the other points

I := add(T, 1)
fi* —

shutdown("end") delay(sec(60))
endlet

Shutdown after one minute

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 102

Tool definition and ToolBus
configuration

-
tool display is { command = "wish-adapter -script ui-wave.tcl"}

toolbus(MakeWave(8))

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 103

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

— calculator; auction; waves

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 104
-

Road map

* The problem: component interconnection
* History & requirements

* Terms, types & matching

* The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples
— calculator; auction; waves

* Concluding remarks

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 105
-

Not yet discussed: monitors

e A tool can act as a monitor for one or more
ToolBus processes

* Monitors exist in three categories:

- Loggers
- Viewers

— Controllers

* Depending on the category, monitors get all info
about steps of the monitored processes they need

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 106

A Monitor

mon Tools

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 107

Loggers

* Non-interactive = processes don't wait for logger
* Non-intrusive = logger can't change process state
* Recording of bahaviour of processes
* Examples:

- System logging

— Generation of play back scripts for Ul testing

— Performance measurement

- toolbus -logger calc.tb

The l@a}-Envirnnment Introduction to the ToolBus Coordination Architecture 108

Viewers

Interactive = processes wait for viewer
Non-intrusive = viewer can't change state
Viewing of processes

Monitored processes wait for a continue message
before proceeding

Example:
— Non-intrusive debugger

- toolbus -viewer calc.tb

The l@a}-Envirnnment Introduction to the ToolBus Coordination Architecture

109

Controllers

Interactive & Intrusive control over processes

Controlled processes wait for a continue message
(containing new state/process expression)

Examples:

— Intrusive debugger

— Advanced control applications that perform arbitrary
computations on process expression in tool, but want
to reuse other ToolBus tools

Not implemented in current version!

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

110

