
1

Chapter 1. ATerm SAF: A High
Performance Streamable Format

Arnold Arnold Lankamp

2008-07-16 10:00:31 +0200 (Wed, 16 Jul 2008)

Table of Contents
Introduction ... 1
Goals .. 1
Requirements ... 2

Format requirements .. 2
Implementation requirements .. 2
Conclusion ... 2

Representation .. 3
Serialization order ... 3
Term header ... 3
IsShared? ... 3
Bit 2 + 3 ... 3
HasAnnos? .. 3
Type ... 3
Encoding of types ... 4
Encoding of shared elements ... 5

Reading and writing .. 5
Splitting elements ... 5

Compression .. 5
Integer encoding / compression ... 6
Compression rates ... 6

Performance ... 7
SDF syntax .. 7
Pico syntax .. 8
a(1) .. 8
Conclusion ... 8

Memory usage .. 8
Example .. 8

Introduction
This document contains the technical documentation of the (Semi-) Streamable ATerm Format,
otherwise known as SAF. This document is mainly intended for the developers and users of the ATerm
library. If you do not understand what ATerms are you’d better stop reading now ;).

Goals
SAF is intended to be a high performance format, capable of exchanging ATerms in an fast, efficient
and platform independent way. The main reason for its development emerged from the wish to transmit
terms across network connections in a ‘streamable’ way with the option to suspend this process at any
point in time to enable multiplexing, while keeping (de-)serialization memory usage constant. The

ATerm SAF: A High Performance Streamable Format

2

currently available ATerm formats (BAF, TAF and the ASCII ATerm format) do not supply any of
these functionalities.

Requirements
The most important requirements for this format and its implementation(s) are:

Format requirements

Portabilty

The format is intended to be fully portable, so it should not contain any platform of language specific
elements.

Streamability

Meaning the ability to send a term in blocks of a by the user specified size, so the (de-)serialization
process can be suspended at regular intervals, if required.

Compactness

Network connection speed is generally the bottleneck when sending data, thus we want the serial
representation to be as compact as possible to conserve bandwidth.

Implementation requirements

Transformation / parsing speed

We want to be able to read and write terms to and from SAF as fast as possible. Current network
connections have a throughput of tens or even hundreds of Megabits per second; we want to be able to
utilize those to their full effect and do not want the transformation / parsing speed to limit the maximal
throughput.

Low memory usage

Memory usage during the (de-)serialization process should be as low as possible and predictable;
this is inline of what is expected of an implementation for use in a high performance / soft real-time
environment. For implementations in a language that use a garbage collector it is highly recommended
that the amount of temporarily allocated object remains as limited as possible and no 'mid-lived' objects
are created; this way there are no (or just very minor) performance penalties for applications that use
the implementation.

No recursive calls

We do not want to be limited by the size of the stack; the implementation should in no way impair
the maximal depth of a tree.

Conclusion
The above requirements are somewhat conflicting. The streamability and portability requirements
limit the sorts of compression techniques that can be used. Additionally compression, generally
speaking, incurs computational overhead, so there is a trade-off between compression and
transformation / parsing speed as well. Low memory usage and performance do not always go hand-
in-hand either. Although all of these requirements are important, transformation / parsing speed should
be favored as long as it does not cancel any of the other requirements out entirely.

ATerm SAF: A High Performance Streamable Format

3

Representation
The serial representation of the format is fairly simple. Every term has a header containing general
information about the term. After this header the serial representation of the term itself is present; the
way this serial representation is layed out is type specific.

Serialization order
The terms and annotations will be serialized in the order in which they are present in the tree (prefix
order). Which is: |term|children|annotations|.

So if we have a term with two children of which the first child has three children, the order will look
like this: |term|child1|child1.1|child1.2|child1.3|child2|.

This is similar to the structure of the ASCII and TAF ATerm formats. A more extensive example will
be presented later on in this document.

Term header
The header contains general information about a term and can optionally contain type specific data
in the two free fields.

This is what the fields in the header represent:

Bit number 1 2 + 3 4 5 + 6 + 7 + 8

Bit mask 0x80 0x40 + 0x20 0x10 0x0f

Meaning IsShared? Free / Type
specific

HasAnnos? Type field

The reason the type field is on the right side of the byte is for performance reasons; this way we do
not have to perform any shifts before adding it to the header. There are no specific reasons for the
locations of the other fields, since they are only one bit flags, it does not matter were they are located.

IsShared?
This is a boolean value that indicates if this term is shared. We will explain how this sharing works
later on. Note that if this bit is set all the other data in the header is not required and can be safely
ignored if present.

Bit 2 + 3
Bit 2 and 3 are free and may be used for type specific data.

HasAnnos?
This is a boolean value that indicates if the term has annotations or not.

Type
The type field contains a four bit value that represents the type id of the term. Note that bit 5 (0x08)
isn't being used at the moment, since we only have seven different term types; this leaves plenty of
room for extension.

ATerm SAF: A High Performance Streamable Format

4

Encoding of types
Every term type has a different encoding.

These are the binary representations of the content of the different term types:

ATermInt

Field Header Value

Size (bytes) 1 1 to 5

For more information on the encoding of integers see the compression chapter.

ATermReal

Field Header Value

Size (bytes) 1 8

Reals are encoded as 64 bit IEEE 754 floating point numbers.

Note that we always use 8 bytes to encode a real. This is because IEEE 754 encoded floating point
numbers always occupy a couple of bits in the highest order byte, restricting us from using the same
trick as with the encoding of integers. They are written in two blocks of 4 bytes, in little endian order.

ATermBlob

Field Header Length Data

Size (bytes) 1 1 to 5 0 to 2^32-1 (depends on
length)

ATermAppl + AFun

Field Header Arity Name length Name bytes

Size (bytes) 1 1 to 5 1 to 5 0 to 2^32-1
(depends on name
length)

An ATermAppl always has a function symbol associated with it. For that reason we decided to combine
them.

ATermAppl + AFun header

Bit 2 (0x40) represents IsFunShared? and bit 3 (0x20) IsQuoted?.

• IsFunShared? is a boolean value that indicates if the function symbol of this appl is shared. If this
flag is set the isQuoted? flag is not required and can be safely ignored if present. We will discuss
sharing [6] in more detail in the compression chapter.

• IsQuoted? is a boolean value that indicates if the function symbol associated with this ATermAppl
is quoted or not.

ATermList

Field Header Size

Size (bytes) 1 1 to 5

ATerm SAF: A High Performance Streamable Format

5

ATermPlaceholder

Field Header

Size (bytes) 1

Encoding of shared elements

A shared ATerm

Field Header (with isShared? Flag set) Term identifier

Size (bytes) 1 1 to 5

A shared AFun

Field Header (with isFunShared? Flag
set)

Function symbol identifier

Size (bytes) 1 1 to 5

Reading and writing
SAF is a (semi-)streamable format, so reading and writing it goes a little different then usual. It
works in a block-wise way. A SAF writer can be requested for the following X bytes of the serial
representation of a term, which can contain partially serialized elements. When reading SAF you will
need information about how large those blocks were to be able to reconstruct the term. For this purpose
we propose to emit a two byte unsigned integer value before every block, which specifies its size.
This is, for example, the case for SAF file I/O; thus you will always need a buffer of 2^16 (65536)
bytes when reading from a 'standard' SAF file. (Note that a 0 block length value indicates a block of
65536 bytes, since 0 length blocks can't exist). Custom ‘shielded’ I/O implementations for SAF are
allowed to use their own values and / or protocol (by shielded we mean implementations that are not
intended to interface with any implementations other then themselfs, since compatibility can not be
guaranteed in these cases).

This block-wise writing and reading method enables us to suspend the (de-)serialization process at
fixed intervals, without the need to assign a different thread to each process. This enables us to
interleave the simultaineous construction of multiple trees of terms in a single threaded environment.

Splitting elements
To reduce the complexity of implementations we decided that only function symbols and BLOBs
should be (de-)serializable in pieces. These are currently the only two types of terms who's serial
representation can occupy more then nine bytes in this format and consequently are the only types
for which it is interesting to split them. All other types of terms are undividable and must occur
sequentially in the same block. For this reason a write buffer must be at least nine bytes in size
(although using such a small buffer is strongly discouraged, because of the relatively large overhead
this would yield in both time and space). All SAF writer implementations have to adhere to this rule
to guarantee the generation of a stream that is compatible with all SAF reader implementations.

Compression
As noted before compression, generally speaking, incurs computational overhead. In this particular
case computational overhead is something we want to avoid or at least restrict as much as possible.

ATerm SAF: A High Performance Streamable Format

6

Also the streamability and portability requirements limit our options in terms of compression
techniques. For this reason we decided to stick the to sharing of 'elements'. With elements we mean
terms / sub trees and function symbols. We can achieve fairly good compression rates with this,
because it is a type of compression that is specifically meant for ATerms; we know what the data and
composition look like and can use that knowledge to our advantage.

We use a LZW like compression technique to handle the sharing. What we do is, every time we
encounter an element we have not seen before we add it to a table and assign it the next 'identifier'
(which is an unsigned integer; the first identifier is 0, which represents the root of the tree). If
we encounter an element that is already present in the table, we set the with the element’s type
corresponding 'shared?' flag in the header and emit the associated identifier. During the deserialization
process we do the exact opposite, every unique element that is encountered is added to an array in
the order in which we find them in the SAF stream; when we run into a shared element, we read the
associated id and replace it by the value that is present at that index in the array. We use separate tables
and arrays for both shared terms / sub trees and shared function symbols.

Integer encoding / compression
We also make use of the fact that small unsigned integers are most common. We are saving some
space by only using the minimal amount of bytes to represent an integer value. The last bit of every
byte is used as a flag to indicate if there are more bytes coming (1) or not (0). In most cases this
means we only need one or two bytes to represent an integer value. On the other hand, to represent
large and negative integer values we need five instead of the regular four bytes, since we 'lose' one
bit per byte. However we expect those cases to be fairly rare. Additionally, all the identifiers that are
used for sharing are small unsigned integers, which occupy a large part of the serial representation of
any term, especially in those with heavy sharing; this was the deciding factor for using this type of
integer encoding. The encoding of the value of the integers is two's complement, because this is the
standard on most (if not all) of todays personal computers. If the underlaying integer representation
of the system you are writing an implementation for is different, keep in mind that you will need to
encode them as two's complement yourself. The byte order is little-endian.

Integer encoding examples

Here are some examples of what certain integers would look like in the above described encoding:

Value Encoded representation

0 00000000

1 00000001

100 01100100

128 10000000 00000001

1000 11101000 00000111

1000000 11000000 10000100 00111101

2000000000 10000000 10101000 11010110 10111001
00000111

-256 10000000 11111110 11111111 11111111
00001111

Compression rates
Here is an overview of the amount of compression that is achieved by the different formats:

SDF syntax (a
relatively large

ASCII TAF BAF SAF GZIP

ATerm SAF: A High Performance Streamable Format

7

term with lots
of sharing)

Size (bytes) 3387103 73082 35308 45097 65279

Compression
(%)

0 97.842 98.958 98.669 98.073

Pico syntax (a
medium size
term)

ASCII TAF BAF SAF GZIP

Size (bytes) 61488 28131 13653 15903 6351

Compression
(%)

0 54.25 77.796 74.136 89.671

a(1) (a very
small term,
illustrating
worst case
overhead)

ASCII TAF BAF SAF GZIP

Size (bytes) 4 5 28 6 31

Compression
(%)

0 -25 -600 -50 -775

As you can see the compression rates SAF achieves are fairly close to those of BAF, which was
designed with compression as its main goal. A comparison with GZIP is a bit harder, since it uses
an entirely different algorithm. Whether or not it achieves better compression rates depends on the
amount of sharing in the tree. Percentage wise larger terms will have more sharing then smaller terms.
The results above illustrate this behavior.

Performance
The current SAF (de-)serialization implementation in both C and Java is multiple times faster then
that of any of the other ATerm formats (BAF, TAF and the ASCII ATerm format).

Here are some benchmarks that illustrate the performance difference between the current C and Java
implementations of the different formats:

(The benchmarks were performed on a AMD 64 3500+ with 1 GB DDR-400 dual-channel RAM. It
shows the 'best of five runs' execution time, measured inside the code (user time spend). Keep in mind
that these measurements are subject to change and are merely an indication).

SDF syntax
This is a relatively large term with lots of sharing.

C ASCII C TAF C BAF C SAF Java ASCII Java TAF Java SAF

Serialization
x10000
(ms)

1744500 38376 100749 23677 2810000 91700 65300

Deserialization
x10000
(ms)

2623500 91494 52544 22777 8150000 166500 83300

Note: in this specific benchmark the ASCII ATerm format measurements are extrapolated from a run
with a hundred iterations, otherwise the test would take too long.

ATerm SAF: A High Performance Streamable Format

8

Pico syntax
This is a medium size term.

C ASCII C TAF C BAF C SAF Java ASCII Java TAF Java SAF

Serialization
x10000
(ms)

49756 16742 34024 6660 49100 31300 18830

Deserialization
x10000
(ms)

46269 34234 17114 5661 144600 58700 26200

a(1)
This is a very small term. This test illustrates the worst case overhead for (de-)serializing a term.

C ASCII C TAF C BAF C SAF Java ASCII Java TAF Java SAF

Serialization
x1000000
(ms)

697 5468 87218 2050 18850 18630 2000

Deserialization
x1000000
(ms)

539 5786 1790 2030 21530 27300 5500

Conclusion
In every benchmark the SAF (de-)serialization implementation clearly has the upper hand by a very
large margin. Only the C ASCII implementation performs better then the C SAF implementation in
the overhead test, since it does not have to allocate any memory. However the overhead of the SAF
implementation in both C and Java is still relatively low compared to the other implementations.

Memory usage
Memory usage of the current SAF (de-)serialization implementations scale linearly with the amount of
unique elements in the tree. This is because a reference to every unique element in the tree is stored in a
hashtable or array during both the serialization as the deserialization process. Also the depth of the tree
influences the memory usage, since that determains the size of the stack that keeps track of the parent
to child relations of the terms in the tree; the size of this stack scales linearly with the depth of the tree.

The worst case memory usage can be calculated in the following way:

Serialization memory usage: (the number of unique terms in the tree * 4 * 4) + (the number of unique
function symbols in the tree * 4 * 4) + (the depth of the tree * 4 * 4).

Deserialization memory usage: (the number of unique terms in the tree * 2 * 4) + (the number of
unique function symbols in the tree * 4) + (the depth of the tree * 8 * 4).

Calculating the exact amount of memory usage is possible, but largely depends on the layout of the
tree. The above calculations serve as a guideline to indicate the maximal memory usage for the (de-
)serialization of a certain term.

Example
The following term:

ATerm SAF: A High Performance Streamable Format

9

line(box(rect(2), rect(5), square(4, 3)), circle(10), circle(10))

Will look like this in the binary format:

0x01 0x03 0x04 line 0x01 0x03 0x03 box 0x01 0x01 0x04 rect 0x02 0x02 0x41 0x03 0x02 0x05 0x01
0x02 0x06 square 0x02 0x04 0x02 0x03 0x01 0x01 0x06 circle 0x02 0x0a 0x80 0x06

Which in bits looks like this (the indent and lines were added to show the child-parent relationship):

|00000001 appl
|00000011 arity = 3
|00000100 fun-length = 4
|01101100 fun-bytes = line
|01101001
|01101110
01100101
 |00000001 appl
 |00000011 arity = 3
 |00000011 fun-length = 3
 |01100010 fun-bytes = box
 |01101111
 |01111000
 |---|
 | |00000001 appl
 | |00000001 arity = 1
 | |00000100 fun-length = 4
 | |01110010 fun-bytes = rect
 | |01100101
 | |01100011
 | |01110100
 | |---|
 | | |00000010 int
 | | |00000010 value = 2
 | |
 | |01000001 appl with shared function symbol
 | |00000011 shared function symbol identifier = 3
 | |---|
 | | |00000010 int
 | | |00000101 value = 5
 | |
 | |00000001 appl
 | |00000010 arity = 2
 | |00000110 fun-length = 6
 | |01110011 fun-bytes = square
 | |01110001
 | |01110101
 | |01100001
 | |01110010
 | |01100101
 | |---|
 | |00000010 int
 | |00000100 value = 4
 | |
 | |00000010 int
 | |00000011 value = 3
 |
 |00000001 appl
 |00000001 arity = 1

ATerm SAF: A High Performance Streamable Format

10

 |00000110 fun-length = 6
 |01100011 fun-bytes = circle
 |01101001
 |01110010
 |01100011
 |01101100
 |01100101
 |---|
 | |00000010 int
 | |00001010 value = 10
 |
 |10000000 shared term
 |00000110 shared term identifier = 6

