Introduction to the ToolBus
Coordination Architecture

Paul Klint

b4
@ I‘?
UNIVERSITEIT VAN AMSTERDAM

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

The problem: component
interconnection

e Systems become heterogeneous because we want
to couple existing and new software components

— different implementation languages

— different implementation platforms

— different user-interfaces

* Systems become distributed in local area
networks

* Needed: interoperability of heterogeneous
systems

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Component interconnection: reasons

e Reusing existing components decreases
construction costs of new systems

 Decomposing large, monolithic systems into
smaller, cooperating components increases

— modularity
— flexibility

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Component interconnection: 1Ssues

e Data integration: exchange of data between
components

* Control integration: flow of control between
components

e User-interface integration: how do the user-
interfaces of components cooperate?

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Data integration

e Data representations differ per

— machine: word size, byte order, floating point
representation, ...

- language implementation: size of integers, emulation
of IEEE floating point standard, ...

 How can we exchange data between components:

— 1ntegers, reals, record => linear encoding

— pointers => impossible in general

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Data integration

e Assume a common representation R
e For each component C (with data domain D)
there exist conversion lfunctions |
-f:D ->Randf":R->D
- Convert a value d, from C, to C by f (f(d))
 Examples: IDDL, ASN-1, XML, ...

* ToolBus uses ATerms as common representation

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

Control integration

e Broadcasting: each component can notify other
components of state changes

 Remote procedure calls: components can call
each other as procedures

* General message passing: the most general
approach

e In the ToolBus Tscripts are used to model the
interactions between components

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

User-interface integration

e The ToolBus does not address user-interface
integration as separate 1ssue but can be used to
achieve 1t

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

10

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
» History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Brief history of the ToolBus

e In 1992 the first implementation of the ASF+SDF
Meta-Environment was completed:

- 200 KLOC Lisp code
— Monolithic

— Hard to maintain

e ... all traits of a legacy system

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 13

Time line

e 1992: Unsuccessful decomposition experiments

e 1994: First generation: ToolBus

e 1995: Second generation: Discrete time ToolBus
e 2001: Meta-Environment based on ToolBus
e 2002/7: Extensions, new functions and structure
e 2007: Third generation: Java-based ToolBus

The lﬂt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 14
pe. o4

-

The @-Envlrnnment

Old

1992

Emacs <« >

\

New

User-interface

J

Introduction to the ToolBus Coordination Architecture

15

1993

 Difficult synchronization and communication
problems problems start to appear

* PSF specification of communication; simulation
reveals several deadlocks

* Problems with this specification:

— complex (> 20 pages) and ad hoc
— difficult to extend

— cannot be used to directly coordinate the components

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

16

1993/1994

e Idea of a “ToolBus™ as general communication
structure appeared

* First design and implementation

e Several experiments

— Feature 1nteraction in telephone switches (RUU/PTT)
— Traffic control (Nederland Haarlem/UvA/CWI/RUU)
— Management of complex bus stations (1dem)

— Definition of user interfaces (UvA)

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

17

1994/1995

e Fall 1994: redesign based on this experience

e Spring 1995: design and implementation of
Discrete Time ToolBus completed

e First experiments to prototype parts of the Meta-
Environment started

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

18

More recently ...

e In 2001 a new implementation of the Meta-
Environment based on the ToolBus was
completed

e In 2007 we have completed a new generation
ToolBus (Java-based) that 1s used by the Meta-
Environment

e The ToolBus can be seen as a Service-oriented
Architecture (SOA) avant la lettre ...

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

19

Structuring and Composition

of Software
e Structured programming Statements
* Functions, procedures & libraries Procedures
* Object-oriented programming &
Modules
: : Modules
 Unix pipes
« DCOM

e Coordination languages & SOA Systermn

The n tgfl-Envirnnment Introduction to the ToolBus Coordination Architecture 20

Service-oriented Architecture (SOA)

e Loose coupling Message exchange

e Service contract patterns

« Autonomy e Coordination

e Abstraction * Atomic transactions
e Reusability

e Composability
e Statelessness

e Discoverability

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

ToolBus requirements

e Flexible interconnection architecture for software
components

* Good control over communication

» Relatively simple descriptions

e Uniform data exchange format

e Multi-lingual: C, Java, Perl, ASF+SDF, ...
* Potential for verification

e Use existing concurrency theory: Process Algebra

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 22

Process Algebra

» A theoretical framework to describe process
behaviour

* Consists of
— Constants: deadlock (0), silent step (1)

- Atomic actions: a, b, c, ...

— Processes X, vy, z, ... built with the operators:

e sequential compositions: .
e non-deterministic choice: +

e parallell composition: ||

The lﬂt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture
pe. o4

23

Basic Process Algebra (BPA)

The basic axioms for choice (+) and sequential
composition (.):

Al. x+y=y+x

A2. (xt+ty)tz=x+(y+2z)
A3. X+Xx=X

A4. x+ty).z=X.z+y.z
Ab5. (X.y) z=X .y.Z

Axioms for deadlock:
A6. X+0=X
A7. 0.X=0

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Merge (||)

Use the auxiliary operator left merge (||):

Ml x[[y=x|_y+tyl_x

M2. a|_x=a.x

M3. a.x|| y=a.x]y)

M4. x+ty)|_z=x]|_z+yl z

Examples:

allb=all b+b|]| a=ab+b.a

a.bllc=a.b|| c+tc]|| a.b=
a.(bllc)+tcab=a.(b.ctcb)+c.ab

The n tgfl-Envirnnment Introduction to the ToolBus Coordination Architecture 25

Process Algebra versus ToolBus

* Process Algebra can be used to describe all
(possibly infinite) behaviours of a collection of
parallel processes

e This behaviour has the form of a process tree still
containing all possible choices

* Properties of the parallel processes can be
verified by verifying this behaviour description,

e.g.

— absence of deadlock

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 26

Process Algebra versus ToolBus

e Atomic actions may be enabled/disabled as a
result of conditions or time constraints

 The ToolBus executes a process expression but
randomly selects one of the enabled arguments of
a choice operator

* The steps taking by the ToolBus are thus just one
possible series of steps that is contained in the
complete behaviour of the process expression:

— a|| b executesas a.b orasb .a(and not both!)

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 27

Coordination, Representation &
Computation

* Coordination: the way in which program and
system parts interact (procedure calls, RMI, ...)

e Representation: language and machine neutral
data exchanged between components

 Computation: program code that carries out a
specialized task

- N
A rigorous separation of coordination

from computation is the key to
flexible and reusable systems

A

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Architectural Layers

Coordination

Single Component

Representation

Computation

Representation

Computation

Single Component

Cooperating Components

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

29

Road map

* The problem: component interconnection
» History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Why not using XML as terms?

e Has been tried 1n various language processing
projects

XML 1s too verbose to represent parse trees of large
(> 100 KLOC) programs

« XML does not provided sharing

e For discussion see: M.G.J. van Brand and P. Klint,
ATerms for manipulation and exchange of

structured data: It's all about sharing, Information
and Software Technology, 49(1), 2007, 55-64.

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 32

Generic Representation
Annotated Terms (ATerms)

* Applicative, prefix terms

* Maximal subterm sharing (= DAGQG)
— cheap equality test, efficient rewriting
— automatic generational garbage collection

e Annotations (text coordinates, datatflow info, ...)

* Very concise, binary, sharing preserving
encoding

* Language & machine independent exchange
format

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

33

ATerms
Term and Annotations

A

Annotations

o -
adh

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

34

A term 1s ...

* a Boolean, integer, real or string

- true, 37, 3.14e-12, "rose”

e a value occurrence of a variable

- X, InitialAmount, Highest-bid

e aresult occurrence of a variable

- X?, InitialAmount?

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture

35

A term 1s ...

e a single 1dentifier

- f, pair, zero
e a function application

- pair("rose”, address("Street”, 12345))
e alist

- [a, b, c], [a, 1.25, “last"], [[a, 1], [b, 2]]
 a placeholder

- <int>, add(<int> <int>)

The l@tgl-Envirnnment Introduction to the ToolBus Coordination Architecture

Matching of terms

 Term matching 1s used to

— determine which actions can communicate

— to transfer data between sender and receiver
e [Intuition:

— terms match if the are structurally identical
— value occurrence: use variable's value

— result occurrence: assign matched subterm to variable
(only 1f overall match succeeds!)

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

37

Example of term matching

Match
f(X,4Y2,6) and f(3,Z2,5,6)

Introduction to the ToolBus Coordination Architecture

Types

 The ToolBus uses 1ts own type system

— static checks & automatic generation of interface code

* bool, int, real, str

* |ist: list with arbitrary elements

* list(Type): list with Type elements

- list(int)

* ferm: arbitrary term

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture

39

Types

e /d: all terms with function symbol Id (allows
partial type declarations)

- f accepts f, f(1), f("abc”,3), ...
.]d(T], el Tn)

- f(int, str) accepts f(3,"abc") but not f(3)
o [T, ..., T]: listof elements with given types

n

- [int, str]accepts [1,"abc”] but not [1,2,3]

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

40

Types

e All variables have types
e Types are checked statically when possible
» Types play a role during matching:
— I is int variable, S is str variable, T is term variable
- match f(13) and f(I?)
- match f(13) and f(S?) ..
- match f(13) and f(T?)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

41

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

* The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

The ToolBus architecture

ToolBus Coordination
A Representation
- - ATerms -
data exchange
format

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 44

The ToolBus architecture

e Processes inside the ToolBus can communicate

with each other

e Tools can not communicate with eacl

1 other

e Tools can communicate using a fixed

| protocol:

ToolBus ToolBus ToolBus I
eval value do event ack-event

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 45

A typical scenario

Configuration knowledge

/— only in ToolBus script

UI and DB are
completely

User-interface Database

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 46

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

* The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

ToolBus scripts: processes

 The ToolBus: a parallel composition of processes

* Private variables per process

.P+P_ P.P P||P, P*P

1 2

* := if then else

e All data are terms that can be matched

e A limited set of built-in operations on terms

e No other support for datatypes

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture

49

ToolBus scripts: processes

Send, receive message (handshaking)

Send/receive notes (broadcasting)
Subscription to notes
Dynamic process creation

Absolute/relative delay, timeout

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

50

ToolBus scripts: tools

e Execute/terminate tools
 Connect/disconnect tools

 Communication between process and tool 1s
synchronous

* Process can send evaluation request to tool
(which returns a value later on)

* Tool can generate events to be handled by the
ToolBus

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

51

Hello World

The Tscript hello.tb

Define the process HELLO

It only prints a string

pr'ocess‘HELLO is prin’rﬁ‘l—lello world, my first Tscript!\n“)

toolbus(HELLO)

Define the 1nitial processes
in the application

Start application with: toolbus hello.tb

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 52
-

Hello World: string generated by tool

" process HELLO is

et H: hello.s

S:str o«

H will represent the tool

S 1s a string variable

In Execute hello,
execute(hello, H?) . H gets a tool id as value
snd-eval(H, get-text) .
rec-value(H, text(S?)) . Request a text from hello tool
printf(S) Receive it,

endlet S gets the value assigned

tool hello is {command = “hello" }

Definition of hello tool:
toolbus(HELLO)

may be written in any language

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 53

Simple clock with user-interface

ToolBus
User can I?uSh Provides a readTime
a showTime function
button
Tools

User-interface Clock

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 54

Simple clock with user-interface

process CLOCK is process-expression-1
tool clock is tool-definition-1

process UI is process-expression-2
tool ui is tool-definition-2

toolbus(CLOCK, UI)

The @\ -Environment Introduction to the ToolBus Coordination Architecture

55

Clock

process CLOCK is
let Tid : clock, T: str
in

execute(clock, Tid?).
(
rec-msg(showTime) .
snd-eval(Tid, readTime) .
rec-value(Tid, time(T?)).
snd-msg(showTime, T)
) * delta

endlet \

Receive a message from
another process

Get time from clock tool

Reply to the message

(..)* deltaisan

tool clock is { command = "clock” }

endless loop

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 56

User-1nterface

p
process UT is

let Tid : ui, T: str

Receive event from ui tool

in
execute(ui, Tid?) . /

(rec-event(Tid, button(showTime)) .
snd-msg(showTime) .o
rec-msg(showTime, T?) .
snd-do(Tid, displayTime(T)) .o
snd-ack-event(Tid, button(showTime))

) * delta

endlet

Get the time

Display it in ui tool

Processing of the event
complete: send
acknowledgment

tool ui is { command = "wish-adapter -script ui.tcl” } .

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 57

Tscripts: 1n more detail

* Process communication: messages & notes
* Composite processes

e Expressions & built-in functions

e Time primitives

e Tools

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Process communication: messages

* Messages used for synchronous, two-party
communication between processes

* snd-msg and rec-msg synchronize sender/receiver

e Communication 1s possible if the arguments
match

* There 1s two-way data transfer between sender
and receiver (using result variables)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 59

Process communication: notes

* Notes used for asynchronous, broadcasting
communication between processes

* Each process must subscribe to the notes it wants
to recerve

» Each process has a private note queue on which
snd-note, rec-note and no-note operate

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

60

Process communication: notes

* subscribe to notes of a given form
- subscribe(compute(<str> <int>))
* unsubscribe from certain notes
* snd-note to all subscribers
- snd-note(compute(E,V))
* rec-hote: receive a note of a given form

* no-note received of given form

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

61

Composite process expressions

* One of the atomic processes mentioned above

* delta (deadlock), tau (silent step)

» P+ P_: choice (non-deterministic)
» P P_: sequential composition

« P || P_: parallel composition

» P* P_: repetition

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

62

Composite process expressions

- P(T, T, ..): anamed process (with optional
parameters) will be replaced by its definition

- create(P(T, T, ..), Pid?): dynamic process
creation

* V= Expr: evaluate Expr and assign result to V

- if Expr thenP elseP_fi
- if Expr thenP_fi = if Expr then P else delta fi

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

63

Expressions

e An expression is evaluated in the current
environment of the process in which it occurs

 Constants evaluate to themselves: a
e Variables evaluate to their current values
e [.ists evaluate to a list of their evaluated elements

e Some function symbols have a built-in meaning

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

The @-Envirnnment

- /

[
N,

Built-1n functions

Booleans: not, and, or

Integers: add, sub, mul, mod, less, less-equal,
greater, greater-equal

Lists: first, next, get, put, join, member, subsef,
diff, inter, size

Miscellaneous: equal, not-equal, process-id,
process-name, current-time, quote

Introduction to the ToolBus Coordination Architecture

65

Time primitives

* A (relative or absolute) delay or time out may be
associated with each atomic process

* Relative time: delay(Expr) or timeout(Expr)

* Absolute time: abs-delay(y, mon, d, h, min, s) or
abs-timeout(y, mon, d, h, min, s)

 Example:
- printf("expired"”) delay(10)
- printf("Renew account”) abs-timeout(2008,4,1,12,0,0)

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 66

[
"/

Process definitions

* Process definition: process Pname Formals is P

» Formals are optional and contain a list of formal
parameter names

- process MakeWave(N : int) is ...

e All variables (including formals) must be
declared and have a type

* let VarDecls in P endlet introduces variables:
- let E:str,V:intin ... endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 67

Tools

Tools have to be executed or connected before
they can be used

Requires a tool definition: tool uiis { ... }
Introduces a new type, €.g. ui
Execute a tool: execute(ui, Uid?)

Receive connection request: rec-connect(ui,
Uid?)

Tool 1dentification 1s assigned to Uid (of type uid)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 68

Tools

* snd-terminate: terminate an executing tool
- snd-terminate(Tid)

* rec-disconnect: receive disconnection request
from tool

- rec-disconnect(Uid)
* shutdown: terminate the whole ToolBus

- shutdown("Auction ends")

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

[
"/

69

Tools

* snd-eval, rec-value: request tool to evaluate a
term, and receive the resulting value from tool

— 1mitiative: ToolBus

* snd-do: request tool to perform some action, there
1s no reply

— 1mitiative: ToolBus

* rec-event, snd-ack-event: receive event from
tool, acknowledge it after appropriate processing
— 1nitiative: tool

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 70

Tscripts

* A Tscripts consists of

— a list of process and tool definitions

— a single ToolBus configuration

* A ToolBus configuration describes the initial set
of active processes in the ToolBus:

- too bus(Pnamel, Pnamen)

— Eache Pname 1s optionally followed by parameters

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

71

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

* ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection

e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples: calculator; auction; waves
* Implementation 1ssues

e Conclusions

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

Example: calculator

ToolBus

\J
-

The @-Envirnnment

Introduction to the ToolBus Coordination Architecture

75

Example: calculator

 CALC: the calculation process

« BATCH: reads expressions from file, calculates
their value, writes result back to file

e UI: the user-interface
 LOG maintains a log of all calculations

 CLOCK provides current time

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Process CALC

(process CALC is]
!e’r Tid : calc, E : str, V: ferm Receive compute message
in
execute(calc, Tid?). : ,
(Let calc do the computation

rec-msg(compute, E?) .
snd-eval(Tid, expr(E)) . rec-value(Tid, val(V?)) .
snd-msg(compute, E, V) . snd-note(compute(E, V))

)* delta \—
dlet
endie Note for the logger

Reply to compute message

tool calc is { command = “calc"}

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 77

Process BATCH

process BATCH is

|

let Tid : batch, E: str, V: int

Get an expression from batch tool

in
execute(batch, Tid?).
(

snd-do(Tid, toFile(E, V))

) * delta
endlet

snd-eval(Tid, fromFile) . rec-value(Tid, expr(E?)) .
snd-msg(compute, E) . rec-msg(compute, E, V?).

Evaluate expression

Value back to batch tool

tool batch is {command = "batch"} l

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 78

Calc

show Log

. |
User-interface -
|

Quit

 When the user presses Calc, a dialog window
appears to enter an expression

* The result is diplayed 1n a separate window

Valueis: 7

* Pressing showlog display all calculations so far—

* Pressing showTime displays the current time

* Pressing Quit ends the application

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 79

User-intertace: process UL

~
process UL is
let Tid : ui

In

execute(ui, Tid?).

|

/Calc and Log button are exclusive

(CALC-BUTTON(Tid) + LOG-BUTTON(Tid))* delta

TIME-BUTTON(Tid) * delta

QUIT-BUTTON(Tid)
endlet

e Time and Quit button are independent

tool ui is { command = wish-adapter -script calc.tcl” }

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture 80

User-interface: CALC-BUTTON

"process CALC-BUTTON(Tid : ui) is
!eT N:int, E:str, V: term Calc button is pressed
in
rec-event(Tid, N?, button(calc)) . Ask for an expression
snd-eval(Tid, get-expr-dialog) .
(rec-value(Tid, cancel) Get cancel or an expression
+ rec-value(Tid, expr(E?)) .
snd-msg(compute, E) . Compute expression
rec-msg(compute, E, V?). and display its value
snd-do(Tid, display-value(V))
) . snd-ack-event(Tid, N) Acknowledge the button event
endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 81

User-interface: LOG-BUTTON

-
process LOG-BUTTON(Tid : ui) is

let N :int, L : term

in
rec-event(Tid, N?, button(showlLog)) .
snd-msg(showlLog) .
rec-msg(showlLog, L?) .
snd-do(Tid, display-log(L)) .
snd-ack-event(Tid, N)

endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

82

User-interface: TIME-BUTTON

" process TEIME-BUTTON(Tid : ui) is

let N : int, T: str

in rec-event(Tid, N?, button(showTime)) .
snd-msg(showTime) .
rec-msg(showTime, T?) .
snd-do(Tid, display-time(T)) .
snd-ack-event(Tid, N)

endlet

-

process QUIT-BUTTON(Tid : ui) is
rec-event(Tid, button(quit)) .
shutdown("End of calc demo")

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

83

Process LOG

g process LOG is
let Tid : log, E : str, V: term, L : term
in subscribe(compute(<str>, <term>)) .
execute(log, Tid?).
(rec-note(compute(E?, V?)) .
snd-do(Tid, writeLog(E, V))
= Show the log of calculations
rec-msg(showlLog) .
snd-eval(Tid, readLog) .
rec-value(Tid, history(L?)) .
snd-msg(showlLog, history(L))
) * delta

Log all calculations

endlet

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 84

Process LOG1

4 . - Alternative definition
processLOGlis o of logger: maintain the
let Thelog : list, E : str, V: ferm log in a list
in subscribe(compute(<str>, <terms)) .
Thelog = [].

(rec-note(compute(E?, V?)) .
Thelog := join(Thelog, [[E, V]])

rec-msg(showlLog) .
snd-msg(showlLog, Thelog)
) * delta

endlet

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 85
-

Process CLOCK

| process CLOCK is

let Tid : clock, T: str
In
execute(clock, Tid?).

(rec-msg(showTime) .
snd-eval(Tid, readTime) .
rec-value(Tid, time(T?)) .
snd-msg(showTime, T)

) * delta

endlet

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

86

ToolBus Configuration

The @-Envirnnment

toolbus (CALC, BATCH, UI, LOG, CLOCK)

Creates the processes for the calculator application

Start calculator application:
toolbus calc.tb

Introduction to the ToolBus Coordination Architecture

87

Road map

* The problem: component interconnection

e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples: calculator; auction; waves
* Implementation 1ssues

e Conclusions

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

Road map

* The problem: component interconnection

e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples: calculator; auction; waves
* Implementation 1ssues

e Conclusions

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture

Example: distributed auction

Auction
Master

The @-Envirnnment

Bidder

Auction
Master

Bidder

Distributed Auction

Introduction to the ToolBus Coordination Architecture

Example: distributed auction

 How are bids synchronized?
 How to inform bidders about higher bids?

 How to decide when the bidding 1s over and the
item 1s sold?

e Bidders may come and go during the auction

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

Example: distributed auction

Introduction to the ToolBus Coordination Architecture

Tools

92

Example: distributed auction

* The Auction process

— executes master tool: user-interface of auction master
— connection/disconnection of new bidders

— 1ntroduces new items for sale (at the mitiative of the
auction master)

— controls the bidding provess via OneSale

* A Bidder process 1s created for each new bidder

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 93

Process Auction

s .
process Auction is

let Mid : master, Bid : bidder
in
execute(master, Mid?) .
(ConnectBidder(Mid, Bid?)
+

OneSale(Mid)
) x

Execute the master tool

Repeat:

e add new bidder between sales,
or

e perform one sale

rec-event(Mid, quit) .
shutdown("Auction is closed")
endlet

Until:
e auction master quits

Close the auction application

tool master is { command = "wish-adapter -script master.tcl" } '

The l@-Envirnnment

Introduction to the ToolBus Coordination Architecture 94

Process ConnectBidder

-

S
let Pid : int, Name : st
in
rec-connect(Bid?) .
create(Bidder(Bid),

endlet

snd-eval(Bid, get-name) . , —

rec-value(Bid, name(Name?)) .
snd-do(Mid, new-bidder(Bid, Name))

process ConnectBidder(Mid : master, Bid : bidder?)

Receive a connection request
from a new bidder tool

e

Create a new Bidder process

Pid?) .ﬁ

Ask bidder for its name

o

Send name to master tool

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 95

Process OneSale

4 process OneSale(Mid : master) is

let Descr : str, 77 Description of current item for sale
InAmount : int, %% Initial amount for item
Amount : int, 7% Current amount
HighestBid : int, %% Highest bid so far
Final : bool, 7% Did we already issue a final call for bids?
Sold : bool, %% Is the item sold?
Bid : bidder 77 New bidder tool connected during sale

in rec-event(Mid, new-item(Descr?, InAmount?)) .
HighestBid := InAmount .
snd-note(new-item(Descr, InAmount)) .

Final := false . Sold := false .

(., Where the action is ...

) * if Sold then snd-ack-event(Mid, new-item(Descr, InAmount)) fi
endlet

Meta-Environment
"

Introduction to the ToolBus Coordination Architecture

96

Process OneSale

(if not(Sold) then ... fi

+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...

) * if Sold then ... fi

The @-Envirnnment Introduction to the ToolBus Coordination Architecture

97

Process OneSale

“(

if not(Sold) then /— Receixie a bid from a bidder
rec-msg(bid(Bid?, Amount?)) . Inform auction master about it

snd-do(Mid, new-bid(Bid, Amount)) . .ﬁ

if less-equal(Amount, HighestBid) then Reject bid 1f 1t 1s too low

elssend-msg(Bud, rejected) / Remember as highest bid
HighestBid := Amount . Inform bidder: bid is accepted
snd-msg(Bid, accepted) ‘/ . :
snd-note(update-bid(Amount)) . ¢ Inform a/l bidders
snd-do(Mid, update-highest-bid(Bid, Amount)) . I

Final := false

£i Update auction master

fi
+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...
* if Sold then ... fi
The @-Envirnnment Introduction to the ToolBus Coordination Architecture 98

Process OneSale

(T nor(Eaid) hen Fi Not yet sold, not asked for final bids ...

+ if not(or(Final, Sold)) then Wait 10 sec, then ask for final bids
snd-note(any-higher-bid) delay(sec(10)) . :
snd-do(Mid, any-higher-bid(10)) . Inform auction master
. Final := frue e—— Yes, now we have asked for final bids
|

+ if and(Final, not(Sold)) then « —— Not yet sold, but asked for final bids ...

snd-note(sold(HighestBid)) delay(sec(10)) . : :
Sold = frue o Wait 10 sec, then inform

fi Yes, item is now sold all bidders that item is sold

+ ConnectBidder(Mid, Bid?) .e—

Bidder is connected during sale

snd-msg(Bid, new-i’rem(Des@szid)) .

Final := false

Inform new bidder about progress

) * if Sold then ... fi

Restart, final bids (if any)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 99

Process Bidder

process Bidder(Bid : bidder) is
let Descr : str, Amount : int, Acceptance : term
in
subscribe(new-item(<str>, <int>)) . subscribe(update-bid(<int>)) .
subscribe(sold(<int>)) . subscribe(any-higher-bid) .

(..

)
* delta

endlet

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 100
-

Get info about
item for .
sale after connection PI’()CCSS B | d d er
' o

((rec-msg(Bid, new-item(Descr?, Amoun’ryr Same, but nor:nal RS
+ rec-note(new-item(Descr?, W Disconnect between sales
+ rec-disconnect(Bid) . delta ——=
). « Inform bidder tool
snd-do(Bid, new-item(Descr, Amount)) . : - :
(rec-event(Bid, bid(Amount?)) . «— | Pidder comes with new bid

snd-msg(bid(Bid, Amount)) . rec-msg(Bid, Acceptance?) .
snd-do(Bid, accept(Acceptance)) . snd-ack-event(Bid, bid(Amount))
+ rec-note(update-bid(Amount?)) . snd-do(Bid, update-bid(Amount))

+ rec-note(any-higher-bid) . snd-do(Bid, any-higher-bid) Inform bidder

+ rec-disconnect(Bid) . delta o

Disconnect during sale

) x*
rec-note(sold(Amount?)) . snd-do(Bid, sold(Amount))

L*H — End of this sale sale
elta

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 101

Road map

* The problem: component interconnection

e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples: calculator; auction; waves
* Implementation 1ssues

e Conclusions

The lﬁt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 102
s

Road map

* The problem: component interconnection

e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples: calculator; auction; waves
* Implementation 1ssues

e Conclusions

The lﬁt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 103
s

One-dimensional wave equation

Simulate a string attached at the two end points:
o
o o
o o
y l(t) ® °
o o
® °
1 2 3 45 6 N-1

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 104
-

One-dimensional wave equation

Amplitude at point i at #+Afr 1s given by:

YA = Fy () (LAY, (D, (D)

and

F(z,z,2,2)=2z —z+(c AU/Ax)" (z,—2z +z)

Ax: the (small) interval between sampling points

c: constant representing the propagation velocity of the wave

The l@tgl-Envirnnment Introduction to the ToolBus Coordination Architecture

105

Example: wave equation

ToolBus

Introduction to the ToolBus Coordination Architecture 106

One-dimensional wave equation

* Auxiliary process F computes function F
* Process P models a sampling point
* Process Pend models the end points

 Process MakeWave constructs N connected
instances of P and two end points

* Tool display visualizes the simulation

The lma]-Envirnnment Introduction to the ToolBus Coordination Architecture 107
o

Process F

Compute F(z ,z,,z,,z) =2z -z +(c At/Ax)’ (z,-2z tz,)

/pr'ocess F(Z1: real, Z2 : real, Z3 : real, Z4

: real, Res : real?) is\

let CATdX2 : real

CdTdX2 :=0.01.

/ Arbitrary value for (¢ At/Ax)’
in -

2z —z+
1 2

Res := radd(rsub(rmul(2.0, Z1), Z2),
rmul(CdTdX2, e

(c At/Ax)? *

radd(rsub(Z3, rmul(2.0, Z1)),

Z4)))]

endlet :

(z,—2z +z)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture

108

The l@t\a‘;-Envirnnment

Process P

in

D := Dstart . E := Estart .
((rec-msg(L, I, AL?) .\

let AL : real, AR : real, D : real, D1 : real, E: r'ealx

/pr'ocess P(Tid : display, L : int, I : int, R : int, Dstart : real, Estart : real) is1

L: left, I: this point, R: right

D, E: amplitutes of this point

rec-msg(R, I, AR?) 5
snd-msg(Z, L, E) Receive amplitudes of neighbours
snd-msg(Z, R, E) '\ N
snd-do(Tid, update(T, E)) Send our amplitude to neighbours

). C

D1:=E. Update our amplitude on display

F(E. D, AL, AR, E?). . i

D(;: D1 : T Compute new versions of D and E

) * delta
endlet

Introduction to the ToolBus Coordination Architecture 109

Process Pend

Index of this end point

Neighbouring point

- o o

process Pend(Tid : display, I : int, NB: int)is

let W : real

Interact with neighbour

Iq
(rec-msg(NB, I, W?) || snd-msg(T, NB, 0.0) ||
snd-do(Tid, update(I, 0.0))

) * delta .¥Display (constant) amplitude 0 on display

endlet '

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 110

Process MakeWave

/pr'ocess MakeWave(N : int) is
let Tid : display, Id :int, I :int,L:int,R: int
in

Execute display tool

execute(display, Tid?). /

snd-do(Tid, mk-wave(N)) .
create(Pend(Tid, O, 1), Id?).

and 1nitialize it

L := sub(N,1) .
create(Pend(Tid, N, L), Id?).
T:=1.

Create the two end points

PO

if less(I, N) then
L:=sub(I,1).R:=add(I,1).
create(P(Tid, L, I,R, 1.0, 1.0), Id?).

Create the other points

I:=add(I,1)
fi* —

shutdown("end") delay(sec(60))
endlet

Shutdown after one minute

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 111

Tool definition and ToolBus
configuration

-
tool display is { command = "wish-adapter -script ui-wave.tcl"}

toolbus(MakeWave(8))

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 112

Road map

* The problem: component interconnection

e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples: calculator; auction; waves
* Implementation 1ssues

e Conclusions

The lﬁt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 113
s

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 114
-

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
— Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 115

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
— Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 116

Requirements ATerms

* Open: independent of hw/sw platform
e Simple: a small API
e Efficient: fast reading and writing

e Concise: small memory usage

* Language-independent

e Annotations: applications can transparantly store
additional information 1n data structure

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 117

ATerm Types

o INT

« REAL

 APPL

o LIST

« PLACEHOLDER

« BLOB (Binary Large OBject)
« ANNOTATION

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 118

Examples

* 1 314 -0.7E34

* f(a,b) "test!"(1, 2.1, "hello")
* [] [1, 2, "abc"]

* <int> f(<int>, <real>)

* BLOBS

— used to encode images, binary files, ...

— have no textual representation

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 119

|
-

The ATerm Implementation

e C and Java API

e Only applicative operations
— No destructive operations on ATerms

e Maximal subterm sharing
e Automatic garbage collection

e Binary encoding (BAF: Binary ATerm Format)

The lﬂt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 120
o

The ATerm C API

e [Level 1: 41 functions

e Level 2: 80 functions (superset of Level 1)
e All function start with AT

e Defines types ATerm and ATbool

 Make and Match

 Read and Write

e Annotate

The lma]-Envirnnment Introduction to the ToolBus Coordination Architecture 121
o

Intermezzo: Patterns

e A pattern 1s an ATerm with placeholders:
incr(<int>)

e A string pattern 1s a pattern represented as string:
"incr(<int>)"

e A string pattern resembles the format string in
printf/scanf in C

e Placeholders correspond to typed arguments of
ATmake/ATmatch

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 122

Make and Match

* ATerm ATmake(String p, ATermal, ...)
— parse p and fill placeholders with al, a2, ...
* ATerm ATmatch(ATerm 1, String p, ATerm *al, ...)

— match t against p; assign subterms at placeholders to
al, a2,...

* ATbool ATisEqual(ATerm 11, ATerm 12)
* int ATgetType(ATerm 1)

The lf\ﬂtgl-Envirnn ment Introduction to the ToolBus Coordination Architecture 123

Read and Write

* ATerm ATreadFromString(String s)

* ATerm ATreadFromTextFile(File f)

* ATerm ATreadFromBinaryFile(File f)

* ATbool ATwriteToTextFile(ATerm t, File f)
* ATbool ATwriteToBinaryFile(ATerm t, File f)
* char *ATwriteToString(ATerm t)

The I@%’I-Envirnn ment Introduction to the ToolBus Coordination Architecture 124

Annotate

* ATerm ATsetAnnotation(ATerm t, ATerm |,
ATerm a)

- add annotation [I, a] to copy of t
* ATerm ATgetAnnotation(ATerm t, ATerm [)

* ATerm ATremoveAnnotation(ATerm t, ATerm |)

The lm;'l-Envirnn ment Introduction to the ToolBus Coordination Architecture 125

Other Functions in the Level 1 API

e Variations on the preceeding functions
* ATprintf
e handlers (warnings and errors)

e protect/unprotect

The lﬂt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 126
o

Structure of an ATerm-based

Application

{

foo();

retur

The l@-Envirnnment

-
ATerm bottomOf Stack;
ATinit(argc,argv,&bottomOf Stack);

" #include <stdio.h>
#include <aterml.h>

int main(int argc, char * argv[])

Needed for garbage collector

Initialize ATerm library
o, -
Application code goes here

J

Introduction to the ToolBus Coordination Architecture 127

Detailed operations for efficient ATerm
manipulation

The Level 2 API

Dictionaries

Tal

bles

Inc

exed sets

The l@t\a‘;-Envirnnment

Introduction to the ToolBus Coordination Architecture

128

The Java API

e Two versions:

— Native (uses the C version via JNI, not implemented)

— Pure (a pure Java reimplementation)

* Interface ATermFactory encapsulates the whole
API

e Separate interfaces for each kind of ATerm
(AFun, ATermList, etc.)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 129

Class Structure

- PurcFactory

implemented-by

5; is-a relation

4 part-of relation

-
-

1 1 1 1

1 next 1| first

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 130

Using ATermFactory

import aterm.*

factory = new PureFactory();

ATerm t1 = factory.makeInt(3)

ATerm t2 = factory.readFromFile("test.trm");
ATerm t3 = factory.makeAFun("f1", 1, false):;
ATerm 14 = factory.make("f(<int>)", 3):
ATerm 15 = factory.parse("f(1, [a, b])"):;

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 131

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
— Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 132

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
— Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 133

ToolBus design/implementation
method

» Specification of ToolBus using ASF+SDF

e Execution of small test cases
— Tool behaviour i1s defined very abstractly

 Hand translation of ASF+SDF specification to C

— Literal translation of Tscripts

— Implementation of tools 1s more concrete (see later)
e Very few bugs in ToolBus implementation

— Some bugs turned out to be bugs in the specification!

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 134

The ToolBus implementation

The ToolBus is implemented as
a Unix process that interprets Tscripts

ToolBus

ToolBus/Tool communication
o is implemented using
TCP/IP sockets

Tools are implemented as
separate Unix processes

Introduction to the ToolBus Coordination Architecture 135

The ToolBus Interpreter

e Syntax analysis of Tscript (lex/yacc)

e Typechecking of Tscript

* Create the 1nitial ToolBus configuration
e Start execution

* Delays and timeouts

e Garbage collection of terms

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 136

The ToolBus Interpreter

* Execute tools as separate Unix process

* On creation: send expected input signature to tool
— Permits detection of Tscript/tool mismatches

* During execution of tool: check terms received
from tool against their output signature

— Permits detection of misbehaving tools

* Enforce ToolBus protocol for each tool

The lﬂt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 137
o

Main Interpreter Loop

e Wait for

— an event coming from one of the tools

— expiration of a timer

 Compute effect of event/timer on ToolBus state
* Perform any enabled atomic actions
* Repeat as long as possible

e Go back to waiting state

The lﬂt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 138
o

ToolBus Interpreter

 Interpreter maintains a lists of processes

e Each process 1s compiled into a finite automaton
with an action associated with each transition

— From the enabled actions one 1s selected randomly
and executed

— The process goes to corresponding next state

* A select system call waits for 1/0 on any socket
or expiration of timer

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 139

ToolBus/tool connection

Well-know socket of ToolBus
at fixed address

Tool, connects to well-know
socket and sends
tool name and host name

ToolBus

Tool receives socket
address and tool id

New socket is created

i

e

Communication starts Tool wants to connect toToolBus

The @\ -Environment Introduction to the ToolBus Coordination Architecture 140

Implementation considerations

e Terms are linearized before sending and parsed
when receiving them

e There 1s a separate transport layer that provides
byte level messages of given length (to avoid
system dependent segmentation of the byte
stream)

The lﬂt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 141
o

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
— Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 142

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
- Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 143
-

Recall the Hello World script

‘ process HELLO is printf("Hello world, my first Tscript!\n")

toolbus(HELLO)

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 144

Hello World: string generated by tool

" process HELLO is
let H : hello,
S :str

" How can we implement this tool?

execute(hello, H?) .

snd-eval(H, get-text) .
rec-value(H, text(S?)) .
printf(S)

endlet

tool hello is {command = “hello" }
toolbus(HELLO)

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 145

First version of a hello tool (C)

" #include <stdio.h> / Level 1 interface of ATerms
#include <«aterml.h> ToolBus primiti\:es
#include <atb-tool.h B
ATerm hello_handler(int conn, ATerm inp) { ... J» Interrupt handler

B
int main(int argc, char *argv[]) Initialize application
{ ATerm bottomOfStack; =

ATBinit(argc, argv, &bottomOfStack), o Connect to ToolBus
if(ATBconnect(NULL, NULL, -1, hello_handler) >= OX I

AV e Start event loop
}else {

fprintf(stderr, "hello: Could not connect to the ToolBus, giving up!\n"):I

return -1;
} Give up when connection

return O;

fails
}

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 146

hello_handler

-~

get-text

ATerm hello_handler(int conn, ATerm inp)
{ ATerm arg, isig, osig; /

if(ATmatch(inp, "rec-eval(get-text)"))

return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in CI\n\"))");

if(ATmatch(inp, "rec-terminate(<term>)", &arg))
exit(0);

terminate

if(ATmatch(inp, "rec-do(signature(<term> <term»))", &isig, &osig)){
return NULL,;

}

receive input signature

ATerror("hello: wrong input %t received\n", inp);
return NULL;

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 147
-

Observations

 Tool consists of main and an event handler
e All processing 1s routed via the event handler

* Event handler does repetitive (and error prone)
decoding of requests using ATmatch

* Event handler takes care of standard messages for
termination, signature handling, etc.

 Why not automate some of these tasks?

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 148
-

Automatic generation of tool

Interface for

other languages —\

Interfaces

., [Iscript for the application

Script.tb

toolbus -gentifs Script.tb

Use toolbus to generate

« toolinterfaces (tifs)

Language independent

Script.ti fs(tool interfaces (tifs) for all tools

\

The C interface for tool N

e Ntifc

¢\

Generate C interface for tool N

The l@%l-Envirnn ment Introduction to the ToolBus Coordination Architecture 149

http://N.tif.c/

Second version of hello tool

Include the generated C interface

" #include "hello.tif.c" o

ATerm get_text(int conn)

return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in CI\n\"))");

}
C functions for the get-text
void rec_terminate(int conn, ATerm msg) and terminate requests
{
exit(0);
}

int main(int argc, char *argv[])
{ ...as before ...

}

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 150
-

http://hello.tif.c/

The l@t\a‘;-Envirnnment

Generated file hello.tif.c

-

. [Prototypes of generated C functions

#include "hello.tif.h"
#Hdefine NR_SIG _ENTRIES 2

static char *signature[NR_SIG_ENTRIES] = {

"rec-eval(<hello> get-text)",
"rec-terminate(<hello> <term»)",

The signature of this tool

)
_—

Checker for input signature

ATerm hello_checker(int conn, ATerm siglist)

{

return ATBcheckSignature(siglist, signature,
NR_SIG_ENTRIES);

Introduction to the ToolBus Coordination Architecture 151

Generated file hello.tif.c

-

}

}

The l@-Envirnnment

return get_text(conn)e |

rec_terminate(conn, 10);
return NULL; ®

ATerm hello_handler(int conn, ATerm term)
{ ATerm in, out, 10O;

if(ATmatch(term, "rec-eval(get-text)")) {

Call user-defined function get_text

if(ATmatch(term, "rec-terminate(<term»)", &t0)) {

Call user-defined function rec_terminate

Introduction to the ToolBus Coordination Architecture 152

Generated file hello.tif.c

-
ATerm hello_handler(int conn, ATerm term)

{

if(ATmatch(term, "rec-do(signature(<terms> <term»))", &in, &out)) {
ATerm result = hello_checker(conn, in);
if(lATmatch(result, "[1")
ATfprintf(stderr, "warning: not in input signature:\n\t%t\n\tl\n", result);
return NULL,;

}

ATerror("tool hello cannot handle term %t", term);
return NULL; /* Silence the compiler */

}

The l@t\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 153
-

A larger example: the calc tool

(process CALC is
let Tid : calc, E : str, V: term
In

execute(calc, Tid?).
(
rec-msg(compute, E?) .
snd-eval(Tid, expr(E)) . rec-value(Tid, val(V?)) .
snd-msg(compute, E, V) . snd-note(compute(E, V))
)* delta
endlet

tool calc is { command = “calc"}

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 154

A larger example: the calc tool

" #include <stdlib.h>
#include "calc.tif.c"

ATerm expr(int conn, char *s) { ... }
void rec_terminate(int conn, ATerm t){ ..} ® — Three user-defined functions

int calculate(ATerm t) { ... }

int main(int argc, char *argv[])
{ ATerm bottomOfStack;
ATBinit(argc, argv, &bottomOf Stack);
if(ATBconnect(NULL, NULL, -1, calc_handler) >= 0)
ATBeventloop();
} else
fprintf(stderr, "calc: Could not connect to the ToolBus, giving up!\n");

return O;

}

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 155

A larger example: the calc tool

f)
ATerm expr(int conn, char *s)
{ ATerm trm = ATmake(s)® Try to convert argument string to term
if(Itrm) I
elr'see’rur'n ATmake("snd-value(calc-error(<str>))", s); Calleillete e valne
return ATmake("snd-value(val(<int>))", I
calculate(trm));
} Send that value back to the ToolBus

void rec_Teer 1) I
{ exit(0);

Handle termination

_

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 156

A larger example: the calc tool

4 ° Recursive evaluation of the expression

int calculate(ATerm t)
{int n; char *s; ATerm t1, 12;

if(ATmatch(t, "<int>", &n))
return n;
else if(ATmatch(t, "<str>", &s))
return atoi(s);
else if(ATmatch(t, "plus(<term> <term>)", &t1, &12))
return calculate(tl) + calculate(t2);
else if(ATmatch(t, "times(<term> <term>)", &t1, &t2))
return calculate(tl) * calculate(t2);
else {
ATerror("panic in calculate: %t\n", t);
return O;

}

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 157

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
- Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 158
-

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
— Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 159

ToolBus Adapters

* Needed to adjust existing programs/libraries to

the ToolBus

Separate program:

Library:

ToolBus I

The @-Envirnnment

X Standard input/output
are redirected by adapter

Introduction to the ToolBus Coordination Architecture

ToolBus I

160

A selection of adapters

* wish-adapter: execute Tcl/Tk windowing shell
* tcltk-adapter: ditto but uses the Tcl/Tk library’
* java-adapter: java program as tool

* perl-adapter: perl program as tool

* python-adapter: python program as tool’

* gen-adapter: arbitrary Unix command as tool

T = not yet supported 1n Java-based ToolBus

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 161

The wish-adapter

* Execute Tcl/Tk's windowing shell as a tool

* EX. wish-adapter -script calculator.tcl

- -script: The Tcl script to be executed
- -script-args: Arguments for the Tcl script

e The command wish 1s executed once and all
further requests are directed to this instance of
wish

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 162

The wish-adapter

snd-eval(Tid, F un(4 ,...,4)): perform the Tcl

function call Fun A1 An

rec-value(7id, Res?): return value for previous
eval request

rec-event(7id, 4 ,...,A): event generated by wish
snd-ack-event(7id, 4): ack previous event

snd-terminate(7id, Al): terminate wish-adapter

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 163

The gen-adapter

» Execute arbitrary Unix command as tool
* Example: gen-adapter -cmd Is -|

* snd-eval(7id, cmd(Cmd, input(Str): execute the
Unix command Cmd with Str as standard input

* rec-value(7id, output(Res?)): recerve the standard
output Res from a previous command

* snd-terminate(7id, Arg): terminate execution of
gen-adapter

The @-Envirnnment Introduction to the ToolBus Coordination Architecture 164

[
"/

Road map

* The problem: component interconnection

* Implementation 1ssues
— Overview of the ATerm API

— Brief overview of the ToolBus implementation
— Writing ToolBus tools
— Using ToolBus adapters

e Conclusions

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 165

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 166
-

Road map

* The problem: component interconnection
e History & requirements

e Terms, types & matching

e The ToolBus architecture

e ToolBus scripts (Tscripts)

e Larger examples

* Implementation 1ssues

e Conclusions

The lﬁt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 167
s

Conclusions

* ToolBus 1s an effective technology for
coordination and composition of tools

* ToolBus fits 1n the popular model of service-
oriented architectures

e ToolBus enables incremental software renovation

The l@t\a‘;-Envirnnment Introduction to the ToolBus Coordination Architecture 168

A Legacy System

A complete blackbox:

e Subsystems unknown
ﬁ e Subsystem depencies unknown

» : . .
The n tg'l-Environ ment Introduction to the ToolBus Coordination Architecture 169

Analyze and decompose 1n major
subsystems

The I@%’I-Envirnn ment Introduction to the ToolBus Coordination Architecture 170

Replace dependencies by Tscript

Tscript represents control
dependencies between subsystems

.

ToolBus

Adapter for
component

XUnmodiﬁed legacy code

The l@-Envirnnment Introduction to the ToolBus Coordination Architecture 171

Separate renovation strategy per

subsystem

Replace by
standard
package

|/

The @-Envirnnment

ToolBus

X Contains important
business logic:
implement from scratch

N

Introduction to the ToolBus Coordination Architecture

Keep legacy code

172

The Renovation Process

Decompose

>

Restructure

Renovate

ToolBus

The lma]-Envirnnment Introduction to the ToolBus Coordination Architecture 173
o

Further reading

e See at http://www.meta-environment.org
(Documentation menu entry):

— Guide to ToolBus Programming
— The ATerm Programming Guide

— Further references can be found 1n Bibliography

The lﬁt\a]-Envirnnment Introduction to the ToolBus Coordination Architecture 174
s

http://www.meta-environment.org/

