
1Introduction to the ToolBus Coordination Architecture

Introduction to the ToolBus
Coordination Architecture

Paul Klint

2Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

3Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

4Introduction to the ToolBus Coordination Architecture

The problem: component
interconnection

● Systems become heterogeneous because we want
to couple existing and new software components
– different implementation languages

– different implementation platforms

– different user-interfaces

● Systems become distributed in local area
networks

● Needed: interoperability of heterogeneous
systems

5Introduction to the ToolBus Coordination Architecture

Component interconnection: reasons

● Reusing existing components decreases
construction costs of new systems

● Decomposing large, monolithic systems into
smaller, cooperating components increases
– modularity

– flexibility

6Introduction to the ToolBus Coordination Architecture

Component interconnection: issues

● Data integration: exchange of data between
components

● Control integration: flow of control between
components

● User-interface integration: how do the user-
interfaces of components cooperate?

7Introduction to the ToolBus Coordination Architecture

Data integration

● Data representations differ per
– machine: word size, byte order, floating point

representation, ...

– language implementation: size of integers, emulation
of IEEE floating point standard, ...

● How can we exchange data between components:
– integers, reals, record => linear encoding

– pointers => impossible in general

8Introduction to the ToolBus Coordination Architecture

Data integration

● Assume a common representation R

● For each component C
i
 (with data domain D

i
)

there exist conversion functions

– f
i
 : D

i
 -> R and f

i

-1: R -> D
i

– Convert a value d
i
from C

i
 to C

j
 by f

j

-1(f
i
(d

i
))

● Examples: IDDL, ASN-1, XML, ...
● ToolBus uses ATerms as common representation

9Introduction to the ToolBus Coordination Architecture

Control integration

● Broadcasting: each component can notify other
components of state changes

● Remote procedure calls: components can call
each other as procedures

● General message passing: the most general
approach

● In the ToolBus Tscripts are used to model the
interactions between components

10Introduction to the ToolBus Coordination Architecture

User-interface integration

● The ToolBus does not address user-interface
integration as separate issue but can be used to
achieve it

11Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

12Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

13Introduction to the ToolBus Coordination Architecture

Brief history of the ToolBus

● In 1992 the first implementation of the ASF+SDF
Meta-Environment was completed:
– 200 KLOC Lisp code

– Monolithic

– Hard to maintain

● ... all traits of a legacy system

14Introduction to the ToolBus Coordination Architecture

Time line

● 1992: Unsuccessful decomposition experiments
● 1994: First generation: ToolBus
● 1995: Second generation: Discrete time ToolBus
● 2001: Meta-Environment based on ToolBus
● 2002/7: Extensions, new functions and structure
● 2007: Third generation: Java-based ToolBus

15Introduction to the ToolBus Coordination Architecture

1992

Structure & text
editor

Graphical Objects

Other parts Other parts

User-interfaceEmacs

Structure editor

Old New

16Introduction to the ToolBus Coordination Architecture

1993

● Difficult synchronization and communication
problems problems start to appear

● PSF specification of communication; simulation
reveals several deadlocks

● Problems with this specification:
– complex (> 20 pages) and ad hoc

– difficult to extend

– cannot be used to directly coordinate the components

17Introduction to the ToolBus Coordination Architecture

1993/1994

● Idea of a “ToolBus” as general communication
structure appeared

● First design and implementation
● Several experiments

– Feature interaction in telephone switches (RUU/PTT)

– Traffic control (Nederland Haarlem/UvA/CWI/RUU)

– Management of complex bus stations (idem)

– Definition of user interfaces (UvA)

18Introduction to the ToolBus Coordination Architecture

1994/1995

● Fall 1994: redesign based on this experience
● Spring 1995: design and implementation of

Discrete Time ToolBus completed
● First experiments to prototype parts of the Meta-

Environment started

19Introduction to the ToolBus Coordination Architecture

More recently ...

● In 2001 a new implementation of the Meta-
Environment based on the ToolBus was
completed

● In 2007 we have completed a new generation
ToolBus (Java-based) that is used by the Meta-
Environment

● The ToolBus can be seen as a Service-oriented
Architecture (SOA) avant la lettre ...

20Introduction to the ToolBus Coordination Architecture

Structuring and Composition
of Software

● Structured programming
● Functions, procedures & libraries
● Object-oriented programming &

Modules
● Unix pipes
● DCOM
● Coordination languages & SOA System

StatementsStatements

Procedures

Modules

21Introduction to the ToolBus Coordination Architecture

Service-oriented Architecture (SOA)

● Loose coupling
● Service contract
● Autonomy
● Abstraction
● Reusability
● Composability
● Statelessness
● Discoverability

● Message exchange
patterns

● Coordination
● Atomic transactions

22Introduction to the ToolBus Coordination Architecture

ToolBus requirements

● Flexible interconnection architecture for software
components

● Good control over communication
● Relatively simple descriptions
● Uniform data exchange format
● Multi-lingual: C, Java, Perl, ASF+SDF, ...
● Potential for verification
● Use existing concurrency theory: Process Algebra

23Introduction to the ToolBus Coordination Architecture

Process Algebra

● A theoretical framework to describe process
behaviour

● Consists of
– Constants: deadlock (δ), silent step (τ)

– Atomic actions: a, b, c, ...

– Processes x, y, z, ... built with the operators:
● sequential compositions: .
● non-deterministic choice: +
● parallell composition: ||

24Introduction to the ToolBus Coordination Architecture

Basic Process Algebra (BPA)
The basic axioms for choice (+) and sequential

composition (.):

A1. x + y = y + x
A2. (x + y) + z = x + (y + z)
A3. x + x = x
A4. (x + y) . z = x . z + y . z
A5. (x . y) z = x . y . z

Axioms for deadlock:
A6. x + δ = x
A7. δ . x = δ

25Introduction to the ToolBus Coordination Architecture

Merge (||)

Use the auxiliary operator left merge (||_):

M1. x || y = x||_ y + y ||_ x
M2. a ||_ x = a . x
M3. a . x ||_ y = a . (x || y)
M4. (x + y) ||_ z = x ||_ z + y ||_ z

Examples:
a || b = a ||_ b + b ||_ a = a .b + b . a
a .b || c = a .b ||_ c + c ||_ a . b =
 a . (b||c) + c.a.b = a . (b.c + c.b) + c.a.b

26Introduction to the ToolBus Coordination Architecture

Process Algebra versus ToolBus

● Process Algebra can be used to describe all
(possibly infinite) behaviours of a collection of
parallel processes

● This behaviour has the form of a process tree still
containing all possible choices

● Properties of the parallel processes can be
verified by verifying this behaviour description,
e.g.
– absence of deadlock

27Introduction to the ToolBus Coordination Architecture

Process Algebra versus ToolBus

● Atomic actions may be enabled/disabled as a
result of conditions or time constraints

● The ToolBus executes a process expression but
randomly selects one of the enabled arguments of
a choice operator

● The steps taking by the ToolBus are thus just one
possible series of steps that is contained in the
complete behaviour of the process expression:
– a || b executes as a . b or as b .a (and not both!)

28Introduction to the ToolBus Coordination Architecture

Coordination, Representation &
Computation

● Coordination: the way in which program and
system parts interact (procedure calls, RMI, ...)

● Representation: language and machine neutral
data exchanged between components

● Computation: program code that carries out a
specialized task

A rigorous separation of coordination
from computation is the key to
flexible and reusable systems

29Introduction to the ToolBus Coordination Architecture

Cooperating Components

Architectural Layers

Single Component

Representation

Computation

Single Component

Representation

Computation

Coordination

30Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

31Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

32Introduction to the ToolBus Coordination Architecture

Why not using XML as terms?

● Has been tried in various language processing
projects

● XML is too verbose to represent parse trees of large
(> 100 KLOC) programs

● XML does not provided sharing
● For discussion see: M.G.J. van Brand and P. Klint,

ATerms for manipulation and exchange of
structured data: It's all about sharing, Information
and Software Technology, 49(1), 2007, 55-64.

33Introduction to the ToolBus Coordination Architecture

Generic Representation
Annotated Terms (ATerms)

● Applicative, prefix terms

● Maximal subterm sharing ( DAG)
– cheap equality test, efficient rewriting

– automatic generational garbage collection

● Annotations (text coordinates, dataflow info, ...)
● Very concise, binary, sharing preserving

encoding
● Language & machine independent exchange

format

34Introduction to the ToolBus Coordination Architecture

ATerms
Term and Annotations

Annotations

35Introduction to the ToolBus Coordination Architecture

A term is ...

● a Boolean, integer, real or string

– true, 37, 3.14e-12, “rose”
● a value occurrence of a variable

– X, InitialAmount, Highest-bid
● a result occurrence of a variable

– X?, InitialAmount?

36Introduction to the ToolBus Coordination Architecture

A term is ...

● a single identifier

– f, pair, zero
● a function application

– pair(“rose”, address(“Street”, 12345))
● a list

– [a, b, c], [a, 1.25, “last”], [[a, 1], [b, 2]]
● a placeholder

– <int>, add(<int>,<int>)

37Introduction to the ToolBus Coordination Architecture

Matching of terms

● Term matching is used to
– determine which actions can communicate

– to transfer data between sender and receiver

● Intuition:
– terms match if the are structurally identical

– value occurrence: use variable's value

– result occurrence: assign matched subterm to variable
(only if overall match succeeds!)

38Introduction to the ToolBus Coordination Architecture

Example of term matching

Before match

X : 3
Y : 7

Z : 17
Context 1 Context 2

Match

f(X,4,Y?,6) and f(3,Z?,5,6)

After successful match

X : 3
Y : 5

Z : 4
Context 1 Context 2

39Introduction to the ToolBus Coordination Architecture

Types

● The ToolBus uses its own type system
– static checks & automatic generation of interface code

● bool, int, real, str
● list: list with arbitrary elements

● list(Type): list with Type elements

– list(int)
● term: arbitrary term

40Introduction to the ToolBus Coordination Architecture

Types

● Id: all terms with function symbol Id (allows
partial type declarations)

– f accepts f, f(1), f(“abc”,3), ...

● Id(T
1
, ..., T

n
)

– f(int, str) accepts f(3,”abc”) but not f(3)
● [T

1
, ..., T

n
] : list of elements with given types

– [int, str] accepts [1,”abc”] but not [1,2,3]

41Introduction to the ToolBus Coordination Architecture

Types

● All variables have types
● Types are checked statically when possible
● Types play a role during matching:

– I is int variable, S is str variable, T is term variable

– match f(13) and f(I?)
– match f(13) and f(S?)
– match f(13) and f(T?)

succeeds

succeeds

fails

42Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

43Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

44Introduction to the ToolBus Coordination Architecture

The ToolBus architecture

ToolBus Coordination

Representation

ComputationTools
ATerms
common

data exchange
format

45Introduction to the ToolBus Coordination Architecture

The ToolBus architecture

● Processes inside the ToolBus can communicate
with each other

● Tools can not communicate with each other
● Tools can communicate using a fixed protocol:

ToolBus

Tool

eval value

ToolBus

Tool

do

ToolBus

Tool

ack-eventevent

46Introduction to the ToolBus Coordination Architecture

A typical scenario

UI DB

User-interface Database

Configuration knowledge
only in ToolBus script

UI and DB are
completely
decoupled

47Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

48Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

49Introduction to the ToolBus Coordination Architecture

ToolBus scripts: processes

● The ToolBus: a parallel composition of processes
● Private variables per process

● P
1
+ P

2
 P

1
. P

2
 P

1
|| P

2
 P

1
* P

2

● :=, if then else
● All data are terms that can be matched
● A limited set of built-in operations on terms
● No other support for datatypes

50Introduction to the ToolBus Coordination Architecture

ToolBus scripts: processes

● Send, receive message (handshaking)
● Send/receive notes (broadcasting)
● Subscription to notes
● Dynamic process creation
● Absolute/relative delay, timeout

51Introduction to the ToolBus Coordination Architecture

ToolBus scripts: tools

● Execute/terminate tools
● Connect/disconnect tools
● Communication between process and tool is

synchronous
● Process can send evaluation request to tool

(which returns a value later on)
● Tool can generate events to be handled by the

ToolBus

52Introduction to the ToolBus Coordination Architecture

Define the initial processes
in the application

Hello World

process HELLO is printf(“Hello world, my first Tscript!\n”)

toolbus(HELLO)

Define the process HELLO

It only prints a string

The Tscript hello.tb

Start application with: toolbus hello.tb

53Introduction to the ToolBus Coordination Architecture

Hello World: string generated by tool

process HELLO is
 let H : hello,
 S : str
 in
 execute(hello, H?) .
 snd-eval(H, get-text) .
 rec-value(H, text(S?)) .
 printf(S)
 endlet

tool hello is {command = “hello” }
toolbus(HELLO)

H will represent the tool

S is a string variable

Execute hello,
H gets a tool id as value

Request a text from hello tool

Receive it,
S gets the value assigned

Definition of hello tool:
may be written in any language

54Introduction to the ToolBus Coordination Architecture

Simple clock with user-interface

UI CLOCK

ui clock

User-interface Clock

Provides a readTime
function

User can push
a showTime

button

ToolBus

Tools

55Introduction to the ToolBus Coordination Architecture

Simple clock with user-interface

process CLOCK is process-expression-1
tool clock is tool-definition-1

process UI is process-expression-2
tool ui is tool-definition-2

toolbus(CLOCK, UI)

56Introduction to the ToolBus Coordination Architecture

Clock
process CLOCK is
 let Tid : clock, T : str
 in
 execute(clock, Tid?).
 (
 rec-msg(showTime) .
 snd-eval(Tid, readTime) .
 rec-value(Tid, time(T?)) .
 snd-msg(showTime, T)
) * delta
 endlet

tool clock is { command = “clock” }

Receive a message from
another process

Get time from clock tool

Reply to the message

(...) * delta is an
endless loop

57Introduction to the ToolBus Coordination Architecture

User-interface
process UI is
 let Tid : ui, T : str
 in
 execute(ui, Tid?) .
 (rec-event(Tid, button(showTime)) .
 snd-msg(showTime) .
 rec-msg(showTime, T?) .
 snd-do(Tid, displayTime(T)) .
 snd-ack-event(Tid, button(showTime))
) * delta
 endlet

Receive event from ui tool

Processing of the event
complete: send

acknowledgment

Get the time

Display it in ui tool

tool ui is { command = “wish-adapter -script ui.tcl” }

58Introduction to the ToolBus Coordination Architecture

Tscripts: in more detail

● Process communication: messages & notes
● Composite processes
● Expressions & built-in functions
● Time primitives
● Tools

59Introduction to the ToolBus Coordination Architecture

Process communication: messages

● Messages used for synchronous, two-party
communication between processes

● snd-msg and rec-msg synchronize sender/receiver

● Communication is possible if the arguments
match

● There is two-way data transfer between sender
and receiver (using result variables)

60Introduction to the ToolBus Coordination Architecture

Process communication: notes

● Notes used for asynchronous, broadcasting
communication between processes

● Each process must subscribe to the notes it wants
to receive

● Each process has a private note queue on which
snd-note, rec-note and no-note operate

61Introduction to the ToolBus Coordination Architecture

Process communication: notes

● subscribe to notes of a given form

– subscribe(compute(<str>,<int>))
● unsubscribe from certain notes

● snd-note to all subscribers

– snd-note(compute(E,V))
● rec-note: receive a note of a given form

● no-note received of given form

62Introduction to the ToolBus Coordination Architecture

Composite process expressions

● One of the atomic processes mentioned above

● delta (deadlock), tau (silent step)

● P
1
+ P

2
: choice (non-deterministic)

● P
1
. P

2
: sequential composition

● P
1
|| P

2
: parallel composition

● P
1
* P

2
: repetition

63Introduction to the ToolBus Coordination Architecture

Composite process expressions

● P(T
1
, T

2
, ...): a named process (with optional

parameters) will be replaced by its definition

● create(P(T
1
, T

2
, ...), Pid?): dynamic process

creation

● V := Expr: evaluate Expr and assign result to V

● if Expr then P
1
 else P

2
 fi

● if Expr then P
1
 fi = if Expr then P

1
 else delta fi

64Introduction to the ToolBus Coordination Architecture

Expressions

● An expression is evaluated in the current
environment of the process in which it occurs

● Constants evaluate to themselves: a
● Variables evaluate to their current values
● Lists evaluate to a list of their evaluated elements
● Some function symbols have a built-in meaning

65Introduction to the ToolBus Coordination Architecture

Built-in functions

● Booleans: not, and, or
● Integers: add, sub, mul, mod, less, less-equal,

greater, greater-equal
● Lists: first, next, get, put, join, member, subset,

diff, inter, size
● Miscellaneous: equal, not-equal, process-id,

process-name, current-time, quote

66Introduction to the ToolBus Coordination Architecture

Time primitives

● A (relative or absolute) delay or time out may be
associated with each atomic process

● Relative time: delay(Expr) or timeout(Expr)
● Absolute time: abs-delay(y, mon, d, h, min, s) or

abs-timeout(y, mon, d, h, min, s)
● Example:

– printf(“expired”) delay(10)
– printf(“Renew account”) abs-timeout(2008,4,1,12,0,0)

67Introduction to the ToolBus Coordination Architecture

Process definitions

● Process definition: process Pname Formals is P
● Formals are optional and contain a list of formal

parameter names

– process MakeWave(N : int) is ...
● All variables (including formals) must be

declared and have a type

● let VarDecls in P endlet introduces variables:

– let E : str, V : int in ... endlet

68Introduction to the ToolBus Coordination Architecture

Tools

● Tools have to be executed or connected before
they can be used

● Requires a tool definition: tool ui is { ... }
● Introduces a new type, e.g. ui
● Execute a tool: execute(ui, Uid?)
● Receive connection request: rec-connect(ui,

Uid?)
● Tool identification is assigned to Uid (of type uid)

69Introduction to the ToolBus Coordination Architecture

Tools

● snd-terminate: terminate an executing tool

– snd-terminate(Tid)
● rec-disconnect: receive disconnection request

from tool

– rec-disconnect(Uid)
● shutdown: terminate the whole ToolBus

– shutdown(“Auction ends”)

70Introduction to the ToolBus Coordination Architecture

Tools

● snd-eval, rec-value: request tool to evaluate a
term, and receive the resulting value from tool
– initiative: ToolBus

● snd-do: request tool to perform some action, there
is no reply
– initiative: ToolBus

● rec-event, snd-ack-event: receive event from
tool, acknowledge it after appropriate processing
– initiative: tool

71Introduction to the ToolBus Coordination Architecture

Tscripts

● A Tscripts consists of
– a list of process and tool definitions

– a single ToolBus configuration

● A ToolBus configuration describes the initial set
of active processes in the ToolBus:

– toolbus(Pname
1
, ..., Pname

n
)

– Eache Pname is optionally followed by parameters

72Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

73Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

74Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples: calculator; auction; waves
● Implementation issues
● Conclusions

75Introduction to the ToolBus Coordination Architecture

Example: calculator

UICALC ToolBus

Tools

CLOCKBATCH

clockuicalc

LOG

logbatch

76Introduction to the ToolBus Coordination Architecture

Example: calculator

● CALC: the calculation process
● BATCH: reads expressions from file, calculates

their value, writes result back to file
● UI: the user-interface
● LOG maintains a log of all calculations
● CLOCK provides current time

77Introduction to the ToolBus Coordination Architecture

Process CALC
process CALC is
 let Tid : calc, E : str, V : term
 in
 execute(calc, Tid?).
 (
 rec-msg(compute, E?) .
 snd-eval(Tid, expr(E)) . rec-value(Tid, val(V?)) .
 snd-msg(compute, E, V) . snd-note(compute(E, V))
)* delta
 endlet

tool calc is { command = “calc”}

Note for the logger

Receive compute message

Let calc do the computation

Reply to compute message

78Introduction to the ToolBus Coordination Architecture

Process BATCH
process BATCH is
 let Tid : batch, E : str, V : int
 in
 execute(batch, Tid?).
 (
 snd-eval(Tid, fromFile) . rec-value(Tid, expr(E?)) .
 snd-msg(compute, E) . rec-msg(compute, E, V?) .
 snd-do(Tid, toFile(E, V))
) * delta
 endlet

tool batch is {command = “batch”}

Get an expression from batch tool

Evaluate expression

Value back to batch tool

79Introduction to the ToolBus Coordination Architecture

User-interface

● When the user presses Calc, a dialog window
appears to enter an expression

● The result is diplayed in a separate window
● Pressing showLog display all calculations so far
● Pressing showTime displays the current time
● Pressing Quit ends the application

80Introduction to the ToolBus Coordination Architecture

User-interface: process UI
process UI is
 let Tid : ui
 in
 execute(ui, Tid?) .
 (CALC-BUTTON(Tid) + LOG-BUTTON(Tid))* delta
 ||
 TIME-BUTTON(Tid) * delta
 ||
 QUIT-BUTTON(Tid)
 endlet

tool ui is { command = wish-adapter -script calc.tcl” }

Calc and Log button are exclusive

Time and Quit button are independent

81Introduction to the ToolBus Coordination Architecture

User-interface: CALC-BUTTON
process CALC-BUTTON(Tid : ui) is
 let N : int, E : str, V : term
 in
 rec-event(Tid, N?, button(calc)) .
 snd-eval(Tid, get-expr-dialog) .
 (rec-value(Tid, cancel)
 + rec-value(Tid, expr(E?)) .
 snd-msg(compute, E) .
 rec-msg(compute, E, V?) .
 snd-do(Tid, display-value(V))
) . snd-ack-event(Tid, N)
 endlet

Calc button is pressed

Ask for an expression

Get cancel or an expression

Compute expression
and display its value

Acknowledge the button event

82Introduction to the ToolBus Coordination Architecture

User-interface: LOG-BUTTON

process LOG-BUTTON(Tid : ui) is
 let N : int, L : term
 in
 rec-event(Tid, N?, button(showLog)) .
 snd-msg(showLog) .
 rec-msg(showLog, L?) .
 snd-do(Tid, display-log(L)) .
 snd-ack-event(Tid, N)
 endlet

83Introduction to the ToolBus Coordination Architecture

User-interface: TIME-BUTTON
process TIME-BUTTON(Tid : ui) is
 let N : int, T : str
 in rec-event(Tid, N?, button(showTime)) .
 snd-msg(showTime) .
 rec-msg(showTime, T?) .
 snd-do(Tid, display-time(T)) .
 snd-ack-event(Tid, N)
 endlet

process QUIT-BUTTON(Tid : ui) is
 rec-event(Tid, button(quit)) .
 shutdown("End of calc demo")

84Introduction to the ToolBus Coordination Architecture

Process LOG
process LOG is
 let Tid : log, E : str, V : term, L : term
 in subscribe(compute(<str>, <term>)) .
 execute(log, Tid?).
 (rec-note(compute(E?, V?)) .
 snd-do(Tid, writeLog(E, V))
 +
 rec-msg(showLog) .
 snd-eval(Tid, readLog) .
 rec-value(Tid, history(L?)) .
 snd-msg(showLog, history(L))
) * delta
 endlet

Log all calculations

Show the log of calculations

85Introduction to the ToolBus Coordination Architecture

Process LOG1

process LOG1 is
 let TheLog : list, E : str, V : term
 in subscribe(compute(<str>, <term>)) .
 TheLog := [] .
 (rec-note(compute(E?, V?)) .
 TheLog := join(TheLog, [[E, V]])
 +
 rec-msg(showLog) .
 snd-msg(showLog, TheLog)
) * delta
 endlet

Alternative definition
of logger: maintain the

log in a list

86Introduction to the ToolBus Coordination Architecture

Process CLOCK

process CLOCK is
 let Tid : clock, T : str
 in
 execute(clock, Tid?).
 (rec-msg(showTime) .
 snd-eval(Tid, readTime) .
 rec-value(Tid, time(T?)) .
 snd-msg(showTime, T)
) * delta
 endlet

87Introduction to the ToolBus Coordination Architecture

ToolBus Configuration

toolbus (CALC, BATCH, UI, LOG, CLOCK)

Creates the processes for the calculator application

Start calculator application:
toolbus calc.tb

88Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples: calculator; auction; waves
● Implementation issues
● Conclusions

89Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples: calculator; auction; waves
● Implementation issues
● Conclusions

90Introduction to the ToolBus Coordination Architecture

Example: distributed auction

Auction
Master

Bidder Bidder

Bidder Bidder

Classical Auction

Auction
Master

Bidder

Bidder Bidder

Bidder

Bidder

Distributed Auction

91Introduction to the ToolBus Coordination Architecture

Example: distributed auction

● How are bids synchronized?
● How to inform bidders about higher bids?
● How to decide when the bidding is over and the

item is sold?
● Bidders may come and go during the auction

92Introduction to the ToolBus Coordination Architecture

Example: distributed auction

Auction ToolBus

Toolsmaster

Bidder

bidder

Bidder

bidder

Bidder

bidder

...

...

93Introduction to the ToolBus Coordination Architecture

Example: distributed auction

● The Auction process

– executes master tool: user-interface of auction master

– connection/disconnection of new bidders

– introduces new items for sale (at the initiative of the
auction master)

– controls the bidding provess via OneSale
● A Bidder process is created for each new bidder

94Introduction to the ToolBus Coordination Architecture

Process Auction
process Auction is
 let Mid : master, Bid : bidder
 in
 execute(master, Mid?) .
 (ConnectBidder(Mid, Bid?)
 +
 OneSale(Mid)
) *
 rec-event(Mid, quit) .
 shutdown("Auction is closed")
 endlet

tool master is { command = "wish-adapter -script master.tcl" }

Execute the master tool

Repeat:
● add new bidder between sales,
or
● perform one sale

Until:
● auction master quits

Close the auction application

95Introduction to the ToolBus Coordination Architecture

Process ConnectBidder

process ConnectBidder(Mid : master, Bid : bidder?)
is
 let Pid : int, Name : str
 in
 rec-connect(Bid?) .
 create(Bidder(Bid), Pid?) .
 snd-eval(Bid, get-name) .
 rec-value(Bid, name(Name?)) .
 snd-do(Mid, new-bidder(Bid, Name))
 endlet

Receive a connection request
from a new bidder tool

Create a new Bidder process

Ask bidder for its name

Send name to master tool

96Introduction to the ToolBus Coordination Architecture

Process OneSale
process OneSale(Mid : master) is
 let Descr : str, %% Description of current item for sale
 InAmount : int, %% Initial amount for item
 Amount : int, %% Current amount
 HighestBid : int, %% Highest bid so far
 Final : bool, %% Did we already issue a final call for bids?
 Sold : bool, %% Is the item sold?
 Bid : bidder %% New bidder tool connected during sale
 in rec-event(Mid, new-item(Descr?, InAmount?)) .
 HighestBid := InAmount .
 snd-note(new-item(Descr, InAmount)) .
 Final := false . Sold := false .
 (...
) * if Sold then snd-ack-event(Mid, new-item(Descr, InAmount)) fi
 endlet

Where the action is ...

97Introduction to the ToolBus Coordination Architecture

Process OneSale

(if not(Sold) then ... fi
+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...
) * if Sold then ... fi

98Introduction to the ToolBus Coordination Architecture

Process OneSale
if not(Sold) then
 rec-msg(bid(Bid?, Amount?)) .
 snd-do(Mid, new-bid(Bid, Amount)) .
 if less-equal(Amount, HighestBid) then
 snd-msg(Bid, rejected)
 else
 HighestBid := Amount .
 snd-msg(Bid, accepted) .
 snd-note(update-bid(Amount)) .
 snd-do(Mid, update-highest-bid(Bid, Amount)) .
 Final := false
 fi
fi

(

+ if not(or(Final, Sold)) then ... fi
+ if and(Final, not(Sold)) then ... fi
+ ConnectBidder(Mid, Bid?) ...
) * if Sold then ... fi

Receive a bid from a bidder

Inform auction master about it

Reject bid if it is too low

Remember as highest bid

Inform bidder: bid is accepted

Inform all bidders

Update auction master

99Introduction to the ToolBus Coordination Architecture

Process OneSale

+ if not(or(Final, Sold)) then
 snd-note(any-higher-bid) delay(sec(10)) .
 snd-do(Mid, any-higher-bid(10)) .
 Final := true
 fi
+ if and(Final, not(Sold)) then
 snd-note(sold(HighestBid)) delay(sec(10)) .
 Sold := true
 fi
+ ConnectBidder(Mid, Bid?) .
 snd-msg(Bid, new-item(Descr, HighestBid)) .
 Final := false

(if not(Sold) then ... fi

) * if Sold then ... fi

Not yet sold, not asked for final bids ...

Wait 10 sec, then ask for final bids

Inform auction master

Yes, now we have asked for final bids

Not yet sold, but asked for final bids ...

Wait 10 sec, then inform
all bidders that item is soldYes, item is now sold

Bidder is connected during sale

Inform new bidder about progress

Restart, final bids (if any)

100Introduction to the ToolBus Coordination Architecture

Process Bidder

process Bidder(Bid : bidder) is
 let Descr : str, Amount : int, Acceptance : term
 in
 subscribe(new-item(<str>, <int>)) . subscribe(update-bid(<int>)) .
 subscribe(sold(<int>)) . subscribe(any-higher-bid) .
 (...
)
 * delta
 endlet

101Introduction to the ToolBus Coordination Architecture

Process Bidder
 ((rec-msg(Bid, new-item(Descr?, Amount?))
 + rec-note(new-item(Descr?, Amount?))
 + rec-disconnect(Bid) . delta
) .
 snd-do(Bid, new-item(Descr, Amount)) .
 (rec-event(Bid, bid(Amount?)) .
 snd-msg(bid(Bid, Amount)) . rec-msg(Bid, Acceptance?) .
 snd-do(Bid, accept(Acceptance)) . snd-ack-event(Bid, bid(Amount))
 + rec-note(update-bid(Amount?)) . snd-do(Bid, update-bid(Amount))
 + rec-note(any-higher-bid) . snd-do(Bid, any-higher-bid)
 + rec-disconnect(Bid) . delta
) *
 rec-note(sold(Amount?)) . snd-do(Bid, sold(Amount))
) *
 delta

Get info about
item for

sale after connection

Same, but normal case

Disconnect between sales

Inform bidder tool

bidder comes with new bid

Inform bidder
Disconnect during sale

End of this sale sale

102Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples: calculator; auction; waves
● Implementation issues
● Conclusions

103Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples: calculator; auction; waves
● Implementation issues
● Conclusions

104Introduction to the ToolBus Coordination Architecture

One-dimensional wave equation

1 2 3 4 5 6 ... N-1
. .. .

.

.

. .
.
. .

i

y
i
(t)

Simulate a string attached at the two end points:

105Introduction to the ToolBus Coordination Architecture

One-dimensional wave equation

y
i
(t+t) = F(y

i
(t),y

i
(t-t),y

i-1
(t),y

i+1
(t))

F(z
1
,z

2
,z

3
,z

4
) = 2z

1
 ­ z

2
+ (c t/x)2 (z

3
­2z

1
+z

4
)

Amplitude at point i at t+t is given by:

x: the (small) interval between sampling points

c: constant representing the propagation velocity of the wave

and

106Introduction to the ToolBus Coordination Architecture

Example: wave equation

ToolBus

Tools

MakeWave

display

Pend ...Pend P P P P

107Introduction to the ToolBus Coordination Architecture

One-dimensional wave equation

● Auxiliary process F computes function F

● Process P models a sampling point

● Process Pend models the end points

● Process MakeWave constructs N connected
instances of P and two end points

● Tool display visualizes the simulation

108Introduction to the ToolBus Coordination Architecture

Process F
Compute F(z

1
,z

2
,z

3
,z

4
) = 2z

1
 - z

2
+ (c t/x)2 (z

3
-2z

1
+z

4
)

process F(Z1 : real, Z2 : real, Z3 : real, Z4 : real, Res : real?) is
 let CdTdX2 : real
 in
 CdTdX2 := 0.01 .
 Res := radd(rsub(rmul(2.0, Z1), Z2),
 rmul(CdTdX2,
 radd(rsub(Z3, rmul(2.0, Z1)), Z4)))
 endlet

Arbitrary value for (c t/x)2

 2z
1
 ­ z

2
+

(c t/x)2 *

(z
3
­2z

1
+z

4
)

109Introduction to the ToolBus Coordination Architecture

Process P
process P(Tid : display, L : int, I : int, R : int, Dstart : real, Estart : real) is
 let AL : real, AR : real, D : real, D1 : real, E : real
 in
 D := Dstart . E := Estart .
 ((rec-msg(L, I, AL?)
 || rec-msg(R, I, AR?)
 || snd-msg(I, L, E)
 || snd-msg(I, R, E)
 || snd-do(Tid, update(I, E))
) .
 D1 := E .
 F(E, D, AL, AR, E?) .
 D := D1
) * delta
 endlet

L: left, I: this point, R: right

D, E: amplitutes of this point

Receive amplitudes of neighbours

Send our amplitude to neighbours

Update our amplitude on display

Compute new versions of D and E

110Introduction to the ToolBus Coordination Architecture

Process Pend

process Pend(Tid : display, I : int, NB : int) is
 let W : real
 in
 (rec-msg(NB, I, W?) || snd-msg(I, NB, 0.0) ||
 snd-do(Tid, update(I, 0.0))
) * delta
 endlet

Index of this end point

Neighbouring point

Interact with neighbour

Display (constant) amplitude 0 on display

111Introduction to the ToolBus Coordination Architecture

Process MakeWave
process MakeWave(N : int) is
 let Tid : display, Id : int, I : int, L : int, R : int
 in
 execute(display, Tid?) .
 snd-do(Tid, mk-wave(N)) .
 create(Pend(Tid, 0, 1), Id?).
 L := sub(N,1) .
 create(Pend(Tid, N, L), Id?) .
 I := 1 .
 if less(I, N) then
 L := sub(I, 1) . R := add(I, 1) .
 create(P(Tid, L, I, R, 1.0, 1.0), Id?) .
 I := add(I, 1)
 fi *
 shutdown("end") delay(sec(60))
 endlet

Execute display tool
and initialize it

Create the two end points

Create the other points

Shutdown after one minute

112Introduction to the ToolBus Coordination Architecture

Tool definition and ToolBus
configuration

tool display is { command = "wish-adapter -script ui-wave.tcl"}

toolbus(MakeWave(8))

113Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples: calculator; auction; waves
● Implementation issues
● Conclusions

114Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

115Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

116Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

117Introduction to the ToolBus Coordination Architecture

Requirements ATerms

● Open: independent of hw/sw platform
● Simple: a small API
● Efficient: fast reading and writing
● Concise: small memory usage
● Language-independent
● Annotations: applications can transparantly store

additional information in data structure

118Introduction to the ToolBus Coordination Architecture

ATerm Types

● INT
● REAL
● APPL
● LIST
● PLACEHOLDER
● BLOB (Binary Large OBject)
● ANNOTATION

119Introduction to the ToolBus Coordination Architecture

Examples

● 1 3.14 -0.7E34
● f(a,b) "test!"(1, 2.1, "hello")
● [] [1, 2, "abc"]
● <int> f(<int>, <real>)
● BLOBs

– used to encode images, binary files, ...

– have no textual representation

120Introduction to the ToolBus Coordination Architecture

The ATerm Implementation

● C and Java API
● Only applicative operations

– No destructive operations on ATerms

● Maximal subterm sharing
● Automatic garbage collection
● Binary encoding (BAF: Binary ATerm Format)

121Introduction to the ToolBus Coordination Architecture

The ATerm C API

● Level 1: 41 functions
● Level 2: 80 functions (superset of Level 1)

● All function start with AT
● Defines types ATerm and ATbool
● Make and Match
● Read and Write
● Annotate

122Introduction to the ToolBus Coordination Architecture

Intermezzo: Patterns

● A pattern is an ATerm with placeholders:
incr(<int>)

● A string pattern is a pattern represented as string:
"incr(<int>)"

● A string pattern resembles the format string in
printf/scanf in C

● Placeholders correspond to typed arguments of
ATmake/ATmatch

123Introduction to the ToolBus Coordination Architecture

Make and Match

● ATerm ATmake(String p, ATerm a1, ...)
– parse p and fill placeholders with a1, a2, ...

● ATerm ATmatch(ATerm t, String p, ATerm *a1, ...)
– match t against p; assign subterms at placeholders to

a1, a2,...

● ATbool ATisEqual(ATerm t1, ATerm t2)
● int ATgetType(ATerm t)

124Introduction to the ToolBus Coordination Architecture

Read and Write

● ATerm ATreadFromString(String s)
● ATerm ATreadFromTextFile(File f)
● ATerm ATreadFromBinaryFile(File f)
● ATbool ATwriteToTextFile(ATerm t, File f)
● ATbool ATwriteToBinaryFile(ATerm t, File f)
● char *ATwriteToString(ATerm t)

125Introduction to the ToolBus Coordination Architecture

Annotate

● ATerm ATsetAnnotation(ATerm t, ATerm l,
ATerm a)
– add annotation [l, a] to copy of t

● ATerm ATgetAnnotation(ATerm t, ATerm l)
● ATerm ATremoveAnnotation(ATerm t, ATerm l)

126Introduction to the ToolBus Coordination Architecture

Other Functions in the Level 1 API

● Variations on the preceeding functions

● ATprintf
● handlers (warnings and errors)
● protect/unprotect

127Introduction to the ToolBus Coordination Architecture

Structure of an ATerm-based
Application

#include <stdio.h>
#include <aterm1.h>

int main(int argc, char * argv[])
{
 ATerm bottomOfStack;
 ATinit(argc,argv,&bottomOfStack);
 foo();
 return 0;
}

Needed for garbage collector

Initialize ATerm library

Application code goes here

128Introduction to the ToolBus Coordination Architecture

The Level 2 API

● Detailed operations for efficient ATerm
manipulation

● Dictionaries
● Tables
● Indexed sets

129Introduction to the ToolBus Coordination Architecture

The Java API

● Two versions:
– Native (uses the C version via JNI, not implemented)

– Pure (a pure Java reimplementation)

● Interface ATermFactory encapsulates the whole
API

● Separate interfaces for each kind of ATerm
(AFun, ATermList, etc.)

130Introduction to the ToolBus Coordination Architecture

Class Structure

ATermFactory

ATerm

ATermPlaceholder ATermInt ATermReal ATermAppl ATermList

is-a relation

part-of relation

type

1

1

n

1 args next first1

1 1

1

1

1

PureFactory

NativeFactory

implemented-by

131Introduction to the ToolBus Coordination Architecture

Using ATermFactory

import aterm.*
factory = new PureFactory();
ATerm t1 = factory.makeInt(3)
ATerm t2 = factory.readFromFile("test.trm");
ATerm t3 = factory.makeAFun("f1", 1, false);
ATerm t4 = factory.make("f(<int>)", 3);
ATerm t5 = factory.parse("f(1, [a, b])");

132Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

133Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

134Introduction to the ToolBus Coordination Architecture

ToolBus design/implementation
method

● Specification of ToolBus using ASF+SDF
● Execution of small test cases

– Tool behaviour is defined very abstractly

● Hand translation of ASF+SDF specification to C
– Literal translation of Tscripts

– Implementation of tools is more concrete (see later)

● Very few bugs in ToolBus implementation
– Some bugs turned out to be bugs in the specification!

135Introduction to the ToolBus Coordination Architecture

The ToolBus implementation

ToolBus

Tools

The ToolBus is implemented as
a Unix process that interprets Tscripts

Tools are implemented as
separate Unix processes

ToolBus/Tool communication
 is implemented using

 TCP/IP sockets

136Introduction to the ToolBus Coordination Architecture

The ToolBus Interpreter

● Syntax analysis of Tscript (lex/yacc)
● Typechecking of Tscript
● Create the initial ToolBus configuration
● Start execution
● Delays and timeouts
● Garbage collection of terms

137Introduction to the ToolBus Coordination Architecture

The ToolBus Interpreter

● Execute tools as separate Unix process
● On creation: send expected input signature to tool

– Permits detection of Tscript/tool mismatches

● During execution of tool: check terms received
from tool against their output signature
– Permits detection of misbehaving tools

● Enforce ToolBus protocol for each tool

138Introduction to the ToolBus Coordination Architecture

Main Interpreter Loop

● Wait for
– an event coming from one of the tools

– expiration of a timer

● Compute effect of event/timer on ToolBus state
● Perform any enabled atomic actions
● Repeat as long as possible
● Go back to waiting state

139Introduction to the ToolBus Coordination Architecture

ToolBus Interpreter

● Interpreter maintains a lists of processes
● Each process is compiled into a finite automaton

with an action associated with each transition
– From the enabled actions one is selected randomly

and executed

– The process goes to corresponding next state

● A select system call waits for i/o on any socket
or expiration of timer

140Introduction to the ToolBus Coordination Architecture

ToolBus/tool connection

ToolBus

Tools

Tool wants to connect toToolBus

Well-know socket of ToolBus
at fixed address

Tool, connects to well-know
socket and sends

tool name and host name

Tool receives socket
address and tool idNew socket is created

Communication starts

141Introduction to the ToolBus Coordination Architecture

Implementation considerations

● Terms are linearized before sending and parsed
when receiving them

● There is a separate transport layer that provides
byte level messages of given length (to avoid
system dependent segmentation of the byte
stream)

142Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

143Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

144Introduction to the ToolBus Coordination Architecture

Recall the Hello World script

process HELLO is printf(“Hello world, my first Tscript!\n”)

toolbus(HELLO)

145Introduction to the ToolBus Coordination Architecture

Hello World: string generated by tool

process HELLO is
 let H : hello,
 S : str
 in
 execute(hello, H?) .
 snd-eval(H, get-text) .
 rec-value(H, text(S?)) .
 printf(S)
 endlet

tool hello is {command = “hello” }
toolbus(HELLO)

How can we implement this tool?

146Introduction to the ToolBus Coordination Architecture

First version of a hello tool (C)
#include <stdio.h>
#include <aterm1.h>
#include <atb-tool.h>
ATerm hello_handler(int conn, ATerm inp) { ... }

int main(int argc, char *argv[])
{ ATerm bottomOfStack;
 ATBinit(argc, argv, &bottomOfStack);
 if(ATBconnect(NULL, NULL, -1, hello_handler) >= 0){
 ATBeventloop();
 } else {
 fprintf(stderr, "hello: Could not connect to the ToolBus, giving up!\n");
 return -1;
 }
 return 0;
}

Level 1 interface of ATerms

ToolBus primitives

Interrupt handler

Initialize application

Connect to ToolBus

Start event loop

Give up when connection
fails

147Introduction to the ToolBus Coordination Architecture

hello_handler
ATerm hello_handler(int conn, ATerm inp)
{ ATerm arg, isig, osig;

 if(ATmatch(inp, "rec-eval(get-text)"))
 return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");
 if(ATmatch(inp, "rec-terminate(<term>)", &arg))
 exit(0);
 if(ATmatch(inp, "rec-do(signature(<term>,<term>))", &isig, &osig)){
 return NULL;
 }
 ATerror("hello: wrong input %t received\n", inp);
 return NULL;
}

get-text

terminate

receive input signature

148Introduction to the ToolBus Coordination Architecture

Observations

● Tool consists of main and an event handler
● All processing is routed via the event handler
● Event handler does repetitive (and error prone)

decoding of requests using ATmatch
● Event handler takes care of standard messages for

termination, signature handling, etc.
● Why not automate some of these tasks?

149Introduction to the ToolBus Coordination Architecture

Automatic generation of tool
interfaces

Script.tb

toolbus -gentifs Script.tb

Script.tifs

tifstoc -tool N Script.tifs

N.tif.c

tifstojava tifsto...

Tscript for the application

Use toolbus to generate
tool interfaces (tifs)

Language independent
tool interfaces (tifs) for all tools

Generate C interface for tool N

Interface for
other languages

The C interface for tool N

http://N.tif.c/

150Introduction to the ToolBus Coordination Architecture

Second version of hello tool
#include "hello.tif.c"

ATerm get_text(int conn)
{
 return ATmake("snd-value(text(\"Hello World, my first ToolBus tool in C!\n\"))");
}

void rec_terminate(int conn, ATerm msg)
{
 exit(0);
}

int main(int argc, char *argv[])
{ ... as before ...
}

Include the generated C interface

C functions for the get-text
and terminate requests

http://hello.tif.c/

151Introduction to the ToolBus Coordination Architecture

Generated file hello.tif.c
#include "hello.tif.h"
#define NR_SIG_ENTRIES 2

static char *signature[NR_SIG_ENTRIES] = {
 "rec-eval(<hello>,get-text)",
 "rec-terminate(<hello>,<term>)",
};

ATerm hello_checker(int conn, ATerm siglist)
{
 return ATBcheckSignature(siglist, signature,
 NR_SIG_ENTRIES);
}

Prototypes of generated C functions

The signature of this tool

Checker for input signature

152Introduction to the ToolBus Coordination Architecture

Generated file hello.tif.c

ATerm hello_handler(int conn, ATerm term)
{ ATerm in, out, t0;

 if(ATmatch(term, "rec-eval(get-text)")) {
 return get_text(conn);
 }
 if(ATmatch(term, "rec-terminate(<term>)", &t0)) {
 rec_terminate(conn, t0);
 return NULL;
 }
 ...
}

Call user-defined function get_text

Call user-defined function rec_terminate

153Introduction to the ToolBus Coordination Architecture

Generated file hello.tif.c

ATerm hello_handler(int conn, ATerm term)
{ ...
 if(ATmatch(term, "rec-do(signature(<term>,<term>))", &in, &out)) {
 ATerm result = hello_checker(conn, in);
 if(!ATmatch(result, "[]"))
 ATfprintf(stderr, "warning: not in input signature:\n\t%t\n\tl\n", result);
 return NULL;
 }

 ATerror("tool hello cannot handle term %t", term);
 return NULL; /* Silence the compiler */
}

154Introduction to the ToolBus Coordination Architecture

A larger example: the calc tool
process CALC is
 let Tid : calc, E : str, V : term
 in
 execute(calc, Tid?).
 (
 rec-msg(compute, E?) .
 snd-eval(Tid, expr(E)) . rec-value(Tid, val(V?)) .
 snd-msg(compute, E, V) . snd-note(compute(E, V))
)* delta
 endlet

tool calc is { command = “calc”}

155Introduction to the ToolBus Coordination Architecture

A larger example: the calc tool
#include <stdlib.h>
#include "calc.tif.c"

ATerm expr(int conn, char *s) { ... }
void rec_terminate(int conn, ATerm t) { ... }
int calculate(ATerm t) { ... }

int main(int argc, char *argv[])
{ ATerm bottomOfStack;
 ATBinit(argc, argv, &bottomOfStack);
 if(ATBconnect(NULL, NULL, -1, calc_handler) >= 0){
 ATBeventloop();
 } else
 fprintf(stderr, "calc: Could not connect to the ToolBus, giving up!\n");
 return 0;
}

Three user-defined functions

156Introduction to the ToolBus Coordination Architecture

A larger example: the calc tool

ATerm expr(int conn, char *s)
{ ATerm trm = ATmake(s);

 if(!trm)
 return ATmake("snd-value(calc-error(<str>))", s);
 else
 return ATmake("snd-value(val(<int>))",
calculate(trm));
}

void rec_terminate(int conn, ATerm t)
{ exit(0);
}

Try to convert argument string to term

Calculate its value

Send that value back to the ToolBus

Handle termination

157Introduction to the ToolBus Coordination Architecture

A larger example: the calc tool

int calculate(ATerm t)
{ int n; char *s; ATerm t1, t2;

 if(ATmatch(t, "<int>", &n))
 return n;
 else if(ATmatch(t, "<str>", &s))
 return atoi(s);
 else if(ATmatch(t, "plus(<term>,<term>)", &t1, &t2))
 return calculate(t1) + calculate(t2);
 else if(ATmatch(t, "times(<term>,<term>)", &t1, &t2))
 return calculate(t1) * calculate(t2);
 else {
 ATerror("panic in calculate: %t\n", t);
 return 0;
 }
}

Recursive evaluation of the expression

158Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

159Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

160Introduction to the ToolBus Coordination Architecture

ToolBus Adapters

● Needed to adjust existing programs/libraries to
the ToolBus

ToolBus

Program

Adapter

ToolBus

Adapter

Standard input/output
are redirected by adapter

Separate program: Library:

Library

161Introduction to the ToolBus Coordination Architecture

A selection of adapters

● wish-adapter: execute Tcl/Tk windowing shell

● tcltk-adapter: ditto but uses the Tcl/Tk library†

● java-adapter: java program as tool

● perl-adapter: perl program as tool†

● python-adapter: python program as tool†

● gen-adapter: arbitrary Unix command as tool†

† = not yet supported in Java-based ToolBus

162Introduction to the ToolBus Coordination Architecture

The wish-adapter

● Execute Tcl/Tk's windowing shell as a tool

● Ex. wish-adapter -script calculator.tcl
– -script: The Tcl script to be executed

– -script-args: Arguments for the Tcl script

● The command wish is executed once and all
further requests are directed to this instance of
wish

163Introduction to the ToolBus Coordination Architecture

The wish-adapter

● snd-eval(Tid, Fun(A
1
,...,A

n
)): perform the Tcl

function call Fun A
1
 ... A

n

● rec-value(Tid, Res?): return value for previous
eval request

● rec-event(Tid, A
1
,...,A

n
): event generated by wish

● snd-ack-event(Tid, A
1
): ack previous event

● snd-terminate(Tid, A
1
): terminate wish-adapter

164Introduction to the ToolBus Coordination Architecture

The gen-adapter

● Execute arbitrary Unix command as tool

● Example: gen-adapter -cmd ls -l
● snd-eval(Tid, cmd(Cmd, input(Str): execute the

Unix command Cmd with Str as standard input

● rec-value(Tid, output(Res?)): receive the standard
output Res from a previous command

● snd-terminate(Tid, Arg): terminate execution of
gen-adapter

165Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● ...
● Implementation issues

– Overview of the ATerm API

– Brief overview of the ToolBus implementation

– Writing ToolBus tools

– Using ToolBus adapters

● Conclusions

166Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

167Introduction to the ToolBus Coordination Architecture

Road map

● The problem: component interconnection
● History & requirements
● Terms, types & matching
● The ToolBus architecture
● ToolBus scripts (Tscripts)
● Larger examples
● Implementation issues
● Conclusions

168Introduction to the ToolBus Coordination Architecture

Conclusions

● ToolBus is an effective technology for
coordination and composition of tools

● ToolBus fits in the popular model of service-
oriented architectures

● ToolBus enables incremental software renovation

169Introduction to the ToolBus Coordination Architecture

A Legacy System
A complete blackbox:
● Subsystems unknown
● Subsystem depencies unknown

170Introduction to the ToolBus Coordination Architecture

Analyze and decompose in major
subsystems

171Introduction to the ToolBus Coordination Architecture

Replace dependencies by Tscript

ToolBus

...

Tscript represents control
dependencies between subsystems

Adapter for
component

Unmodified legacy code

172Introduction to the ToolBus Coordination Architecture

Separate renovation strategy per
subsystem

ToolBus

...
Replace by
standard
package

Contains important
business logic:
implement from scratch

Keep legacy code

173Introduction to the ToolBus Coordination Architecture

The Renovation Process

...

ToolBus

ToolBus

...

Decompose

Restructure

Renovate

174Introduction to the ToolBus Coordination Architecture

Further reading

● See at http://www.meta-environment.org
(Documentation menu entry):
– Guide to ToolBus Programming

– The ATerm Programming Guide

– Further references can be found in Bibliography

http://www.meta-environment.org/

