The ToolBusNG's Viewer Framework
Arnold Lankamp

11 Feb 2008
Table of Contents
T (oo (8 oo o H TSR 1
3 7= o [S 1
(1= 10 o N 1o 0] = T 1
YT Y PPN 3
IPErfOrMAaNCEM ONITONuiiiiiiieii et e e et e e e e e e e eens 4
S o] (T (=S (] 5
(077> S oo [P 5
PrOCESSINSIANCEv e e e 5
S = (PP 5
S (= = 1= = | PR 6
2 (] 1 1 PPN 6
[01V 1000 01= 0| PPN 6
POSIION INFOMMBIION ... eeiiiii e e e e e e e e e e e e e aaeen 6
10 o £ PSRN 7
R L= T (= 0 oL (P 7

Introduction

The viewer is a tool that gives insight in the execution and state of the ToolBus and its connected
tools. It is mainly used for debugging purposes. This document will discuss the viewer framwork of
the Next Generation ToolBus and will serve as a guide for developers that wish to write their own
viewer implementation.

Contrary to the viewer implementation of the old ToolBus, the new viewer implementations run as a
build-in of the ToolBus; this offers the advantage of direct access to all required data, while having
only aminor impact on the performance of the ToolBus.

Design

The design of the viewer framework isfairly basic asit only consists of few parts; the debug ToolBus,
the IViewer interface, the IPerformanceMonitor interface and the ScriptCodeStore. These will be
discussed in more detail below.

Debug ToolBus

The debug ToolBus is a specialized version of the regular ToolBus. It is able to handle breakpoints,
stepping and suspension of the ToolBus and it deals with notifications that need to be passed to the
attached viewer.

Thisisalist of all the viewer related methods:

Execution

voi d doRun()

Notifies the debug ToolBus that it should execute normally.

The ToolBusNG's Viewer Framework

voi d doStop()

Notifies the debug ToolBus that it should suspend its execution.
voi d doStep()

Notifies the debug ToolBus that it should execute one step.

voi d doTer m nat e()

Requests the termination of the Tool Bus.

Breakpoint
voi d addPr ocessl nst anceBr eakPoi nt (i nt processl d)

Adds a breskpoint for the process instance with the given id. When the debug ToolBus executes a
state element in the associated process instance, the attached viewer will be notified.

voi d removeProcessl nst anceBr eakPoi nt (i nt processl d)

Removes the breakpoint on the process instance with the given id (if present).

voi d addPr ocessBreakPoi nt (String processNane)

Adds a breakpoint for al the process instances whos type is identified by the given name. When the
debug ToolBus executes a state element in one of those process instances, the attached viewer will
be notified.

voi d removeProcessBreakPoi nt (String processNane)

Removes the breakpoints for the process instances whos type is identified by the given name (if
present).

voi d addSt at eEl enent Br eakPoi nt (St at eEl enent st at eEl enent)

Adds a breakpoint on the given state element. When the debug ToolBus executes the given state
element, the attached viewer will be notified.

voi d renoveSt at eEl enent Br eakPoi nt (St at eEl enent st at eEl enent)

Removes the breakpoint from the given state element (if present).

voi d addSour ceCodeBr eakPoi nt (String filenane, int |ineNunber)

Adds a breakpoint on the given sourcecode coordinates. When the debug toolbus executes a state
element which's position information matches the sourcecode coordiates, the attached Viewer will be
notified. Note that the debug toolbus assumes that line numbers start counting at zero.

voi d renmoveSour ceCodeBr eakPoint (String fil ename, int |ineNunmber)

Removes the breakpoint from the given source code coordinates (if present).

Performance monitoring

ATer m get Tool BusPer f or manceSt at s()
Gathers performance statistics related to JVM the current ToolBusis running in.

voi d startMnitoringTool (ATer mt ool Key)

The ToolBusNG's Viewer Framework

Initiates the monitoring of the tool associated with the given tool key (in case performance monitoring
is enabled for this debug ToolBus). Note that it may take some time before performance statistics for
the associated tool arrive, since they are only requested after tool interaction.

voi d st opMoni t ori ngTool (ATer m t ool Key)
Stops monitoring the tool associated with the given tool key.
voi d startMnitorTool Type(String tool Nane)

Initiates the monitoring of the given tool type (in case performance monitoring is enabled for this
debug ToolBus). Note that it may take some time before performance statistics for the given tool type
arrive, since they are only requested after tool interaction.

voi d st opMoni tori ngTool Type(String t ool Nane)

Stops monitoring tools of the given type.

Process logic

Li st <Pr ocessl nst ance> get Processes()
Retrievesthe list of currently executing process instances.

Note that invoking any method other then those discussed above will likely induce undefined behaviour
in the Tool Bus.

IViewer

The viewer interface lists al types of viewer related events the debug ToolBus can fire and in which
aviewer implementation may possibly be interested.

Thisiswhat the interface looks like:

voi d updat eState(int state)

Informs the viewer about what the debug ToolBusis currently doing.
Thisisacompletelist of possible states:

* UNKNOWN_STATE: Bogus initial state, which is also used in case the debug ToolBus gets
confused (in which caseit'll go to sleep). Note that this currently will never happen.

e STOPPING_STATE: Indicatesthat the debug Tool Busisin the process of suspendingit'sexecution.
Thiswill be fired after acall to the doStop method.

* WAITING_STATE: Indicates the debug ToolBusis unable to execute any atoms and iswaiting for
either tool input, adelay to expire or a doStep or doRun event to occur.

» READY_STATE: Indicates that tool interaction occurred, meaning there probably is work to be
done.

* RUNNING_STATE: Indicates that the debug ToolBus is executing normally. This will be fired
after a call to the doRun method; additionally a transition from WAITING to RUNNING is aso
possible.

» STEPPING_STATE: Indicates that the debug ToolBus is executing one step. It's execution will be
suspended once one atom has been executed. This will be fired after a call to the doStep method;
additionally atransition from WAITING to STEPPING is aso possible.

voi d st epExecut ed(Processl nstance processl nstance, StateEl ement execut edStateEl

The ToolBusNG's Viewer Framework

Fired after the successfull completion of astep. The parametersindicate which state element, in which
process instance was executed. Optionaly, in case a communication atom has been executed, the
partners paramater will indicate which other state elementswere involved in the execution of this step.

voi d processl nstanceStart ed(Processl nstance processl nstance)
Fired when anew process instance is started.

voi d processl nstanceTer m nat ed(Processl nst ance processl nstance)
Fired when a process instance is terminated.

voi d processBreakPoi nt Hi t (Processl nstance processl nstance)

Informs the viewer that a registered breakpoint on a process or process instance was hit. The debug
ToolBus will not suspend it's execution by itself; the action that will be taken is completely up to the
viewer implementation. In case the execution needs to be paused this will need to be done explicitly
by calling the doStop method.

voi d st at eEl enent BreakPoi nt Hi t (St at eEl enent st at eEl enent)

Informs the viewer that a registered breakpoint on a state element was hit. The debug ToolBus will
not suspend it's execution by itself; the action that will be taken is completely up to the viewer
implementation. In case the execution needsto be paused thiswill need to be done explicitly by calling
the doStop method.

voi d sourceBreakPoi nt Hi t (St at eEl enent st at eEl enent)

Informsthe viewer that aregistered breakpoint on a sourcecode coordinate was hit. The debug toolbus
will not suspend it's execution by itself; the action that will be taken is completely up to the viewer
implementation. In case the execution needsto be paused thiswill need to be done explicitly by calling
the doStop method.

voi d tool busStarting()
Fired right before the debug Tool Bus starts executing the process logic.
voi d t ool busTerm nati ng()

Fired right before then debug Tool Bus shuts down.

IPerformanceMonitor

The performance monitor interface lists al types of tool related events that the performance monitor
implementation needs to handle.

Thisiswhat the interface looks like:

voi d t ool Connect ed(Tool | nst ance t ool | nst ance)

Fired when atool connects.

voi d t ool Connecti onCl osed(Tool | nst ance tool | nstance)

Fired when a connection with atool isterminated.

voi d performanceSt at sArrived(Tool | nstance tool | nstance, ATerm aTerm
Fired when the performance statistics that were requested by the debug ToolBus arrived.

The ATerm containing the performance statistic information has the following layout:

The ToolBusNG's Viewer Framework

performance-stats(tool (type(<string>), | anguage(<string>)),
nmenor y- usage(heap- usage(<i nt >), non- heap- usage(<i nt>)),
t hreads([<t hr ead_nanel>(user-ti me(<int>), systemtine(<int>)),
<t hread_name2>(user-tine(<int>), systemtinme(<int>)), ...]))

ScriptCodeStore

The script code store provides accessto all, for the Tool Bus, reachabl e script source code. Additionally
it provides caching of loaded code.

It has two important functions:

String[] getScriptNanes()

Returns a complete list of absolute paths to all, for the ToolBus, reachable scripts.
byte[] get Code(String scriptPath) throws | OException

Retrieves the source code of the script indicated by the given path.

Process logic

Every processinstances represents a state machine. Such a state machine consists out of state el ements
that are linked together.

Thisisthelist of methods that may be of interest to viewer builders:

Processlinstance

State

String getProcessNane()

Returns the name of the process instance.

i nt getProcessld()

Returns the process instance's unique identifier.

Li st <St at eEl enent > get St at eEl enent Set ()

Returns the collection of all state elements that the process instance contains.
State get ProcessState()

Returns the process instance's current state.

Li st <ATer m> get Subscri ptions()

Returns alist containing all the types of notes the process instance is subscribed on.
Li st <ATer m> get Not eQueue()

Returns the collection of notes that are currently in the process instance's queue.

Li st <St at eEl enent > get El enent sAsLi st ()
Returns the collection of state el ements contained in the state.

String toString()

The ToolBusNG's Viewer Framework

Returns a seria representation of the state.

StateElement

Atom

State get Fol | ow()

Returns the follow state of the state element. This follow state contains all state elements that are
possible candidates for execution after this current state element has been processed.

Posi ti onl nformati on get Posl nf o()

Returns the position codrdinates associated with a certain state element. Position information will be
discussed in more detail in the next section.

String toString()
Returns a seria representation of the state element.
Li st <ATer m> get Test s()

Returns a collection of al test expression of the tests that are set on the state element. These test
expressions restrict the conditions under which the state element is all owed to execute (in other words
these represent the surrounding if-statements after compilation).

Envi ronnment get Env()

Returns the environment that is associated with the atom.

i nt getDel ay()

Returns the amount of time (in ms) that needs to pass by before the atom is allowed to be executed.
i nt getTi meout ()

Returns the time (in ms) within which the atom needs to be executed before being invalidated.

Environment

Li st <Bi ndi ng> get Bi ndi ngsAsLi st ()

Returns all bindings in the environment as a list. The bindings are key-value pair, that contain a
mapping between avariable and its value.

Note that invoking any method other then those discussed above may induce undefined behaviour in
the Tool Bus; so caution is adviced.

Position information

During the parsing of the ToolBus scripts, position information will be added to the constructed state
elements. This position information is used to relate these state elements to source code coordinates.

Positions contain the following data:
* Name of the script.
o Startline.

e Start column.

The ToolBusNG's Viewer Framework

e Endline.
e End column.
Note that both the line numbers and the column numbers start at 0.

One can obtain the collection of all state elements contained in acertain processinstance by calling the
toolbus.process.Process| nstancetget StateEl ementSet() method, as discussed in the previous section.
Not every state element may have position information on it, since some are 'made up' during
compilation; all state elements that can directly be related to an expression in a ToolBus script will
however have position information associated with them.

Tools

When implementing a performance viewer one has to deal with tool instances. There are only two
methods on the Toollnstance class that should be used by a viewer implementation.

These are:
ATer m t ool bus. t ool . Tool | nst ance#get Tool Key()

This method returns a unique key which identifies the tool instance. It consists of the name of the tool
and itsid (integer). It adheres to the following format: <t ool nanme>(<i d>)

t ool bus. t ool . Tool | nst ance. get Tool Nane()
A convience method for retrieving the name of the tool that is associated with a certain tool instance.

Notethat invoking any method other then those discussed above will likely induce undefined behaviour
in the Tool Bus.

Viewer template

Below follows a template which can be used to start a new viewer implementation. Developers are
encouraged to copy the code below and modify it to their needs.

public class Viewer inplements |Viewer{
private final DebugTool Bus debugTool Bus;
private final ScriptCodeStore scriptCodeStore;

public Viewer(String[] args)({
super () ;

debugTool Bus = new DebugTool Bus(args, this, new Tool PerformanceViewer()); /.

scri pt CodeStore = new Scri pt CodeSt or e(debugTool Bus); // Optional; this is o
}

publ i c DebugTool Bus get DebugTool Bus() {
return debugTool Bus;
}

(I'npl enented | Vi ewer net hods).

/] Optional part.
private static class Tool PerfornanceVi ewer inplenments | Performancehonitor{

The ToolBusNG's Viewer Framework

publ i ¢ Tool Perf or manceVi ewer () {
super () ;

}

(I npl enent ed | PerformanceMoni t or net hods) .

}
/1 End optional part.

public static void main(String[] args){
Vi ewer viewer = new Viewer(args);
DebugTool Bus debugTool Bus = vi ewer. get DebugTool Bus() ;

ConmmandLi ne. cr eat eConmandLi ne(debugTool Bus, Systemin, false); // Enable co

debugTool Bus. doStop(); // Set the initial state to stopped (recomended but

try{
debugTool Bus. parsecup(); // Execute the parser

debugTool Bus. prepare(); // Initialize the Tool Bus.
debugTool Bus. execute(); // Execute the debug Tool Bus.
}cat ch(Excepti on ex){
ex. print StackTrace();
}
}
}

