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hasti
 subgrid models have been proposed to 
apture the missing variability and
orre
t systemati
 medium term errors in general 
ir
ulation models. In parti
ular,the poor representation of subgrid s
ale deep 
onve
tion is a persistent problem whi
hsto
hasti
 parameterizations are attempting to 
orre
t. In this paper we 
onstru
tsu
h a subgrid model using data derived from large-eddy simulations (LESs) of deep
onve
tion. We use a data driven sto
hasti
 parametrization methodology to 
onstru
ta sto
hasti
 model des
ribing a �nite number of 
loud states. Our model emulates, ina 
omputationally inexpensive manner, the deep 
onve
tion resolving LES. Transitionsbetween the 
loud states are modelled with Markov 
hains. By 
onditioning the Markov
hains on large-s
ale variables we obtain a 
onditional Markov 
hain whi
h reprodu
esthe time-evolution of the 
loud fra
tions. Furthermore, we show that the variability andspatial distribution of 
loud types produ
ed by the Markov 
hains be
omes more faithfulto the LES data when lo
al spatial 
oupling is introdu
ed in the subgrid Markov 
hains.Su
h spatially 
oupled Markov 
hains are equivalent to sto
hasti
 
ellular automata.Key words: 
onditional Markov 
hains, sto
hasti
 
ellular automata, large-eddy simulation, 
limate,variability.:1. Introdu
tionGeneral 
ir
ulation models (GCMs) are unable to 
apture the medium termvariability in the tropi
al atmosphere. Lin et al. [1℄ made a 
omprehensive study ofthe tropi
al wave spe
tra determined from the IPCC GCMs and showed that nonewere able to reprodu
e the observed power spe
trum [2℄ of 
onve
tively 
oupledKelvin waves, two day waves, westward inertio-gravity waves and, least of all,the Madden-Julian os
illation [3℄. These are the waves that modulate weather onintraseasonal time s
ales in the tropi
s and are in
reasingly seen to a�e
t twoweek weather fore
asts in the middle latitudes [3℄.One bias that [1℄ identify in these GCMs is �the persisten
e of equatorialpre
ipitation�, whi
h o

urs at the subgrid s
ales. In the parlan
e of dynami
alsystems, the subgrid dynami
al models qui
kly attain their equilibrium values andremain there too long. Palmer [4℄ used simple arguments from dynami
al systemsto show how the redu
tion of a 
haoti
 dynami
al system to a smaller number ofdegrees of freedom 
an suppress the 
haos. While this has the obvious e�e
t ofsuppressing the variability, he argued that it 
an have the, even more insidious,Phil. Trans. Roy. So
. A 1�23; doi: 10.1098/rspa.00000000September 11, 2012, revisedThis journal is 
© 2011 The Royal So
iety



2e�e
t of driving systemati
 errors in the mean state. A sto
hasti
 parameterizationof the unresolved 
onve
tion introdu
es variability in the GCM des
ription ofthese pro
esses and these parameterizations are in
reasingly being seen as thenext generation of subgrid models [4, 5, 6, 7, 8, 9, 10℄.Khouider et al. [7℄ 
reated a sto
hasti
 multi
loud model based on thedeterministi
 multi
loud model of [11℄. The deterministi
 multi
loud model wasderived to 
orrespond to the observed behaviour of tropi
al waves [12℄, wherea fo
us on three 
loud types is needed to 
apture the observed stru
ture of
onve
tively 
oupled waves. Furthermore, the deterministi
 model was 
alibratedso that the dynami
s of the waves mat
hed those of the tropi
al wave spe
trum[2℄. When implemented in a GCM, it has been shown to 
apture mu
h of the
onve
tively 
oupled equatorial wave [13℄ a
tivity.In the sto
hasti
 model [7℄, 
onve
tion is modelled on a 2-dimensional mi
ro-latti
e by letting the lo
al 
onve
tive state at ea
h latti
e site swit
h randomlybetween four possible states (three 
loud types, and 
lear sky) with a givenprobability. At the ma
ros
opi
 level, the area fra
tions of these four states evolverandomly over time. The fra
tions e�e
tively determine the feedba
k from themi
ro-s
ale to the ma
ro-s
ale. Even in the setting of a single 
olumn [7℄ showedthat the sto
hasti
 multi
loud model has a large degree of variability. When
oupled to a one dimensional dynami
al 
ore [8℄ it produ
es a large degree ofgravity wave variability.Crommelin & Vanden-Eijnden [14℄ proposed a data-driven sto
hasti
parameterization methodology, where the sto
hasti
 pro
esses driving theparameterization are systemati
ally inferred from data (e.g. from high-resolutionmodels). This method was used by [15℄ on data from a large-eddy simulation (LES)of shallow 
onve
tion. This approa
h leads to a model with random jumps betweena �nite number of possible subgrid-s
ale states where, both the dis
rete states aswell as the swit
hing probabilities, are estimated from data. Furthermore, theswit
hing probabilities are dependent (
onditional) on the ma
ros
opi
, resolved-s
ale state of the atmosphere.For the shallow 
onve
tion parameterization in [15℄, verti
al turbulent �uxesof heat and moisture were 
olle
ted from the LES data and dis
retized usinga 
lustering method. By 
ontrast, the dis
rete states used in [7℄ are 
loud types(
ongestus 
louds, deep 
onve
tive 
louds, stratiform 
louds, and 
lear sky) ratherthan �ux states. The states and swit
hing probabilities used in [7℄ are based onphysi
al intuition and observations; they are not inferred from data.The obje
tive of the 
urrent study is to determine a sto
hasti
 multi
loudparameterization approa
hes from [7℄ using a data driven approa
h [14, 15℄.Mu
h as in [7℄, we use pre-spe
i�ed 
loud types as a basis for dis
retizing thesubgrid-s
ale states, and study their (time-evolving) fra
tions on ma
ros
opi
domains. The pre
ise dis
retization, as well as the swit
hing probabilities andthe 
onditioning on the resolved-s
ale state, are all inferred from LES data, as in[14, 15℄.Spe
i�
ally, we use eight hours of simulation of the development of tropi
al
onve
tion based on an idealization of observed 
onditions in North-West Brazil[16℄. Simulated 
loud top and rain water path are stored to 
lassify states on theLES (horizontal) grid nodes. We use �ve states: 
lear sky (1) and the four 
loudtypes shallow 
umulus (2), 
ongestus (3), deep (4) and stratiform (5). Stri
tlyspeaking 
lear sky is not a 
loud type, but from now on we will refer to �ve 
loud



3types. At the beginning of the simulation, only 
lear sky is present. Gradually,shallow 
umulus develops, followed by (raining) 
ongestus 
louds. After about�ve hours, deep 
onve
tive towers with heavy pre
ipitation develop. The deep
onve
tive towers turn into passive stratiform de
ks that spread and dissolve.The paper is organised as follows. In Se
tion 2 we dis
uss how we modeltransitions between 
loud types with Markov 
hains, and how these Markov 
hains
an be made 
onditional on the environment, or on the 
loud types at neighboringlatti
e sites. We des
ribe the LES data and spe
ify the 
loud 
lassi�
ation inSe
tion 3. The sto
hasti
 multi
loud model is des
ribed in Se
tion 4. In Se
tions5-7 we infer the transition probabilities of the Markov 
hains and assess theirability to reprodu
e (emulate) the 
loud �lling fra
tions from the LES data. InSe
tion 5 we use a Markov 
hain without 
onditioning, in Se
tion 6 a Markov 
hain
onditioned on the environment, and in Se
tion 7 a Markov 
hain 
onditionedon 
loud types at neighboring latti
e sites. Then, we dis
uss implementationof the multi
loud model into a simple single 
olumn model (Se
tion 8), again
al
ulating 
loud �lling fra
tions. Finally, 
on
lusions about our multi
loud model,how sto
hasti
s 
an 
hange dynami
s and its impli
ations for 
limate models aregiven in Se
tion 9.2. Modelling 
loud type transitions with Markov 
hainsA 
entral element in the sto
hasti
 parameterization approa
h used here and in[7, 14, 15℄ is dis
retization of the subgrid-s
ale (e.g., 
onve
tive) states. Here, ea
hgrid point at the mi
ros
opi
 level 
an be in only one of �ve possible states. Letus denote by Yi(t)∈ {1, 2, 3, 4, 5} the state at time t at grid point i. The timeevolution of Yi(t) is modelled as a Markov 
hain (MC), so Yi(t) 
hanges randomlyin a

ordan
e with a set of transition probabilities. In the most basi
 form, theseprobabilities are simply
p(α, β) =Prob (Yi(t + ∆t) = β |Yi(t) = α) . (2.1)However, in this basi
 formulation, the probability of e.g. a 
ongestus state at gridpoint i turning into a deep 
onve
tive state is independent of the environment(ma
ros
opi
 state) for i. To in
lude su
h dependen
y, in [7, 14, 15℄ the transitionprobabilities are 
onditioned on the ma
ros
opi
 state. If we denote by Xi(t) avariable that is representative of the environment of i (e.g. 
onve
tively availablepotential energy (CAPE), 
onve
tive inhibition (CIN), or mid-troposphere relativehumidity), the transition probabilities of su
h a 
onditional Markov 
hain (CMC)are

pγ(α, β) =Prob (Yi(t + ∆t) = β |Yi(t) = α, Xi(t) = γ) . (2.2)As 
an be seen, the transition probabilities in (2.1) and (2.2) are not expli
itlydependent on the 
onve
tive states of neighbouring grid points. If i and j areneighbouring grid points, Yi and Yj are 
ompletely un
oupled in 
ase of (2.1).They are 
oupled indire
tly via Xi and Xj in 
ase of (2.2), be
ause Xi and
Xj are 
oupled at the ma
ros
opi
 level. Sin
e i and j are neighbouring gridpoints, Xi and Xj will be strongly 
orrelated. In this paper we also exploreexpli
it 
onditioning on the neighbourhood, as this is likely to improve the spatial
orrelation of the parameterized 
onve
tion patterns. We do this by 
onsidering



4the 
onditional transition probabilities
pδ(α, β) =Prob (Yi(t + ∆t) = β |Yi(t) = α, Y{i}(t) = δ) , (2.3)and

pγ,δ(α, β) =Prob (Yi(t + ∆t) = β |Yi(t) = α, Xi(t) = γ, Y{i}(t) = δ) , (2.4)where {i} denotes the neighbourhood of i (e.g., the 8 dire
t neighbours on thelatti
e). We note that by 
onditioning the Markov 
hain on neighbouring states,as in (2.3), the Markov 
hain e�e
tively be
omes a sto
hasti
 
ellular automaton(SCA). A s
hemati
 overview of the generalizations of the Markov 
hains is shownin Fig. 1.

Figure 1. A Markov 
hain 
an be 
onditioned on the ma
ros
opi
 state to obtain a CMC or onthe state of the nearest neighbours to obtain a SCA.Ea
h gridpoint on the mi
ro latti
e has a state that evolves randomly a

ordingto the same set of transition probabilities, e.g. (2.2). At the ma
ros
opi
 level,square blo
ks of mi
ro latti
e sites are grouped together, and we study the �llingfra
tions (or area fra
tions) of the various 
onve
tive states. For ea
h blo
k wehave
σα(t) = n−1

n
∑

i=1

1(Yi(t) = α) , (2.5)where n is the number of mi
ro latti
e sites in the ma
ros
opi
 blo
k, and 1(.)is the indi
ator fun
tion. The �lling fra
tions are time-dependent and random,and must sum up to one for ea
h ma
ros
opi
 blo
k: ∑

α σα(t) = 1 for all t. Bymat
hing the size of the ma
ros
opi
 blo
ks to the (horizontal) size of GCM modelgrid boxes, the �lling fra
tions 
an be used as input for parameterizing verti
altransport due to 
onve
tion.
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Figure 2. (a,
,e) Histograms of the 
loud top at di�erent time instan
es of the simulation. (b,d,f)Three snapshots of the LES �eld for whi
h all 
olumns are assigned to one of the �ve 
loud types.
3. Large-eddy simulationWe use the Dut
h Atmospheri
 LES (DALES) model to produ
e high-resolutiondata. DALES is a non-hydrostati
 model that resolves atmospheri
 
onve
tionexpli
itly by solving the spatially �ltered Navier-stokes equations under theanelasti
 approximation. The model has an i
e mi
rophysi
s s
heme, but does not



6a

ount for latent heat release due to freezing. For further details about DALESwe refer to [17℄. The simulation is based on an idealization of observed 
onditions[16℄ during the tropi
al 
onve
tion experiment TRMM-LBA 
arried out in North-West Brazil in 1998/1999. There is no horizontal shear, and surfa
e heat andmoisture �uxes are held 
onstant throughout the simulation. At the start of the 8-hour simulation, the entire LES domain 
onsists of 
lear sky. Conve
tion developsgradually, �rst shallow 
onve
tion, eventually (after about �ve hours) also deep
onve
tion. We emphasize that it is a non-stationary 
ase of the development ofdeep 
onve
tion. The simulation and the resulting data are des
ribed in moredetail by [18℄.The horizontal size of the LES domain is 57.6 × 57.6 km2 and the verti
alextent is 25 km. The horizontal grid spa
ing is 150 meter and the verti
al spa
ingin
reases exponentially from 40 near the surfa
e to 200 meter at the upper levels.For every 
olumn we store the simulated 
loud top height, rain water path (theverti
ally integrated rain water 
ontent), CAPE and CIN. We also store liquidwater potential temperature θl and total water spe
i�
 humidity qt at two modellevels, one in the boundary (sub
loud) layer at 413 meter, the other in the lowerfree troposphere at 2345 meter. These variables are de�ned by
θl = θ −

L

cpπ
ql and qt = qv + ql , (3.1)with θ the potential temperature, L the latent heat of vaporization, cp the spe
i�
heat of dry air at 
onstant pressure, ql the non-raining liquid water 
ontent and

qv the water vapour spe
i�
 humidity. Furthermore, π is the Exner fun
tion, theratio of absolute and potential temperature. In the absen
e of pre
ipitation θl and
qt are 
onserved for moist adiabati
 pro
esses. We store the data at time intervalsof one minute during eight hours, resulting in 480 time sli
es of the variablesmentioned above in ea
h of the 384 × 384 LES model 
olumns. Below we dis
usshow these variables are used for 
lassi�
ation of ea
h model 
olumn state into �ve
loud types. (a)Classi�
ation of 
loud typesIn the vein of [19℄ and [7℄ we 
onsider �ve 
loud types: 
lear sky, shallow
umulus, 
ongestus, deep 
onve
tion and stratiform. Fig. 2 (left) shows histogramsof the 
loud top height. At t = 480 we see three 
ategories (
lear sky, low 
loudsand high 
louds), whi
h 
an be well distinguished with thresholds at 200 meterand 5000 meter. Furthermore, to distinguish the heavily raining deep 
onve
tivetowers from their passive, modestly raining stratiform remnants, we use the rainwater path divided by the 
loud top height. We 
all this the 
olumn rain fra
tion:

CRF :=
rain water path
loud top . (3.2)By dividing by the 
loud top height we obtain a measure of the rain intensity, fromwhi
h the verti
al extent of raining 
loud has been fa
tored out. The CRF makesit easier to identify stratiform 
louds, whi
h have high 
loud top and low, but notalways negligible rain water path. Furthermore, we 
an use the same threshold ofthe CRF, 10−5, to distinguish deep from stratiform as well as non-raining shallow
umulus from raining 
ongestus 
louds. In Fig. 3 we plot the CRF against the
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Figure 3. Classi�
ation of 
loud types using 
loud top and CRF .
Table 1. Classi�
ation of the 
louds. CRF de�ned in (3.2).Cloud type 
loud top rainClear sky n/a n/aShallow 
umulus 200≤ h < 5000 m CRF ≤ 10−5Congestus 200≤ h < 5000 m CRF > 10−5Deep h≥ 5000 m CRF > 10−5Stratiform h≥ 5000 m CRF ≤ 10−5


loud top height and indi
ate 4 
loud types with di�erent symbols. The 
lear skygroup is not shown be
ause its CRF is not well-de�ned. In Table 1 we summarizethe 
loud 
lassi�
ation.We 
an now assign the state of ea
h LES 
olumn, at every time step, to oneof the �ve 
loud types. Fig. 2 (right) shows snapshots of the LES domain withall 
olumns assigned to one of the 
loud types. At t = 100 we see 
lear sky sites
ombined with shallow 
umulus 
louds and some 
ongestus 
louds. At t = 300the development of deep towers start. At t = 480 we see larger deep towers anddissolving stratiform de
ks.



8 4. The sto
hasti
 multi
loud modelWith the LES data dis
retized a

ording to Table 1, we 
an 
hoose the size ofthe ma
ros
opi
 blo
ks and 
al
ulate the �lling fra
tions σα(t) on ea
h of theseblo
ks using (2.5). In what follows, the LES blo
ks always 
onsist of 32 × 32mi
ros
opi
 latti
e sites (so that n = 322), unless expli
itly stated otherwise. The
orresponding physi
al size of these blo
ks is 4.8 km by 4.8 km. The total LESdomain is 
overed by 122 of su
h (non-overlapping) blo
ks. In Fig. 4a we show thetime evolution of the means and standard deviations of the �lling fra
tions, takenover the 122 di�erent blo
ks. We emphasize that these are the �lling fra
tions as
omputed dire
tly from the LES data.With the sto
hasti
 multi
loud model, we aim to emulate the time evolutionof the LES �lling fra
tions. This is done by evolving the state (
loud type) of ea
hmi
ro latti
e site as a Markov 
hain. The states on the mi
ro latti
e sites 
an begrouped again in ma
ros
opi
 blo
ks (of any desired size), leading to emulated�lling fra
tions. As already mentioned, the number of Markov 
hains groupedtogether in the multi
loud model in one ma
ros
opi
 blo
k will be 1024, ex
eptfor the 
reation of plots in Fig. 7b, Fig. 8b and Fig. 11b where we use blo
ks of
64 Markov 
hains.The transition probabilities that 
hara
terize the Markov 
hain are of theform (2.1), (2.2), (2.3) or (2.4). Their numeri
al values are estimated from theLES data. We use a time step ∆t of 1 minute, mat
hing the saving time stepof the LES data. We assess the performan
e of the various forms (2.1) - (2.4) inthe following se
tions. The 
hoi
e of the ma
ros
opi
 environment variable Xi(t),used in (2.2) and (2.4), are dis
ussed there as well.Eventually, the multi
loud model has to provide not just �lling fra
tions, butverti
al pro�les for heating and moistening that 
an be used for parametrizationpurposes in a GCM. In Se
tion 8b we explain how we deal with heating andmoistening in a single-
olumn model experiment.5. Markov 
hainsWe start by using the simplest form (2.1), i.e. the form where the Markov 
hainis not 
onditioned on ma
ros
opi
 environment variables or on neighbour states.The transition probabilities determine a single 5 × 5 sto
hasti
 matrix in whi
hthe entry at the k-th row and l-th 
olumn is the probability that a site that is instate k will swit
h to state l in the next minute. We 
ount transitions in the LESdata to estimate the transition probability matrix, resulting in

M̂ =











0.95 0.04 0.00 0.00 0.00
0.14 0.84 0.02 0.00 0.00
0.02 0.06 0.90 0.02 0.00
0.01 0.00 0.03 0.94 0.03
0.10 0.03 0.00 0.01 0.86









We use all data of the entire simulation to estimate transition probabilities. Inthis 
ase we do not take into a

ount the strong dependen
e of the transitions ontime. The reader is reminded that the 
ase we 
onsider is a non-stationary 
ase of



9the development of deep 
onve
tion. Next, we will test the skills of this Markov
hain. (a)Filling fra
tions of the MC
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Figure 4. (a) Mean �lling fra
tions observed in the LES data using n = 32
2 mi
ro latti
e sitesper ma
ros
opi
 blo
k (solid) plus and minus the standard deviations over the 12

2 ma
ros
opi
blo
ks (dashed) and (b) reprodu
ed mean �lling fra
tions using 1024 MCs (solid) plus and minusthe standard deviation of 144 realizations (dashed).Fig. 4 shows 
loud �lling fra
tions observed in the LES data and reprodu
ed bythe Markov 
hain. The Markov 
hain �lling fra
tions 
onverge qui
kly to the �llingfra
tions that 
orrespond to the invariant distribution of the transition matrix.These fra
tions are therefore a

urate in the sense that they are in agreementwith the time averages of the fra
tions observed in the LES data. However, thestandard deviations are too small and the overall time evolution of the LES 
loudfra
tions is not 
aptured at all.From the results in Fig. 4 we 
an 
on
lude that a Markov 
hain governedby (2.1) is not 
apable of emulating the LES 
loud fra
tions satisfa
torily. Alonger time step (20 minutes) for the Markov 
hain did not improve any ofthese de�
ien
ies (results not shown). Rather, the short
omings are due to theinsensitivity of the MC to both the ma
ros
opi
 environment and the neighbourstates. A natural way of to improve on this is to in
lude dependen
y onenvironment or neighbours. Thus, in the next se
tions we generalize the Markov
hain (2.1) by1. 
onditioning on the ma
ros
opi
 state (environment), leading to the
onditional Markov 
hain (CMC) form (2.2), or2. 
oupling to neighbouring 
ells, leading to the sto
hasti
 
ellular automaton(SCA) form (2.3) .In the most general form (2.4), both environment and neighbouring states arein
luded. A s
hemati
 overview of these generalizations was shown in Fig. 1.



10 6. Conditional Markov 
hainsIn this se
tion we explore 
onditioning of the Markov 
hains on a fun
tion of somelarge-s
ale variables that 
ould be resolved in a GCM. Large-s
ale variables su
has CAPE, CIN, middle troposphere relative humidity, or (moist) 
onvergen
e are
onsidered to be potential indi
ators of 
onve
tive behaviour. In Se
tion 6a wedis
uss how mutual information 
an be used as an obje
tive measure to quantifyhow good these indi
ators are.For now, to explain our method we 
hoose to 
ondition on the CAPE andthe CIN. These fun
tions of large-s
ale variables have been used before in e.g.[20℄ and [7℄. A reversibly lifted adiabati
 par
el, using the mean thermodynami
properties at the 200-400 meter level is used to 
al
ulate the CAPE and theCIN in every LES model 
olumn. In the present 
ontext, CAPE and CIN mostlyindi
ate the evolution of the surfa
e properties, rather than the state of the freetroposphere. CAPE and CIN are a�e
ted both by the gradual moistening andheating by surfa
e �uxes and by the presen
e of 
old pools (see e.g. [21℄). Thevalues depend on the 
hoi
e of variable used to 
onstru
t the adiabats, in our
ase θl. Although the CAPE values reported here, maximum values of around
4500 J/kg, are higher than what we had expe
ted, seasonally averaged values ashigh as 7000 J/kg have been reported over tropi
al land masses by [22℄.As before, we divide the whole LES domain in 122 ma
ros
opi
 blo
ks(subdomains) and 
al
ulate spatial averages of CAPE and CIN on thesesubdomains. We thereby obtain 122 paths in the CAPE-CIN spa
e, ea
h 480minutes long. An even larger part of the CAPE-CIN spa
e 
ould be sampledby 
ombining data from several LES runs with di�erent initial pro�les fortemperature and humidity; we will not explore this here.After obtaining the paths in the CAPE-CIN spa
e, we 
luster the CAPE-CINdata points in K 
lusters using the K-means++ algorithm [24, 25, 26℄. While
lustering the CAPE-CIN spa
e, we use the Eu
lidean distan
e with di�erentres
aling fa
tors for CAPE and CIN. The res
aling fa
tors are su
h that themean 
ontribution to the distan
e to the 
entroids is equal for CAPE and CIN.The 
lustering algorithm also works for all other (
ombinations of) large-s
alevariables, with other s
aling fa
tors. The number of 
lusters K has to be 
hosenbeforehand. It should be as small as possible, be
ause for every 
luster a 5 × 5transition matrix has to be estimated. We refer to [15℄ and [23℄ where 
lusteringhas been used to 
onstru
t 
onditional Markov 
hains.In Fig. 5 we show the result of the 
lustering using K = 20. For K = 20 wewill show that the CMCs are able to reprodu
e the 
orre
t �lling fra
tions (seeSe
tion 6b). All 122 paths start at CIN ≈ 80 J/kg and CAPE ≈ 2400 J/kg. Then,CAPE in
reases and CIN de
reases almost uniformly in the domain. When deep
onve
tion sets in, the domain starts to be
ome very inhomogeneous, resulting inCAPE and CIN values that di�er substantially over the subdomains. After theCAPE-CIN spa
e is divided into K regions, the paths in the CAPE-CIN spa
e
an be mapped to paths in the spa
e of 
luster 
entroids.To sum up: �rst we 
al
ulate the (time-evolving) subdomain averages of CAPEand CIN from the LES data, then we 
luster these CAPE-CIN averages. Todetermine the environment state Xi(t) for mi
ro latti
e site i we use the dis
retized(
lustered) CAPE-CIN state of the subdomain to whi
h site i belongs. Thus, Xi(t)



11e�e
tively takes values in the set of 
luster indi
es: Xi(t)∈ {1, 2, ...,K}. Using this
Xi(t) in the manner of (2.2) to 
ondition the transition probabilities implies thatwe have a transition probability matrix asso
iated with ea
h CAPE-CIN 
luster.These transition probability matri
es are estimated by 
ounting transitions inthe LES data (see also [14℄). To estimate the probability pγ(α, β) de�ned in (2.2)we use the estimator

p̂γ(α, β) =
Tγ(α, β)

∑

β Tγ(α, β)
, (6.1)where Tγ(α, β) is the number of 
loud type transitions α→ β observed in the LESdata with Xi(t) = γ. Thus,

Tγ(α, β) =
∑

t,i

1(Yi(t + ∆t) = β)1(Yi(t) = α)1(Xi(t) = γ) (6.2)
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Figure 5. Clustered paths forming K = 20 regions in the CAPE-CIN spa
e. The red dots are
luster 
entroids.
(a)Mutual information between environment and 
loud typeLarge-s
ale variables su
h as CAPE, CIN or middle troposphere relativehumidity are 
onsidered to be potential indi
ators of 
onve
tive behaviour. Belowwe dis
uss how mutual information 
an be used as an obje
tive measure toquantify how good these indi
ators are.Suppose we have two dis
rete random variables with a joint probability massfun
tion pJ(x, y) and marginal probability mass fun
tion p(x) and p(y). Then, themutual information is the relative entropy or Kullba
k-Leibler distan
e betweenthe joint distribution pJ and the produ
t distribution pP (x, y) = p(x)p(y). It is



12 Large-s
ale variable(s) InformationRH at 2345 meter & CIN 0.0992RH at 2345 & w at 413 0.0948CAPE & CIN 0.0946CAPE & w at 413 meter 0.0897CIN & w at 413 meter 0.0809CIN 0.0757RH at 2345 meter & CAPE 0.0710w at 413 meter 0.0697CAPE 0.0589RH at 2345 meter 0.0590u at 15843 meter 0.0290Table 2. Mutual information between large-s
ale variables and 
loud type at 4.8× 4.8 km2subdomains.given by
I(pJ , pP ) =

∑

x,y

pJ(x, y) log

(

pJ(x, y)

pP (x, y)

)where the sum is over all values of x and y. I(pJ , pP ) quanti�es how mu
hadditional information pJ 
ontains relative to pP . For more details about mutualinformation and other information-theoreti
 
on
epts we refer to [27℄.In our 
ase x and y are the environment state Xi(t) and the 
loud type Yi(t)at the same lo
ation, respe
tively. The mutual information between their jointdistribution and the produ
t of their marginal distributions quanti�es how goodan indi
ator Xi(t) is for Yi(t), and thus how useful it is to 
ondition the Markov
hain for Yi on Xi. In [28℄, similar use is made of mutual information to sele
tuseful indi
ators for sto
hasti
 
ellular automata. We note that in our 
ase, thejoint and marginal distributions are non-stationary, therefore we 
al
ulate themutual information separately for every time t of the LES dataset.In Fig. 6 we show three time series for mutual information between the large-s
ale variables and the 
loud type. In the beginning of the simulation the mutualinformation is zero. The reason is that 
louds have not evolved yet, and thereforethe large-s
ale variables do not give information about the presen
e of a 
loud.The mutual information is �rst 
al
ulated for every time instan
e and then theaverage is 
al
ulated over the last two hours (the phase in whi
h deep 
onve
tionis developed) to obtain a single value for the mutual information su
h that we
an 
ompare di�erent 
hoi
es of the large-s
ale variables. In Table 2 we list thetime-averaged mutual information using various (
lustered) quantities for Xi. Togive an interpretation to the value of (mutual) information in nats we mentionthat the mutual information between the 
loud type and the 
loud type itself is
1.1486 (this would be the best possible s
ore).The result in Table 2 shows that the 
ombination of CAPE and CIN givessigni�
antly more information about 
loud type than either of them alone. We seethat both the verti
al velo
ity �eld and the CAPE/CIN �elds 
ontain informationon the state of 
onve
tion. Both of them may be used to reprodu
e some of the



13time-dependent behaviour of 
onve
tive organisation in low wind shear (e.g. 
oldpools). Here we 
hoose for CAPE and CIN to obtain the best �lling fra
tions. Amore detailed study of the physi
al me
hanisms behind the organisation of deep
onve
tion in the present 
ase is given in [18℄.As a �nal remark, we have in
luded the mutual information of u at 15843meter in Table 2 as a 
onsisten
y 
he
k: u at 15843 meter is mainly determinedby upward propagating gravity waves that 
an have a remote origin, and we donot expe
t it to be a good indi
ator of the state of 
onve
tion and 
loud type.The low value of the mutual information 
on�rms this intuition.
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Figure 6. Time series of the mutual information between the large-s
ale variable at time t and
loud type at time t for di�erent large-s
ale variables.(b)Filling fra
tions of the CMCFig. 7 shows �lling fra
tions produ
ed by CMCs that are 
onditioned on CAPEand CIN with K = 20 
lusters. The left panel shows the means and standarddeviations of the fra
tions over 144 ma
ros
opi
 blo
ks using 1024 CMCs perblo
k. The time evolution of the means is in good agreement with the LESresults, as 
an be seen by 
omparing with the left panel of Fig. 4. With a smallernumber of 
lusters (K = 10) the agreement was unsatisfa
tory (results not shown).Further, the standard deviations are too small 
ompared to the LES results.They 
an be in
reased by using a smaller number of CMCs (be
ause fra
tionsdetermined by a smaller number of Markov 
hains are more likely to deviatefrom the expe
ted values). In the right panel of Fig. 7 we show the means andstandard deviations using only 64 CMCs per ma
ros
opi
 blo
k. As expe
ted,by using only 64 instead of 1024 CMCs, the standard deviations are larger andtherefore in better agreement with the LES fra
tions. In Fig. 8 we show 
loud�lling fra
tions on a single ma
ros
opi
 blo
k. In the left panel the fra
tions ofthe LES data on a blo
k of size n = 1024, in the right panel the fra
tions asprodu
ed by the multi
loud model using 64 CMCs (
onditioned on CAPE-CIN).We have seen that by using CAPE and CIN to 
ondition the CMCs, the time-evolution of the �lling fra
tions is 
aptured. This is not solely be
ause CAPEand CIN are indi
ators of 
onve
tion: in the �rst part of the simulation, CAPE



14in
reases (and CIN de
reases) steadily with time, so that 
onditioning on CAPEand CIN is similar to 
onditioning on time. However, this only holds true for the�rst part of the eight hours of simulation. In the last hours, CAPE no longerin
reases in all LES subdomains. Instead, we observe a de
rease of CAPE in partof the subdomains.
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Figure 7. (a) Mean �lling fra
tions produ
ed by 1024 CMCs with K = 20 
lusters of CAPEand CIN (solid) plus and minus the standard deviation (dashed). The CMC is driven by LESobserved values of CAPE and CIN. (b) same as left but with 64 CMCs.
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Figure 8. (a) Filling fra
tions observed in a single ma
ros
opi
 blo
k of n = 32
2 LES 
olumns.(b) Filling fra
tions using 64 CMCs, where ea
h CMC is 
onditioned on CAPE and CIN with

K = 20.



157. Sto
hasti
 
ellular automatonIn the previous se
tion it was shown that 
onditioning of the Markov 
hain on thema
ros
opi
 environment strongly improves the behaviour of the �lling fra
tionmeans, 
f. Fig. 4 and Fig. 7. However, the varian
es of the CMC �lling fra
tionsare too small, and 
an only be brought in better agreement with the varian
esof the LES �lling fra
tions by redu
ing the number of CMCs per ma
ros
opi
blo
k. In this se
tion we investigate whether 
oupling to neighbouring sites on themi
ro latti
e 
an improve the emulated varian
es, without redu
ing the numberof Markov 
hains. Thus, we study use of the forms (2.3) and (2.4) for the Markov
hain. We expe
t that by 
oupling to neighbouring sites, the spatial 
orrelations ofthe 
loud type patterns will be better 
aptured, thereby in
reasing the varian
e.As mentioned earlier, by 
onditioning the Markov 
hain for latti
e site i on thestate of the neighbouring sites, as in (2.3), the Markov 
hain be
omes a sto
hasti
(or probabilisti
) 
ellular automaton (SCA). Cellular automata (CA) have beenused for parameterization purposes by [5, 6, 29℄. In these studies, the CA havedeterministi
 rules, not sto
hasti
 ones, and they are 
hosen by intuition ratherthan inferred from data. Also, in [5, 6, 29℄ the 
ells of the CA 
an take on twostates, not �ve as is the 
ase here.First we estimate the SCA transition probabilities (2.3) from the LES data.As before, Yi(t) is the 
loud type at site i at time t, Yi(t)∈ {1, 2, 3, 4, 5}. Use of(2.3) implies that in prin
iple, for every state δ of the 
ombined neighbouring sites
Y{i}, there is a di�erent transition probability matrix. This re�e
ts, for example,that the probability of a 
lear sky site turning into a shallow 
umulus site mayin
rease as the number of neighbouring shallow 
umulus sites in
reases.For the neighbourhood of site i, denoted {i}, we 
hoose the 8 sites dire
tlysurrounding site i in the mi
ro latti
e (see also Fig. 1). As ea
h site 
an take on 5di�erent values, there are 58 di�erent 
on�gurations, i.e. 58 possible values of δ.This is too mu
h to be pra
ti
al, therefore we redu
e the number of possibilitiesby 
onditioning not on Y{i}(t) dire
tly, but on a simple redu
tion fun
tion f thatdepends on Y{i}(t). Thus, we use

pδ(α, β) =Prob (Yi(t + ∆t) = β |Yi(t) = α, f(Y{i}(t)) = δ) (7.1)rather than (2.3) itself.Let us denote by |CL|i the number of 
lear sky sites dire
tly surrounding
i, and similarly by |SH|i, |CO|i, |DE|i and |ST |i the number of surroundingshallow, 
ongestus, deep and stratiform sites. These numbers are time dependent.Clearly, |CL|i + |SH|i + |CO|i + |DE|i + |ST |i = 8 for all i and at all times. Asthe fun
tion f we now 
hoose

f(Y{i}(t)) = 1 ∗ |SH|i + 2 ∗ |CO|i + 3 ∗ |DE|i + 4 ∗ |ST |i . (7.2)The reason for 
hoosing this parti
ular redu
tion fun
tion is that it is a measureof the degree to whi
h the dire
t environment is 
onve
tively a
tive: the moreneighbouring sites in a state of 
onve
tion the larger the value of f . Furthermore, aneighbouring site with 
loud type 
ongestus in
reases f more than a neighbouringsite with 
loud type shallow. The fun
tion in
reases even more if there is aneighbouring deep site. The 
hoi
e of the fa
tor 4 for stratiform is somewhatdebatable, but the 
oe�
ient has to be larger than 3 to indi
ate the presen
e



16of stratiform instead of some other 
loud type. Further the value has to be assmall as possible to redu
e the number of states (and therefore matri
es) as mu
has possible. One 
an use information theory to perform a systemati
 sear
h forfun
tions that give the most information about the transitions (see [28℄ for someideas on this), however we will not pursue this here. Estimating the probabilities(7.1) is straightforward, using an estimator analogous to (6.1)-(6.2).We obtain 33 di�erent transition matri
es of size 5 × 5, be
ause 0≤ f ≤ 32. Forea
h site, the state of the neighbourhood is determined by 
ounting the numbersof di�erent 
loud types surrounding it, and 
omputing the 
orresponding value of
fi(t) as in (7.2). This value determines whi
h transition matrix is used at latti
esite i at time t.We initialise the SCA-multi
loud model using 384 × 384 
ells all in a 
lear skystate, 
orresponding to the initial 
ondition observed in the LES data. As timeevolves, some 
ells swit
h to shallow 
umulus and 
lusters of shallow 
umulus
ells appear. Later on, the SCA 
orre
tly produ
es 
ongestus sites in the shallow
umulus 
lusters. At about 250 minutes after initialization, similar to LES, deep
onve
tive sites appear. These turn into stratiform de
ks. Eventually, the patternsof the SCA are 
lear sky areas with some shallow 
umulus and areas of a mixture
ongestus, deep and stratiform. This mixture is not observed in the LES data,but the fra
tions turn out to be 
orre
t. First we show the patterns produ
ed bythe SCA in Fig. 9a.

Figure 9. Patterns formed (a) by SCA at t = 480 and (b) by CSCA additionally 
onditioned onCAPE using K = 5 
lusters.Fig. 10a shows �lling fra
tions (mean and standard deviation) for the SCA,using (7.1)-(7.2). The standard deviation is taken over ma
ros
opi
 blo
ks of size
n = 1024. Both the time evolution and the magnitude of the standard deviationsare in mu
h better agreement with the LES data (Fig. 4a) than those produ
ed bythe CMC (Fig. 7). The time evolution of the means are reasonable, but not as goodas those of the CMC. Therefore, as a �nal step of re�nement, we 
ombine CMC andSCA by 
onditioning the Markov 
hain both on the ma
ros
opi
 state Xi(t) and onthe neighbouring states Y{i}(t). We refer to this 
ombination as CSCA (
onditionalSCA). To our best knowledge, a (sto
hasti
) 
ellular automaton 
onditioned onan �external�, time-evolving �eld (X, in our 
ase) has not been studied before.
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Figure 10. (a) Mean �lling fra
tions of the SCA (solid) plus and minus the standard deviation
al
ulated over blo
ks of 1024 
ells (dashed) and (b) the same for a CSCA 
onditioned on CAPEusing K = 5 
lusters.The �lling fra
tions of the CSCA are shown in Fig. 10b. As before, we usedthe fun
tion (7.2) rather than Y{i}(t) to 
ondition the CSCA on the neighbouringsites. Thus, the transition probabilities are as in (2.4), but with Y{i}(t) repla
edby the fun
tion (7.2). For 
onditioning on the ma
ros
opi
 state Xi(t) we usedCAPE, 
lustered with 5 
entroids. Patterns are similar to the patterns of the SCA,
ompare the panels of Fig. 9. The time evolution of the �lling fra
tion means isin better agreement with the LES data than was the 
ase with the SCA. Weanti
ipate that further improvement is possible, e.g. with sear
h te
hniques as in[28℄, and with methods to redu
e the parameter spa
e as in [23℄. We leave this forfuture study. 8. Single-
olumn modelIn the tests performed in the previous se
tions there was no intera
tion betweenthe large-s
ale variables and the CMC or CSCA. Therefore, to take a step forwardtowards implementation in a GCM, we test the multi
loud model in an SCMexperiment. The SCM 
an be thought of as representative for the behaviour ofa single GCM verti
al model 
olumn. We use one ma
ros
opi
 blo
k, 
ontaining1024 CMCs, to represent the GCMmodel 
olumn. These CMCs are 
onditioned onCAPE and CIN, as in Se
tion 6. We 
hoose suitable large-s
ale variables and useLES data to pre
al
ulate their tenden
ies. The tenden
ies are assumed to dependlinearly on the �lling fra
tions determined by the multi
loud model. Thus, thelarge-s
ale variables and the 
loud �lling fra
tions are 
oupled to ea
h other, andboth evolve over time. Inspired by [7℄ we take four prognosti
 variables: X1 = qlowt ,
X2 = q

high
t , X3 = θlowl and X4 = θ

high
l , with qt and θl as de�ned in (3.1). The lowlevel is at 413 meter and the higher level is at 2345 meter in the atmosphere.These are the variables that we are going to resolve in our SCM.



18 We use the CMCs, 
onditioned on CAPE and CIN, to 
al
ulate the �llingfra
tions of ea
h 
loud type. Therefore we have to express CAPE and CIN interms of the prognosti
 variables X = (X1, . . . ,X4)
T .(a)CAPE* and CIN*We assume that CAPE is a linear 
ombination of X. We 
ompute the
oe�
ients by doing a least square �t with the CAPE values from the LES dataand the values of X, also from the LES data. We writeCAPE*= λX, (8.1)where λ = (λ0, . . . , λ4) are the 
oe�
ients and where we add the 
onstant term

X0 = 1. We solve
min

λ

(

(CAPE − λX)2
)and �nd that the linear CAPE* is almost 
ompletely determined by qt and θl atthe low atmosphere level. The 
orrelation 
oe�
ient of CAPE and CAPE* is 0.97,so we 
an use CAPE* as a proxy for CAPE. In general this is not the 
ase, butfree tropospheri
 properties 
hange relatively slowly in the LES data. For CIN wedo a linear �t of the logarithm of CIN. We writeCIN*= eµX . (8.2)Here µ = (µ0, . . . µ4) are the 
oe�
ients for CIN*. For CIN and CIN* we �nd a
orrelation 
oe�
ient of 0.77, so we 
an use CIN* instead of CIN.(b)Large-s
ale tenden
ies ẊIn a GCM a parameterization should deliver entire verti
al heating andmoistening pro�les. In our SCM experiment we only have four prognosti
 variablesand therefore we use LES data to determine the in�uen
e of the 
loud �llingfra
tions σ on these four prognosti
 variables X. Below, we propose a methodof using data to 
al
ulate the heating and moistening (i.e. the tenden
ies Ẋ);whether this method will work for a large number of variables remains to beexplored.In [15℄ this was done for shallow 
umulus 
onve
tion by 
lustering verti
alheat and moisture �uxes observed in LES data. Here we will use a least-squares�tting method that we already used to 
al
ulate the CAPE* and CIN*. Every
loud type has in�uen
e on θl and qt at the low and higher atmosphere level. Thismeans that

Ẋm =

4
∑

α=0

σαFα
m,where Ẋm is the tenden
y of Xm (1≤m≤ 4) and Fα

m is the in�uen
e of 
loudtype α on prognosti
 variable Xm. We assume that Fα
m is a linear 
ombination of



19the prognosti
 variables X:
Fα

m =
∑

n

να
mnXn.We now have:

Ẋm = σνmX, (8.3)where σ is the 1 × 5 �lling fra
tion ve
tor, νm is a 5 × 5-matrix that has tobe estimated separately for every prognosti
 variable Xm, and X is the 5 × 1prognosti
 variables ve
tor. For every prognosti
 variable Xm we estimate νmby least-square �tting. This is done as follows. Our aim is to 
al
ulate for every
1≤m≤ 4:

min
νm

∑

t

(Ẋm − σνmX)2, 1≤ t < 480. (8.4)In every subdomain of LES we observe the prognosti
 variables X, tenden
ies
Ẋm and the LES-�lling fra
tions σ. This is the 
ase for 479 time instan
es (at thelast time instan
e t = 480 the tenden
ies are not estimated). We 
an write (8.4)in the form y = Zν. Then, the least square �t gives ν̂ = ZT y(ZTZ)−1. This givesthe best least square estimate of the 25 entries in the 5 × 5 matrix νm.(
) Integration of the single-
olumn modelWe integrate Eq. 8.3, to obtain the evolution of the prognosti
 variables
X1, . . . ,X4. As initial 
ondition we take σ = (1, 0, 0, 0, 0). This means that ea
hCMC starts in state 1 (
orresponding to 
lear sky). The initial 
onditions for Xare the average initial values observed in the LES data. The CMCs produ
e the�lling fra
tions σ and the ν are pre-
al
ulated in Se
tion b. We re
all that theCMCs are 
onditioned on CAPE* and CIN*.(d)Filling fra
tions of the SCMWe test the sto
hasti
 multi
loud model in the SCM. In Fig. 11 we show �llingfra
tions for SCM using 1024 CMCs. To in
rease the standard deviation we do ase
ond experiment using only 64 CMCs. To 
al
ulate the standard deviation inevery experiment we use 122 independent runs of the SCM. In this way we 
an
ompare the standard deviation to the standard deviation that we observed inthe 122 LES-blo
ks (ea
h 
onsisting of 1024 LES-
olumns). Comparing Fig. 4a toFig. 11, we see that the SCM-CMC is 
apable of reprodu
ing the time-evolutionof the �lling fra
tions from the LES data . This is a remarkable result be
ause theSCM is not using any LES data during the integration. Remind that the SCMhas been 
onstru
ted from LES data prior to integration.Using a smaller number of Markov 
hains (64 instead of 1024) in
reases thevarian
e of the �lling fra
tions in the SCM test, as 
an be seen in Fig. 11b. Weexpe
t that further improvement of the evolution of the standard deviations inthe SCM is possible by using the SCA or the CSCA instead of CMC, but we didnot perform these experiments here.
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Figure 11. (a) Mean �lling fra
tions produ
ed in the SCM using 1024 CMCs 
onditioned onCAPE* and CIN* (solid) plus and minus the standard deviations (dashed) and (b) the sameusing 64 CMCs. (e)A ten day run of the SCMWe have seen that the multi
loud model produ
es 
orre
t �lling fra
tions andthat it 
an be used to enhan
e variability in the SCM. We integrate the SCM overa longer time period. Although the SCM-CMC has not been trained on a longerperiod, there are no pra
ti
al restri
tions on performing longer time integrations.As in [7℄ we integrate the SCM for ten days. Here, using the SCM, we do notaim to represent a realisti
 simulation of deep 
onve
tion (as is the 
ase for LES).Rather, we are interested in the long-term behaviour of the SCM as a dynami
alsystem, seen as 
oarse extrapolation. We investigate whether or not the multi
loudmodel 
an enhan
e variability in the SCM. In Fig. 12 we plot time series for theprognosti
 variable X3 in the single 
olumn model integrated over ten days witha time step of one minute. The graphs for the other Xi are similar. For both runs,with 2500 CMCs and 64 CMCs, we see a 
y
le of around eight hours. This 
y
leis not 
aused by diurnal variations in the surfa
e �uxes, be
ause the CMCs havebeen trained on data from an LES run with �xed surfa
e �uxes. We note thatthe traje
tory depends strongly on the number of Markov 
hains used. With alarge number of Markov 
hains, the system behaves very regularly. For smaller
n, the multi
loud model is more sto
hasti
, and the SCM-CMC model displaysmore variability. 9. Dis
ussion and 
on
lusionIn this paper we 
ombined, for the �rst time, the data-driven approa
h tosto
hasti
 parameterization from [14, 15℄ with the sto
hasti
 multi
loud modelapproa
h proposed in [7℄. We used data from a 
onve
tion-resolving LES modelto infer a multi
loud model similar to the one studied in [7℄. The aim wasto formulate a sto
hasti
 model that was able to emulate the 
oarse-grained
onve
tive behaviour of the LES. Data for 
loud top height and 
olumn rainfra
tion from the LES were used to determine �ve 
loud types: 
lear sky, shallow
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umulus, 
ongestus, deep and stratiform. The 
oarse-grained 
onve
tive behaviourof the LES was represented through the �lling fra
tions, or area fra
tions, of the�ve 
loud types on (horizontal) ma
ros
opi
 blo
ks of 322 LES gridpoints.The sto
hasti
 model (Markov 
hain) makes random transitions between 
loudtypes at ea
h gridpoint, in a

ordan
e with transitions probabilities that areestimated from the LES data. A straightforward Markov 
hain was not able toreprodu
e the 
orre
t evolution of the �lling fra
tions 
orresponding to the �ve
loud types. Therefore, we explored two ways of improving the skills of the Markov
hain. First, by 
onditioning the Markov 
hain on large-s
ale variables, obtaininga CMC. Se
ond, by 
onditioning on the neighbouring 
ells, obtaining a SCA.The CMC 
onditioned on a 
ombination of CAPE and CIN was well 
apable ofreprodu
ing the time-evolution of the 
loud fra
tions observed in the LES data.The standard deviations of the �lling fra
tions were not very well reprodu
edby the CMCs. They were too small and not similar to the standard deviationsobserved in the LES data. The absen
e of dire
t spatial 
oupling between 
loudtypes in neighbouring 
ells in the CMC made it di�
ult to 
apture the time-varying spatial patterns seen in the LES data. Therefore the enhan
ed variabilitydue to these patterns 
ould not be 
aptured by the CMCs.The average �lling fra
tions of the SCA were not as good as the CMC average�lling fra
tions. Nevertheless, the SCA showed a mu
h better evolution of thestandard deviation of the �lling fra
tions. By in
luding spatial 
oupling, spatialand temporal patterns emerged, resulting in more realisti
 variability. We showedthat further improvement 
an be a
hieved by additional 
onditioning on the large-s
ale variables, however this 
omes at the 
ost of a more 
ompli
ated model.A point of dis
ussion is that the CMCs in the multi
loud model have beentrained on LES data of rather spe
i�
 idealized (atmospheri
) 
onditions. Clearly,not all possible large-s
ale states were sampled in this dataset. Dividing the LESdomain into subdomains, as was done here (as well as in [15℄), enlarges the sampleof large-s
ale states. The large-s
ale states are de�ned as subdomain averages, sothat the variability between the subdomains helps to in
rease the sample varian
e.As already mentioned in Se
tion 6, one 
an in
rease the sample varian
e even moreby using data from multiple LES runs with di�erent initial 
onditions.



22 We fo
ussed on a setting in whi
h shear in the horizontal plane and spatiallyvarying terrain type have not been 
onsidered. In 
ase of a unidire
tional shearwith varying strength, the transition probabilities of the SCA may have to dependon the neighbouring 
ells in an anisotropi
 way. The question how strong thissensitivity is, has not been addressed here. With varying terrain, a possiblesolution is 
onditioning on several types of terrain.We showed how the LES data 
an be used to produ
e heating and moisteningrates. We tested the multi
loud model in a simple SCM experiment. Using theCMCs, the LES �lling fra
tions were faithfully reprodu
ed by the SCM. Thedegree to whi
h the multi
loud model was sto
hasti
 had a large in�uen
e on thevariability of the SCM. 10. A
knowledgementThe authors are grateful to Pier Siebesma, Harm Jonker and Christian Jakob forstimulating dis
ussions. This resear
h was supported by the Division for Earthand Life S
ien
es (ALW) with �nan
ial aid from the Netherlands Organization forS
ienti�
 Resear
h (NWO). The visit of J.A.B. to CWI was �nan
ially supportedthrough an NWO visitor travel grant. In addition, we a
knowledge sponsoring bythe National Computing Fa
ilities Foundation (NCF) for the use of super
omputerfa
ilities, with �nan
ial support of NWO. J.A.B. is supported by a grant from theNational S
ien
e Foundation, DMS-1009959.Referen
es[1℄ Lin, J.-L. et al. 2006 Tropi
al Intraseasonal Variability in 14 IPCC AR4 Climate Models.Part I: Conve
tive Signals. J. Climate 19, 2665�2690. (doi:10.1175/JCLI3735.1)[2℄ Wheeler, M. & Kiladis, G.N., 1999 Conve
tively 
oupled equatorial waves: analysis of 
loudsand temperature in the wavenumber-frequen
y domain. J. Atmos. S
i. 56, 374�399.[3℄ Zhang, C. 2005 Madden-Julian Os
illation. Rev. Geophys., 43, RG2003(doi:10.1029/2004RG000158)[4℄ Palmer, T.N. 2001 A nonlinear dynami
al perspe
tive on model error: A proposal for non-lo
al sto
hasti
-dynami
 parametrization in weather and 
limate predi
tion models. Q.J.R.Meteorol. So
. 127, 279�304. doi: 10.1002/qj.49712757202[5℄ Shutts, G. J. 2005 A kineti
 energy ba
ks
atter algorithm for use in ensemble predi
tionsystems. Q. J. R. Meteor. So
. 131, 3079�3102. (doi:10.1256/qj.04.106)[6℄ Berner, J., Doblas-Reyes, F.J., Palmer, T.N., Shutts, G., Weisheimer, A. 2008 Impa
t of aquasi-sto
hasti
 
ellular automaton ba
ks
atter s
heme on the systemati
 error and seasonalpredi
ition skill of a global 
limate model. Phil. Trans. R. So
. A 366, 2561�2579 (doi:10.1098/rsta.2008.0031)[7℄ Khouider, B., Biello, J., Majda, A.J. 2010 A Sto
hasti
 Multi
loud Model for Tropi
alConve
tion. Comm. Math. S
i. 8, 187�216.[8℄ Frenkel, Y, Majda, A.J., Khouider, B. 2012: Using the Sto
hasti
 Multi
loud Model toImprove Tropi
al Conve
tive Parameterization: A Paradigm Example. J. Atmos. S
i. 69,1080�1105. (doi: 10.1175/JAS-D-11-0148.1)[9℄ Palmer, T. & Williams, P. 2010 Sto
hasti
 physi
s and 
limate modelling, CambridgeUniversity Press, Cambridge, UK.[10℄ Plant, R.S. & Craig, G.C. 2008 A Sto
hasti
 Parameterization for Deep Conve
tion Basedon Equilibrium Statisti
s. J.Atmos. S
i. 65, 87�105. (doi:10.1175/2007JAS2263.1)



23[11℄ Khouider, B. & Majda, A.J. 2006 A simple multi
loud parametrization for 
onve
tively
oupled tropi
al waves. Part I: linear analysis, J. Atmos. S
i. 63, 1308�1323.[12℄ Mapes, B.E., 1998 The large-s
ale part of tropi
al mesos
ale 
onve
tive system 
ir
ulations:A linear verti
al spe
tral band model. J. Meteor. So
. Japan 76, 29�55.[13℄ Khouider, B., St-Cyr, A., Majda, A.J., Tribbia, J. 2011 The MJO and Conve
tively CoupledWaves in a Coarse-Resolution GCM with a Simple Multi
loud Parameterization. J. Atmos.S
i. 68, 240�264 (doi: 10.1175/2010JAS3443.1)[14℄ Crommelin, D. & Vanden Eijnden, E. 2008 Subgrid-S
ale Parametrization with ConditionalMarkov Chains. J. Atmos. S
i. 65, 2661�2675. (doi:10.1175/2008JAS2566.1)[15℄ Dorrestijn, J., Crommelin, D.T., Siebesma, A.P., Jonker, H.J.J. 2012 Sto
hasti
parameterization of shallow 
umulus 
onve
tion estimated from high-resolution model data.Theor. Comput. Fluid Dyn. (doi: 10.1007/s00162-012-0281-y)[16℄ Wu, C.-M., Stevens, B., Arakawa, A., 2009 What Controls the Transition from Shallow toDeep Conve
tion? J. Atmos. S
i. 66, 1793�1806. (doi: 10.1175/2008JAS2945.1)[17℄ Heus, T. et al. 2010 Formulation of the Dut
h Atmospheri
 Large-Eddy Simulation (DALES)and overview of its appli
ations, Geos
i. Model Dev. 3, 415-444. (doi:10.5194/gmd-3-415-2010)[18℄ Böing, S.J., Jonker, H.J.J., Siebesma, A.P., Grabowski, W. 2012 In�uen
e of the sub
loudlayer on the development of a deep 
onve
tive ensemble. J. Atmos. S
i. (doi: 10.1175/JAS-D-11-0317.1)[19℄ Mapes, B., Tuli
h, S., Lin, J., Zuidema, P. 2006 The mesos
ale 
onve
tion life 
y
le:Building blo
k or prototype for large-s
ale tropi
al waves? Dyn. Atmos. O
eans 42, 3�29.(doi:10.1016/j.dynatmo
e.2006.03.003)[20℄ Khouider, B., Majda, A.J., Katsoulakis, M. 2003 Coarse grained sto
hasti
 models fortropi
al 
onve
tion. Pro
. Nat. A
ad. S
i. USA 100, 11941�1194.[21℄ Tompkins, A. M. 2001 Organization of Tropi
al Conve
tion in Low Verti
al WindShears: The Role of Cold Pools. J. Atmos. S
i. 58, 1650�1672. (doi:10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2)[22℄ Riemann-Campe, K., Fraedri
ha, K., Lunkeit, F. 2009 Global 
limatology of Conve
tiveAvailable Potential Energy (CAPE) and Conve
tive Inhibition (CIN) in ERA-40 reanalysis.Atmos. Res. 93 , 534�545. (doi:10.1016/j.atmosres.2008.09.037)[23℄ Kwasniok, F. 2012 Data-based sto
hasti
 subgrid-s
ale parameterization: an approa
husing 
luster-weighted modelling. Phil. Trans. R. So
. A 370, 1061�1086 (doi:10.1098/rsta.2011.0384)[24℄ Ma
Queen, J.B. 1967 Some Methods for 
lassi�
ation and Analysis of MultivariateObservations. Pro
. of 5-th Berkeley Symp. on Math. Stat. and Probab. 1, 281�297.[25℄ Gan, G., Ma, C., Wu, J. 2007 Data Clustering: Theory, Algorithms, and Appli
ations. SIAM,Alex., VA.[26℄ Arthur, D. & Vassilvitskii, S. 2007 k-means++: the Advantages of Careful Seeding. Pro
.of the 18-th Annu. ACMSIAM Symp. on Dis
ret. Algorithms, 1027�1035.[27℄ Cover, T.M. & Thomas, J.A. 1991 Elements of information theory, 2nd edn., John Wiley& Sons, In
., Hoboken, New Jersey.[28℄ Meyer, T.P., Ri
hards, F.C., Pa
kard, N.H. 1989 Learning Algorithm for Modeling ComplexSpatial Dynami
s. Phys. Rev. Lett. 63, 1735�1738. (doi:10.1103/PhysRevLett.63.1735)[29℄ Bengtsson, L., Körni
h, H., Källén, E., Svensson, E. 2011 Large-S
ale Dynami
al Responseto Subgrid-S
ale Organization Provided by Cellular Automata. J. Atmos. S
i. 68, 3132�3144(doi: 10.1175/JAS-D-10-05028.1)


