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Stochastic subgrid models have been proposed to capture the missing variability and
correct systematic medium term errors in general circulation models. In particular,
the poor representation of subgrid scale deep convection is a persistent problem which
stochastic parameterizations are attempting to correct. In this paper we construct
such a subgrid model using data derived from large-eddy simulations (LESs) of deep
convection. We use a data driven stochastic parametrization methodology to construct
a stochastic model describing a finite number of cloud states. Our model emulates, in
a computationally inexpensive manner, the deep convection resolving LES. Transitions
between the cloud states are modelled with Markov chains. By conditioning the Markov
chains on large-scale variables we obtain a conditional Markov chain which reproduces
the time-evolution of the cloud fractions. Furthermore, we show that the variability and
spatial distribution of cloud types produced by the Markov chains becomes more faithful
to the LES data when local spatial coupling is introduced in the subgrid Markov chains.
Such spatially coupled Markov chains are equivalent to stochastic cellular automata.
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variability.

1. Introduction

General circulation models (GCMs) are unable to capture the medium term
variability in the tropical atmosphere. Lin et al. [1] made a comprehensive study of
the tropical wave spectra determined from the IPCC GCMs and showed that none
were able to reproduce the observed power spectrum [2] of convectively coupled
Kelvin waves, two day waves, westward inertio-gravity waves and, least of all,
the Madden-Julian oscillation [3]. These are the waves that modulate weather on
intraseasonal time scales in the tropics and are increasingly seen to affect two
week weather forecasts in the middle latitudes [3].

One bias that [1| identify in these GCMs is “the persistence of equatorial
precipitation”, which occurs at the subgrid scales. In the parlance of dynamical
systems, the subgrid dynamical models quickly attain their equilibrium values and
remain there too long. Palmer [4] used simple arguments from dynamical systems
to show how the reduction of a chaotic dynamical system to a smaller number of
degrees of freedom can suppress the chaos. While this has the obvious effect of
suppressing the variability, he argued that it can have the, even more insidious,
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effect of driving systematic errors in the mean state. A stochastic parameterization
of the unresolved convection introduces variability in the GCM description of
these processes and these parameterizations are increasingly being seen as the
next generation of subgrid models [4, 5, 6, 7, 8, 9, 10].

Khouider et al. [7] created a stochastic multicloud model based on the
deterministic multicloud model of [11|. The deterministic multicloud model was
derived to correspond to the observed behaviour of tropical waves [12], where
a focus on three cloud types is needed to capture the observed structure of
convectively coupled waves. Furthermore, the deterministic model was calibrated
so that the dynamics of the waves matched those of the tropical wave spectrum
[2]. When implemented in a GCM, it has been shown to capture much of the
convectively coupled equatorial wave [13] activity.

In the stochastic model [7], convection is modelled on a 2-dimensional micro-
lattice by letting the local convective state at each lattice site switch randomly
between four possible states (three cloud types, and clear sky) with a given
probability. At the macroscopic level, the area fractions of these four states evolve
randomly over time. The fractions effectively determine the feedback from the
micro-scale to the macro-scale. Even in the setting of a single column [7] showed
that the stochastic multicloud model has a large degree of variability. When
coupled to a one dimensional dynamical core [8] it produces a large degree of
gravity wave variability.

Crommelin & Vanden-Eijnden [14] proposed a data-driven stochastic
parameterization methodology, where the stochastic processes driving the
parameterization are systematically inferred from data (e.g. from high-resolution
models). This method was used by [15] on data from a large-eddy simulation (LES)
of shallow convection. This approach leads to a model with random jumps between
a finite number of possible subgrid-scale states where, both the discrete states as
well as the switching probabilities, are estimated from data. Furthermore, the
switching probabilities are dependent (conditional) on the macroscopic, resolved-
scale state of the atmosphere.

For the shallow convection parameterization in [15], vertical turbulent fluxes
of heat and moisture were collected from the LES data and discretized using
a clustering method. By contrast, the discrete states used in [7]| are cloud types
(congestus clouds, deep convective clouds, stratiform clouds, and clear sky) rather
than flux states. The states and switching probabilities used in [7] are based on
physical intuition and observations; they are not inferred from data.

The objective of the current study is to determine a stochastic multicloud
parameterization approaches from [7] using a data driven approach [14, 15].
Much as in [7], we use pre-specified cloud types as a basis for discretizing the
subgrid-scale states, and study their (time-evolving) fractions on macroscopic
domains. The precise discretization, as well as the switching probabilities and
the conditioning on the resolved-scale state, are all inferred from LES data, as in
[14, 15].

Specifically, we use eight hours of simulation of the development of tropical
convection based on an idealization of observed conditions in North-West Brazil
[16]. Simulated cloud top and rain water path are stored to classify states on the
LES (horizontal) grid nodes. We use five states: clear sky (1) and the four cloud
types shallow cumulus (2), congestus (3), deep (4) and stratiform (5). Strictly
speaking clear sky is not a cloud type, but from now on we will refer to five cloud



3

types. At the beginning of the simulation, only clear sky is present. Gradually,
shallow cumulus develops, followed by (raining) congestus clouds. After about
five hours, deep convective towers with heavy precipitation develop. The deep
convective towers turn into passive stratiform decks that spread and dissolve.

The paper is organised as follows. In Section 2 we discuss how we model
transitions between cloud types with Markov chains, and how these Markov chains
can be made conditional on the environment, or on the cloud types at neighboring
lattice sites. We describe the LES data and specify the cloud classification in
Section 3. The stochastic multicloud model is described in Section 4. In Sections
5-7 we infer the transition probabilities of the Markov chains and assess their
ability to reproduce (emulate) the cloud filling fractions from the LES data. In
Section 5 we use a Markov chain without conditioning, in Section 6 a Markov chain
conditioned on the environment, and in Section 7 a Markov chain conditioned
on cloud types at neighboring lattice sites. Then, we discuss implementation
of the multicloud model into a simple single column model (Section 8), again
calculating cloud filling fractions. Finally, conclusions about our multicloud model,
how stochastics can change dynamics and its implications for climate models are
given in Section 9.

2. Modelling cloud type transitions with Markov chains

A central element in the stochastic parameterization approach used here and in
[7, 14, 15] is discretization of the subgrid-scale (e.g., convective) states. Here, each
grid point at the microscopic level can be in only one of five possible states. Let
us denote by Y;(t) € {1,2,3,4,5} the state at time ¢ at grid point 7. The time
evolution of Y;(¢) is modelled as a Markov chain (MC), so Y;(¢) changes randomly
in accordance with a set of transition probabilities. In the most basic form, these
probabilities are simply

p(a, B) = Prob (Y;(t + At) = 8] Yi(t) = a). (2.1)

However, in this basic formulation, the probability of e.g. a congestus state at grid
point ¢ turning into a deep convective state is independent of the environment
(macroscopic state) for 7. To include such dependency, in [7, 14, 15] the transition
probabilities are conditioned on the macroscopic state. If we denote by X;(¢) a
variable that is representative of the environment of i (e.g. convectively available
potential energy (CAPE), convective inhibition (CIN), or mid-troposphere relative
humidity), the transition probabilities of such a conditional Markov chain (CMC)
are

P (@, ) = Prob (Yi(t + At) = 8| Yi(t) = a, Xi(t) =) (2.2)

As can be seen, the transition probabilities in (2.1) and (2.2) are not explicitly
dependent on the convective states of neighbouring grid points. If ¢ and j are
neighbouring grid points, Y; and Y; are completely uncoupled in case of (2.1).
They are coupled indirectly via X; and X; in case of (2.2), because X; and
X are coupled at the macroscopic level. Since 7 and j are neighbouring grid
points, X; and X; will be strongly correlated. In this paper we also explore
explicit conditioning on the neighbourhood, as this is likely to improve the spatial
correlation of the parameterized convection patterns. We do this by considering
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the conditional transition probabilities
ps(e, 3) = Prob (Yi(t + At) = B[ Yi(t) = o, Yi33(t) =0), (2.3)
and
Pys(a, B) =Prob (Yi(t + At) = B Yi(t) =, Xi(t) =7, Y(5(t)=0),  (24)

where {i} denotes the neighbourhood of i (e.g., the 8 direct neighbours on the
lattice). We note that by conditioning the Markov chain on neighbouring states,
as in (2.3), the Markov chain effectively becomes a stochastic cellular automaton
(SCA). A schematic overview of the generalizations of the Markov chains is shown
in Fig. 1.
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Figure 1. A Markov chain can be conditioned on the macroscopic state to obtain a CMC or on
the state of the nearest neighbours to obtain a SCA.

Each gridpoint on the micro lattice has a state that evolves randomly according
to the same set of transition probabilities, e.g. (2.2). At the macroscopic level,
square blocks of micro lattice sites are grouped together, and we study the filling
fractions (or area fractions) of the various convective states. For each block we
have

ga(t)=n""> 1(Yi(t)=a), (2.5)
=1

where n is the number of micro lattice sites in the macroscopic block, and 1(.)
is the indicator function. The filling fractions are time-dependent and random,
and must sum up to one for each macroscopic block: > 04(t) =1 for all t. By
matching the size of the macroscopic blocks to the (horizontal) size of GCM model
grid boxes, the filling fractions can be used as input for parameterizing vertical
transport due to convection.
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Figure 2. (a,c,e) Histograms of the cloud top at different time instances of the simulation. (b,d,f)
Three snapshots of the LES field for which all columns are assigned to one of the five cloud types.

3. Large-eddy simulation

We use the Dutch Atmospheric LES (DALES) model to produce high-resolution
data. DALES is a non-hydrostatic model that resolves atmospheric convection
explicitly by solving the spatially filtered Navier-stokes equations under the
anelastic approximation. The model has an ice microphysics scheme, but does not
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account for latent heat release due to freezing. For further details about DALES
we refer to [17]. The simulation is based on an idealization of observed conditions
[16] during the tropical convection experiment TRMM-LBA carried out in North-
West Brazil in 1998/1999. There is no horizontal shear, and surface heat and
moisture fluxes are held constant throughout the simulation. At the start of the 8-
hour simulation, the entire LES domain consists of clear sky. Convection develops
gradually, first shallow convection, eventually (after about five hours) also deep
convection. We emphasize that it is a non-stationary case of the development of
deep convection. The simulation and the resulting data are described in more
detail by [18].

The horizontal size of the LES domain is 57.6 x 57.6 km? and the vertical
extent is 25 km. The horizontal grid spacing is 150 meter and the vertical spacing
increases exponentially from 40 near the surface to 200 meter at the upper levels.
For every column we store the simulated cloud top height, rain water path (the
vertically integrated rain water content), CAPE and CIN. We also store liquid
water potential temperature #; and total water specific humidity ¢; at two model
levels, one in the boundary (subcloud) layer at 413 meter, the other in the lower
free troposphere at 2345 meter. These variables are defined by

0 =60— iQl and U=q+aq, (3.1)
CpT

with 0 the potential temperature, L the latent heat of vaporization, ¢, the specific
heat of dry air at constant pressure, g; the non-raining liquid water content and
¢» the water vapour specific humidity. Furthermore, 7 is the Exner function, the
ratio of absolute and potential temperature. In the absence of precipitation 6; and
¢+ are conserved for moist adiabatic processes. We store the data at time intervals
of one minute during eight hours, resulting in 480 time slices of the variables
mentioned above in each of the 384 x 384 LES model columns. Below we discuss
how these variables are used for classification of each model column state into five
cloud types.

(a) Classification of cloud types

In the vein of [19] and [7] we consider five cloud types: clear sky, shallow
cumulus, congestus, deep convection and stratiform. Fig. 2 (left) shows histograms
of the cloud top height. At t =480 we see three categories (clear sky, low clouds
and high clouds), which can be well distinguished with thresholds at 200 meter
and 5000 meter. Furthermore, to distinguish the heavily raining deep convective
towers from their passive, modestly raining stratiform remnants, we use the rain
water path divided by the cloud top height. We call this the column rain fraction:

CRF — rain water path

cloud top (32)
By dividing by the cloud top height we obtain a measure of the rain intensity, from
which the vertical extent of raining cloud has been factored out. The CRF makes
it easier to identify stratiform clouds, which have high cloud top and low, but not
always negligible rain water path. Furthermore, we can use the same threshold of
the CRF, 10~°, to distinguish deep from stratiform as well as non-raining shallow
cumulus from raining congestus clouds. In Fig. 3 we plot the CRF against the
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Figure 3. Classification of cloud types using cloud top and CRF.

Table 1. Classification of the clouds. CRF' defined in (3.2).

Cloud type cloud top rain
Clear sky n/a n/a
Shallow cumulus 200<h <5000 m CRF <107°
Congestus 200<h <5000 m CRF >107°
Deep h > 5000 m CRF >107°
Stratiform h > 5000 m CRF <107°

cloud top height and indicate 4 cloud types with different symbols. The clear sky
group is not shown because its CRF is not well-defined. In Table 1 we summarize
the cloud classification.

We can now assign the state of each LES column, at every time step, to one
of the five cloud types. Fig. 2 (right) shows snapshots of the LES domain with
all columns assigned to one of the cloud types. At ¢ =100 we see clear sky sites
combined with shallow cumulus clouds and some congestus clouds. At ¢ =300
the development of deep towers start. At ¢ =480 we see larger deep towers and
dissolving stratiform decks.



4. The stochastic multicloud model

With the LES data discretized according to Table 1, we can choose the size of
the macroscopic blocks and calculate the filling fractions o, (t) on each of these
blocks using (2.5). In what follows, the LES blocks always consist of 32 x 32
microscopic lattice sites (so that n = 322), unless explicitly stated otherwise. The
corresponding physical size of these blocks is 4.8 km by 4.8 km. The total LES
domain is covered by 122 of such (non-overlapping) blocks. In Fig. 4a we show the
time evolution of the means and standard deviations of the filling fractions, taken
over the 122 different blocks. We emphasize that these are the filling fractions as
computed directly from the LES data.

With the stochastic multicloud model, we aim to emulate the time evolution
of the LES filling fractions. This is done by evolving the state (cloud type) of each
micro lattice site as a Markov chain. The states on the micro lattice sites can be
grouped again in macroscopic blocks (of any desired size), leading to emulated
filling fractions. As already mentioned, the number of Markov chains grouped
together in the multicloud model in one macroscopic block will be 1024, except
for the creation of plots in Fig. 7b, Fig. 8b and Fig. 11b where we use blocks of
64 Markov chains.

The transition probabilities that characterize the Markov chain are of the
form (2.1), (2.2), (2.3) or (2.4). Their numerical values are estimated from the
LES data. We use a time step At of 1 minute, matching the saving time step
of the LES data. We assess the performance of the various forms (2.1) - (2.4) in
the following sections. The choice of the macroscopic environment variable X;(t),
used in (2.2) and (2.4), are discussed there as well.

Eventually, the multicloud model has to provide not just filling fractions, but
vertical profiles for heating and moistening that can be used for parametrization
purposes in a GCM. In Section 8b we explain how we deal with heating and
moistening in a single-column model experiment.

5. Markov chains

We start by using the simplest form (2.1), i.e. the form where the Markov chain
is not conditioned on macroscopic environment variables or on neighbour states.
The transition probabilities determine a single 5 x 5 stochastic matrix in which
the entry at the k-th row and /-th column is the probability that a site that is in
state k will switch to state [ in the next minute. We count transitions in the LES
data to estimate the transition probability matrix, resulting in

0.95 0.04 0.00 0.00 0.00
0.14 0.84 0.02 0.00 0.00
M= | 0.02 0.06 0.90 0.02 0.00
0.01 0.00 0.03 094 0.03
0.10 0.03 0.00 0.01 0.86

We use all data of the entire simulation to estimate transition probabilities. In
this case we do not take into account the strong dependence of the transitions on
time. The reader is reminded that the case we consider is a non-stationary case of



the development of deep convection. Next, we will test the skills of this Markov
chain.

(a) Filling fractions of the MC
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Figure 4. (a) Mean filling fractions observed in the LES data using n = 32% micro lattice sites
per macroscopic block (solid) plus and minus the standard deviations over the 12% macroscopic
blocks (dashed) and (b) reproduced mean filling fractions using 1024 MCs (solid) plus and minus
the standard deviation of 144 realizations (dashed).

Fig. 4 shows cloud filling fractions observed in the LES data and reproduced by
the Markov chain. The Markov chain filling fractions converge quickly to the filling
fractions that correspond to the invariant distribution of the transition matrix.
These fractions are therefore accurate in the sense that they are in agreement
with the time averages of the fractions observed in the LES data. However, the
standard deviations are too small and the overall time evolution of the LES cloud
fractions is not captured at all.

From the results in Fig. 4 we can conclude that a Markov chain governed
by (2.1) is not capable of emulating the LES cloud fractions satisfactorily. A
longer time step (20 minutes) for the Markov chain did not improve any of
these deficiencies (results not shown). Rather, the shortcomings are due to the
insensitivity of the MC to both the macroscopic environment and the neighbour
states. A natural way of to improve on this is to include dependency on
environment or neighbours. Thus, in the next sections we generalize the Markov
chain (2.1) by

1. conditioning on the macroscopic state (environment), leading to the
conditional Markov chain (CMC) form (2.2), or

2. coupling to neighbouring cells, leading to the stochastic cellular automaton
(SCA) form (2.3)

In the most general form (2.4), both environment and neighbouring states are
included. A schematic overview of these generalizations was shown in Fig. 1.
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6. Conditional Markov chains

In this section we explore conditioning of the Markov chains on a function of some
large-scale variables that could be resolved in a GCM. Large-scale variables such
as CAPE, CIN, middle troposphere relative humidity, or (moist) convergence are
considered to be potential indicators of convective behaviour. In Section 6a we
discuss how mutual information can be used as an objective measure to quantify
how good these indicators are.

For now, to explain our method we choose to condition on the CAPE and
the CIN. These functions of large-scale variables have been used before in e.g.
[20] and [7]. A reversibly lifted adiabatic parcel, using the mean thermodynamic
properties at the 200-400 meter level is used to calculate the CAPE and the
CIN in every LES model column. In the present context, CAPE and CIN mostly
indicate the evolution of the surface properties, rather than the state of the free
troposphere. CAPE and CIN are affected both by the gradual moistening and
heating by surface fluxes and by the presence of cold pools (see e.g. [21]). The
values depend on the choice of variable used to construct the adiabats, in our
case 0;. Although the CAPE values reported here, maximum values of around
4500 J/kg, are higher than what we had expected, seasonally averaged values as
high as 7000 J/kg have been reported over tropical land masses by [22].

As before, we divide the whole LES domain in 122 macroscopic blocks
(subdomains) and calculate spatial averages of CAPE and CIN on these
subdomains. We thereby obtain 122 paths in the CAPE-CIN space, each 480
minutes long. An even larger part of the CAPE-CIN space could be sampled
by combining data from several LES runs with different initial profiles for
temperature and humidity; we will not explore this here.

After obtaining the paths in the CAPE-CIN space, we cluster the CAPE-CIN
data points in K clusters using the K-means++ algorithm [24, 25, 26]. While
clustering the CAPE-CIN space, we use the Euclidean distance with different
rescaling factors for CAPE and CIN. The rescaling factors are such that the
mean contribution to the distance to the centroids is equal for CAPE and CIN.
The clustering algorithm also works for all other (combinations of) large-scale
variables, with other scaling factors. The number of clusters K has to be chosen
beforehand. It should be as small as possible, because for every cluster a 5 x 5
transition matrix has to be estimated. We refer to [15] and [23] where clustering
has been used to construct conditional Markov chains.

In Fig. 5 we show the result of the clustering using K =20. For K =20 we
will show that the CMCs are able to reproduce the correct filling fractions (see
Section 6b). All 122 paths start at CIN ~ 80 J/kg and CAPE a 2400 J /kg. Then,
CAPE increases and CIN decreases almost uniformly in the domain. When deep
convection sets in, the domain starts to become very inhomogeneous, resulting in
CAPE and CIN values that differ substantially over the subdomains. After the
CAPE-CIN space is divided into K regions, the paths in the CAPE-CIN space
can be mapped to paths in the space of cluster centroids.

To sum up: first we calculate the (time-evolving) subdomain averages of CAPE
and CIN from the LES data, then we cluster these CAPE-CIN averages. To
determine the environment state X;(t) for micro lattice site ¢ we use the discretized
(clustered) CAPE-CIN state of the subdomain to which site ¢ belongs. Thus, X;(¢)
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effectively takes values in the set of cluster indices: X;(t) € {1,2, ..., K}. Using this
X;(t) in the manner of (2.2) to condition the transition probabilities implies that
we have a transition probability matrix associated with each CAPE-CIN cluster.
These transition probability matrices are estimated by counting transitions in
the LES data (see also [14]). To estimate the probability p,(a, 3) defined in (2.2)
we use the estimator
T’Y (au /8)

Py(a, B) = m7 (6.1)

where T, (c, 3) is the number of cloud type transitions & — 3 observed in the LES
data with X;(¢) =+. Thus,

Ty, B) =Y 1(Yi(t + At) = B) 1(Y;(t) = ) 1(X;(t) =) (6.2)

t,i

CIN [J/kg]

10

0 ‘ ‘ ) ‘ :
2000 2500 3000 3500 4000 4500 5000
CAPE [J/kg]

Figure 5. Clustered paths forming K =20 regions in the CAPE-CIN space. The red dots are
cluster centroids.

(a) Mutual information between environment and cloud type

Large-scale variables such as CAPE, CIN or middle troposphere relative
humidity are considered to be potential indicators of convective behaviour. Below
we discuss how mutual information can be used as an objective measure to
quantify how good these indicators are.

Suppose we have two discrete random variables with a joint probability mass
function p”(z,y) and marginal probability mass function p(z) and p(y). Then, the
mutual information is the relative entropy or Kullback-Leibler distance between
the joint distribution p’ and the product distribution p®(z,y) = p(z)p(y). It is
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Large-scale variable(s) Information
RH at 2345 meter & CIN 0.0992
RH at 2345 & w at 413 0.0948
CAPE & CIN 0.0946
CAPE & w at 413 meter 0.0897
CIN & w at 413 meter 0.0809
CIN 0.0757
RH at 2345 meter & CAPE 0.0710
w at 413 meter 0.0697
CAPE 0.0589
RH at 2345 meter 0.0590
u at 15843 meter 0.0290

Table 2. Mutual information between large-scale variables and cloud type at 4.8 x 4.8 km?
subdomains.

given by

J
17, pF) = T(z,9) 1o <p (ﬂf,y)>
(»’,p") %p (e 9)log (s
where the sum is over all values of x and y. I(p”,p") quantifies how much
additional information p” contains relative to p¥. For more details about mutual
information and other information-theoretic concepts we refer to [27].

In our case z and y are the environment state X;(¢) and the cloud type Y;(t)
at the same location, respectively. The mutual information between their joint
distribution and the product of their marginal distributions quantifies how good
an indicator X;(t) is for Y;j(t), and thus how useful it is to condition the Markov
chain for ¥; on X;. In [28|, similar use is made of mutual information to select
useful indicators for stochastic cellular automata. We note that in our case, the
joint and marginal distributions are non-stationary, therefore we calculate the
mutual information separately for every time t of the LES dataset.

In Fig. 6 we show three time series for mutual information between the large-
scale variables and the cloud type. In the beginning of the simulation the mutual
information is zero. The reason is that clouds have not evolved yet, and therefore
the large-scale variables do not give information about the presence of a cloud.
The mutual information is first calculated for every time instance and then the
average is calculated over the last two hours (the phase in which deep convection
is developed) to obtain a single value for the mutual information such that we
can compare different choices of the large-scale variables. In Table 2 we list the
time-averaged mutual information using various (clustered) quantities for X;. To
give an interpretation to the value of (mutual) information in nats we mention
that the mutual information between the cloud type and the cloud type itself is
1.1486 (this would be the best possible score).

The result in Table 2 shows that the combination of CAPE and CIN gives
significantly more information about cloud type than either of them alone. We see
that both the vertical velocity field and the CAPE/CIN fields contain information
on the state of convection. Both of them may be used to reproduce some of the
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time-dependent behaviour of convective organisation in low wind shear (e.g. cold
pools). Here we choose for CAPE and CIN to obtain the best filling fractions. A
more detailed study of the physical mechanisms behind the organisation of deep
convection in the present case is given in [18].

As a final remark, we have included the mutual information of v at 15843
meter in Table 2 as a consistency check: u at 15843 meter is mainly determined
by upward propagating gravity waves that can have a remote origin, and we do
not expect it to be a good indicator of the state of convection and cloud type.
The low value of the mutual information confirms this intuition.

o
IS

——CAPE&CIN
[ == CAPE
- - - uat 15843 mete

o
N

o o o
=3 o o o
= ) o =

Shannon mutual information [nats]

o
o
[}

o

100 200 300 400 500
Time [min]

o

Figure 6. Time series of the mutual information between the large-scale variable at time ¢ and
cloud type at time ¢ for different large-scale variables.

(b) Filling fractions of the CMC

Fig. 7 shows filling fractions produced by CMCs that are conditioned on CAPE
and CIN with K =20 clusters. The left panel shows the means and standard
deviations of the fractions over 144 macroscopic blocks using 1024 CMCs per
block. The time evolution of the means is in good agreement with the LES
results, as can be seen by comparing with the left panel of Fig. 4. With a smaller
number of clusters (K = 10) the agreement was unsatisfactory (results not shown).
Further, the standard deviations are too small compared to the LES results.
They can be increased by using a smaller number of CMCs (because fractions
determined by a smaller number of Markov chains are more likely to deviate
from the expected values). In the right panel of Fig. 7 we show the means and
standard deviations using only 64 CMCs per macroscopic block. As expected,
by using only 64 instead of 1024 CMCs, the standard deviations are larger and
therefore in better agreement with the LES fractions. In Fig. 8 we show cloud
filling fractions on a single macroscopic block. In the left panel the fractions of
the LES data on a block of size n=1024, in the right panel the fractions as
produced by the multicloud model using 64 CMCs (conditioned on CAPE-CIN).

We have seen that by using CAPE and CIN to condition the CMCs, the time-
evolution of the filling fractions is captured. This is not solely because CAPE
and CIN are indicators of convection: in the first part of the simulation, CAPE
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increases (and CIN decreases) steadily with time, so that conditioning on CAPE
and CIN is similar to conditioning on time. However, this only holds true for the
first part of the eight hours of simulation. In the last hours, CAPE no longer
increases in all LES subdomains. Instead, we observe a decrease of CAPE in part
of the subdomains.
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Figure 7. (a) Mean filling fractions produced by 1024 CMCs with K =20 clusters of CAPE
and CIN (solid) plus and minus the standard deviation (dashed). The CMC is driven by LES

observed values of CAPE and CIN. (b) same as left but with 64 CMCs.
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Figure 8. (a) Filling fractions observed in a single macroscopic block of n =32% LES columns.
(b) Filling fractions using 64 CMCs, where each CMC is conditioned on CAPE and CIN with
K =20.
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7. Stochastic cellular automaton

In the previous section it was shown that conditioning of the Markov chain on the
macroscopic environment strongly improves the behaviour of the filling fraction
means, cf. Fig. 4 and Fig. 7. However, the variances of the CMC filling fractions
are too small, and can only be brought in better agreement with the variances
of the LES filling fractions by reducing the number of CMCs per macroscopic
block. In this section we investigate whether coupling to neighbouring sites on the
micro lattice can improve the emulated variances, without reducing the number
of Markov chains. Thus, we study use of the forms (2.3) and (2.4) for the Markov
chain. We expect that by coupling to neighbouring sites, the spatial correlations of
the cloud type patterns will be better captured, thereby increasing the variance.

As mentioned earlier, by conditioning the Markov chain for lattice site ¢ on the
state of the neighbouring sites, as in (2.3), the Markov chain becomes a stochastic
(or probabilistic) cellular automaton (SCA). Cellular automata (CA) have been
used for parameterization purposes by [5, 6, 29]. In these studies, the CA have
deterministic rules, not stochastic ones, and they are chosen by intuition rather
than inferred from data. Also, in [5, 6, 29] the cells of the CA can take on two
states, not five as is the case here.

First we estimate the SCA transition probabilities (2.3) from the LES data.
As before, Y;(t) is the cloud type at site ¢ at time ¢, Y;(t) € {1,2,3,4,5}. Use of
(2.3) implies that in principle, for every state ¢ of the combined neighbouring sites
Y(;y, there is a different transition probability matrix. This reflects, for example,
that the probability of a clear sky site turning into a shallow cumulus site may
increase as the number of neighbouring shallow cumulus sites increases.

For the neighbourhood of site i, denoted {i}, we choose the 8 sites directly
surrounding site ¢ in the micro lattice (see also Fig. 1). As each site can take on 5
different values, there are 5% different configurations, i.e. 5% possible values of d.
This is too much to be practical, therefore we reduce the number of possibilities
by conditioning not on Yy (t) directly, but on a simple reduction function f that
depends on Y(;(t). Thus, we use

ps(a, B) = Prob (Yi(t + Aty = B|Yi(t) =a, [(YV()=0)  (7.1)

rather than (2.3) itself.

Let us denote by |CL|; the number of clear sky sites directly surrounding
i, and similarly by |SH]|;, |CO|;, |DE|; and |ST|; the number of surrounding
shallow, congestus, deep and stratiform sites. These numbers are time dependent.
Clearly, |CL|; + |SH|; +|CO|; + |DE|; + |ST|; =8 for all 7 and at all times. As
the function f we now choose

f(Yiy (1) =1% [SH|; + 2% |CO[; + 3% [DE[; + 4 % |STY; . (7.2)

The reason for choosing this particular reduction function is that it is a measure
of the degree to which the direct environment is convectively active: the more
neighbouring sites in a state of convection the larger the value of f. Furthermore, a
neighbouring site with cloud type congestus increases f more than a neighbouring
site with cloud type shallow. The function increases even more if there is a
neighbouring deep site. The choice of the factor 4 for stratiform is somewhat
debatable, but the coefficient has to be larger than 3 to indicate the presence
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of stratiform instead of some other cloud type. Further the value has to be as
small as possible to reduce the number of states (and therefore matrices) as much
as possible. One can use information theory to perform a systematic search for
functions that give the most information about the transitions (see [28| for some
ideas on this), however we will not pursue this here. Estimating the probabilities
(7.1) is straightforward, using an estimator analogous to (6.1)-(6.2).

We obtain 33 different transition matrices of size 5 x 5, because 0 < f < 32. For
each site, the state of the neighbourhood is determined by counting the numbers
of different cloud types surrounding it, and computing the corresponding value of
fi(t) as in (7.2). This value determines which transition matrix is used at lattice
site ¢ at time ¢.

We initialise the SCA-multicloud model using 384 x 384 cells all in a clear sky
state, corresponding to the initial condition observed in the LES data. As time
evolves, some cells switch to shallow cumulus and clusters of shallow cumulus
cells appear. Later on, the SCA correctly produces congestus sites in the shallow
cumulus clusters. At about 250 minutes after initialization, similar to LES, deep
convective sites appear. These turn into stratiform decks. Eventually, the patterns
of the SCA are clear sky areas with some shallow cumulus and areas of a mixture
congestus, deep and stratiform. This mixture is not observed in the LES data,

but the fractions turn out to be correct. First we show the patterns produced by
the SCA in Fig. 9a.

Horizontal length [km]
Horizontal length [km]

10 20 40 50 10 30 40 50
Horizontal length [km] Horizontal length [km]

Figure 9. Patterns formed (a) by SCA at ¢ =480 and (b) by CSCA additionally conditioned on
CAPE using K =5 clusters.

Fig. 10a shows filling fractions (mean and standard deviation) for the SCA,
using (7.1)-(7.2). The standard deviation is taken over macroscopic blocks of size
n =1024. Both the time evolution and the magnitude of the standard deviations
are in much better agreement with the LES data (Fig. 4a) than those produced by
the CMC (Fig. 7). The time evolution of the means are reasonable, but not as good
as those of the CMC. Therefore, as a final step of refinement, we combine CMC and
SCA by conditioning the Markov chain both on the macroscopic state X;(¢) and on
the neighbouring states Yy; (t). We refer to this combination as CSCA (conditional
SCA). To our best knowledge, a (stochastic) cellular automaton conditioned on
an “external”, time-evolving field (X, in our case) has not been studied before.
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Figure 10. (a) Mean filling fractions of the SCA (solid) plus and minus the standard deviation
calculated over blocks of 1024 cells (dashed) and (b) the same for a CSCA conditioned on CAPE
using K =5 clusters.

The filling fractions of the CSCA are shown in Fig. 10b. As before, we used
the function (7.2) rather than Yy;,(¢) to condition the CSCA on the neighbouring
sites. Thus, the transition probabilities are as in (2.4), but with Y(;(¢) replaced
by the function (7.2). For conditioning on the macroscopic state X;(t) we used
CAPE, clustered with 5 centroids. Patterns are similar to the patterns of the SCA,
compare the panels of Fig. 9. The time evolution of the filling fraction means is
in better agreement with the LES data than was the case with the SCA. We
anticipate that further improvement is possible, e.g. with search techniques as in
[28], and with methods to reduce the parameter space as in |23]. We leave this for
future study.

8. Single-column model

In the tests performed in the previous sections there was no interaction between
the large-scale variables and the CMC or CSCA. Therefore, to take a step forward
towards implementation in a GCM, we test the multicloud model in an SCM
experiment. The SCM can be thought of as representative for the behaviour of
a single GCM vertical model column. We use one macroscopic block, containing
1024 CMCs, to represent the GCM model column. These CMCs are conditioned on
CAPE and CIN, as in Section 6. We choose suitable large-scale variables and use
LES data to precalculate their tendencies. The tendencies are assumed to depend
linearly on the filling fractions determined by the multicloud model. Thus, the
large-scale variables and the cloud filling fractions are coupled to each other, and

both evolve over time. Inspired by [7] we take four prognostic variables: X; = q%ow,

Xy =q"8" X3=0" and X, =6,"8", with ¢; and ¢, as defined in (3.1). The low
level is at 413 meter and the higher level is at 2345 meter in the atmosphere.
These are the variables that we are going to resolve in our SCM.
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We use the CMCs, conditioned on CAPE and CIN, to calculate the filling
fractions of each cloud type. Therefore we have to express CAPE and CIN in
terms of the prognostic variables X = (X71,..., X,)7".

(a) CAPE* and CIN*

We assume that CAPE is a linear combination of X. We compute the
coefficients by doing a least square fit with the CAPE values from the LES data
and the values of X, also from the LES data. We write

CAPE* = \X, (8.1)

where A= ()\g,...,\q) are the coefficients and where we add the constant term
Xg=1. We solve

min ((CAPE — AX)?)

and find that the linear CAPE* is almost completely determined by ¢; and 6; at
the low atmosphere level. The correlation coefficient of CAPE and CAPE* is 0.97,
so we can use CAPE* as a proxy for CAPE. In general this is not the case, but
free tropospheric properties change relatively slowly in the LES data. For CIN we
do a linear fit of the logarithm of CIN. We write

CIN* = et (8.2)

Here p= (po, ... pa) are the coefficients for CIN*. For CIN and CIN* we find a
correlation coefficient of 0.77, so we can use CIN* instead of CIN.

(b) Large-scale tendencies X

In a GCM a parameterization should deliver entire vertical heating and
moistening profiles. In our SCM experiment we only have four prognostic variables
and therefore we use LES data to determine the influence of the cloud filling
fractions o on these four prognostic variables X. Below, we propose a method
of using data to calculate the heating and moistening (i.e. the tendencies X );
whether this method will work for a large number of variables remains to be
explored.

In [15] this was done for shallow cumulus convection by clustering vertical
heat and moisture fluxes observed in LES data. Here we will use a least-squares
fitting method that we already used to calculate the CAPE* and CIN*. Every
cloud type has influence on 6; and ¢; at the low and higher atmosphere level. This
means that

4
Xm — Z JaFﬁfm
a=0

where X, is the tendency of X,, (1 <m<4) and F2 is the influence of cloud
type « on prognostic variable X,,. We assume that £ is a linear combination of
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the prognostic variables X:
F =Y v, Xn.
n

We now have:

where o is the 1 x 5 filling fraction vector, v, is a 5 x 5-matrix that has to
be estimated separately for every prognostic variable X,,, and X is the 5 x 1
prognostic variables vector. For every prognostic variable X,, we estimate v,
by least-square fitting. This is done as follows. Our aim is to calculate for every
1<m<4:

min » (X, — ovm X)?, 1<t <480. (8.4)
o

In every subdomain of LES we observe the prognostic variables X, tendencies
X,,, and the LES-filling fractions o. This is the case for 479 time instances (at the
last time instance ¢ =480 the tendencies are not estimated). We can write (8.4)
in the form y = Zv. Then, the least square fit gives o = Z7y(Z7 Z)~!. This gives
the best least square estimate of the 25 entries in the 5 X 5 matrix vp,.

(¢) Integration of the single-column model

We integrate Eq. 8.3, to obtain the evolution of the prognostic variables
X1,...,X4. As initial condition we take o =(1,0,0,0,0). This means that each
CMC starts in state 1 (corresponding to clear sky). The initial conditions for X
are the average initial values observed in the LES data. The CMCs produce the
filling fractions ¢ and the v are pre-calculated in Section b. We recall that the
CMCs are conditioned on CAPE* and CIN*.

(d) Filling fractions of the SCM

We test the stochastic multicloud model in the SCM. In Fig. 11 we show filling
fractions for SCM using 1024 CMCs. To increase the standard deviation we do a
second experiment using only 64 CMCs. To calculate the standard deviation in
every experiment we use 12 independent runs of the SCM. In this way we can
compare the standard deviation to the standard deviation that we observed in
the 122 LES-blocks (each consisting of 1024 LES-columns). Comparing Fig. 4a to
Fig. 11, we see that the SCM-CMC is capable of reproducing the time-evolution
of the filling fractions from the LES data . This is a remarkable result because the
SCM is not using any LES data during the integration. Remind that the SCM
has been constructed from LES data prior to integration.

Using a smaller number of Markov chains (64 instead of 1024) increases the
variance of the filling fractions in the SCM test, as can be seen in Fig. 11b. We
expect that further improvement of the evolution of the standard deviations in
the SCM is possible by using the SCA or the CSCA instead of CMC, but we did
not perform these experiments here.
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Figure 11. (a) Mean filling fractions produced in the SCM using 1024 CMCs conditioned on
CAPE* and CIN* (solid) plus and minus the standard deviations (dashed) and (b) the same
using 64 CMCs.

(e) A ten day run of the SCM

We have seen that the multicloud model produces correct filling fractions and
that it can be used to enhance variability in the SCM. We integrate the SCM over
a longer time period. Although the SCM-CMC has not been trained on a longer
period, there are no practical restrictions on performing longer time integrations.
As in [7] we integrate the SCM for ten days. Here, using the SCM, we do not
aim to represent a realistic simulation of deep convection (as is the case for LES).
Rather, we are interested in the long-term behaviour of the SCM as a dynamical
system, seen as coarse extrapolation. We investigate whether or not the multicloud
model can enhance variability in the SCM. In Fig. 12 we plot time series for the
prognostic variable X3 in the single column model integrated over ten days with
a time step of one minute. The graphs for the other X; are similar. For both runs,
with 2500 CMCs and 64 CMCs, we see a cycle of around eight hours. This cycle
is not caused by diurnal variations in the surface fluxes, because the CMCs have
been trained on data from an LES run with fixed surface fluxes. We note that
the trajectory depends strongly on the number of Markov chains used. With a
large number of Markov chains, the system behaves very regularly. For smaller
n, the multicloud model is more stochastic, and the SCM-CMC model displays
more variability.

9. Discussion and conclusion

In this paper we combined, for the first time, the data-driven approach to
stochastic parameterization from [14, 15| with the stochastic multicloud model
approach proposed in [7]. We used data from a convection-resolving LES model
to infer a multicloud model similar to the one studied in |7]. The aim was
to formulate a stochastic model that was able to emulate the coarse-grained
convective behaviour of the LES. Data for cloud top height and column rain
fraction from the LES were used to determine five cloud types: clear sky, shallow
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Figure 12. Time series for X4 = Q}Iigh in the single column model integrated over ten days.

cumulus, congestus, deep and stratiform. The coarse-grained convective behaviour
of the LES was represented through the filling fractions, or area fractions, of the
five cloud types on (horizontal) macroscopic blocks of 322 LES gridpoints.

The stochastic model (Markov chain) makes random transitions between cloud
types at each gridpoint, in accordance with transitions probabilities that are
estimated from the LES data. A straightforward Markov chain was not able to
reproduce the correct evolution of the filling fractions corresponding to the five
cloud types. Therefore, we explored two ways of improving the skills of the Markov
chain. First, by conditioning the Markov chain on large-scale variables, obtaining
a CMC. Second, by conditioning on the neighbouring cells, obtaining a SCA.

The CMC conditioned on a combination of CAPE and CIN was well capable of
reproducing the time-evolution of the cloud fractions observed in the LES data.
The standard deviations of the filling fractions were not very well reproduced
by the CMCs. They were too small and not similar to the standard deviations
observed in the LES data. The absence of direct spatial coupling between cloud
types in neighbouring cells in the CMC made it difficult to capture the time-
varying spatial patterns seen in the LES data. Therefore the enhanced variability
due to these patterns could not be captured by the CMCs.

The average filling fractions of the SCA were not as good as the CMC average
filling fractions. Nevertheless, the SCA showed a much better evolution of the
standard deviation of the filling fractions. By including spatial coupling, spatial
and temporal patterns emerged, resulting in more realistic variability. We showed
that further improvement can be achieved by additional conditioning on the large-
scale variables, however this comes at the cost of a more complicated model.

A point of discussion is that the CMCs in the multicloud model have been
trained on LES data of rather specific idealized (atmospheric) conditions. Clearly,
not all possible large-scale states were sampled in this dataset. Dividing the LES
domain into subdomains, as was done here (as well as in [15]), enlarges the sample
of large-scale states. The large-scale states are defined as subdomain averages, so
that the variability between the subdomains helps to increase the sample variance.
As already mentioned in Section 6, one can increase the sample variance even more
by using data from multiple LES runs with different initial conditions.
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We focussed on a setting in which shear in the horizontal plane and spatially
varying terrain type have not been considered. In case of a unidirectional shear
with varying strength, the transition probabilities of the SCA may have to depend
on the neighbouring cells in an anisotropic way. The question how strong this
sensitivity is, has not been addressed here. With varying terrain, a possible
solution is conditioning on several types of terrain.

We showed how the LES data can be used to produce heating and moistening
rates. We tested the multicloud model in a simple SCM experiment. Using the
CMCs, the LES filling fractions were faithfully reproduced by the SCM. The
degree to which the multicloud model was stochastic had a large influence on the
variability of the SCM.
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