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Abstract

A new approach is proposed for stochastic parameterizatiGubgrid scale
processes in models of atmospheric or oceanic circulaliba.new approach relies
on two key ingredients. First, the unresolved processe®presented by a Markov
chain whose properties depend on the state of the resolvedlvariables. Second,
the properties of this conditional Markov chain are infdrfeom data. We test
the parameterization approach by implementing it in then&aork of the Lorenz
96 model. We assess performance of the parameterizati@mschy inspecting
probability distributions, correlation functions and vegwoperties, and by carrying
out ensemble forecasts. For the Lorenz 96 model, the paeaimagion algorithm
is shown to give good results with a Markov chain with a fewestaonly, and to
outperform several other parameterization schemes.



1. Introduction: stochastic parameterization of subgrid scale
processes

The parameterization of subgrid scale processes in moflatsnmspheric flow has drawn
a lot of research attention recently. To get beyond the &itiwhs of parameterizations with
deterministic functions, the focus of various recent itigegions has been on the potential of
stochastic methods for the parameterization of process¢€annot be resolved because they
fall below the model grid scale (e.g. Majda et al. (1999);22ai et al. (1999); Lin and Neelin
(2000); Palmer (2001); Lin and Neelin (2002); Majda and Kideu(2002); Majda et al. (2003);
Khouider et al. (2003); Wilks (2005); Plant and Craig (2007)

When trying to parameterize unresolved processes stachiastone is faced with two
main issues. The first is to determine the class of models @mtswo use for the subgrid pro-
cesses. Several directions have been proposed and usediterifiture, ranging from stochas-
tic differential equations (Majda et al. (1999, 2003); Ei(R005)) to cellular automata (Shutts
(2005), see also Palmer (2001)), multiplicative randotioreof deterministic parameterization
schemes (Buizza et al. (1999)) and Markov chain models os@ete state space (Majda and
Khouider (2002); Khouider et al. (2003)). This last classnafdels using Markov chains is the
one that we will use in the present paper, as explained belonore detail.

The second issue one faces is how to choose the parametées nmodel for the subgrid
processes. This can either be done based on physical antiiike e.g. in Lin and Neelin
(2000); Majda and Khouider (2002)) or by using directly ttaadfrom the time series for the
subgrid processes (e.g. Wilks (2005)). The second appiuaskhe advantage that it typically
allows one to make less ad-hoc assumptions about the subggsses. This may be less
transparent from a physical perspective, but it is alsor@ly more accurate. The approach
proposed in this paper uses the data of the subgrid procesebtain a stochastic model. The
related, more general problem of inferring stochastic nefitem data is considered in a wide
variety of papers; for applications in atmosphere-oce@nse, see for example Penland and
Matrosova (1994); Egger (2001); Sura (2003); Crommelio@0Berner (2005).

Specifically, we propose a strategy for stochastic parameat®n which uses Markov pro-
cesses that are conditional on the state of the resolvedbles. This strategy accounts, as all
stochastic parameterizations do, for the possibility teeh@ multiplicity of possible states of
the unresolved processes given one fixed state of the reseér@ables. It also accounts for
the possibility that the properties of the unresolved psses (for example variance, skewness
and decorrelation time) vary with the state of the resolaiibles. We give an algorithm that
translates this dependency into a computationally feagibtameterization scheme. The con-
ditional stochastic processes are represented as Marlkonsctvith a small number of states,
making the practical implementation easy. The propersash{ as transition probabilities) of
the Markov chains are estimated from data in a simple, sttimgvard way. The algorithm is
applied to the Lorenz 96 model (Lorenz (1995)), a frequemdlyd testbed for parameterization
strategies (Palmer (2001); Fatkullin and Vanden-Eijn&&94); Wilks (2005)).

We note that the type of models resulting from the stochastiameterization developed in
this paper have a structure resembling the coupled modetoped by Majda and collabora-
tors in Katsoulakis et al. (2003, 2005, 2006) (in the contéxhaterial science) and Majda and
Khouider (2002); Khouider et al. (2003) (focussing on togpiconvection). There, a system-
atic subgrid scale parametrization is proposed in whichrd@nistic equations for macroscopic
variables are coupled to a stochastic Ising (spin flip) sgdteat represents microscopic phe-



nomena. The spin flip system is a Markov chain which can beseegrained using a systematic
closure procedure. Similar to our approach, the resultindets consist of deterministic differ-
ential equations coupled to Markov chains that are conthlion the state of the macroscopic
variables. The main difference is that, in the present pabemparameterization (or closure) is
entirely inferred from data without using any knowledgelw# physics or equations that drive
the subgrid scales. In the approach by Majda and collabarabo the other hand, one starts
with an explicitly known microscopic model which can be g®grained because the equilib-
rium distribution of the microscopic model is known exadimder the assumption of detailed
balance); there is no attempt to determine the parameténe imodel from actual data.

The outline of the remainder of this paper is as follows. latis& 2 we give a brief de-
scription of the Lorenz 96 model. The stochastic paramedgadn strategy with data-inferred
conditional Markov processes is introduced in section 3sdation 4 practical aspects of the
parameterization scheme are discussed, such as datancéemed integration scheme. We
present numerical results in section 5, where we comparsah#me with other parameteriza-
tion schemes by inspecting probability distributions retation functions, wave statistics and
results from ensemble integrations (both ensemble meadiapdrsion). We conclude in sec-
tion 6 with a discussion, where we also address the quesbirtie stochastic parameterization
scheme could be used in more realistic models.

2. TheLorenz 96 model: atestbed for parameterization algo-
rithms

The 2-layer Lorenz 96 (L96) model, proposed by Lorenz in 189%enz (1995)), has
become a popular toy model of the atmosphere to test variousepts and ideas relating to
predictability, model error and parameterization (Bd#edt al. (1998); Palmer (2001); Orrell
(2003); Fatkullin and Vanden-Eijnden (2004); Wilks (2009)he model equations read

Xp = Xpo1(Xppr — Xpeo) — X+ F + B, (1a)
. 1
Yie = < (Yirrr(Yioik = Yiron) = Yk + hy Xy) (1b)
in which
h J
By =~ Z Vi 2
7j=1
andk = 1,...,K; 7 = 1,...,J. The X, andY; are interpreted as variables on a circle

of constant latitude, where th¥, are “large-scale” variables, each coupled to a collection o
J “small-scale” variabled’; ;.. The indicesk andj can be regarded as spatial indices. The
periodicity of the spatial domain is reflected in the periitgiof the variables:

Xr = Xpik (3a)
Yie = Yjrix (3b)
Yitor = Yien (3¢)

In Lorenz (1995), the model is formulated slightly diffetigrfrom (1), with parameter settings
being equivalentte = 0.1, K = 36, J = 10, F' = 10, h, = —1 andh, = 1. We use
the formulation above (from Fatkullin and Vanden-Eijnd@0@4)) because it makes the time
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scale separation (measured dybetween theX;, and theY;; explicit. If ¢ < 1 the X, are
slow variables and th&] ; are fast; ife ~ 1 there is no time scale separation. Studies using
the L96 system are often carried out using parameter ssttiraj amount to such time scale
separation (Lorenz (1995); Fatkullin and Vanden-Eijnd&d0d); Wilks (2005)). In this paper
we uses = (.5 since (near-)absence of time scale separation betweenedsmd unresolved
processes is both more realistic and more difficult to hafualparameterizations. See Fatkullin
and Vanden-Eijnden (2004) and references therein for anvieve (and implementation for
L96) of recently developed computational strategies talleathe case < 1.

Using data from a numerical simulation of the full L96 systéhp a scatter plot of3;
versusXj, is shown in figure 1. The parameters used in the simulatiotear€, J, F, h,, h,) =
(0.5,18,20,10, —1, 1). Because of the translation invariance of the system, taigex plot has
the same statistical properties for all value# oFrom the figure, it is clear that for a fixed value
of Xy, By can take on a range of values. The propertieg(éf;| X, ), the probability density
function (PDF) ofB, conditional on the value ok, are obviously highly dependent ox.

In figure 2, various PDFs 0B, are shown, estimated from data points with in different
intervals.

3. Parameterization with conditional M arkov processes

Within the context of the L96 system (1), the aim of a parameaéon scheme is to for-
mulate a model for the large-scale variablsalone, from which the variablés; , have dis-
appeared entirely. The key element is a suitable reprasamtaf the quantities3,.. In the full
L96 model (1) they depend on th€,; in a reduced model for th&;, variables alone, they must
be parameterized in terms of th&..

One way of parameterizing is deterministic, with a functi®r= G(X). In its most general
form, every elemeni,, of the vectorB is determined bll elementsX;, of the state vectoK.
Since the functiortz can be nonlinear, this type of parameterization is ofterctoaplicated to
be of practical use for systems with more than a few degress@dom (see however Fatkullin
and Vanden-Eijnden (2004) for a on-the-fly computatioraltegy to handle this problem when
e < 1). For complex systems, a simplified function suctBas= ¢(X}) is typically considered.
The assumption thas,, is determined byX},, and not by variables at other gridpoirits+# k,
can be seen as a “locality” assumption.

A more fundamental problem of deterministic parameteionat stems from the chaotic
nature of the underlying systems: a function suctBas= ¢(X}) cannot account for the pos-
sibility that in the full systempB,, can take on a variety of states given a fixgg, rather than
one unique state. Put differently: the probability digitibn of B, with X, fixed is often not
a Dirac delta distribution. It is therefore natural to calesi stochastic parameterizations, in
which the B, are modeled as stochastic processes. They allow for diffeealizations of3,
for a fixed value ofX}, consistent with the scatter plot of figure 1.

We propose here a new approach to stochastic parameteniziatiwvhich we make the fol-
lowing two key assumptions about the stochastic processepéacesB;.: (i) it is a Markov
process; (ii) the process is conditional En We infer the properties of the stochastic process
from the (X}, By) data of the full L96 model. To make this parameterizatioreso compu-
tationally as simple as possible, we restrict the condatiityin practice toX,. Adding condi-
tionality on other gridpoints (for example, the nearesghbbr gridpointsX,_; and X, ;) can
be expected to improve the performance of the reduced mbdefver, it will also make the



model parameterization more complicated. We leave exiiboraf this possibility to another
study.

In a nutshell, we modeB, by numerical (Monte Carlo) simulation of the stochasticomss
with conditional transition probability

P(By(to) | Xi(t2), Br(t1), Xi(t1)) with ¢y > tq, (4)

which will be estimated from théX,, B;) data (see section 4 for details). We J€t(¢,) be
determined by integration of (1a), starting fra¥¢,) and with By, fixed at B, (¢;). Thus,
givenX(¢;) andB(t;), first we integrate (1a) to obtaiX(¢,), then we obtaiB(¢,) by Monte
Carlo simulations of (4) for each. More practical aspects of this parameterization scheme ar
discussed in the next section.

Adding X () to the conditionsXy (¢, ) and B (1) in (4) is natural because the distribution
for By (t2) depends strongly on the direction in whidf), is moving. Note that the value of
Xk(t2)) information is readily available via integration of (1a) ore [t,ts] with By (t) =
Bg(t1). As an illustration, we calculated PDFs fBf, on the interval .5 < X, < 2.5 depending
on whetherX, is growing or decreasing in value. More precisely, we catad the PDFs
p(Br(t) | 1.5 < Xp(t) < 2.5, Xy(t) > Xp(t — At)) andp(Bi(t) | 1.5 < Xp(t) < 2.5, Xi(t) <
Xi(t — At))). They are shown, together with the total PR3, (1) | 1.5 < Xi(t) < 2.5),
in figure 3. The significant differences between these PDHs®rolear why a parameterization
with the conditional transition probabilit ( By (t2) | Bx(t1), Xk (1)) instead of (4) would result
in a less accurate model in the case of L96. We expect thesiociwf X (t;) as a condition to
be less important for models that are more strongly mixioghsitp( By (t2) | Bi(t1), Xk(t1))
is roughly the same whekl,, is growing as it is wherX, is decreasing.

The parameterization we propose has some similaritiestivtistochastic parameterization
for L96 studied in Wilks (2005). There, the, are modeled by a deterministic term (a function
g(X},) found by fitting a polynomial to theX,, By ) data) plus a stochastic term coming from an
AR(1) process. The AR(1) process itself is not conditiomak@. However, since the stochastic
term is added to a deterministic one, the scheme studiedlks\({@005) is equivalent to param-
eterization with an AR(1) process witki,-dependent mean. The parameterization approach
proposed here is more general because the stochastic preeese need not be of AR(1) type,
and its conditionality onX}, is not restricted to the mean but extends to, for exampléanee,
skewness and decorrelation time. In section 5 we will shawvdlir approach outperforms the
one proposed in Wilks (2005), at least for the example of ltBe parameter regime that we
consider.

4. A practical algorithm using Markov chains

In this paper, we choose to model the conditional Markov @sscthat replaceB;, as a
collection of Markov chains. As a resulB, becomes a discrete random variable. One can
also choose to model th&, with Markov processes that are continuous in space (effu; di
sion processes); we use Markov chains here because of tmputational ease. Even with
a small number of Markov chain states, statistical propersiuch as variance, skewness and
decorrelation time can be captured. Moreover, data interem Markov chains is much easier
to carry out than inference of (possibly non-Gaussian)inapntus stochastic processes from
data. The conditionality oiX(¢1) and X(t2) is implemented by letting the properties of the
Markov chain change stepwise (not continuously), dependimthe intervals in whickXy (¢;)



and Xy (t,) reside. It must be stressed that althoughMhéave become discrete variables, and
although the Markov chain properties change discretelyerahan continuously witlX, the
resulting (reduced) model for the resolved variables fhgis still continuous.

a. Estimation of the Markov chains

For the construction of the Markov chains, all data poids, B) are assigned to discrete
states(i,n) by partitioning the( Xy, By) plane into bins. First, the range of possible values of
X} is divided intoNx non-overlapping interval; (i = 1, ..., Nx). Within each interval;, the
range of values oB;, is divided intoNy non-overlapping intervalg’ (n = 1, ..., Ng). A set of
stochastic matrices is constructed by estimating a spatiacrete version of the conditional
transition probability (4) from the data:

Pl = P (By(t+ At) € T | Xi(t) € I;, Bi(t) € Tt Xu(t + At) € T)) (5a)
T‘in im
= —m (5b)
Zm:l irmbm

The objectl},,;,, counts the transitions froifi, n) to (j,m) in the data:

Tinjm = »_ 1[Bi(t) € Tl 1[Xx(t) € T) 1[Bi(t + At) € T 1[X4(t + At) € Z;]  (6)
t
where) , denotes the sum over all discrete timtes: 0, At,2A¢,. .. in the dataset and|:]
denotes the indicator functiort[B,(t) € Ji| = 1if Bi(t) € J! and1[B.(t) € J:] = 0 if
Bi(t) ¢ T, etcetera. For simplicity, we assume that the time intefvabetween two data
points is constant throughout the dataset.
For anyi and; fixed, the matrixP(/) satisfies

Yn,m : PW) >0, ZP(” — 7)

so Pl is an(Np x Np) stochastic matrix (note thaand; themselves run from 1 tx). The
discrete state§, n) are assigned a valug, for B, that is the average of all data points falling
in bin 7"
ZBk t) € T, 1[X(t) € T]
B = : (8)
> " 1[Bi(t) € JiL[Xk(t) € T]
t

Construction of the transition probability matricB§?) is not possible ifi — j| is too large.
The (X, By,) data do not contain pairs of consecutive points Wilit) € Z;, Xy (t + At) € Z;
if 7 andj are far apart and the time stéy is small. However, this is not a problem, because
transitions between distant intervdlsandZ; are also unlikely to occur during an integration
of the reduced L96 model. In practice, the only matrié¥9) that are really needed are those
with |i — j| < 1. If the (X, By) data does not contain any transition out(gfr) into j for
some combination of, j, n, we havey", Ti,im = 0. In that case, we set'is) = 4, for that
particular triplet, j, n (whered,,,,, is the Kronecker delta). This avoids the numerical integrat
to break off on the rare occasion that a transition occursvfuch we have no data. A more
sophisticated way of dealing with this problem involves suation over all intermediate steps
(i,n) — (i',n") — (4, m) with known transition probabilities. We will not do this leer
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b. Time step of the Markov chains

The stochastic matriceB”) are made up of the transition probabilities (5a) over a fixed
time interval At. This time interval is the interval at which theX,, B) data is sampled.
However, in practical situations it is possible that thead&tt is available for the construction
of a parameterization scheme is sampled with a time Atejhat is different from the time step
ot at which the numerical model will be integrated. For example can be so large that an
integration scheme witht = At would be numerically unstable.

There are two ways of dealing with this problem of non-matghime steps. One possibility
is to use a split integration scheme. Assume for simplidigt \¢ is an integer multiple oét,
sayAt = N' §t. We integrateX,, with time step)t and update3;, once everyV' time steps. Of
course, the transition probability matriX) to be used to evolvé, in time must have and;
such thatX(t1) € Z; and X (t2) € Z; with to — t; = N6t and notty — ¢ = dt.

Another possibility to tackle the problem is by calculatingnsition probability matrices
PU) with an associated time stdp, starting from matrice$/) with time stepA¢. Unfortu-
nately, the straightforward but naive choiB&”) = (P(9)%/At does not, in general, result in
a new stochastic matrix (some matrix elements may be negativcomplex) because of the
Markov chain embedding problem (see Bladt and Sgrenserb(2@@ommelin and Vanden-
Eijnden (2006) for a discussion). In order to find a matfi%’) that is both a true stochastic
matrix, and approximately equal {@())%/4¢ one should first construct a so-called generator
matrix L from P@), I must be such that (xp(At L) resembles”) as closely as possible,
and (ii) exp(dt L) qualifies as a stochastic matrix for @l > 0. Two different methods for
the numerical construction of generators can be found idtBlad Sgrensen (2005) and Crom-
melin and Vanden-Eijnden (2006). Aftéris constructed, the matrik(i/) = exp(dt L) is a true
stochastic matrix that approximat@d(#))%/A! as best as possible. The degree of proximity de-
pends on how closexp(At L) is to P%). The difference betweesxp(At L) and P(%) can be
non-negligible for somé (), creating a source of error for the parameterization schéfoe
these reasons, and because the split integration schegribddsbefore gave good results for
L96 (see section 5c), we will not investigate the generatethad any further here.

c. Numerical integration

Having the transition matriceB() (or P(4)) for time intervaldt available, time integration
of the reduced L96 model with conditional Markov chain (CM#&rameterization is done as
follows: given the vectorX(¢) andB(¢), the next time iterat& (¢ + 6t) is calculated using the
derivative ofX determined by equation (1a), wiB fixed atB(¢). Then the time step faB,, is
made by Monte Carlo simulation (independent simulationslfiferent%) of the Markov chain
with transition probability matrix°(“/), with  and;j such thatX,(¢) € Z; and X(t + dt) € Z;.

As mentioned before, th8;, have become discrete variables, because they can only ake o
finite number of values (th8?). If B, is sent from statéi, n) to state(j, m) by the Monte
Carlo simulation, it means that the valueg)f to be used in the integration af, changes from
B, to B/..

5. Numerical results

We compare the results generated by the reduced L96 modedt{eq (1a) without (1b))
using three different parameterization schemesordeterministic (DTM), the AR(1) scheme



as presented in Wilks (2005) (AR1) and the conditional Martoain scheme (CMC) described
in the previous sections. We generate dataXgand B, by integrating the full L96 model (1)
with parametersge, K, J, F, h,, h,) = (0.5,18,20,10,—1,1). Thus, there is hardly any time
scale separation between the resolved and the unresolvedlea, making the situation more
realistic (and more difficult) than would be the case with th@re common choice = 0.1.

We integrate the full L96 model far0? time units with time sted0—2 and store the resulting
(X%, Bx) every 0.01 time unit (i.e.At = 0.01). Thus, the data set contaiig® points. The
reduced models will be integrated with the same time steps 0.01. In the last part of this
section, we consider the case whéve> §t, which adds a complication as described in section
4b.

For the deterministic (DTM) parameterization scheme, adstter polynomial is fitted to
the (X4, By) data. The resulting functioB;, = g(X), shown in figure 4, is used as parameter-
ization of B;,.

The AR1 scheme from Wilks (2005) consists of represenip@) by a deterministic term
plus a stochastic term:

By(t) ~ g(Xk(t)) +£(t) (9)

For g(X}) we take the polynomial function also used for the DTM scherfike stochastic
term¢ is generated by an AR(1) process, whose parameters areettay fitting the process
to the timeseries 0By (t) — g(Xx(t)). The data in this timeseries is sampled at a time interval
At = 0.01, and leads to an AR(1) process with mean zero, standardtaevia88 and e-folding
(decorrelation) time 4.3. Thus, the AR(1) process can bardegl as red noise.

For the CMC scheme, we have to choose the intetand 7. Once this is done, we
construct the transition matricé¥™) and the discrete valudg;, for B, from the(X,, B;.) data,
using expressions (5b),(6) and (8). E¥r, we use 16 intervals of width 1, centered at integer
values of X;. At the beginning and end of the domain, we use unboundedvaite Thus,

I, = (—o0,—4.5], Iy = (—4.5,-3.5), I3y = (—3.5,—2.5], ... ,Z15 = (9.5, +00). Within each
interval Z*, the bins7' are determined such that each bin contains (approximaelgqual
number of data points. We set the number of bind'tp= 4 for all calculations. The resulting
values ofB3, are plotted in the lower panel of figure 4. Using; = 8 instead ofNz = 4 gave
no significant improvement in the results and are therefotesinown.

a. PDFs, corréations and wave statistics

We integrate the reduced L96 models with the various parmenization schemes, and cal-
culate several quantities from the data of the reduced r@delvell as from the data of the full
L96 model. The timeseries are eadit datapoints long with sampling intervalt = 0.01. We
calculate the following quantities:

The PDF for X.

Theautocorrelation function (ACF) for X.

Thecross-correlation function (CCF) for X, and X, .

By Fourier transforming the state vect®rat every datapoint, a timeseries for the wave
number vecton is obtained. From this timeseries we calculateviage variance (|u,,, —
(um)|?) for every wave number < m < K/2, where(.) denotes time average.
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e Themean wave amplitude (|u,,|) .

For calculation of the PDFs, ACFs and CCFs we take the avevageall values ofk.
The PDF forX, of the full L96 model is well reproduced by all parameteriaatschemes
(figure 5). Differences between the schemes are quite smal The ACF (figure 6) and CCF
(figure 7), both strongly oscillatory, are more accuratefyroduced by the CMC scheme than
the other schemes. All schemes give oscillatory ACFs andsC@#t with the DTM and AR1
schemes, the amplitude of the oscillation is too low, and asptshift can be seen. The wave
variances and mean wave amplitudes of the full L96 modellaceteetter reproduced with the
CMC scheme than the other schemes (figure 8). The CMC scheme ajicorrect peak in the
variance at wavenumber = 3; the other schemes show a lower, broader peak spread out over
wavenumbersn = 3 andm = 4. A similar effect can be seen in the mean wave amplitudes.

In Wilks (2005), the PDF ofX}, is also rather well reproduced by various parameterization
schemes (DTM, AR1 with white noise and red noise), similawtat we find. Correlation
functions and wave statistics, like our figures 6, 7 and 8npatecalculated in Wilks (2005).

b. Ensembletests

We carry out ensemble integrations for further testing ef @MC parameterization. For
each ensemble, we calculate the mean trajectory and contpeith the true trajectory from
the full L96 model. This is done by calculating the Root Meaju&e Error (RMSE) and the
Anomaly Correlation (ANCR) using results from many diffieteensembles. The number of
ensemble members in each ensemble is 1, 5 or 20. For the 2@eneamsembles, we also
calculate rank histograms to show the ensemble dispersion.

The set-up is as follows. L& ™! be a timeseries foX of the full L96 model. A number of
N initial states from this timeseries is selected:

X init,s _ X?:H, s=1,..., Ninit (10)

We take one data point every 10 time units friéj", sot,,; — t, = 10. For every initial state,
we do V., integrations of the reduced model ovetime units (using the CMC, DTM or AR1
parameterization), starting frod™"* plus a small random perturbatigh”™ (n = 1, ..., Nens)-
We use random perturbations that are drawn from a Gausssambdtion with mean 0 and
standard deviation 0.15 (for comparison: the standardatiewi of X, is about 3.5 with the
parameter settings we use for the full L96 model). We maketieorgot to sample the unstable
directions of phase space more heavily than other diregtionto generate ensembles using
fastest growing perturbations from singular value decasitfwm. For the purpose of comparing
different parameterization approaches, the simple génaraf ensemble members described
above is sufficient.

The different integrations from one ensemble are averagsdlting in a mean trajectory
X ® (wheret € [0, T] ands = 1, ..., Ni,i). The Root Mean Square Error (RMSE) measures
the average difference between the mean ensemble trgjestdrthe trajectory from the full
L96 model:

1/2
1
RMSE (1) = (N - D [Xmeans — X§3L|2> (11)



For the Anomaly Correlation, we need the anomalies of theLR6 model and the ensemble
mean:

altlls — Xl () (12)
giuean,s — X;noan,s - <Xfu11>7 (13)

T

where(X™!!) is the time mean oK!"!!, The Anomaly Correlation (ANCR) is

1 afull,s . ginean,s
ANCR (1) = r o , (14)
Ninit B \/|afu1178|2 amean,5|2
T T

wherea-b = ", a;b;, and|a|? = a-a. The Anomaly Correlation shows the average correlation
after timer between the "true” trajectories (those of the full L96 mg@eld the mean "forecast”
trajectories (the mean ensemble trajectories of the retioncslel).

The rank histograms are calculated from ensemble integst lead time- = 2. For
each gridpoink, we rank theN,,; + 1 values forX, from the ensemble members and the full
L96 model. Ideally, the distribution of the position of theth (the value from the full L96
model) in this ranking should approach a uniform distribat{Hamill (2001)); in that case
the rank histogram is (nearly) flat. If the ensemble is urdigpersed, the truth occupies the
extremes (locations at or near 1 aNd,; + 1) too often, leading to a U-shaped rank histogram.
In the reverse situation (over-dispersion), the extrennesacupied too rarely, which gives a
histogram with the shape of an inverted U. For the rank hrstmg, we combine the results
from all gridpointsk.

The ensemble integrations were carried out using reduceatkeimovith CMC, DTM and
AR1 parameterization schemes, each starting fAgm = 1000 different initial states. For the
calculations we took ensemble siz8s,; = 1, No,s = 5 and N, = 20. Results for RMSE
and ANCR are shown in figures 9, 10 and 11. The CMC scheme glparforms better than
the other two schemes. The forecast lead tina& which the anomaly correlation drops below
0.6 is extended with about 20% when changing from the DTM &o@MC scheme in case
Nes = 1, and with about 40% ifV,,, = 20. From the DTM scheme witlv,,, = 1 to the
CMC scheme withV,,,, = 20, this extension is about 65%. The CMC scheme wWth, = 5
performs better than the DTM or AR1 scheme wiKh,, = 20.

Figure 12 shows the rank histograms fgr,, = 20. The CMC scheme has a positive effect
on the ensemble spread: the corresponding rank histogramaidy flat. The AR1 scheme
gives under-dispersed ensembles; the DTM scheme lead®tm stnder-dispersion. The rank
histograms of the ensembles with AR1 and DTM scheme can be titattier by increasing
the amplitude of the initial state perturbatioffs’; the ensembles with CMC scheme become
over-dispersed if the perturbation amplitude is increaasdould be expected.

It is interesting to note that the AR1 scheme does not perfeetter than the DTM scheme
in our tests. As mentioned, the properties of the AR(1) sistib process for the AR1 scheme
were estimated using the data at the shortest availablarnieral, At = 0.01. If we carry out
the estimation at longer time intervals, resulting in AR{gcesses with shorter e-folding times,
the performance of the AR1 parameterization scheme doempodve (results not shown). In
Wilks (2005), results are reported where the AR1 schemeped better than the DTM scheme
in ensemble tests. Two important differences with the tiestair study are (i) the parameter
settings of the full L96 model used in Wilks (2005) (equivdl®e = 0.1, K =8, J = 32, h, =
—3.2,h, = 1andF = 18 or F' = 20) and (ii) the set-up of the ensemble tests (different ways to
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generate ensemble members). Rerunning our own tests heipgtameter settings from Wilks
(2005) gave quite similar results for the DTM and AR1 schenbesgh in the non-ensemble
tests (PDFs, correlation functions, wave statistics) &edensemble tests. The difference of
our findings with those reported by Wilks (2005) can be dueftergnces in the ensemble test
set-up (but note the consistency of our own ensemble ané&nsemble test results) or to small
yet apparently important differences in the way the scheanesmplemented.

c. Thecase At > 6t

As already discussed in section 4b, practical circumstamagy be such that the integration
time stepot of the numerical model is different from the sampling timepsi\¢ of the avail-
able data. Two ways of dealing with this problem were desdiim section 4b: (i) using a
split integration scheme (upda®€ everydt time units, butB only every At time units), and
(i) calculating transition probability matriceB(#) with time stepédt, starting from matrices
PUI) with time stepAt (the "generator method”). The latter possibility is morengicated to
implement, and gives less accurate results (for reasonas$ied in section 4b) than the split
integration scheme in our testing set-up. Therefore, wg prdsent results here using the split
integration scheme. However, we note that the generatdradetan still be of practical use if
model output is desired at a shorter sampling interval tharsampling interval of the available
data. Moreover, we speculate that the performance usinggtherator method will improve for
models that are more strongly mixing than the L96 model.

The results obtained by using the split integration scheraeshown in figures 13 — 16
(RMSE is omitted here, since it gives a similar picture asahemaly correlation). For the
construction of the stochastic matride$’) we used data from the full L96 model with sampling
interval At = 0.1. The integration time step of the reduced model with CMC petrization
is 0t = 0.01. Thus, during the integration thB, are updated once every 10 time steps. As
can be seen, this version of the CMC scheme for the ddsg> it performs well, although
it remains slightly less accurate than the CMC method uging- ¢ presented in sections 5a
and 5b (in the figures, those results are added for comparisbe fact that the3,, are updated
only once every 10 time steps speeds up the computatiorfisagrtly. This computational
advantage can be such that using the split scheme may betigétraven if data with/At = 6t
is available. The increase in speed can outweigh the decnegmerformance (which is rather
small in our results) in some circumstances, in particdlds,i does not evolve fast, but on a
similar timescale ax(;,.

6. Discussion

The purpose of this study was to present a new approach thasttic parameterization,
and to test this approach by implementing it in the framewadrkhe Lorenz 96 model. The
new parameterization scheme we have proposed represeatolwed processes as stochastic
(Markov) processes whose properties are conditional osttite of the resolved variables. In
our numerical algorithm, these conditional Markov proess®ok the form of a collection of
Markov chains, making practical implementation easy. Thakdv chains are inferred from
data in a very simple way, using only binning and counting.

We have compared the conditional Markov chain (CMC) scherntie two other parame-
terization schemes, a standard deterministic one (DTM}la@dtochastic scheme proposed in
Wilks (2005) (AR1). Several tests were carried out to astiesperformance of the various
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schemes, comparing probability distributions (PDFs)ralation functions (ACFs and CCFs),
wave statistics and ensemble forecasts. The CMC schenmmed better than the DTM and
AR1 schemes, even though the number of states of the Markanslas small{/z = 4).

To test the robustness of these results, we made a briefratiplo of other parameter settings
for the L96 model. Withe = 0.5, the CMC scheme performed substantially better than the
other two schemes. In the presence of clear time scale sepabatween the resolved and the
unresolved variables (= 0.1), differences in performance between the schemes wererrath
minor (results not shown).

For a better understanding of the good performance of the G8h&me it should be pointed
out that with the parameter settings for L96 used in this\sttite motion of phase points in
the (X}, Bx) plane tends to follow a roughly clockwise path. WhEpincreasesp, typically
takes a (noisy) path through the upper part of the cloud aftpa@hown in figure 1. During a
decrease oK}, By is more likely to be in the lower part of the cloud. The impithis "loop”
(somewhat reminiscent of a hysteresis loop) in otherwissynoehavior can be captured with
the CMC scheme but not with the DTM or AR1 schemes. With the ABtieme driven by red
noise, sustained trajectories through the lower or uppergbshe data cloud are also possible;
however, with the AR1 scheme those trajectories are eqlildlly to follow the loop as they
are to go against it. The CMC scheme is better equipped, bgrdes capture such structures.

Altogether, the results from the proposed CMC paramet@oizacheme are encouraging.
Clearly, the L96 model is an idealized toy model, making itigable testing ground for a new
parameterization approach. However, care should be taken @xtrapolating results obtained
within the L96 framework to other model situations. As a regp, the CMC scheme will have
to be implemented and tested in a more realistic modeling@mwent.

In our testing, we already took into account two issues thatle expected to be of impor-
tance in more comprehensive model set-ups. First, we usadeter settings for the full L96
model that give little to no time scale separation betweengisolved and unresolved variables.
Previous studies of the L96 system were often carried out parameters such that the unre-
solved variables (th&] ;) evolve on a faster time scale than the resolved variablags time
scale separation allows for the use of designated matheshatisults and techniques (see e.g.
Fatkullin and Vanden-Eijnden (2004); Vanden-Eijnden @00but can be unrealistic.

A second issue is the sampling interval of the data that igadlta to base the parameteri-
zation on. The sampling interval can be different (longkantthe time step at which the nu-
merical model with parameterization scheme is integraiéik issue may arise when dealing,
for example, with data stemming from observations that ddiage high temporal resolution.
We discussed two potential solutions to this problem (segaes 4b and 5c). The split inte-
gration scheme solution gave the best results here, withaniinor decrease in performance
(and significant reduction in computation time) comparethécase where both time steps are
equal.

We conclude by discussing a number of further issues thatbailof relevance for the
application of the CMC scheme in more realistic models:

e The X, variables of the L96 model are usually interpreted as lyim@ aircle of constant
latitude, see section 2. Thus, the L96 model can be regastedewhat loosely, as a
model with one spatial dimension (the or E-W direction), discretized on a number
of gridpoints. They and z directions (N-S and vertical) are absent in L96. In more
realistic models, all three spatial directions are presgmdpoint discretization leads to
a number of gridpoints that is orders of magnitude highen ihahe L96 model. From
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a computational point of view, this increase need not belproatic. The CMC scheme
runs independently for each gridpoint and is thereforeablgt for parallelization. The
computational cost at each gridpoint is very small: only akkiarkov chain must be
evolved in time.

The conditionality of the Markov chain at each gridpointe(tki, dependence) was lim-
ited by using a "locality” assumption: the Markov chain aidgoint £ depends only on
the resolved variableY,) at that same gridpoint, not on variables at other gridsqiK.
with &' # k). If the number of gridpoints increases because one carssidedels with
2 or 3 spatial dimensions, this locality assumption will ix¢lee Markov chain condition-
ality equivalently simple. Thus, the complexity of the CM&hsme at each gridpoint is
the same for a model wit®(10") gridpoints as it is for a model witt(10°) gridpoints.

The main challenge for applying the CMC scheme to realisbdehs concerns the num-
ber of different variables at each gridpoint. In the L96 mlptigere is one quantity to
be parameterizedd;) and one resolved variabl&{,) at each gridpoint. However, the
adiabatic core of an atmosphere model based on the pring@tjuations, for example,
uses 5 resolved variables at each gridpoint. Making the Mackain conditional on sev-
eral resolved variables can lead to an intractable schehenié naively. For example,
dividing the range of each resolved variable in 16 intergsilsilar to the 16 intervalg;
for X, see section 4) givels® ~ 10° possible bins in which the vector of the 5 resolved
variables at a single gridpoint can be at any moment. Kegpi@gumber of these bins
limited is necessary, both to limit computer memory demarfdbe CMC scheme and
to keep estimation of the Markov chains from data feasibieliting the Markov chain
conditionality to one or two judiciously chosen resolvediahles, or making the chain
conditional on a (linear) combination of variables, aregilole solutions.

The number of quantities for which a parameterization isdedeat each gridpoint is

usually also larger than one. This can be dealt with by usegasate Markov chains

for separate quantities. Correlations between these ifjeardire partly accounted for
through the dependence on resolved variables. If stronmglations or physical require-

ments (e.g. conservation properties) do not permit the Liseparate Markov chains at a
single gridpoint, one collective Markov chain must be cansed in which each Markov

chain state corresponds to a particular combination ofegtar the different parameter-
ized quantities at the gridpoint.

The properties of the conditional Markov chain were infdrfeom data. For the L96

model, such data was easily generated by integrating theg@lmodel. For more real-

istic models, there is no "meta-model” that can be run easily cheaply to produce the
necessary data. Instead, one can use data from two souratsfr@m observations (or
reanalysis data) is the first option. The other option is gadaluced by high-resolution
models of limited spatial extent (e.g. a single GCM gridbawyl sufficient physical so-
phistication.

Using the same conditional Markov chain (i.e., the samefseansition matrices) at ev-

ery gridpoint, as we did for the L96 model, will be too simpde §ome purposes (depend-
ing on the parameterized quantity). Geographical locatiogridpoints can be expected
to play a role in realistic models. It may be impractical tostuct separate Markov
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chains for each gridpoint; instead one can define a few grotigsdpoints (e.g., trop-
ics or midlatitudes, boundary layer or above, gridpointsrdand or sea) and construct
Markov chains for each group separately.
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FiG. 1. Scatter plot of3;(t) versusXy(t) for the full L96 model (1). Parameter settings are
(e, K,J, F, hy, hy) = (0.5,18,20,10, —1,1).
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FIG. 4. Top: The solid curve is the 5th order polynomial fit usedtii@ DTM parameterization
of By. Bottom: The black squares denote the values of3hased for the CMC parameteriza-
tion with Np = 4 (see text). In both panels, the dots are the scatter plB}, afersusX, for the
full L96 model (1).
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L96 model (L96).

24



CCF

time

FIG. 7. Cross correlation functions (CCF) &f, and X, ;. Results from reduced models with
different parameterization schemes (CMC, DTM, AR1) arenshdogether with the CCF from
the full L96 model (L96).

25



—6— L96

m

m

Variance <|u_-<u_>[>?

Wavenumber m

2.59
q

m
N

Mean wave amplitude <|u_|>
[I=Y
[l (]

0.5

0 1 2 3 4 5 6 7 8 9
Wavenumber m

FIG. 8. Top: Wave variance§u,, — (u,,)|*). Bottom: Mean wave amplitude€$u,,|). Time-
series for the wave number vecioiare obtained by Fourier transforming the state veXtat
every datapoint. The Fourier mode with wavenumbsehras variancé|u,,, — (u,,)|?) and mean
amplitude(|u,,|) (where(.) denotes time average). Results from the full L96 model (l36)
from reduced models with different parameterization sae(CMC, DTM, AR1) are shown.

26



22

RMSE

Lead time

0.8f

0.7

0.6

0.5

Anomaly Correlation

0.3f

0.1

Lead time

FIG. 9. Results from ensemble integrations with reduced madstgy the CMC parameteriza-
tion scheme {/z = 4), the DTM scheme and the AR1 scheme. Top: Root Mean Squane Err
(RMSE) versus lead timer{; bottom: Anomaly Correlation versus lead time. The nundger
ensemble members,,. = 1; the number of initial stated/;,,;, = 1000.

27



22

181 1

RMSE

Anomaly Correlation

0.1

Lead time

FiG. 10. Results from ensemble integrations with reduced nsagkthg the CMC parameteri-
zation schemel(p = 4), the DTM scheme and the AR1 scheme. Top: Root Mean Squave Err
(RMSE) versus lead timer{; bottom: Anomaly Correlation versus lead time. The nundger
ensemble members,,. = 5; the number of initial stated/;,,;, = 1000.
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FIG. 11. Results from ensemble integrations with reduced nsagkthg the CMC parameteri-
zation schemel(p = 4), the DTM scheme and the AR1 scheme. Top: Root Mean Squave Err
(RMSE) versus lead timer{; bottom: Anomaly Correlation versus lead time. The nundger
ensemble members,,, = 20; the number of initial stated’;,;; = 1000.
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FiG. 13. PDFs ofX,, as produced by the full L96 model, the reduced model with Gdiikeme
based on data with\¢t = 6t and the reduced model with CMC scheme based on data with
At > §t using the split integration scheme.
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FIG. 14. Top: Autocorrelation functions (ACF) of,. Bottom: Cross correlation functions
(CCF) of X, and X, ;. Results are from the full L96 model, the reduced model wikhGC
scheme based on data wiftt = §¢ and the reduced model with CMC scheme based on data

with At > 6t using the split integration scheme.
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FIG. 15. Top: Wave variance$u,,, — (u,,)|*). Bottom: Mean wave amplitudeg.,,|). Results
are from the full L96 model, the reduced model with CMC sché&ased on data witht = 6t
and the reduced model with CMC scheme based on dataWwitk §t using the split integration
scheme.
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FIG. 16. Anomaly Correlation versus lead time. Results are ftbenreduced model with
CMC scheme based on data witkr = §¢ (solid lines) and the reduced model with CMC
scheme based on data witky >> 4t using the split integration scheme. The various curves
show results using/.,s = 1, News = 5 and N, = 20. At any value of the lead time, the larger
Neans, the higher the correlation.
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