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Abstract

A new approach is proposed for stochastic parameterizationof subgrid scale
processes in models of atmospheric or oceanic circulation.The new approach relies
on two key ingredients. First, the unresolved processes arerepresented by a Markov
chain whose properties depend on the state of the resolved model variables. Second,
the properties of this conditional Markov chain are inferred from data. We test
the parameterization approach by implementing it in the framework of the Lorenz
96 model. We assess performance of the parameterization scheme by inspecting
probability distributions, correlation functions and wave properties, and by carrying
out ensemble forecasts. For the Lorenz 96 model, the parameterization algorithm
is shown to give good results with a Markov chain with a few states only, and to
outperform several other parameterization schemes.

1



1. Introduction: stochastic parameterization of subgrid scale
processes

The parameterization of subgrid scale processes in models of atmospheric flow has drawn
a lot of research attention recently. To get beyond the limitations of parameterizations with
deterministic functions, the focus of various recent investigations has been on the potential of
stochastic methods for the parameterization of processes that cannot be resolved because they
fall below the model grid scale (e.g. Majda et al. (1999); Buizza et al. (1999); Lin and Neelin
(2000); Palmer (2001); Lin and Neelin (2002); Majda and Khouider (2002); Majda et al. (2003);
Khouider et al. (2003); Wilks (2005); Plant and Craig (2007)).

When trying to parameterize unresolved processes stochastically, one is faced with two
main issues. The first is to determine the class of models one wants to use for the subgrid pro-
cesses. Several directions have been proposed and used in the literature, ranging from stochas-
tic differential equations (Majda et al. (1999, 2003); Wilks (2005)) to cellular automata (Shutts
(2005), see also Palmer (2001)), multiplicative randomization of deterministic parameterization
schemes (Buizza et al. (1999)) and Markov chain models on a discrete state space (Majda and
Khouider (2002); Khouider et al. (2003)). This last class ofmodels using Markov chains is the
one that we will use in the present paper, as explained below in more detail.

The second issue one faces is how to choose the parameters in the model for the subgrid
processes. This can either be done based on physical intuition (like e.g. in Lin and Neelin
(2000); Majda and Khouider (2002)) or by using directly the data from the time series for the
subgrid processes (e.g. Wilks (2005)). The second approachhas the advantage that it typically
allows one to make less ad-hoc assumptions about the subgridprocesses. This may be less
transparent from a physical perspective, but it is also potentially more accurate. The approach
proposed in this paper uses the data of the subgrid processesto obtain a stochastic model. The
related, more general problem of inferring stochastic models from data is considered in a wide
variety of papers; for applications in atmosphere-ocean science, see for example Penland and
Matrosova (1994); Egger (2001); Sura (2003); Crommelin (2004); Berner (2005).

Specifically, we propose a strategy for stochastic parameterization which uses Markov pro-
cesses that are conditional on the state of the resolved variables. This strategy accounts, as all
stochastic parameterizations do, for the possibility to have a multiplicity of possible states of
the unresolved processes given one fixed state of the resolved variables. It also accounts for
the possibility that the properties of the unresolved processes (for example variance, skewness
and decorrelation time) vary with the state of the resolved variables. We give an algorithm that
translates this dependency into a computationally feasible parameterization scheme. The con-
ditional stochastic processes are represented as Markov chains with a small number of states,
making the practical implementation easy. The properties (such as transition probabilities) of
the Markov chains are estimated from data in a simple, straightforward way. The algorithm is
applied to the Lorenz 96 model (Lorenz (1995)), a frequentlyused testbed for parameterization
strategies (Palmer (2001); Fatkullin and Vanden-Eijnden (2004); Wilks (2005)).

We note that the type of models resulting from the stochasticparameterization developed in
this paper have a structure resembling the coupled models proposed by Majda and collabora-
tors in Katsoulakis et al. (2003, 2005, 2006) (in the contextof material science) and Majda and
Khouider (2002); Khouider et al. (2003) (focussing on tropical convection). There, a system-
atic subgrid scale parametrization is proposed in which deterministic equations for macroscopic
variables are coupled to a stochastic Ising (spin flip) system that represents microscopic phe-
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nomena. The spin flip system is a Markov chain which can be coarse-grained using a systematic
closure procedure. Similar to our approach, the resulting models consist of deterministic differ-
ential equations coupled to Markov chains that are conditional on the state of the macroscopic
variables. The main difference is that, in the present paper, the parameterization (or closure) is
entirely inferred from data without using any knowledge of the physics or equations that drive
the subgrid scales. In the approach by Majda and collaborators, on the other hand, one starts
with an explicitly known microscopic model which can be coarse-grained because the equilib-
rium distribution of the microscopic model is known exactly(under the assumption of detailed
balance); there is no attempt to determine the parameters inthe model from actual data.

The outline of the remainder of this paper is as follows. In section 2 we give a brief de-
scription of the Lorenz 96 model. The stochastic parameterization strategy with data-inferred
conditional Markov processes is introduced in section 3. Insection 4 practical aspects of the
parameterization scheme are discussed, such as data inference and integration scheme. We
present numerical results in section 5, where we compare ourscheme with other parameteriza-
tion schemes by inspecting probability distributions, correlation functions, wave statistics and
results from ensemble integrations (both ensemble mean anddispersion). We conclude in sec-
tion 6 with a discussion, where we also address the question how the stochastic parameterization
scheme could be used in more realistic models.

2. The Lorenz 96 model: a testbed for parameterization algo-
rithms

The 2-layer Lorenz 96 (L96) model, proposed by Lorenz in 1995(Lorenz (1995)), has
become a popular toy model of the atmosphere to test various concepts and ideas relating to
predictability, model error and parameterization (Boffetta et al. (1998); Palmer (2001); Orrell
(2003); Fatkullin and Vanden-Eijnden (2004); Wilks (2005)). The model equations read

Ẋk = Xk−1(Xk+1 − Xk−2) − Xk + F + Bk (1a)

Ẏj,k =
1

ε

(

Yj+1,k(Yj−1,k − Yj+2,k) − Yj,k + hyXk

)

(1b)

in which

Bk =
hx

J

J
∑

j=1

Yj,k, (2)

andk = 1, . . . , K; j = 1, . . . , J . The Xk andYj,k are interpreted as variables on a circle
of constant latitude, where theXk are “large-scale” variables, each coupled to a collection of
J “small-scale” variablesYj,k. The indicesk and j can be regarded as spatial indices. The
periodicity of the spatial domain is reflected in the periodicity of the variables:

Xk = Xk+K (3a)

Yj,k = Yj,k+K (3b)

Yj+J,k = Yj,k+1 (3c)

In Lorenz (1995), the model is formulated slightly differently from (1), with parameter settings
being equivalent toε = 0.1, K = 36, J = 10, F = 10, hx = −1 andhy = 1. We use
the formulation above (from Fatkullin and Vanden-Eijnden (2004)) because it makes the time
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scale separation (measured byε) between theXk and theYj,k explicit. If ε ≪ 1 the Xk are
slow variables and theYj,k are fast; ifε ≈ 1 there is no time scale separation. Studies using
the L96 system are often carried out using parameter settings that amount to such time scale
separation (Lorenz (1995); Fatkullin and Vanden-Eijnden (2004); Wilks (2005)). In this paper
we useε = 0.5 since (near-)absence of time scale separation between resolved and unresolved
processes is both more realistic and more difficult to handlefor parameterizations. See Fatkullin
and Vanden-Eijnden (2004) and references therein for an overview (and implementation for
L96) of recently developed computational strategies to handle the caseε ≪ 1.

Using data from a numerical simulation of the full L96 system(1), a scatter plot ofBk

versusXk is shown in figure 1. The parameters used in the simulation are(ε, K, J, F, hx, hy) =
(0.5, 18, 20, 10,−1, 1). Because of the translation invariance of the system, this scatter plot has
the same statistical properties for all values ofk. From the figure, it is clear that for a fixed value
of Xk, Bk can take on a range of values. The properties ofρ(Bk|Xk), the probability density
function (PDF) ofBk conditional on the value ofXk, are obviously highly dependent onXk.
In figure 2, various PDFs ofBk are shown, estimated from data points withXk in different
intervals.

3. Parameterization with conditional Markov processes
Within the context of the L96 system (1), the aim of a parameterization scheme is to for-

mulate a model for the large-scale variablesXk alone, from which the variablesYj,k have dis-
appeared entirely. The key element is a suitable representation of the quantitiesBk. In the full
L96 model (1) they depend on theYj,k; in a reduced model for theXk variables alone, they must
be parameterized in terms of theXk.

One way of parameterizing is deterministic, with a functionB = G(X). In its most general
form, every elementBk of the vectorB is determined byall elementsXk of the state vectorX.
Since the functionG can be nonlinear, this type of parameterization is often toocomplicated to
be of practical use for systems with more than a few degrees offreedom (see however Fatkullin
and Vanden-Eijnden (2004) for a on-the-fly computational strategy to handle this problem when
ε ≪ 1). For complex systems, a simplified function such asBk = g(Xk) is typically considered.
The assumption thatBk is determined byXk, and not by variables at other gridpointsk′ 6= k,
can be seen as a “locality” assumption.

A more fundamental problem of deterministic parameterizations stems from the chaotic
nature of the underlying systems: a function such asBk = g(Xk) cannot account for the pos-
sibility that in the full system,Bk can take on a variety of states given a fixedXk, rather than
one unique state. Put differently: the probability distribution of Bk with Xk fixed is often not
a Dirac delta distribution. It is therefore natural to consider stochastic parameterizations, in
which theBk are modeled as stochastic processes. They allow for different realizations ofBk

for a fixed value ofXk, consistent with the scatter plot of figure 1.
We propose here a new approach to stochastic parameterization, in which we make the fol-

lowing two key assumptions about the stochastic process that replacesBk: (i) it is a Markov
process; (ii) the process is conditional onX. We infer the properties of the stochastic process
from the(Xk, Bk) data of the full L96 model. To make this parameterization scheme compu-
tationally as simple as possible, we restrict the conditionality in practice toXk. Adding condi-
tionality on other gridpoints (for example, the nearest neighbor gridpointsXk−1 andXk+1) can
be expected to improve the performance of the reduced model;however, it will also make the
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model parameterization more complicated. We leave exploration of this possibility to another
study.

In a nutshell, we modelBk by numerical (Monte Carlo) simulation of the stochastic process
with conditional transition probability

P (Bk(t2) |Xk(t2), Bk(t1), Xk(t1)) with t2 ≥ t1 , (4)

which will be estimated from the(Xk, Bk) data (see section 4 for details). We letXk(t2) be
determined by integration of (1a), starting fromX(t1) and with Bk fixed at Bk(t1). Thus,
givenX(t1) andB(t1), first we integrate (1a) to obtainX(t2), then we obtainB(t2) by Monte
Carlo simulations of (4) for eachk. More practical aspects of this parameterization scheme are
discussed in the next section.

AddingXk(t2) to the conditionsXk(t1) andBk(t1) in (4) is natural because the distribution
for Bk(t2) depends strongly on the direction in whichXk is moving. Note that the value of
Xk(t2)) information is readily available via integration of (1a) ont ∈ [t1, t2] with Bk(t) =
Bk(t1). As an illustration, we calculated PDFs forBk on the interval1.5 < Xk < 2.5 depending
on whetherXk is growing or decreasing in value. More precisely, we calculated the PDFs
ρ(Bk(t) | 1.5 < Xk(t) < 2.5, Xk(t) > Xk(t − ∆t)) andρ(Bk(t) | 1.5 < Xk(t) < 2.5, Xk(t) <
Xk(t − ∆t))). They are shown, together with the total PDFρ(Bk(t) | 1.5 < Xk(t) < 2.5),
in figure 3. The significant differences between these PDFs make clear why a parameterization
with the conditional transition probabilityP (Bk(t2) |Bk(t1), Xk(t1)) instead of (4) would result
in a less accurate model in the case of L96. We expect the inclusion ofXk(t2) as a condition to
be less important for models that are more strongly mixing, so thatρ(Bk(t2) |Bk(t1), Xk(t1))
is roughly the same whenXk is growing as it is whenXk is decreasing.

The parameterization we propose has some similarities withthe stochastic parameterization
for L96 studied in Wilks (2005). There, theBk are modeled by a deterministic term (a function
g(Xk) found by fitting a polynomial to the(Xk, Bk) data) plus a stochastic term coming from an
AR(1) process. The AR(1) process itself is not conditional on Xk. However, since the stochastic
term is added to a deterministic one, the scheme studied in Wilks (2005) is equivalent to param-
eterization with an AR(1) process withXk-dependent mean. The parameterization approach
proposed here is more general because the stochastic process we use need not be of AR(1) type,
and its conditionality onXk is not restricted to the mean but extends to, for example, variance,
skewness and decorrelation time. In section 5 we will show that our approach outperforms the
one proposed in Wilks (2005), at least for the example of L96 in the parameter regime that we
consider.

4. A practical algorithm using Markov chains
In this paper, we choose to model the conditional Markov process that replacesBk as a

collection of Markov chains. As a result,Bk becomes a discrete random variable. One can
also choose to model theBk with Markov processes that are continuous in space (e.g., diffu-
sion processes); we use Markov chains here because of their computational ease. Even with
a small number of Markov chain states, statistical properties such as variance, skewness and
decorrelation time can be captured. Moreover, data inference of Markov chains is much easier
to carry out than inference of (possibly non-Gaussian) continuous stochastic processes from
data. The conditionality onXk(t1) andXk(t2) is implemented by letting the properties of the
Markov chain change stepwise (not continuously), depending on the intervals in whichXk(t1)
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andXk(t2) reside. It must be stressed that although theBk have become discrete variables, and
although the Markov chain properties change discretely rather than continuously withXk, the
resulting (reduced) model for the resolved variables (theXk) is still continuous.

a. Estimation of the Markov chains

For the construction of the Markov chains, all data points(Xk, Bk) are assigned to discrete
states(i, n) by partitioning the(Xk, Bk) plane into bins. First, the range of possible values of
Xk is divided intoNX non-overlapping intervalsIi (i = 1, ..., NX). Within each intervalIi, the
range of values ofBk is divided intoNB non-overlapping intervalsJ i

n (n = 1, ..., NB). A set of
stochastic matrices is constructed by estimating a spatially discrete version of the conditional
transition probability (4) from the data:

P (ij)
nm = P

(

Bk(t + ∆t) ∈ J j
m |Xk(t) ∈ Ii, Bk(t) ∈ J i

n, Xk(t + ∆t) ∈ Ij

)

(5a)

=
Tin|jm

∑NB

m=1 Tin|jm

(5b)

The objectTin|jm counts the transitions from(i, n) to (j, m) in the data:

Tin|jm =
∑

t

1[Bk(t) ∈ J i
n] 1[Xk(t) ∈ Ii] 1[Bk(t + ∆t) ∈ J j

m] 1[Xk(t + ∆t) ∈ Ij ] (6)

where
∑

t denotes the sum over all discrete timest = 0, ∆t, 2∆t, . . . in the dataset and1[·]
denotes the indicator function:1[Bk(t) ∈ J i

n] = 1 if Bk(t) ∈ J i
n and1[Bk(t) ∈ J i

n] = 0 if
Bk(t) /∈ J i

n, etcetera. For simplicity, we assume that the time interval∆t between two data
points is constant throughout the dataset.

For anyi andj fixed, the matrixP (ij) satisfies

∀n, m : P (ij)
nm ≥ 0, ∀n :

NB
∑

m=1

P (ij)
nm = 1, (7)

soP (ij) is an(NB ×NB) stochastic matrix (note thati andj themselves run from 1 toNX). The
discrete states(i, n) are assigned a valueBi

n for Bk that is the average of all data points falling
in bin J i

n:

Bi
n =

∑

t

Bk(t) 1[Bk(t) ∈ J i
n] 1[Xk(t) ∈ Ii]

∑

t

1[Bk(t) ∈ J i
n]1[Xk(t) ∈ Ii]

(8)

Construction of the transition probability matricesP (ij) is not possible if|i− j| is too large.
The(Xk, Bk) data do not contain pairs of consecutive points withXk(t) ∈ Ii, Xk(t+∆t) ∈ Ij

if i andj are far apart and the time step∆t is small. However, this is not a problem, because
transitions between distant intervalsIi andIj are also unlikely to occur during an integration
of the reduced L96 model. In practice, the only matricesP (ij) that are really needed are those
with |i − j| ≤ 1. If the (Xk, Bk) data does not contain any transition out of(i, n) into j for
some combination ofi, j, n, we have

∑

m Tin|jm = 0. In that case, we setP (ij)
nm = δnm for that

particular tripleti, j, n (whereδnm is the Kronecker delta). This avoids the numerical integration
to break off on the rare occasion that a transition occurs forwhich we have no data. A more
sophisticated way of dealing with this problem involves summation over all intermediate steps
(i, n) → (i′, n′) → (j, m) with known transition probabilities. We will not do this here.
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b. Time step of the Markov chains

The stochastic matricesP (ij) are made up of the transition probabilities (5a) over a fixed
time interval∆t. This time interval is the interval at which the(Xk, Bk) data is sampled.
However, in practical situations it is possible that the data that is available for the construction
of a parameterization scheme is sampled with a time step∆t that is different from the time step
δt at which the numerical model will be integrated. For example, ∆t can be so large that an
integration scheme withδt = ∆t would be numerically unstable.

There are two ways of dealing with this problem of non-matching time steps. One possibility
is to use a split integration scheme. Assume for simplicity that∆t is an integer multiple ofδt,
say∆t = N t δt. We integrateXk with time stepδt and updateBk once everyN t time steps. Of
course, the transition probability matrixP (ij) to be used to evolveBk in time must havei andj
such thatXk(t1) ∈ Ii andXk(t2) ∈ Ij with t2 − t1 = N t δt and nott2 − t1 = δt.

Another possibility to tackle the problem is by calculatingtransition probability matrices
P̃ (ij) with an associated time stepδt, starting from matricesP (ij) with time step∆t. Unfortu-
nately, the straightforward but naive choiceP̃ (ij) = (P (ij))δt/∆t does not, in general, result in
a new stochastic matrix (some matrix elements may be negative, or complex) because of the
Markov chain embedding problem (see Bladt and Sørensen (2005); Crommelin and Vanden-
Eijnden (2006) for a discussion). In order to find a matrixP̃ (ij) that is both a true stochastic
matrix, and approximately equal to(P (ij))δt/∆t, one should first construct a so-called generator
matrixL from P (ij). L must be such that (i)exp(∆t L) resemblesP (ij) as closely as possible,
and (ii) exp(δt L) qualifies as a stochastic matrix for allδt ≥ 0. Two different methods for
the numerical construction of generators can be found in Bladt and Sørensen (2005) and Crom-
melin and Vanden-Eijnden (2006). AfterL is constructed, the matrix̃P (ij) = exp(δt L) is a true
stochastic matrix that approximates(P (ij))δt/∆t as best as possible. The degree of proximity de-
pends on how closeexp(∆t L) is toP (ij). The difference betweenexp(∆t L) andP (ij) can be
non-negligible for someP (ij), creating a source of error for the parameterization scheme. For
these reasons, and because the split integration scheme described before gave good results for
L96 (see section 5c), we will not investigate the generator method any further here.

c. Numerical integration

Having the transition matricesP (ij) (or P̃ (ij)) for time intervalδt available, time integration
of the reduced L96 model with conditional Markov chain (CMC)parameterization is done as
follows: given the vectorsX(t) andB(t), the next time iterateX(t + δt) is calculated using the
derivative ofX determined by equation (1a), withB fixed atB(t). Then the time step forBk is
made by Monte Carlo simulation (independent simulations for differentk) of the Markov chain
with transition probability matrixP (ij), with i andj such thatXk(t) ∈ Ii andXk(t + δt) ∈ Ij .
As mentioned before, theBk have become discrete variables, because they can only take on a
finite number of values (theBi

n). If Bk is sent from state(i, n) to state(j, m) by the Monte
Carlo simulation, it means that the value ofBk to be used in the integration ofXk changes from
Bi

n to Bj
m.

5. Numerical results
We compare the results generated by the reduced L96 model (equation (1a) without (1b))

using three different parameterization schemes forBk: deterministic (DTM), the AR(1) scheme
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as presented in Wilks (2005) (AR1) and the conditional Markov chain scheme (CMC) described
in the previous sections. We generate data forXk andBk by integrating the full L96 model (1)
with parameters(ε, K, J, F, hx, hy) = (0.5, 18, 20, 10,−1, 1). Thus, there is hardly any time
scale separation between the resolved and the unresolved variables, making the situation more
realistic (and more difficult) than would be the case with themore common choiceε = 0.1.
We integrate the full L96 model for103 time units with time step10−3 and store the resulting
(Xk, Bk) every 0.01 time unit (i.e.,∆t = 0.01). Thus, the data set contains105 points. The
reduced models will be integrated with the same time step,δt = 0.01. In the last part of this
section, we consider the case where∆t > δt, which adds a complication as described in section
4b.

For the deterministic (DTM) parameterization scheme, a 5thorder polynomial is fitted to
the(Xk, Bk) data. The resulting functionBk = g(Xk), shown in figure 4, is used as parameter-
ization ofBk.

The AR1 scheme from Wilks (2005) consists of representingBk(t) by a deterministic term
plus a stochastic term:

Bk(t) ≈ g(Xk(t)) + ξ(t) (9)

For g(Xk) we take the polynomial function also used for the DTM scheme.The stochastic
termξ is generated by an AR(1) process, whose parameters are obtained by fitting the process
to the timeseries ofBk(t) − g(Xk(t)). The data in this timeseries is sampled at a time interval
∆t = 0.01, and leads to an AR(1) process with mean zero, standard deviation 0.88 and e-folding
(decorrelation) time 4.3. Thus, the AR(1) process can be regarded as red noise.

For the CMC scheme, we have to choose the intervalsIi andJ i
n. Once this is done, we

construct the transition matricesP (ij) and the discrete valuesBi
n for Bk from the(Xk, Bk) data,

using expressions (5b),(6) and (8). ForXk, we use 16 intervals of width 1, centered at integer
values ofXk. At the beginning and end of the domain, we use unbounded intervals. Thus,
I1 = (−∞,−4.5], I2 = (−4.5,−3.5], I3 = (−3.5,−2.5], ... ,I16 = (9.5, +∞). Within each
intervalIi, the binsJ i

n are determined such that each bin contains (approximately)an equal
number of data points. We set the number of bins toNB = 4 for all calculations. The resulting
values ofBi

n are plotted in the lower panel of figure 4. UsingNB = 8 instead ofNB = 4 gave
no significant improvement in the results and are therefore not shown.

a. PDFs, correlations and wave statistics

We integrate the reduced L96 models with the various parameterization schemes, and cal-
culate several quantities from the data of the reduced models as well as from the data of the full
L96 model. The timeseries are each105 datapoints long with sampling interval∆t = 0.01. We
calculate the following quantities:

• ThePDF for Xk.

• Theautocorrelation function (ACF) for Xk.

• Thecross-correlation function (CCF) forXk andXk+1.

• By Fourier transforming the state vectorX at every datapoint, a timeseries for the wave
number vectoru is obtained. From this timeseries we calculate thewave variance 〈|um−
〈um〉|

2〉 for every wave number0 ≤ m ≤ K/2, where〈.〉 denotes time average.
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• Themean wave amplitude 〈|um|〉 .

For calculation of the PDFs, ACFs and CCFs we take the averageover all values ofk.
The PDF forXk of the full L96 model is well reproduced by all parameterization schemes
(figure 5). Differences between the schemes are quite small here. The ACF (figure 6) and CCF
(figure 7), both strongly oscillatory, are more accurately reproduced by the CMC scheme than
the other schemes. All schemes give oscillatory ACFs and CCFs, but with the DTM and AR1
schemes, the amplitude of the oscillation is too low, and a phase shift can be seen. The wave
variances and mean wave amplitudes of the full L96 model are also better reproduced with the
CMC scheme than the other schemes (figure 8). The CMC scheme gives a correct peak in the
variance at wavenumberm = 3; the other schemes show a lower, broader peak spread out over
wavenumbersm = 3 andm = 4. A similar effect can be seen in the mean wave amplitudes.

In Wilks (2005), the PDF ofXk is also rather well reproduced by various parameterization
schemes (DTM, AR1 with white noise and red noise), similar towhat we find. Correlation
functions and wave statistics, like our figures 6, 7 and 8, arenot calculated in Wilks (2005).

b. Ensemble tests

We carry out ensemble integrations for further testing of the CMC parameterization. For
each ensemble, we calculate the mean trajectory and compareit with the true trajectory from
the full L96 model. This is done by calculating the Root Mean Square Error (RMSE) and the
Anomaly Correlation (ANCR) using results from many different ensembles. The number of
ensemble members in each ensemble is 1, 5 or 20. For the 20-member ensembles, we also
calculate rank histograms to show the ensemble dispersion.

The set-up is as follows. LetXfull
t be a timeseries forX of the full L96 model. A number of

Ninit initial states from this timeseries is selected:

X
init,s = X

full
ts , s = 1, ..., Ninit (10)

We take one data point every 10 time units fromX
full
t , sots+1 − ts = 10. For every initial state,

we doNens integrations of the reduced model overT time units (using the CMC, DTM or AR1
parameterization), starting fromXinit,s plus a small random perturbationξs,n (n = 1, ..., Nens).
We use random perturbations that are drawn from a Gaussian distribution with mean 0 and
standard deviation 0.15 (for comparison: the standard deviation of Xk is about 3.5 with the
parameter settings we use for the full L96 model). We make no attempt to sample the unstable
directions of phase space more heavily than other directions, or to generate ensembles using
fastest growing perturbations from singular value decomposition. For the purpose of comparing
different parameterization approaches, the simple generation of ensemble members described
above is sufficient.

The different integrations from one ensemble are averaged,resulting in a mean trajectory
X

mean,s
t (wheret ∈ [0, T ] ands = 1, ..., Ninit). The Root Mean Square Error (RMSE) measures

the average difference between the mean ensemble trajectory and the trajectory from the full
L96 model:

RMSE (τ) =

(

1

Ninit

∑

s

|Xmean,s
τ −X

full
ts+τ |

2

)1/2

(11)
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For the Anomaly Correlation, we need the anomalies of the full L96 model and the ensemble
mean:

a
full,s
τ = X

full
ts+τ − 〈Xfull〉, (12)

a
mean,s
τ = X

mean,s
τ − 〈Xfull〉, (13)

where〈Xfull〉 is the time mean ofXfull
t . The Anomaly Correlation (ANCR) is

ANCR (τ) =
1

Ninit

∑

s

a
full,s
τ · amean,s

τ
√

|afull,s
τ |2 |amean,s

τ |2
, (14)

wherea·b =
∑

k akbk and|a|2 = a·a. The Anomaly Correlation shows the average correlation
after timeτ between the ”true” trajectories (those of the full L96 model) and the mean ”forecast”
trajectories (the mean ensemble trajectories of the reduced model).

The rank histograms are calculated from ensemble integrations at lead timeτ = 2. For
each gridpointk, we rank theNens + 1 values forXk from the ensemble members and the full
L96 model. Ideally, the distribution of the position of the truth (the value from the full L96
model) in this ranking should approach a uniform distribution (Hamill (2001)); in that case
the rank histogram is (nearly) flat. If the ensemble is under-dispersed, the truth occupies the
extremes (locations at or near 1 andNens + 1) too often, leading to a U-shaped rank histogram.
In the reverse situation (over-dispersion), the extremes are occupied too rarely, which gives a
histogram with the shape of an inverted U. For the rank histograms, we combine the results
from all gridpointsk.

The ensemble integrations were carried out using reduced models with CMC, DTM and
AR1 parameterization schemes, each starting fromNinit = 1000 different initial states. For the
calculations we took ensemble sizesNens = 1, Nens = 5 andNens = 20. Results for RMSE
and ANCR are shown in figures 9, 10 and 11. The CMC scheme clearly performs better than
the other two schemes. The forecast lead timeτ at which the anomaly correlation drops below
0.6 is extended with about 20% when changing from the DTM to the CMC scheme in case
Nens = 1, and with about 40% ifNens = 20. From the DTM scheme withNens = 1 to the
CMC scheme withNens = 20, this extension is about 65%. The CMC scheme withNens = 5
performs better than the DTM or AR1 scheme withNens = 20.

Figure 12 shows the rank histograms forNens = 20. The CMC scheme has a positive effect
on the ensemble spread: the corresponding rank histogram isnearly flat. The AR1 scheme
gives under-dispersed ensembles; the DTM scheme leads to strong under-dispersion. The rank
histograms of the ensembles with AR1 and DTM scheme can be made flatter by increasing
the amplitude of the initial state perturbationsξs,n; the ensembles with CMC scheme become
over-dispersed if the perturbation amplitude is increased, as could be expected.

It is interesting to note that the AR1 scheme does not performbetter than the DTM scheme
in our tests. As mentioned, the properties of the AR(1) stochastic process for the AR1 scheme
were estimated using the data at the shortest available timeinterval,∆t = 0.01. If we carry out
the estimation at longer time intervals, resulting in AR(1)processes with shorter e-folding times,
the performance of the AR1 parameterization scheme does notimprove (results not shown). In
Wilks (2005), results are reported where the AR1 scheme performs better than the DTM scheme
in ensemble tests. Two important differences with the testsin our study are (i) the parameter
settings of the full L96 model used in Wilks (2005) (equivalent toε = 0.1, K = 8, J = 32, hx =
−3.2, hy = 1 andF = 18 or F = 20) and (ii) the set-up of the ensemble tests (different ways to
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generate ensemble members). Rerunning our own tests using the parameter settings from Wilks
(2005) gave quite similar results for the DTM and AR1 schemes, both in the non-ensemble
tests (PDFs, correlation functions, wave statistics) and the ensemble tests. The difference of
our findings with those reported by Wilks (2005) can be due to differences in the ensemble test
set-up (but note the consistency of our own ensemble and non-ensemble test results) or to small
yet apparently important differences in the way the schemesare implemented.

c. The case ∆t > δt

As already discussed in section 4b, practical circumstances may be such that the integration
time stepδt of the numerical model is different from the sampling time step∆t of the avail-
able data. Two ways of dealing with this problem were described in section 4b: (i) using a
split integration scheme (updateX everyδt time units, butB only every∆t time units), and
(ii) calculating transition probability matrices̃P (ij) with time stepδt, starting from matrices
P (ij) with time step∆t (the ”generator method”). The latter possibility is more complicated to
implement, and gives less accurate results (for reasons discussed in section 4b) than the split
integration scheme in our testing set-up. Therefore, we only present results here using the split
integration scheme. However, we note that the generator method can still be of practical use if
model output is desired at a shorter sampling interval than the sampling interval of the available
data. Moreover, we speculate that the performance using thegenerator method will improve for
models that are more strongly mixing than the L96 model.

The results obtained by using the split integration scheme are shown in figures 13 – 16
(RMSE is omitted here, since it gives a similar picture as theanomaly correlation). For the
construction of the stochastic matricesP (ij) we used data from the full L96 model with sampling
interval∆t = 0.1. The integration time step of the reduced model with CMC parameterization
is δt = 0.01. Thus, during the integration theBk are updated once every 10 time steps. As
can be seen, this version of the CMC scheme for the case∆t ≫ δt performs well, although
it remains slightly less accurate than the CMC method using∆t = δt presented in sections 5a
and 5b (in the figures, those results are added for comparison). The fact that theBk are updated
only once every 10 time steps speeds up the computation significantly. This computational
advantage can be such that using the split scheme may be attractive even if data with∆t = δt
is available. The increase in speed can outweigh the decrease in performance (which is rather
small in our results) in some circumstances, in particular if Bk does not evolve fast, but on a
similar timescale asXk.

6. Discussion
The purpose of this study was to present a new approach to stochastic parameterization,

and to test this approach by implementing it in the frameworkof the Lorenz 96 model. The
new parameterization scheme we have proposed represents unresolved processes as stochastic
(Markov) processes whose properties are conditional on thestate of the resolved variables. In
our numerical algorithm, these conditional Markov processes took the form of a collection of
Markov chains, making practical implementation easy. The Markov chains are inferred from
data in a very simple way, using only binning and counting.

We have compared the conditional Markov chain (CMC) scheme with two other parame-
terization schemes, a standard deterministic one (DTM) andthe stochastic scheme proposed in
Wilks (2005) (AR1). Several tests were carried out to assessthe performance of the various
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schemes, comparing probability distributions (PDFs), correlation functions (ACFs and CCFs),
wave statistics and ensemble forecasts. The CMC scheme performed better than the DTM and
AR1 schemes, even though the number of states of the Markov chains was small (NB = 4).
To test the robustness of these results, we made a brief exploration of other parameter settings
for the L96 model. Withε = 0.5, the CMC scheme performed substantially better than the
other two schemes. In the presence of clear time scale separation between the resolved and the
unresolved variables (ε = 0.1), differences in performance between the schemes were rather
minor (results not shown).

For a better understanding of the good performance of the CMCscheme it should be pointed
out that with the parameter settings for L96 used in this study, the motion of phase points in
the(Xk, Bk) plane tends to follow a roughly clockwise path. WhenXk increases,Bk typically
takes a (noisy) path through the upper part of the cloud of points shown in figure 1. During a
decrease ofXk, Bk is more likely to be in the lower part of the cloud. The imprintof this ”loop”
(somewhat reminiscent of a hysteresis loop) in otherwise noisy behavior can be captured with
the CMC scheme but not with the DTM or AR1 schemes. With the AR1scheme driven by red
noise, sustained trajectories through the lower or upper part of the data cloud are also possible;
however, with the AR1 scheme those trajectories are equallylikely to follow the loop as they
are to go against it. The CMC scheme is better equipped, by design, to capture such structures.

Altogether, the results from the proposed CMC parameterization scheme are encouraging.
Clearly, the L96 model is an idealized toy model, making it a suitable testing ground for a new
parameterization approach. However, care should be taken when extrapolating results obtained
within the L96 framework to other model situations. As a nextstep, the CMC scheme will have
to be implemented and tested in a more realistic modeling environment.

In our testing, we already took into account two issues that can be expected to be of impor-
tance in more comprehensive model set-ups. First, we used parameter settings for the full L96
model that give little to no time scale separation between the resolved and unresolved variables.
Previous studies of the L96 system were often carried out with parameters such that the unre-
solved variables (theYj,k) evolve on a faster time scale than the resolved variables. This time
scale separation allows for the use of designated mathematical results and techniques (see e.g.
Fatkullin and Vanden-Eijnden (2004); Vanden-Eijnden (2003)), but can be unrealistic.

A second issue is the sampling interval of the data that is available to base the parameteri-
zation on. The sampling interval can be different (longer) than the time step at which the nu-
merical model with parameterization scheme is integrated.This issue may arise when dealing,
for example, with data stemming from observations that do not have high temporal resolution.
We discussed two potential solutions to this problem (see sections 4b and 5c). The split inte-
gration scheme solution gave the best results here, with only a minor decrease in performance
(and significant reduction in computation time) compared tothe case where both time steps are
equal.

We conclude by discussing a number of further issues that will be of relevance for the
application of the CMC scheme in more realistic models:

• TheXk variables of the L96 model are usually interpreted as lying on a circle of constant
latitude, see section 2. Thus, the L96 model can be regarded,somewhat loosely, as a
model with one spatial dimension (thex, or E-W direction), discretized on a number
of gridpoints. They and z directions (N-S and vertical) are absent in L96. In more
realistic models, all three spatial directions are present; gridpoint discretization leads to
a number of gridpoints that is orders of magnitude higher than in the L96 model. From
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a computational point of view, this increase need not be problematic. The CMC scheme
runs independently for each gridpoint and is therefore suitable for parallelization. The
computational cost at each gridpoint is very small: only a small Markov chain must be
evolved in time.

• The conditionality of the Markov chain at each gridpoint (the Xk dependence) was lim-
ited by using a ”locality” assumption: the Markov chain at gridpoint k depends only on
the resolved variable (Xk) at that same gridpoint, not on variables at other gridpoints (Xk′

with k′ 6= k). If the number of gridpoints increases because one considers models with
2 or 3 spatial dimensions, this locality assumption will keep the Markov chain condition-
ality equivalently simple. Thus, the complexity of the CMC scheme at each gridpoint is
the same for a model withO(101) gridpoints as it is for a model withO(106) gridpoints.

• The main challenge for applying the CMC scheme to realistic models concerns the num-
ber of different variables at each gridpoint. In the L96 model, there is one quantity to
be parameterized (Bk) and one resolved variable (Xk) at each gridpointk. However, the
adiabatic core of an atmosphere model based on the primitiveequations, for example,
uses 5 resolved variables at each gridpoint. Making the Markov chain conditional on sev-
eral resolved variables can lead to an intractable scheme ifdone naively. For example,
dividing the range of each resolved variable in 16 intervals(similar to the 16 intervalsIi

for Xk, see section 4) gives165 ≈ 106 possible bins in which the vector of the 5 resolved
variables at a single gridpoint can be at any moment. Keepingthe number of these bins
limited is necessary, both to limit computer memory demandsof the CMC scheme and
to keep estimation of the Markov chains from data feasible. Limiting the Markov chain
conditionality to one or two judiciously chosen resolved variables, or making the chain
conditional on a (linear) combination of variables, are possible solutions.

The number of quantities for which a parameterization is needed at each gridpoint is
usually also larger than one. This can be dealt with by using separate Markov chains
for separate quantities. Correlations between these quantities are partly accounted for
through the dependence on resolved variables. If strong correlations or physical require-
ments (e.g. conservation properties) do not permit the use of separate Markov chains at a
single gridpoint, one collective Markov chain must be constructed in which each Markov
chain state corresponds to a particular combination of values for the different parameter-
ized quantities at the gridpoint.

• The properties of the conditional Markov chain were inferred from data. For the L96
model, such data was easily generated by integrating the full L96 model. For more real-
istic models, there is no ”meta-model” that can be run easilyand cheaply to produce the
necessary data. Instead, one can use data from two sources. Data from observations (or
reanalysis data) is the first option. The other option is dataproduced by high-resolution
models of limited spatial extent (e.g. a single GCM gridbox)and sufficient physical so-
phistication.

Using the same conditional Markov chain (i.e., the same set of transition matrices) at ev-
ery gridpoint, as we did for the L96 model, will be too simple for some purposes (depend-
ing on the parameterized quantity). Geographical locationof gridpoints can be expected
to play a role in realistic models. It may be impractical to construct separate Markov
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chains for each gridpoint; instead one can define a few groupsof gridpoints (e.g., trop-
ics or midlatitudes, boundary layer or above, gridpoints over land or sea) and construct
Markov chains for each group separately.
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FIG. 1. Scatter plot ofBk(t) versusXk(t) for the full L96 model (1). Parameter settings are
(ε, K, J, F, hx, hy) = (0.5, 18, 20, 10,−1, 1).
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FIG. 2. Probability density functionsρ(Bk) for Bk in various intervals ofXk. Dashed line:
ρ(Bk(t) | − 4.5 < Xk(t) < −3.5). Solid line: ρ(Bk(t) | 1.5 < Xk(t) < 2.5). Dotted line:
ρ(Bk(t) | 7.5 < Xk(t) < 8.5).

20



−6 −5 −4 −3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

B
k

pr
ob

ab
ili

ty
 d

en
si

ty

FIG. 3. Probability density functionsρ(Bk) for Bk in the interval1.5 < Xk < 2.5, conditional
on the sign ofXk(t) − Xk(t − ∆t). Dashed line:ρ(Bk(t) | 1.5 < Xk(t) < 2.5, Xk(t) >
Xk(t−∆t)). Dotted line:ρ(Bk(t) | 1.5 < Xk(t) < 2.5, Xk(t) < Xk(t−∆t)). Solid line: total
PDFρ(Bk(t) | 1.5 < Xk(t) < 2.5).
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FIG. 4. Top: The solid curve is the 5th order polynomial fit used for the DTM parameterization
of Bk. Bottom: The black squares denote the values of theBi

n used for the CMC parameteriza-
tion with NB = 4 (see text). In both panels, the dots are the scatter plot ofBk versusXk for the
full L96 model (1).
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FIG. 5. PDFs ofXk, produced by the reduced models with various parameterization schemes.
Top: conditional Markov chain (CMC) scheme withNB = 4. Middle: deterministic (DTM)
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FIG. 8. Top: Wave variances〈|um − 〈um〉|
2〉. Bottom: Mean wave amplitudes〈|um|〉. Time-

series for the wave number vectoru are obtained by Fourier transforming the state vectorX at
every datapoint. The Fourier mode with wavenumberm has variance〈|um − 〈um〉|

2〉 and mean
amplitude〈|um|〉 (where〈.〉 denotes time average). Results from the full L96 model (L96)and
from reduced models with different parameterization schemes (CMC, DTM, AR1) are shown.
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FIG. 9. Results from ensemble integrations with reduced modelsusing the CMC parameteriza-
tion scheme (NB = 4), the DTM scheme and the AR1 scheme. Top: Root Mean Square Error
(RMSE) versus lead time (τ ); bottom: Anomaly Correlation versus lead time. The numberof
ensemble membersNens = 1; the number of initial statesNinit = 1000.
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FIG. 10. Results from ensemble integrations with reduced models using the CMC parameteri-
zation scheme (NB = 4), the DTM scheme and the AR1 scheme. Top: Root Mean Square Error
(RMSE) versus lead time (τ ); bottom: Anomaly Correlation versus lead time. The numberof
ensemble membersNens = 5; the number of initial statesNinit = 1000.
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FIG. 11. Results from ensemble integrations with reduced models using the CMC parameteri-
zation scheme (NB = 4), the DTM scheme and the AR1 scheme. Top: Root Mean Square Error
(RMSE) versus lead time (τ ); bottom: Anomaly Correlation versus lead time. The numberof
ensemble membersNens = 20; the number of initial statesNinit = 1000.
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FIG. 12. Rank histograms resulting from ensemble integrationswith reduced models using the
CMC parameterization scheme (NB = 4), the DTM scheme and the AR1 scheme. Lead time is
τ = 2; ensemble sizeNens = 20. The CMC scheme gives a near uniform distribution; the DTM
and AR1 schemes lead to under-dispersed ensembles, visibleas U-shaped histograms.
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FIG. 13. PDFs ofXk, as produced by the full L96 model, the reduced model with CMCscheme
based on data with∆t = δt and the reduced model with CMC scheme based on data with
∆t ≫ δt using the split integration scheme.
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FIG. 14. Top: Autocorrelation functions (ACF) ofXk. Bottom: Cross correlation functions
(CCF) of Xk andXk+1. Results are from the full L96 model, the reduced model with CMC
scheme based on data with∆t = δt and the reduced model with CMC scheme based on data
with ∆t ≫ δt using the split integration scheme.
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FIG. 15. Top: Wave variances〈|um−〈um〉|
2〉. Bottom: Mean wave amplitudes〈|um|〉. Results

are from the full L96 model, the reduced model with CMC schemebased on data with∆t = δt
and the reduced model with CMC scheme based on data with∆t ≫ δt using the split integration
scheme.
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FIG. 16. Anomaly Correlation versus lead time. Results are fromthe reduced model with
CMC scheme based on data with∆t = δt (solid lines) and the reduced model with CMC
scheme based on data with∆t ≫ δt using the split integration scheme. The various curves
show results usingNens = 1, Nens = 5 andNens = 20. At any value of the lead time, the larger
Nens, the higher the correlation.
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