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Abstract. Numerical models of the global atmosphere have spatial resolutions that are much
too coarse to resolve clouds and convection processes explicitly. Because these processes play an
important role in the atmosphere and climate system, they are included in numerical models by
means of simplified representations, so-called parameterizations.

Traditional parameterization schemes for atmospheric convection are deterministic. To overcome
the limitations of these deterministic schemes, stochastic parameterizations are being developed. The
use of probabilistic cellular automata (PCA) for this application is very new and can provide a way
to generate spatial patterns of convection as observed in the atmosphere. It is approached from
two directions, both briefly reviewed here. In one approach, convection and other sub-grid-scale
processes are represented with deterministic CA. In recent work, this is extended to PCA. In the
other approach, convection is represented by means of discrete stochastic processes (finite state
Markov chains) on a lattice. In most studies in this direction, there is no direct coupling between
neighboring lattice nodes, however recently such couplings are considered as well. To illustrate the
concept of parameterization, a frequently used test model (the L96 model) is discussed as well in
this chapter.

Parameterization of atmospheric convection and clouds with PCA has several interesting math-
ematical aspects. One is the interactive (two-way) coupling of the PCA to a partial differential
equation for large-scale atmospheric flow. The state of the PCA couples to the time evolution of the
flow, and in turn the PCA rules (transition probabilities) depend on the flow state. Furthermore,
for convection it is natural to consider N-state PCAs with N > 2 rather than a binary (N =2) PCA.
Finally, statistical inference can be a fruitful approach to construct the PCA rules or transition prob-
abilities for convection. The PCA dependence on the time-evolving atmospheric flow and the large
number of configurations for PCAs with N > 2 provide interesting challenges for such inference.

Keywords: Markov chains; Stochastic parameterization; Atmospheric convec-
tion; Statistical inference

1. Introduction

The representation of clouds and convection processes in numerical models of cli-
mate and atmosphere is of great importance. Atmospheric convection is the vertical
motion of moist air and is a key element in the transportation of moisture through
the atmosphere and in the hydrological cycle of the climate system. If water vapor in
rising air condensates, the resulting microscopic water droplets form clouds. Further
thermodynamical and physical processes such as evaporation, freezing and precipi-
tation add to the complexity and richness of convection and cloud dynamics. The
interaction of clouds with incoming solar radiation and outgoing infrared radiation
(e.g. reflection) is important in the context of climate change through the mechanism
of the so-called cloud-climate feedback [1].

Despite their importance, the spatial resolutions of numerical models for climate
and weather prediction are too coarse to resolve clouds and convection processes
explicitly [2, 3]. This is due to computational limitations: current state-of-the-art
global (i.e., covering the entire earth) operational weather forecasting models can af-
ford spatial (horizontal) resolutions on the order of 10 km, whereas the atmospheric
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components of global climate models have even coarser resolutions (50-100 km) be-
cause they are used for simulations over much longer time intervals. The consequence
is that clouds and convection must be represented in a simplified way in these global
numerical models.

In atmosphere-ocean science, such simplified representations are known under
the name parameterizations. The state of the atmosphere that can be resolved by the
global numerical model is given as input to a parametrization module, which returns
a contribution from convection to the overall rate of change of the model atmosphere.
Let U(z,y,2,t) denote the state of the atmosphere at the geographical location (x,y, z)
at time ¢t. Typically, = stands for longitude, y for latitude, and z for elevation above
the earth surface. In the most commonly used models, the state ¥ consists of five
variables: wind velocities in three directions, temperature, and moisture. For ease of
exposition, we assume that the time evolution of ¥ is governed by a nonlinear partial
differential equation (PDE) (in practice, there are additional algebraic equations):

%QI:N(\II,V\I/)—FR (1.1)
This nonlinear PDE is derived from the Navier-Stokes equation. The variable
R(x,y,z,t) denotes the contribution from unresolved physical processes such as con-
vection. Thus, it is assumed that the nonlinear differential operator N'(¥,V¥) ac-
counts for physical and dynamical processes that can be adequately resolved in the
global numerical model. As mentioned, the contributions from processes that can not
be resolved in the numerical model are collected in R. In the rest of this chapter,
we will focus on convection, although in practice other unresolved processes are also
parameterized in global models (e.g. atmospheric gravity waves, interactions with the
underlying land or ocean surface, ...).

In order to close the system, a model for R is required. Traditionally, parameter-
izations are set up in a deterministic fashion, so that R is effectively a function of ¥,
without any randomness or uncertainty involved. Furthermore, it is common practice
to assume that R is determined by ¥ locally in z and y (but not in z). By this we
mean the following: let (z;,y;) be the (z,y) coordinates of the node (7,j) of the hori-
zontal grid (or lattice) of the numerical model. We define R; ;(z,t) := R(x;,y;,2,t) and
similarly for ¥; ;(z,t). The ”locality” assumption means that R; ; = f(¥; ;), i.e. R at
node (,5) is determined by ¥ at the same node (and at the same time), but not by ¥
or R at other nodes. The assumption does not involve the vertical coordinate z: the
full vertical profile of ¥, ; determines the full vertical profile of R; ;. For convection,
vertical nonlocal effects can be important.

Traditional convection parameterization schemes are based on physical reasoning
and intuition, and they are effectively deterministic mappings ¥; ;— R; ; (although
they are usually not formulated in such explicit manner). To overcome the limitations
of these traditional schemes, stochastic parameterization schemes started to receive a
lot of attention in the last 10-15 years. In these schemes, the deterministic mapping
from W¥;; to R;; is effectively replaced by a probabilistic one. This reflects the
uncertainty about subgrid scale processes that is inevitable in numerical models with
finite resolution.

Although much work has been done on developing stochastic convection param-
eterization schemes in the last 10-15 years, a still outstanding challenge is how such
schemes can generate realistic spatial patterns for convection, with appropriate spatial
correlations. The ”locality” assumption discussed above translates into conditional
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independence of R at different grid nodes, e.g. R;;|¥;; and R; j+1|V; ;41 are as-
sumed to be uncorrelated. This is a limitation, because convection, although it is
a physical process at small spatial scales, can organize into larger-scale structures
(sometimes dubbed meso-scale structures), with clusters (and clusters-of-clusters) of
convective elements spreading out over multiple horizontal grid nodes. Such structures
are difficult to capture with parameterization schemes operating under the locality
assumption [4]. Cellular automata (CA) can provide a way to generate these spatial
patterns.

In this chapter we discuss the relevance and prospects of representing clouds
and convection processes in atmosphere models using probabilistic cellular automata
(PCA). The use of PCA for this application is very new, and is approached from two
different angles. In one line of research, discussed in section 2, convection and other
subgrid-scale processes are represented with the help of deterministic CA. In recent
work this is extended to include PCA. In the other approach, reviewed in section
3, convection is represented by means of discrete stochastic processes (finite state
Markov chains) on a horizontal lattice. In most studies in this direction, there is no
direct coupling between neighboring lattice nodes, however recently such couplings
are considered as well, see section 5. To clarify these ideas, in section 4 a test model is
presented that is often used for designing and testing new methods for subgrid model-
ing. Furthermore, in section 6 it is discussed how statistical inference can contribute
to determine the rules (cell transition probabilities) of a PCA for convection.

2. Convection parameterization with Cellular Automata

The proposal to use cellular automata (CA) for parameterizing the feedback from
unresolved scales in numerical models of the atmosphere goes back at least to the late
1990s [6, 5]. The idea was taken up for the purpose of parameterizing the so-called
backscatter of kinetic energy from unresolved scales [8, 9, 7]. A CA is used to generate
dynamically evolving spatial patterns that determine patterns of kinetic energy input
from unresolved scales. More specifically, if R in (1.1) is a kinetic energy source term,
it is modeled as R; j(z,t) =K (¥, ;(2,t))S; ;(t), i.e. as the product of an appropriate
function K of ¥ and a time-evolving pattern S generated by a CA (see e.g. [7]).

The CA in these studies is a deterministic, synchronous CA, with a layer of
memory (or history) added to it: a cell that ”comes to life” has multiple lives Lyax
(in the abovementioned studies, Ly,.x =32). Each time a cell does not meet the rules
for survival, it loses one of its lives. Only neighboring cells that have the maximum
amount of lives are relevant for determining whether a cell comes to life or survives
(see [8] for more details). To be more precise, let us denote by L; ;(t) the number
of lives of a cell with lattice index (4,j) at time ¢, s0 0< L; j < Limax. If Lj j = Linax,
cell (i,7) is called "fertile”. Let M, ;(t) be the number of fertile cells in the Moore
neighborhood of (7,7), excluding (7,5) itself. Clearly, 0< M, ;<8. If L; ;(t)=0 and
Mi,j (t) S {2,3}, then L'L',j (t+ 1) = Lax (”bil‘th”). If Li,j (t) >0 and Mi,j (t) S {3,4,5}
then L; ;(t+1)=L; ;(¢t) ("survival”). In all other cases, L; ;(t+ 1) =max(L; ;(t) —1,0)
(”death”).

The "raw” CA state or pattern at time ¢ is determined by the pattern of the
L; ;(t). To arrive at the pattern S(t), the raw CA pattern is spatially smoothed.
Note that the rules of this CA are deterministic. The rules were chosen heuristically,
not inferred or derived in a rigorous way. Also, the CA evolves independently of the
large-scale atmospheric state, i.e. there is no coupling of ¥ back to S.

In several studies (e.g. [12, 10, 11]), the use of CA for convection parameterization
is explored, with a set-up quite similar to the kinetic energy backscatter CA schemes
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Fia. 2.1. Ezample of a pattern generated by the deterministic, synchronous CA with memory
as used in e.g. [7]. The top panel shows the raw pattern (number of lives) in a 720 x 360 CA. The
bottom panel shows the pattern after coarse-graining, smoothing and normalizing.

mentioned above. The CA with memory added (as described above) is the starting
point, however in recent papers feedback from ¥ to S has been introduced by making
the CA rules also dependent on ¥ [10, 11]. Furthermore, the CA pattern can be
advected (transported horizontally) by the large-scale flow determined by ¥. As
already mentioned, the CA rules are deterministic, although elements of randomness
are introduced in several of these papers by initializing the CA randomly or by adding
randomly located live cells at each time step. A probabilistic version of the CA rules
has also been considered [11]: if a cell meets the rule for either birth or survival, it will
come to (or remain in) life with a probability smaller than one (with the deterministic
rule, the probability equals one). This probability can be fixed, or made dependent on
advection (i.e., on ¥). It is reported [11] that the probabilistic, advection-dependent
rule generates patterns that look more like convection than those generated with the
deterministic rule.

3. Markov chains on a lattice

The CA for convection parameterization discussed in the previous section were
primarily deterministic. Although some recent studies consider probabilistic exten-
sions, the starting point is a deterministic CA. In a different line of research, the
problem is approached from almost the opposite perspective: convection is parame-
terized using discrete stochastic processes (finite state Markov chains) on a lattice,
but mostly without direct interaction or coupling between the Markov chains at neigh-
boring lattice nodes. Thus, in this approach the starting point is stochastic and relies
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on the locality assumption discussed earlier.

The model contributions R; ; due to convection are functions of the vertical coor-
dinate z, hence they live in an infinite-dimensional space. To make stochastic modeling
of R; ; more tractable, in a number of studies this function space is effectively dis-
cretized, so that the time evolution of R; ; can be modeled as a finite-state Markov
chain (e.g. [17, 13, 14, 15, 16]). In these studies, a small number of convective states
or cloud states are chosen, and the Markov chain determines the transition probabili-
ties of switching between the states. To reflect the dependence on W, ;, the transition
probabilities are conditional on (specific functions of) ¥, ;.

An important quantity for convection parameterization is the so-called convective
area fraction (CAF). Every horizontal grid node (4,5) of the global numerical model
has a surface area associated with it (roughly equal to Az; Ay;, with Az, =41 —x;
and Ay; =y;+1—vy;). The CAF is the fraction of this area that is in a convective
state. In conventional, deterministic parameterizations, the CAF is fixed (e.g. at
0.03). Many stochastic approaches focus on stochastic modeling of the CAF; the
resulting CAF is then used as input to calculate R;; in much the same way as it
is done in deterministic schemes (making use of so-called mass flux parameterization
methods).

The convective/cloud states can be defined on a ”microscopic” lattice, with many
micro-lattice nodes pertaining to a single node of the global model grid (the ”macro-
scopic” lattice) [17, 13, 15, 18]. The CAF for the macro-node (i,5) is given by the
fraction of micro-nodes, associated with (7,7), that are in an appropriately convective
state. In the simplest form there are two possible states at each node (convective
and non-convective); a more complicated set-up involves more than two states. For
example, in the multicloud model from [13] there are four states (three cloud states,
one of which is strongly convective, and a clear sky state), and in [15] this multicloud
model is extended to five states.

To formalize this, let (k,l) be the node index of the micro-grid. For every macro-
node (i,5), k and [ range from 1 to K and L, respectively. We define by b(i,j,k,1)
the state at node (k,l) of the micro-grid associated with macro-node (4,5). This state
takes values in a finite set of states, b(,j,k,l) € S:={c1,...,cn }, where ¢1,ca,... denote
convective/cloud states. We denote by o, (7,7) the area fractions of the various states:

| K L
n(i,] —K—ZZ {b(i,5,k,0)=cn} (3.1)

where 1{.} is the indicator function. Suppose that cy is a strongly convective state,
the only one that contributes to the CAF. Then we simply have that the CAF for
macro-node (i,7) is given by on(4,7). A mass flux parameterization scheme then
takes on(7,7) as input, together with ¥, ;, to determine R; ;. In this approach, the
only information about the subgrid scale convection processes that enters the global
numerical model (i.e., the macro-model) is oy (7,5). We note that the states b(,j,k,l)
evolve in time, in accordance with the Markov chain transition probabilities that are
conditioned on ¥, ;. As a consequence, on(Z,7) also changes in time.

In an alternative set-up, it is the CAF itself that is modeled with a Markov chain
[16]. The CAF is discretized in multiples of 0.01 (including zero), and there is no
micro-lattice involved. Furthermore, in [14] there is not even a CAF involved. The
R; ; themselves are discretized, using a clustering algorithm, hence the states of the
Markov chain correspond to entire functions of the vertical coordinate.
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The transition probabilities for the Markov chain can be obtained in various ways.
One approach is to rely on physical reasoning, as in [17, 13]. An alternative approach
is to make use of available datasets on convection (stemming from high-resolution
models, or from observations) to obtain transition probabilities through statistical
inference [19, 14, 15, 18, 16].

4. Test case: the L96 model

The Lorenz '96 (L96) model [20] is an idealized model of atmospheric flow. It is
used frequently as a testbed for developing new ideas and algorithms for parameter-
ization and predictability, e.g. the Markov chain approach discussed in the previous
section [19]. The model consists of a set of coupled nonlinear ordinary differential
equations (ODEs), and although it was not derived from a PDE it is commonly inter-
preted as having spatial extent, describing an atmosphere-like dynamical system on
a 1-dimensional lattice of constant latitude. The model ODEs are as follows:

d
EXi:Xi—l(Xi+1 —Xi2) =X+ F+R;, (4.1a)
d 1
EYM == (Y1 (Yig—1—Yigs2) = Yip +hy Xi), (4.1b)
K
R;= f;m (4.1¢)

The variables X;(¢) are interpreted as describing the system at large spatial scales,
the Y; »(t) as variables of small-scale processes. The i€ {1,....,I} and ke{1,...,K}
are interpreted as 1-dimensional lattice indices (i on a macro-lattice, k¥ on a micro-
lattice). The lattice has periodic boundary conditions, so that X; =X, 1, Vi x =Yi11
and Y; p+x =Yit1,1 (we note that the use of indices here differs somewhat from the
convention used in e.g. [20, 19], this is done for the sake of consistency with other
sections in this chapter).

The Y; . evolve on a faster timescale than the Xj. The time scale separation is
controlled by the parameter ¢: with € <1 there is large scale separation, with e~1
there is no scale separation. Other parameters in (4.1) are the coupling strengths
hy and h, and the forcing F. For further discussion and interpretation of these
parameters we refer to [20, 19] and the references therein. In what follows we use ¢ =
0.5, hy =—1, hy =1 and F'=10, as in [19]. Finally, the total number of variables (X;
and Y; ) is I+1 x K, examples of settings are I =36, K =10 [20] and I =18, K =20
[19].

The goal of subgrid scale parameterization, in the context of the L96 model,
is to simulate the dynamics of X as generated by (4.1) as well as possible without
having to simulate Y explicitly (here, X denotes the vector (Xi,...,Xk) and similarly
for V). The analogy with realistic atmosphere models is that in such models it is
computationally much too expensive to resolve all relevant small-scale variables (Y),
it is only feasible to resolve the large-scale variables (X). For the L96 model, this
requires a parameterization of the R;(t) in terms of the X;(t). The R;(t) are the
quantities that provide the feedback from the small scales to the large scales, see
(4.1). The parameterization (or model) for R together with the ODEs for X in (4.1a)
form a system with 27 degrees of freedom, a large reduction compared to the (K +1)I
degrees of freedom in the full L96 model (4.1).

Modeling R is far from straightforward. The dynamics of Y, and hence of R, is
dependent on the state of X, see (4.1b). Also, Y has its own chaotic dynamics and
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Fic. 4.1. Ezample timeseries generated by the full LI6 model (4.1) with parameter settings
from [19]. The left panel shows X (t), the middle panel shows R(t) with its mean subtracted. In
the right panel, R(t)-mean(R) is discretized into two states: -1 for negative values, +1 for positive
values. In all panels, time runs from top to bottom in increments of 0.1 and the spatial index i is
on the horizontal azis.

is not simply ”slaved” to X. In case of large scale separation, i.e. £ << 1, asymptotic
methods such as averaging and homogenization [21] may be used to derive a reduced
model for X, however in realistic atmosphere models there is no clear scale separation
between resolved-scale flow and convection.

Figure 4.1 shows an example of data (timeseries) generated by numerical inte-
gration of the full L96 model (4.1), i.e. generated by simulating Y as well as X.
The parameter settings (I,K,¢e,hy,hy, F')=(18,20,0.5,—1,1,10) are those from [19].
The left panel shows the time evolution of the vector X (t), the middle panel that of
R(t) with its mean subtracted. A simple 2-state discretization, in which each R;(t)-
mean(R) is mapped to either +1 or -1 depending on its sign, is shown in the right
panel.

Although the behavior shown in figure 4.1 is chaotic, wave-like structures can be
seen to travel through the spatial domain, not only in X but also in R. A parame-
terization should capture these noisy space-time patterns of R and their dependence
on the patterns of X. Under the locality assumption discussed earlier, a stochastic
parameterization for R consists of I copies of a scalar stochastic process for R; condi-
tioned on X;. In the Markov chain approach, the parameterized R; can take on only
a finite number of values.

5. From Markov chains to PCA
The conditional Markov chain (CMC) lattice models described in the previous
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sections do not involve direct interactions between Markov chains at neighboring
lattice nodes. However, the CMC states at neighboring nodes are not independent,
due to the coupling to ¥; ;. In the case of a microlattice, the chains governing the
time evolution of b(4,7,k,l) and b(4,j,k+1,l£1) are conditioned on the same ¥, ;. If
the Markov chains are only defined at the level of the macro-lattice, then b(i,7) and
b(i+1,j£1) are correlated because U; ; and W;4+q j+1 are coupled through the PDE
model (1.1).

Notwithstanding these indirect couplings between Markov chains at neighboring
lattice nodes, there may be reason to couple them more directly. For example, it
was demonstrated [15] that such direct coupling can strongly enhance the variance of
the area fractions o, (t). Recently, a detailed investigation into the limitations of the
locality assumption for capturing large-scale coherence in convection modeling was
presented [4].

Let {k,l} denote the neighborhood of the microlattice node (k,I) (e.g. the Moore
neighborhood, or the von Neumann neighborhood). If we generalize the CMC model
to include dependencies on the neighborhood, while also retaining the (local) de-
pendence on the macrostate ¥, we arrive at a model characterized by the following
transition probabilities for the cloud states b(z,j,k,1,t):

b(i,j, k.1t + At) [ b(i,j, k,1,t), W(i,j,t), b(i, 5, {k,1},1) (5.1)

Clearly, this ”conditional PCA” is a rich model with many possible scenarios. There
are N possible states for b(4,7,k,l,t), so that with the Moore neighborhood there
are N different configurations for b(i,,k,l,t) and b(i,5,{k,1},t) together in case of a
2-dimensional lattice. The dependence on W (i,j,t) makes the number of possible con-
figurations even higher. To control these possibilities, it is nearly inevitable to impose
certain structures on the model. How to do this is largely an open question. In [15],
some ad-hoc choices were made to control the number of parameters that determine
the transition probabilities for the conditional PCA. Controlling the parameters in a
more systematic way is still a challenge.

The CMC lattice model from [13] was recently generalized to include interactions
between neighboring cells on the micro-lattice [22]. The transition probabilities (PCA
rules) are designed and motivated from physical intuition, similar to [13]. Energies (or
interaction potentials) are assigned to all possible combinations of two neighboring
cell states. For a given configuration of the lattice model, the sum of the potentials
of all interactions present in that configuration determines a Hamiltonian energy.
The transition rates for the individual cells are functions of this Hamiltonian. As
the system state (configuration) evolves over time, so do the Hamiltonian and the
transition rates. Only nearest neighbors are taken into account (i.e., Moore or von
Neumann neighborhood), as it is argued that these are physically the most relevant
[22].

6. Statistical inference for PCA

To obtain the rules or transition probabilities of a PCA for clouds and convection,
several of the papers mentioned previously rely on physical intuition and heuristics,
e.g. [11, 22]. An alternative approach is to infer these rules from available datasets.
Such data can come from two sources: observations / measurements of the real phys-
ical atmosphere, and numerical simulations with high-resolution models. Regarding
the latter, we note that it is possible to do fairly realistic simulations of convection
processes (although the detailed physics of e.g. the involved phase-changes (ice - wa-
ter vapor- liquid water) and ice microphysics are still challenging). However, these
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simulations require extremely high model resolution, so that they are restricted in
practice to limited spatial domains and short time intervals (e.g., 24 hours on a 100
km by 100 km horizontal domain). It will be many years before such high resolution
simulations become feasible for the global atmosphere on climate timescales (years,
decades and longer). Hence, the need to parameterize convection will persist for many
more years.

With a dataset of sufficient spatial and temporal resolution, a pre-processing step
is needed to assign a discrete state to all the lattice nodes at every time step. In
previous sections it was discussed how clouds and convection can be modeled by
defining a few cloud states (e.g. deep, stratiform, clear sky). The step of classifying
the states at the lattice nodes, i.e. of deciding in what cloud or convective state a
cell is, is nontrivial. However, we will not discuss it here further as it is primarily a
matter of physical insight.

Once the space-time patterns of the discrete states are extracted from the dataset,
one can attempt to fit a PCA to these patterns by means of statistical inference of
the PCA rules or transition probabilities. There are two aspects to this inference
task: selecting the neighborhood, and identifying the rules. In previous sections we
have mainly focused on neighborhoods that are one step deep in space and time (e.g.,
the neighborhood for R;(t+ At) consisting of {R;—_1(¢),R;(t), Ri+1(t)} in case of a 1-
dimensional lattice). Larger neighborhoods, either in space or time, may give better
results but can also lead to overfitting, hence selecting the neighborhood is part of the
inference problem. Furthermore, inferring the PCA rules with a given neighborhood
is equally nontrivial.

Various methods have been developed for neighborhood selection and rule identifi-
cation, see e.g. [23, 24, 25, 26]. The focus in these studies is mostly on binary systems,
i.e. CA with two states. However, for PCA modeling of convection more than two
states are typically used, as discussed in previous sections. A method for N-state
systems proposed in [27] has not yet been used for convection PCA identification.

A major complication for inferring a PCA for convection (or other subgrid pro-
cesses) from data is the influence of the large-scale state. As already discussed, ¥
and R in (1.1) are two-way coupled, so the behavior of R is dependent on ¥. How to
infer a PCA for R that is dependent on ¥, with R and ¥ both evolving in time, is
an open question and a challenging research topic. It is assumed here that timeseries
data of both R and ¥ are available to infer the PCA. It may be fruitful to consider
U as a time-dependent covariate for R, although strictly speaking, ¥ does not evolve
independently of R, see (1.1).

In the Markov chain approach discussed in section 3, the dependence on the
large-scale state is considered in several papers. In [19], the inference of transition
probabilities for R conditional on X from L96 model data is carried out through a
straightforward extension of maximum likelihood estimation. This procedure is also
used in e.g. [15, 16, 18]. In [28] a Bayesian approach is proposed to estimate parame-
ters of the multicloud model from [13]. It is mentioned in [28] that this approach can
be extended to the multicloud model with neighbor interaction as proposed in [22].

7. Summary and conclusion

Modeling of atmospheric convection and clouds is an emerging application for
PCA that entails several interesting mathematical challenges. An important aspect
is the interactive (two-way) coupling to a PDE for large-scale atmospheric flow, see
equation (1.1). The state of the PCA for R couples to the time evolution of the large-
scale flow state ¥ through (1.1), and at the same time the PCA rules (transition
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probabilities) depend on W. Furthermore, in most studies so far where convection
is modeled as a discrete process, more than two states are used, so it is natural to
consider N-state PCAs with N > 2 rather than a binary (N =2) PCA.

As discussed in sections 2 and 3, PCA modeling for convection emerges from two
different research directions. The use of deterministic CA for modeling convection
and other subgrid processes has been pursued for more than ten years, see section 2,
however the extension of this approach to stochastic modeling (i.e., to PCA) is quite
recent (e.g. [11]). Markov chain lattice models for convection, discussed in section 3
have also been studied for a while. These models are stochastic from the outset, but
they usually do not include interactions between neighboring cells. Such interactions
were added recently [22].

Deriving the PCA rules or transition probabilities from first principles is very
challenging for convection. Besides physical intuition and heuristics, statistical in-
ference can be a fruitful approach to construct these rules. A major challenge for
inference is the fact that a PCA for convection should be dependent on the large-scale
state . Some work has been done to include this dependence in the Markov chain
lattice models, but the generalization to PCA has hardly been explored yet.

In section 4, the 196 model was discussed, an often used idealized model for ex-
perimenting with subgrid scale parameterizations. This would be a suitable model for
testing and validating new ideas and algorithms to tackle the challenges summarized
here.
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