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ABSTRACT

In this study, the parameters of a stochastic–dynamical model of sea surface winds are estimated from

long time series of sea surface wind observational data. The model was introduced by A. H. Monahan, who

developed an idealized model from a highly simplified representation of the momentum budget of a surface

atmospheric layer of fixed depth. Such estimation of model parameters is challenging, in particular for

a multivariate model with nonlinear terms as is considered here. The authors use a method developed re-

cently by Crommelin and Vanden-Eijnden, which approaches the estimation problem variationally, finding

the spectrally ‘‘best fit’’ stochastic differential equation to a time series of observations.

While the estimation procedure assumes forcing that is white in time, observed time series are generally

better approximated as forced by red noise. Using a red-noise-forced linear system, the authors first show

that the estimation procedure can still be used to estimate model parameters. Because the assumption of

white noise is violated, these estimates lead to model autocorrelation functions that differ from the observed

time series. Application of the estimation procedure to the wind data is further complicated by the fact that

the boundary layer model is inconsistent with certain observed features of the wind. When these mismatches

between the model and observations are accounted for, the estimation procedure generally results in param-

eter estimates consistent with the climatological features of the associated meteorological fields. Important ex-

ceptions to this result are the layer thickness and layer-top eddy diffusivity, which are poorly estimated where

the vector winds are close to Gaussian.

1. Introduction

In Monahan (2006a), an idealized model was de-

veloped for the stochastic dynamics of sea surface winds,

based on a highly simplified representation of the mo-

mentum budget of a surface atmospheric layer of fixed

depth. This model results in an analytic expression for

the probability distribution of surface winds in terms of

physically meaningful parameters. The focus of this

earlier study was on this probability distribution, which

is of interest in the context of air–sea interactions (e.g.,

Jones and Toba 2001; Donelan et al. 2002; Fairall et al.

2003), wind power (e.g., Liu et al. 2008; Capps and

Zender 2009), and wind extremes (Sampe and Xie

2007). No attentionwas paid to the temporal structure of

the simulated winds. Neither was there an effort made to

estimate model parameters from observations. In fact,

this cannot be done using the probability distribution

alone as it does not uniquely determine the model pa-

rameter set. In the present study, the model parameters

are estimated from long time series of sea surface wind

data.

The model from Monahan (2006a) consists of two

coupled stochastic differential equations (SDEs). Param-

eter estimation for SDEs is a challenging task in general,

and the fact that the SDE considered here is multivariate

(two dimensional) and contains nonlinear terms adds to
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the difficulty. Furthermore, the observational data may

not exactly satisfy an SDE. For example, the data may

not be Markov. Recently, Crommelin and Vanden-

Eijnden have introduced a variational approach which

avoids the restriction that the available data are exactly

described by an SDE (Crommelin 2012; Crommelin and

Vanden-Eijnden 2006b, 2011). In this approach, the data

are fit with the ‘‘closest’’ SDE, in spectral terms. The

method is computationally cheap, and it can handle two-

dimensional SDEs and nonlinear terms.

Alternative estimation methods for this purpose—for

example, Markov chain Monte Carlo methods [see

Sørensen (2004) for a survey]—are often computation-

ally very demanding, making them less suitable to pro-

cess time series for many different spatial locations as

will be done here. Moreover, they usually rely on model

properties (e.g., a diagonal diffusion matrix) that can

prove too restrictive for the model under consideration

here.

The analysis in this study will demonstrate that the

method of Crommelin and Vanden-Eijnden is applica-

ble in situations when the data are not exactly described

by the model to which they are fit. In particular, we will

consider the effects of fitting amodel driven byGaussian

white noise to data for which the driving variability has

an autocorrelation time (ACT) that is not short relative

to the time scale of the resolved dynamics. In earlier

studies, the model was used as a tool to investigate the

influence of large-scale and boundary layer processes on

the probability distribution of surface winds. Obtaining

estimates of model parameters is the first step in an as-

sessment of the quantitative utility of the model. Fur-

thermore, as we will show, this analysis can be used to

identify model features that are irreconcilable with the

data.

In section 2, we offer a brief description of the pa-

rameter estimation method, demonstrate the results of

its application to simulated data from a simple SDE

model, and discuss strategies used to improve param-

eter estimates. In section 3, we analyze the stochastic

model for sea surface wind dynamics and consider the

application of the estimation method to data gener-

ated by this model. Last, we estimate model parame-

ters from long time series of sea surface winds in

section 4. A discussion and conclusions are presented

in section 5.

2. Method

A basic outline of the method of Crommelin and

Vanden-Eijnden (2006b, 2011) for the parametric esti-

mation of diffusions follows. Consider a stochastic pro-

cess, Xt 2 R
d, that is described by the SDE

dXt 5 b(Xt)dt1§(Xt)dWt, (1)

where b is a vector function of length d and § is a d 3
d matrix function. This equation is interpreted in the

sense of an Ito SDE (Gardiner 1985; Øksendal 2003).
Governed by these dynamics, Xt has a probability den-

sity function (pdf) whose evolution can be expressed as

p(x, t1 dt)5Py
dtp(x, t) (2)

(whereQy denotes the formal adjoint of the operatorQ).

The operator Pdt is given by

Pdtf (x)5E[f (Xt1dt) jXt 5 x] (3)

and is known as the conditional expectation operator

(Gobet et al. 2004). The infinitesimal generator G for the

diffusion process is given by

G5 �
d

i51

bi
›

›xi
1
1

2
�
d

i51
�
d

j51

(§§T)ij
›2

›xi›xj
, (4)

where §T indicates the transpose of the matrix §. It is

a standard result that the infinitesimal generator (re-

ferred to as ‘‘the generator’’) and the conditional ex-

pectation operator satisfy the following operator

equation:

Pt 5 exp(tG) . (5)

Formally, Eq. (2) is equivalent to the Fokker–Planck

equation. When the dynamics admit a stationary pro-

cess, the leading eigenvalue for the operator G will be

zero, while all others will be strictly negative.

A particular set of observations that one desires to

model as an SDE may not be generated by dynamics of

the form of Eq. (1). For example, the data may be non-

Markovian because only a projection of the full state

space is sampled. Rather than require the data come

exactly from an SDE, the approach of Crommelin and

Vanden-Eijnden finds the closest SDE to the data in

terms of the eigenstructure of the generators of the

model and the data. In particular, this approach mini-

mizes the residual of the eigenproblem kGf̂2 l̂f̂k2,w
(the subscript ‘‘2,w’’ denotes a weighted Euclidean norm

that will be described soon), where G is the generator of

the model and f̂ and l̂ represent the eigenfunctions and

eigenvalues of the generator, estimated from the data

(throughout the text, estimated quantities will be denoted

by a caret). In this sense, the approach finds the closest

SDE model to the data.

The method of Crommelin and Vanden-Eijnden re-

quires the estimation of the eigenstructure of the gener-

ator fromdata. FromEq. (5), there is a direct relationship
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between the eigenstructures of Pt and G: they have the

same eigenfunctions and the eigenvalues can be related

via a simple transformation:

Ptf̂k 5L̂kf̂k4Gf̂k 5 l̂kf̂k, where l̂k 5
1

t
log(L̂k) .

(6)

We can exploit this relationship between eigenstructures

to obtain the eigenstructure of G from that of Pt, as the

latter is relatively easy to estimate from time series

data. We can also define the adjoint eigenproblem:

Py
t (ĵlr)5

bLlĵlr, where r denotes the stationary distri-

bution of Eq. (1). The eigenstructure of the conditional

expectation operator is estimated by using a truncated

Galerkin approximation which solves amodified version

of the eigenproblem in Eq. (6). By approximating the

eigenfunction f̂k(x) by an expansion over n basis func-

tions fbig [i.e., f̂k(x)’�n
i51ykibi(x)] chosen such that

they are square integrable with respect to the invariant

measure (the stationary probability density function for

Xt), we obtain the following eigenproblem:

�
n

i51

ykihPdtbi(Xt),bj(Xt)i5Lk

�
�
n

i51

ykihbi(Xt),bj(Xt)i
�
,

1# j, k# n ,

(7)

where yki is the ith entry in the kth eigenvector

and Lk is the corresponding eigenvalue. For the

adjoint eigenproblem, we can define a similar weak

form by expanding ĵl onto the same basis [i.e.,

ĵl(x)’�n
j51wljbj(x)]. By the properties of the condi-

tional expectation operator and our definition of the

inner product,

hPdtbi(Xt),bj(Xt)i5E[bi(Xt1dt)bj(Xt)] , (8)

hbi(Xt),bj(Xt)i5E[bi(Xt)bj(Xt)] . (9)

It is not possible in general to perform a complete de-

composition of fk into a finite number of basis func-

tions, but this is not required for this procedure. Using

the sample mean as approximations in Eqs. (8) and (9),

we create the linear system governing the eigenvalue

problem [Eq. (7)] and solve it numerically to get esti-

mates fL̂kg for the eigenvalues of the conditional ex-

pectation operator. Furthermore, we obtain estimates

of the projections of the eigenfunctions f̂k onto the

basis bi.

With a set of estimated eigenvalues and projected

eigenfunctions, we use Eq. (6) to obtain estimates of the

eigenvalues for the generator fl̂kg. Assuming a particular

form for the model SDE, its generator can be con-

structed and the objective function is given by

kGf̂2 l̂f̂k2,w 5 �
n

k,l51

mkljhG(fbig, fajg)f̂k, ĵli

2 l̂khf̂k, ĵlij2 , (10)

where, for the models under consideration, the drift and

diffusion of the generator can be expressed in the fol-

lowing form:

b(x)5 �
N

b

i51

bigi(x), A(x)5§§T(x)5 �
N

a

i51

aiHi(x) (11)

andmkl are weight coefficients (to be discussed later). The

objective function [Eq. (10)] proposed in Crommelin and

Vanden-Eijnden (2011) is defined in this work as Eg

and other choices for objective functions are offered.

The minimization of Eq. (10) is performed with respect

to the parameters fbig, faig and can be done using

a least squares or quadratic programming minimization

(Crommelin and Vanden-Eijnden 2006a). If b(x) and

A(x) cannot be expressed in the form given by Eq. (11),

the estimation procedure can still be applied but a dif-

ferent minimization technique must be used. We will

now demonstrate the application of the estimation

procedure to a simple stochastic process, for which an-

alytical results are available.

a. The Ornstein–Uhlenbeck process

As an illustration of the application of the parame-

ter estimation method, we consider the univariate

Ornstein–Uhlenbeck process (OUp) x 5 x(t), where,

dx5mxdt1sdW, x(0)5 x0 , (12)

where W 5 W(t) is a standard Brownian motion. The

constant m is chosen to be less than zero to ensure that

the process possesses stationary solutions. The univari-

ate OUp is one of the simplest stationary continuous

time stochastic processes and is easily studied analyti-

cally. The generator for the OUp is

G5mx
›

›x
1

s2

2

›2

›x2
. (13)

It can easily be shown that the eigenvalues of the gen-

erator for this process are the nonnegative integer

multiples of m. Simulations of Eq. (12) with m521 and

s5 1 were generated, fromwhich the eigenvalues of the

conditional expectation operator Pdt were estimated

(where dt is the time step between data points). To assess

sampling variability, 100 independent realizations of
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x(t) were generated. From these, the corresponding es-

timates for the eigenvalues of the generator were esti-

mated using Eq. (6) (Fig. 1). Not surprisingly, there is

some error in the estimates of the eigenvalues, resulting

from truncation of the spectrum and sampling variabil-

ity. Consistent with the results of previous studies

(Crommelin and Vanden-Eijnden 2011), eigenvalues of

higher index tend to have greater sampling variability

and bias, while the first few eigenvalues (associated with

the stationary distribution and the slowest decaying

modes) are the most robustly estimated.

Having estimated the eigenvalues of the generator, we

now focus on parametric estimates of the generator

itself. We assume that the simulated data satisfies an

OUp as given by Eq. (12) and minimize the norm

kG(faig, fbjg)f̂2 l̂f̂k2,w with respect to faig, fbig such

that the drift and diffusion coefficients of the generator

of x(t) are given by

b(x)5mx, A(x)5s2 . (14)

The estimates m̂ and cs2 are shown in Fig. 1. Although

the estimated values are on average close to the true

values, the estimates are clearly biased. Strategies to

reduce this bias will be presented in section 2b.

When estimating the parameters of G from a specified

SDE model, it is possible that the generator may be

overspecified, in that there are terms within the ex-

pressions for the drift and diffusion with coefficients that

are identically equal to zero in the dynamics that gen-

erated the data. To assess the robustness of the approach

to model overspecification for the case of data drawn

from OUp, we fit the data to the generator for which

b(x)5 �
3

i50

bix
i, A(x)5 �

3

i50

aix
i . (15)

Ideally, the method should return values of faig, fbig
that are zero except for a0 5 s2 and b1 5 m. As ex-

pected, these estimates are found to be distributed

around the values we predict, although there are some

biases (Fig. 2).

b. Weighting of eigenvalues

As was illustrated in Fig. 1, the sampling variability of

eigenvalues increases with eigenvalue order. Depending

on the problem under consideration, it is important that

a sufficient number of eigenvalues be estimated so as to

avoid possible degeneracies in the generator (i.e., having

an identical pdf for different parameter sets) and to

capture the temporal structure of the stochastic process.

For example, to estimate the parameters of anOrnstein–

Uhlenbeck process, we require at least two eigenvalues

as the pdf is determined by the ratio m/s2. This re-

quirement must be balanced against the tendency of

estimates of higher-order eigenvalues to be biased.

To retain higher-order eigenvalues in estimates of the

values of the coefficients faig, fbig while reducing their

contribution to the objective function in order to ac-

count for their greater uncertainty, we use a weighted

least squares method. We choose to use a weighting

scheme having weights mij where

mij 5w2l
i
/l

2 , w. 1, i5 1, 2, . . . , (l15 0). (16)

This weighting scheme assigns the first eigenvalue

a weight of 1 and subsequent weights 1 $ w2 5 w21 $

w3$w4� � � (since all li# l2, 0 for i$ 2 by stationarity).

We choose this weighting scheme so that eigenvalues of

similar magnitude are penalized by a similar amount and

eigenvalues with greater magnitude are penalized more

than smaller ones. In principle, one could assign a weight

of zero to eigenvalues beyond a certain index, but in

FIG. 1. Estimates of the eigenvalues and the coefficients of the generator of the OUp with m 5 21 and s 5 1. The time series used to

estimate the eigenvalues contains 30 000 points with dt 5 0.1. Six eigenvalues are considered to obtain parameter estimates and no

weighting is applied when minimizing the objective function. Sampling variability was assessed by estimating these parameters from 50

independent realizations of the randomprocess. The bottom and top of the boxes span the lower to upper quartiles with themedian drawn

in between. The whiskers extend to a maximum of 1.5 times the interquartile range and the black dots indicate values lying outside of this

range.
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cases in which groups of eigenvalues are close or occur

as complex conjugate pairs it is undesirable to give

a weight of zero to one eigenvalue and a nonzero weight

to another.

Applying this weighting scheme to the variational

estimates of the OUp parameters, we find that there is

an improvement in the parameter estimates, such that

both bias and sampling variance are reduced (Fig. 3).

Note that in this approach, w should not be allowed to

become too large as that effectively puts all the weight

on the first eigenmode, which can lead to degenerate

parameter estimates if it depends on a combination of

parameters (as is the case for the OUp).

c. The effect of correlated noise

Apotential source of mismatch between the data and

the model to which they are fit is the assumption that

the data are Markov and described by a diffusion

process. The Crommelin–Vanden-Eijnden method as-

sumes that data are Markov and that the model to

which they are fit is an SDE driven by Gaussian white

noise. Real-world processes are often better modeled

by forcing that is correlated in time (e.g., red noise)

and so there is a potential discrepancy between the

data and the white-noise-driven model to which they

are fit. If the driving red-noise process is an Ornstein–

Uhlenback process and is directly observed, then the

dynamics can be expressed as an SDE in an extended

state space with white-noise forcing. However, if the

red-noise process cannot be directly observed and its

dynamics not accounted for in the generator estimation

method, it is still possible to estimate the stochastic

dynamics of the data (albeit resulting in biased pa-

rameter estimates) provided that the data are sub-

sampled with a coarse-enough sampling interval so that

the red-noise effects can effectively be ‘‘whitened.’’

This issue is considered in Crommelin and Vanden-

Eijnden (2011) for the asymptotic limit in which the

ACT of the red-noise forcing (modeled as an OUp)

approaches zero. Here, we consider ACT scales that

are not small relative to the characteristic time scales of

the resolved dynamics.

FIG. 2. Estimates for the coefficients of the overspecified model given by Eq. (15) for data

generated from the OUpwith m521 and s5 1, illustrated as in Fig. 1. The time series used to

estimate the eigenvalues are 30 000 points long with dt 5 0.1. Note that we have estimated six

eigenvalues, and the parameter estimates are slightly biased.

FIG. 3. Estimates of m and s2 when weighting is applied to the eigenvalues in the objective

function. The value of w is indicated on the horizontal axis. Because of degeneracies in the

generator for theOUp, the estimates ofm ands2 are biased to values closer to 0 whenw is large.

Since the pdf of the OUp depends only on the quantity m/s2, this quantity is well estimated

when the lowest eigenvalue is heavily weighted—although m and s2 are often not well esti-

mated themselves when higher-order eigenvalues are suppressed. The box plots are drawn as

described in Fig. 1.
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We consider a linearly damped process driven by an

OUp:

dx52
1

tx
xdt1

1ffiffiffiffiffi
ty

p ydt, dy52
1

ty
ydt1

sffiffiffiffiffi
ty

p dW .

(17)

It can be shown that in the limit ty/ 0 the dynamics of x

in Eq. (17) approach those of the univariate OUp given

by Eq. (12). However, when ty and tx are of approxi-

mately the same order then the red-noise forcing will

cause noticeable differences in the dynamics of x from

those of the univariate OUp. Specifically, it can be

shown via the Wiener–Khinchin theorem (Gardiner

1985) that the autocovariance function for the variable x

in Eq. (17) is given by

Cxx(T)5
t2xs

2

2(t2x2 t2y)

"
tx exp

�
2
jTj
tx

�
2 ty exp

 
2
jTj
ty

!#
.

(18)

Having generated a realization of x(t) from Eq. (17) we

will fit it to a univariate (white-noise driven) OUp and

interpret these results in the context of a univarate OUp

that is statistically similar to x(t) in the sense that the

stationary variance and ACT scales are equal. Using

the autocovariance function above, we can determine

the ACT and variance for x:

ACT[x]5

ð‘
0

Cxx(T)

Cxx(0)
dT5 tx 1 ty,

Var[x]5Cxx(0)5
s2t2x

2(tx1 ty)
. (19)

Hence, the equivalent univariate OUp, ~x, satisfies the

following SDE:

d~x52
1

tx1 ty
~xdt1

stx
tx1 ty

d ~W . (20)

We note that in the ty / 0 limit, Eq. (20) is identical to

the result obtained from stochastic homogenization

theory (Pavliotis and Stuart 2007). For the fit of x(t) to

a univariate time series to be meaningful, it is expected

that the parameter estimates should yield estimates

consistent with Eq. (20). In fact, applying the estimation

procedure to x does not generally yield results that are

consistent with Eq. (20) (Fig. 4). When the resolution

time step dt is of the same order as ty, then the noise is

not sufficiently decorrelated between time steps to be

approximated as ‘‘white.’’ Despite the fact that the

separation of time scales between x(t) and y(t) may be

large, the correlated nature of the noise is still apparent

as the autocorrelation function (ACF) for x(t) displays

the concave-downward structure at the origin that is

characteristic of a non-Markovian forcing (DelSole

2000). Thus, x(t) cannot be well approximated asMarkov

on the time scale of the resolution of the time series.

The Markov assumption in the method results in fitting

the data to match short time correlation behavior,

causing significant overestimation of the ACT scale. To

address this issue, we simply increase the resolution

time scale.

This increase in resolution time scale is achieved

through data subsampling. Before the eigenstructure of

the conditional expectation operator is estimated, we

reorder the data such that the time interval between

successive points is increased. For example, subsampling

with stepsize 2dt yields the reordering:

x1, x2, x3, x4, . . . , xn / x1, x3, x5, . . . , xn, x2, x4, . . . xn21

(if n is odd).

(21)

By concatenating the subsets of subsampled data, no

data are thrown away. Subsampling increases the sepa-

ration of the red-noise ACT scale, ty from that of the

resolution time step dt of the data from which the con-

ditional expectation operator is constructed, effectively

‘‘whitening’’ the correlated forcing. It should be noted

that minor errors are introduced through the process

of concatenating the data subsets (e.g., where xn is fol-

lowed by x2). These errors could be corrected by ignor-

ing the data around the transition points, but given

that the number of such points in the reordered time

series is much smaller than the number of points in the

series itself, the error introduced is negligible.

Applying various degrees of subsampling to an

Ornstein–Uhlenbeck process where the forcing is

a red-noise process, the estimates of the parameters

converge to the expected values of the equivalent

white-noise process (Fig. 4). Note that while sub-

sampling results in mean parameter estimates that

are closer to those expected for an equivalent OUp

[Eq. (20)], the sampling variance of the estimated pa-

rameters increases with the degree of subsampling,

although the effect is marginal for low degrees of

subsampling. Although not shown in Fig. 4, the vari-

ance in the parameter estimates increases dramatically

if the subsampling degree is increased beyond 10. Fi-

nally, when coarsening the resolution of the time se-

ries, it is important that the degree of subsampling is

not so large that all information about serial de-

pendence of x(t) itself is lost. Loss of this information
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will prevent accurate estimation of eigenmodes be-

yond the first, and therefore corrupt all parameter

estimates.

3. The sea surface wind model

The sea surface wind model that we will consider is

a slab model of the lower-atmospheric momentum

budget introduced by Monahan (2004, 2006a). It is

assumed in this model that vector wind tendencies

result from imbalances between surface drag, down-

ward mixing of momentum from above the slab layer,

and ‘‘large-scale ageostrophic forcing’’ (the sum of

pressure gradient and Coriolis forces), which is de-

composed into a mean and fluctuations which are

modeled as white noise. With u and y respectively the

zonal and meridional components of the wind vector,

the model is given by the nonlinear SDE,

du5

�
hPui2

K

h2
u2

cd
h
u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 y2

p �
dt

1s11dW11s12dW2 , (22)

dy5

�
hPyi2

K

h2
y2

cd
h
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 y2

p �
dt

1s21dW11s22dW2 , (23)

where W1 and W2 represent (mutually uncorrelated)

standard Brownian motions. The parameters hPui and
hPyi represent the mean large-scale driving for their

respective components, while the Brownian motion

FIG. 4. Estimates for the coefficients m and s2 of the generator when the data are generated by the systemEq. (17).

In both figures, tx 5 1. The ACT scales for y are respectively ty 5 (top) 0.02, (middle) 0.1, and (bottom) 0.25.

Ensembles were computed from 50 time series, each of length 50 000 points with dt 5 0.1. The horizontal axis

indicates the degree of subsampling used in the estimations (15 no subsampling), and the red dashed line indicates

the values of the coefficients for the equivalent OUp as determined by Eq. (20). Weighting is applied to offset biased

estimates of the higher-order eigenvalues (w 5 2).
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terms represent stochastic fluctuations of this driving.

The turbulent exchange of momentum between the

slab layer of depth h and the atmosphere above is

represented as a coarsely finite-differenced diffusion

with eddy viscosity K. The surface turbulent mo-

mentum flux is parameterized with a standard bulk

drag law with drag coefficient cd. The coefficients of

the noise terms can be expressed as components of

a matrix §:

§5

�
s11 s12

s21 s22

�
. (24)

The model [Eqs. (22) and (23)] is of the form given by

Eq. (1) and has a generator given by

Gf 5
�
hPui2

K

h2
u2

cd
h
u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 y2

p �
›

›u
f 1

�
hPyi2

K

h2
y2

cd
h
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 y2

p �
›

›y
f

1
1

2

�
(s2

11 1s2
12)

›2

›u2
1 2(s11s121s21s22)

›2

›u›y
1 (s2

21 1s2
22)

›2

›y2

�
f (25)

so the model parameters hPui, hPyi, K, h, and sij can be

estimated from surface wind data using the method

under consideration. We first cast the SDE in the form

Eq. (11) by defining

b(u, y)5 b0

 
1

0

!
1 b1

 
0

1

!
1 b2

 
u

y

!

1 b3

 
u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 y2

p
y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 y2

p !
, (26)

A(u, y)5 a0

"
1 0

0 0

#
1 a1

"
0 1

1 0

#
1 a2

"
0 0

0 1

#
,

(A5§§T). (27)

The estimation routine will be used to determine the pa-

rameters fbig, i5 0, 1, 2, 3 and fajg, j5 0, 1, 2. Throughout

these calculations, we assume that the parameter cd is fixed

at 1.3 3 1023. In fact, the drag coefficient is a function of

wind speed and surface stratification (e.g., Jones and Toba

2001). This dependence is neglected in order to simplify

the calculations. Note that because of the form that we

have assumed for the wind model, we cannot directly es-

timate the values of the coefficients sij owing to non-

uniqueness of the square root of a matrix, but estimating

fajg gives us estimates for the entries of §§T (a0 5s2
11 1

s2
12, a1 5s11s21 1s21s22, a2 5s2

21 1s2
22). We use poly-

nomial basis functions in u and y up to and including de-

gree 2 in the estimation procedure: f1, u, y, u2, uy, y2g. This

choice of basis is motivated by the relative simplicity of the

functions and the infinite domain: (u, y) 2 R
2.

a. Properties of the wind model

Before considering parameter estimates for this

model, we first review some of its features. We will then

investigate the ability of the estimation procedure to

recovermodel parameters from time series generated by

the model itself.

1) REVERSIBILITY

A stochastic process is defined to be reversible if the

equations governing its behavior satisfy detailed balance

conditions (Risken 1989). Sufficient conditions for re-

versibility are that the diffusion matrix is a constant pro-

portional to the identity matrix and that the drift can be

expressed as the gradient of a potential. Reversibility of the

process is of practical utility in the present context as it

regularizes calculations in the parameter estimation

(Crommelin and Vanden-Eijnden 2011). Results from

previous studies (e.g.,Monahan 2006a, 2007) suggest that§

is diagonal to a good approximation. This indicates that the

process [Eqs. (22) and (23)] is close to reversible although

possibly not exactly so. In estimating parameters, we will

make the approximation that the system is reversible.

2) STATIONARY PROBABILITY DENSITY FUNCTION

When the noise intensity matrix § is diagonal (sij 5
zdij), we can obtain an explicit expression for the sta-

tionary pdf for u, y, denoted puy:

puy(u, y)5N exp

�
2

z2

�
hPuiu1 hPuiy2

K

2h2
(u21 y2)2

cd
3h

(u21 y2)3/2
��

, (28)

where N is the normalization constant (Monahan

2006a). We immediately see that for the probability

density function to be bounded, we must have h . 0.

This constraint is of course physically necessary given
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the interpretation of h as an atmospheric-layer thick-

ness. From inspection of this stationary pdf, we see that

there is a degeneracy with respect to the parameters

such that different sets of the parameters (hPui, hPyi,K,

cd, h, s) will yield the same probability density function.

In particular, the pdf is determined by the following four

quantities: �hPui
z2

,
hPyi
z2

,
cd
hz2

,
K

h2z2

�
. (29)

Under parameter changes in which these quantities are

conserved the probability density function will remain un-

changed. While we do not have an expression for the pdf

for the anisotropic or correlated noise model (s11 6¼ s22

or s21, s12 6¼ 0), inspection of the Fokker–Planck equa-

tion shows that the pdf is invariant so long as the fol-

lowing quantities are conserved:

(
hPui

s2
11 1s2

12

,
hPyi

s2
111s2

12

,
cd

h(s2
11 1s2

12)
,

K

h2(s2
111s2

12)
,
s11s211s12s22

s2
111s2

12

,
s2
21 1s2

22

s2
11 1s2

12

)
. (30)

By rescaling these parameters in a particular way, we can

modify the time scale of the process without modifying

the pdf. As we show in section 4, this is a useful tool for

dealing with model mismatch in this particular problem.

b. Estimating model parameters from simulated data

To evaluate the estimation of model parameters in

a ‘‘perfect model’’ framework, we will now consider ap-

plying the estimation method to time series simulated

from the stochastic windmodel. For these simulations, we

take parameter values that result in wind statistics within

the range of the observed statistics and simulate time

series with the 6-h resolution of the surfacewind data that

we will consider in section 4. The parameters that we use

for our simulations are given in Table 1. A forward

Euler scheme (Kloeden and Platen 1992) is used to

integrate the model with simulation time step dt 5
0.001 h, for a duration of 45 years. The model is re-

solved every 6 h (yielding a time series with a length of

65 700 data points).

1) WEIGHTING OF THE EIGENVALUES IN THE

OBJECTIVE FUNCTION

To assess the effect that weighting the eigenvalues has

on the quality of the estimation, we apply weights (as de-

scribed in section 2) to the estimation procedure. The re-

sults of these calculations are shown in Fig. 5. For all values

of theweight parameter, we see thatmodel parameters are

estimated well by the method. We note that an increasing

weight tends to improve the estimates of all parameters

in that the median of the estimated values is closer to

the true value. For some parameters, the sample variance

decreases with increased weighting, while in other cases it

increases. These results reinforce the result that weighting

generally improves the parameter estimates, although in

the present case there is only a modest dependence of the

recovered parameters on the weight value.

2) THE EFFECT OF RED NOISE

The assumption of white-noise forcing of the

atmospheric-layer momentum budget is a useful ap-

proximation, but it is physically unrealistic. In fact, we

expect that fluctuations in the ‘‘large-scale forcing’’

should occur on similar time scales as fluctuations in

the surface winds themselves. Replacing the white-

noise forcing terms dW1 and dW2 of Eqs. (22) and (23)

(with s12 5 s21 5 0) with red-noise forcing terms h1dt

and h2dt such that

dhi52
1

ti
hidt1

s

ti
dWi12, hi 5hi,0 at

t5 0, i5 1, 2 (31)

results in changes to the dynamics that the generator

estimation scheme cannot account for (when the pro-

cedure is applied to time series of u and y alone). The

influence of red-noise forcing on model parameter es-

timates was tested using a range of forcing ACT scales ti
(Fig. 6). We see that when the red-noise forcing is close

to white (i.e., ti is close to zero), the eigenvalue and

parameter estimates are close to the true values, as was

the case with white-noise forcing. In contrast, eigenvalue

and parameter estimates where the ACT is on the order

of the resolution of the data show significant deviations

from the true values.

TABLE 1. The base-case parameters used to generate realizations

from the wind model [Eqs. (21) and (22)].

Parameter Value

hPui 1.6 kmh22

hPyi 0.8 kmh22

cd 1.3 3 1023

K 4.5 3 1022 km2 h21

h 1 km

s11, s22 12.2 kmh23/2

s12, s21 0
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When the system is forced with red noise, the ACT

scale of the measured trajectory is increased. If time t is

rescaled to t 5 at*, then the initial parameter estimates

can be rescaled as

h5ah*, hPii5
1

a
hPii*,

K5aK*, sij 5
1ffiffiffi
a

p sij
* . (32)

As the ACT scale of the white-noise forced model is

directly scaled by the value of h, the estimate of h in-

creases to match the ACT scale of the data. To conserve

the pdf the values of the square of the diffusion matrix

(a0, a1, a2) must decrease to h increases. The values of

hPui and hPyi decrease by a factor close to that of the

decrease in a0 to maintain the correct values of mean(u)

and mean(y) with reduced si, in accordance with the

conserved quantities given in Eq. (30). Thus, while the

presence of red-noise forcing results in biased parameter

estimates, these biases can be understood in terms of the

model dynamics.

c. Resimulation of winds using the reconstructed
model

As a final analysis of the accuracy of the reconstructed

models, we will compare the statistics of simulations

they generate with those from the data to which they

were fit. In particular, we will investigate how well

the means, standard deviations, and skewness of the

resimulated data match those of the original time series.

As a demonstration of the accuracy of the reconstructed

model parameters, the results of this analysis for data

from the model driven by white noise are displayed in

Fig. 7. Also displayed is the ACF of u for both the

original data and resimulated data. Noting the small

relative error in the computed statistics, we see that the

reconstructedmodel is able to accurately reconstruct the

statistics of time series produced by these dynamics.

We also considered the ability of the reconstructed

model to capture the vector wind statistics when the

time series are produced from the model with red-noise

driving. In this case, while the parameter estimates are

expected to be biased relative to their true values, the

reconstructed model should be able to capture the mo-

ments of the time series (cf. section 2c). In fact, the first

three moments of the PDF are recovered to a good ac-

curacy (Fig. 8). However, when the parameter estima-

tion is carried out without subsampling of the data, the

estimated parameters give resimulated data with an

autocovariance function that matches only up to the

resolution time step of the data. This bias is consistent

with the fact that the estimation routine is predicated on

the assumption that the data is Markovian (DelSole

2000).

As was discussed in section 2, this bias can be ad-

dressed by subsampling the data to a sufficiently large

degree that the memory of the driving process is sup-

pressed. This can be accomplished in practice by first

performing a preliminary analysis of the ACF of the

FIG. 5. The influence of w on estimates of various parameters from the wind model using

simulated data from Eqs. (22) and (23). The values of w are shown on the horizontal axis for

each parameter boxplot. The true value of each parameter is indicated by the dashed red line.

No subsampling of the data was carried out.
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data to estimate the ACT of the data, and then sub-

sampling the data such that the time step is on the same

scale as the ACT of the data. In the present case, sub-

sampling the data by taking every fourth point results in

an evident improvement in the simulation of the auto-

correlation function (Fig. 8), without significantly al-

tering the estimates of the other statistics. As we have

mentioned, this technique will only work when the ACT

scale of the red-noise driving is sufficiently short com-

pared to that of the dynamics of the observed variable

such that the subsampling eliminates the effect of

memory in the forcing without destroying the autocor-

relation structure of the resolved dynamics.When fitting

the model to observed winds, we will combine data

subsampling with a parameter adjustment, such that the

modeled time series autocorrelation approximates that

of the observations as closely as possible.

4. Estimation of model parameters from reanalysis
wind data

Having considered the application of the estimation

method in a perfect model setting, we now consider the

reconstruction of wind model parameters from a global

sea surface wind dataset. For this analysis, we will use

the 6-hourly 10-mwinds from the 40-yr European Centre

for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-40) data, available on a 2.58 3 2.58 grid
from 1 September 1957 to 31 August 2002 (downloaded

from http://apps.ecmwf.int/datasets/). Reanalysis prod-

ucts provide a three-dimensional representation of the

atmosphere on a regular grid by assimilating observa-

tions into a fixed forecast model. As such, reanalysis

winds are not direct observations but instead represent

a balance between observations and the predictions of

a global, comprehensive model of atmospheric physics.

These data were used for the reconstruction rather than

direct, remotely sensed observations [such as from the

SeaWinds scatterometer on the Quick Scatterometer

(QuikSCAT) satellite] because of their relatively fine

resolution in time and long duration. In fact, there is

little difference between the statistical features of re-

motely sensed surface winds and those from a range of

different reanalysis products (e.g., Monahan 2006b,

2012).

We will first present the results of the application of

the estimation procedure to data from three represen-

tative locations. Following this, parameter estimates will

be obtained across the global ocean between 608S and

608N (avoiding regions with sea ice for which the surface

FIG. 6. (top left) Boxplots of estimates for the first three nonzero eigenvalues for the wind model with varying ACTs in the forcing. The

black boxplots indicate the eigenvalue estimates for simulated time series with white-noise forcing, while the blue and red boxplots

indicate the estimates when red noise having short (ti5 0.1 h) and long (ti5 6 h) ACTs is used. The pink boxplots indicate the parameter

estimates from the time series with ti 5 6 h with subsampling of degree 4 applied. The data are resolved at dt 5 6 h. The other panels

display the estimates for the parameters of the SDEs. The true values for the white-noise case are indicated with a black dashed line. In

each case, an ensemble of parameter estimates from 50 independent realizations was computed.
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wind model is not appropriate). To ensure that the es-

timated parameters are physically meaningful (despite

potential mismatches between observations and the

windmodel), we impose constraints on the optimization.

First, we require that the layer thickness h be bounded in

between 1m and 100 km. This range is clearly well

outside of the physically meaningful range; the most

important requirement here is that h be nonnegative.

Also based on physical requirements,K is constrained to

be nonnegative. Without these constraints, the estima-

tionmethod sometimes estimates unphysical values ofK

and h that are negative. Negative values of h are partic-

ularly problematic, as these are inconsistent with sta-

tionary solutions of the model. That negative values of h

can potentially occur without this constraint can be ex-

plained by the fact that the algorithm estimates the pa-

rameter cd/h, which is often near zero, rather than h itself.

a. Limitations of the model

Natural processes are always more complicated than

anymodel chosen to study them.As such, we expect that

there are aspects of observed wind variability that will

not be captured by the model and that may influence the

parameter estimates. As discussed above, an important

difference between the wind data and the model is that

the real data are almost certainly non-Markovian in

nature, while the model solutions are, by construction,

Markov processes. While it would be more accurate to fit

the data to a model in which the variations in the ‘‘large

scale’’ forcing are modeled as red-noise processes, we do

not have these forcing time series from observations and

as such cannot include them in the parameter estimation

process. In addition to the challenges posed by the ‘‘red

noise’’ nature of the data, there is a potential problem

posed by a difference of ACT scales between the zonal

and meridional components of the wind data (Monahan

2012). In many locations the meridional component ex-

periences a much quicker rate of decorrelation than the

zonal component. In the model, the single parameter h

scales the ACT scale of both components. As the white-

noise processes driving u and y have the same (infinitely

short) memory, the model cannot account for this an-

isotropy in autocorrelation structure. The process of es-

timating model parameters from observations will have

to accommodate this fact.

One of the predictions of the wind model is that the

mean and skewness of the vector winds are spatially

anticorrelated. In particular, the component of the wind

in the direction of the time-mean wind is predicted to

be negatively skewed (Monahan 2004). While this is

broadly consistent with observations, in some locations

the observed skewness of the along-mean wind compo-

nent is weakly positive; in such locations, there will be

a mismatch between the modeled and observed pdfs.

Furthermore, while the relationship between the mean

and skewness of the vector winds is captured qualita-

tively by the model, it underestimates the magnitude of

the skewness (Monahan 2006a). Thus, it is not to be

expected that the statistics of the reconstructed model

will exactly match those of the observed winds.

Finally, for the sake of simplicity and to be able to

make use of the largest amount of data in our re-

constructions, in the present analysis we have neglected

FIG. 7. (top),(bottom left) Relative error of simulated statistics

relative to original statistics (mean, standard deviation, and

skewness) for simulations from models fit to time series produced

by the wind model with white-noise forcing. For each of these, the

relative error of a quantity z is defined as (zoriginal 2 zreconstructed)/

zoriginal. (bottom right) The computed ACF of u from the original

time series (black, circles) and from the resimulated time series

(red, crosses). The estimates of the parameters were obtained

without subsampling and with weightw5 1000. In each time series,

dt 5 6 h and 30 000 data points are used.

FIG. 8. As in Fig. 7, but for the windmodel [Eqs. (22) and (23)] fit

to time series generated with red-noise forcing with ACT scales

similar to the resolution of the time series (ti 5 dt 5 6 h). Red

symbols denote results obtained using parameter estimates with-

out data subsampling, while the blue symbols denote the results

following subsampling of degree 4. These calculations were carried

out with an ensemble of 50 independent realizations.
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nonstationarities associated with the seasonal and di-

urnal cycles in the winds. What effect these non-

stationarities may have on the reconstructed parameters

is unclear, although seasonal and diurnal variability in

the winds is generally considerably smaller than the in-

ternally generated ‘‘weather’’ variability over the open

ocean (Dai and Deser 1999; Monahan 2006b).

b. Parameter estimates at representative points

We will now consider the estimation of parameters at

three different locations selected to be representative of

the statistics of large regions over the ocean. These three

points are in the Pacific sector of the Southern Ocean

(538S, 1358W), in the midlatitude North Pacific near

Japan (358N, 1808), and in the equatorial Pacific (38S,
1258W). These points are respectively representative of

three broad oceanic provinces. The southernmost point

is characterized by relatively large mean vector wind

and skewness (see Table 3) with an autocorrelation

function that decays on a time scale on the order of a day

(Fig. 9). The northernmost point has relatively small

mean vector wind and skewness with a strongly aniso-

tropic autocorrelation function that also decays on

a time scale on the order of a day. The equatorial point

is characterized by large mean vector winds and skew-

ness but a much more slowly decaying autocorrelation

function.

The parameter estimates obtained from direct appli-

cation of the estimation procedure to the reanalysis

winds with modified weightingw5 1000 and a degree of

subsampling of 4 are presented in Table 2. Observed and

simulated statistics are given in Table 3. As discussed in

section 4a, the model is unable to account for the auto-

correlation anisotropy that is evident at the locations

considered. This model bias results in a range of con-

sequences; in some cases, the model ACF using the raw

estimates is substantially different than either of the

vector wind ACFs (Fig. 9). To offset this effect, we re-

scale the estimated parameters (as described in section

2) such that the pdf remains unchanged and the ACT

scale is changed to match the geometric mean of the

ACT scales of u and y.

In the present case, we have used a lag of 18 h for the

autocorrelation matching. Rescaled parameter esti-

mates are presented in the second row of Table 2. This

rescaling results in modeled ACFs that are closer ap-

proximations to those of observations, although signifi-

cant differences persist (Fig. 9).

A comparison of the observed and modeled statistics

at the three points under consideration demonstrates

that certain moments of the data are captured better

than others (Table 3). The mean wind speeds in the

TABLE 2. The top group of values shows estimates of the pa-

rameters in the windmodel [Eqs. (22) and (23)] with weightingw5
1000 and a subsampling of degree 4. The bottom group of values

shows parameter estimates following the rescaling of parameters to

improve estimates of the autocorrelation structure as described in

section 4b.

Location 538S, 1358W 358N, 1808 38S, 1258W

hPui (m s22) 3.04 3 1025 8.56 3 1026 24.35 3 1025

hPyi (m s22) 23.46 3 1026 3.14 3 1026 1.28 3 1025

K (m2 s21) 16.7 3.56 3 104 9.51 3 1026

h (m) 3.77 3 103 1 3 105 1.21 3 103

a0 (m
2 s23) 3.98 3 1024 2.75 3 1024 5.83 3 1025

a1 (m
2 s23) 2.96 3 1025 7.63 3 1026 22.18 3 1025

a2 (m
2 s23) 4.97 3 1024 2.46 3 1024 4.74 3 1025

hPui (m s22) 5.13 3 1025 2.47 3 1025 21.76 3 1025

hPyi (m s22) 25.84 3 1026 9.07 3 1026 5.19 3 1026

K (m2 s21) 9.92 1.23 3 104 2.35 3 1025

h (m) 2.23 3 103 3.46 3 104 2.98 3 103

a0 (m
2 s23) 6.73 3 1024 7.94 3 1024 2.36 3 1025

a1 (m
2 s23) 5.00 3 1025 2.20 3 1025 28.82 3 1026

a2 (m
2 s23) 8.40 3 1024 7.10 3 1024 1.92 3 1025

FIG. 9. The autocovariance functions for the zonal and meridional wind directions (blue and red, respectively). Crosses: observed

estimates. Dashed lines: simulations based on parameter estimates without a rescaling of h. Solid lines: simulations using parameter

estimates that include a rescaling of h. The rescaling is defined to match the absolute geometric-mean autocovariance at a lag of 18 h.
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zonal andmeridional directions are well captured, as are

the standard deviations of those quantities. In contrast,

while the sign and relative magnitude of the skewness

values are captured by the model, the absolute magni-

tude is not. As we will see in section 4c, these results are

consistent across the global ocean.

Even with rescaling, h takes values significantly greater

than 1km, which is physically unreasonable. As discussed

above, this bias in h is consistent with the large-scale

ageostrophic forcing having an ACT scale comparable to

that of the resolved dynamics. The other model param-

eters are expected to be correspondingly biased (relative

to their true values) so that the model results in reason-

able simulations of the vector wind component pdfs.

c. Global parameter estimates

We now reconstruct global fields of the model pa-

rameters from the reanalysis surface wind data. The

statistics of the simulated winds with estimated param-

eters are displayed in Fig. 10; the parameter fields are

shown in Fig. 11. In both of these plots, results are shown

with and without rescaling of h (to bring the observed

and modeled autocorrelation structures into closer ac-

cord). Note that the restriction on h to keep the esti-

mates bounded within 1023 and 102 km is only applied in

the initial parameter estimates and is not applied in the

parameter rescaling.

In general, the mean and standard deviation fields of

the zonal and meridional winds are reproduced very

well. The sign and relative magnitude of the skewness

fields are also well reproduced; as noted above, the

model is unable to accurately simulate the absolute

magnitude of the vector wind skewness.

Considering the estimated parameter fields, we see

that the parameter fields are generally less noisy (and

more easily interpreted meteorologically) after the

rescaling of parameters. The reconstructed hPui field is

strong in the region of midlatitude westerlies and the

trade winds, while the reconstructed hPyi field is only

strong on the eastward flanks of the subtropical highs.

As these parameters determine the mean vector wind,

the results are consistent with the mean vector wind

climatology. The values of a0 and a2 are strongest in the

storm tracks of the northwestern Pacific and Atlantic

and the Atlantic–Indian Ocean sector of the Southern

Ocean, which again is consistent with the interpretation

of the stochastic forcing as representing variability in the

large-scale driving processes. The a0 and a2 maps are

also similar which is consistent with the observation that

the vector wind standard deviations are generally close

to isotropic (Monahan 2006a). That the cross terms a1
are generally weak is consistent with the observation

that the vector winds are, to a first approximation, un-

correlated. These results also provide an a posteriori

justification of the assumption that the vector wind dy-

namics are reversible (section 3).

In contrast, the estimates of h and K are more

problematic—particularly where the vector wind skew-

ness is small (Fig. 12). In such regions, it would appear

that the estimation routine is unable to distinguish be-

tween the linear and nonlinear drag terms in the equa-

tions of motion. Skewness in the vector winds results

from the nonlinearity of the surface drag in this model.

When the vector wind fluctuations are approximately

symmetric around the mean, there is a degeneracy be-

tween the linear and nonlinear drag terms. Numerical

simulations of Eqs. (22) and (23) demonstrate that the

modeled wind component ACT is set by both h and K,

such that the ACT is unchanged if h andK are increased

together in the appropriate way (not shown). When the

vector winds are unskewed, h can take arbitrarily large

values without substantially changing the shape of

puy(u, y). In such a case, K is determined by the ACT: if

h is unreasonably large, so too is K. To improve esti-

mates of h, we will now consider a reinterpretation of the

model in which K is set to zero.

d. Improved estimates of h

We consider an alternative interpretation of the wind

model in which h is interpreted not as the depth of an

arbitrary slab but as the height at which turbulent

transport of momentum vanishes. In this interpretation,

there is no downward mixing of momentum from above

the layer so the parameter K is set to 0 and the only two

deterministic forces that act on the wind speeds are the

mean ‘‘ageostrophic force’’ and the surface drag.

TABLE 3. The top group of values shows the observed statistics of

the ERA-40 data at indicated locations. The bottom group of

values shows the computed statistics from the wind model

[Eqs. (22) and (23)] with estimated parameters. Estimation of the

parameters is carried out using the constraints described in section

4c, weighting w 5 1000, and a subsampling of degree 4.

Location 538S, 1358W 358N, 1808 38S, 1258W

Mean(u) (m s21) 5.76 2.30 25.93

Mean(y) (m s21) 20.61 0.85 1.64

Std dev(u) (m s21) 5.92 6.09 1.66

Std dev(y) (m s21) 6.75 5.76 1.78

Skew(u) 20.68 0.14 1.78

Skew(y) 21.4 3 1022 6.0 3 1022 20.45

Mean(u) (m s21) 5.30 2.04 25.94

Mean(y) (m s21) 20.77 0.45 1.69

Std dev(u) (m s21) 5.97 6.05 1.52

Std dev(y) (m s21) 6.69 5.72 1.70

Skew(u) 20.31 1.9 3 1023 0.31

Skew(y) 1.5 3 1022 24.3 3 1022 20.27
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Reestimating parameters when we constrain K to be

zero, the statistical fields for the mean and standard

deviation of the vector wind components do not change

(not shown), while the skewness fields are slightly af-

fected (Fig. 13). The linear drag term does influence the

shape of the vector wind pdf; in its absence, the flexi-

bility of the model in this context is reduced.

The corresponding fields for the model parameters

are not substantially different from the previous results,

with the obvious exception of h (Fig. 14). The field of

h is markedly smoother than those displayed in Fig. 11.

While the estimated values of h are unrealistically large

in order to account for the finite ACT scale of the large-

scale driving, the values (ranging from a few hundred

meters to a few kilometers) have the correct order of

magnitude. The greatest values of h occur in theArabian

Sea, where the winds are observed to have the longest

lag ACTs (Monahan 2012). This particularly long ACT

likely reflects themonsoonal reversals of the wind in this

region, which the model under consideration cannot

account for as constructed.

5. Summary and conclusions

The stochastic model of the near-surface atmospheric

momentum budget presented in Monahan (2006a) was

developed as a tool for the qualitative investigation of

physical controls on the variability of sea surface winds.

FIG. 10. Statistics of (left) the original data, (middle) the resimulated data with parameters estimated using the C-VE method on the

original data, and (right) the resimulated data with parameter estimates that include a rescaling of the parameters so that the ACT scale is

more accurately captured. [The parameters were estimated using the weighting scheme of Eq. (16) withw5 1000 and subsampling factor

of 4.]
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An assessment of its utility as a quantitative tool re-

quires observationally based estimates of model pa-

rameters. In this study, we have applied the procedure

of Crommelin and Vanden-Eijnden (Crommelin 2012;

Crommelin andVanden-Eijnden 2006b, 2011) to estimate

the parameters of a stochastic differential equation de-

scribing sea surface wind variability using long time se-

ries of 10-m sea surface vector wind components.

Although the data include aspects that cannot be ac-

counted for by the model under consideration (diurnal

FIG. 11. (left) Estimates of the parameter fields. (right) Parameter field estimates after the rescaling of the parameters so that the overall

ACT scale is more accurately captured. [The parameters were estimated using the weighting scheme of Eq. (16) with w 5 1000 and

subsampling factor of 4.] In the initial estimates for h, we have enforced bounds on h 2 [1023, 102] km.
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and annual nonstationarities, anisotropic vector wind au-

tocorrelation function, and positive skewness in the along-

mean-wind direction), meaningful estimates of model

parameters were obtained. In particular, we have dem-

onstrated that, although the parameter estimates from

data obtained from a system with autocorrelated forcing

lead to biased autocorrelation functions, these biases can

be understood in terms of the dynamics of the system.

An important result of the process of estimating pa-

rameters of the stochastic boundary layer momentum

budget from sea surface wind observations is a better

understanding of the limitations of this model. In par-

ticular, it is unable to account for the observed anisot-

ropy in the vector wind autocorrelation structure and

results in simulations with realistic ACTs only if un-

realistic values of the layer thickness are used. These

model limitations can be addressed to some extent by

considering a more realistic representation of the large-

scale driving processes—particularly coherent struc-

tures like extratropical cyclones and equatorial waves

(Monahan 2012). Such an extension of the model will be

considered in future studies.

FIG. 12. (top) Scatterplot of the skewness of the wind speed along the mean wind direction against the logarithm of

the estimated value of h. Recall that in the original parameter estimates, we apply constraints that include an upper

bound on h. (bottom left) Skewness of the wind speeds along the mean wind direction. The white (black) contours

indicate the level curves where the skewness is equal to 0 (equal to 20.5). (bottom right) The field of rescaled h

estimates with the level curves superimposed.

FIG. 13. Skewness fields for the measured and simulated data when K is set to zero.
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In this analysis, we have addressed the issue of non-

Markov structure in the time series by applying the es-

timator to a new time series made up of subsamples of

the original process concatenated together. An alter-

native approach is to apply the estimator to each sub-

sample and then average the resulting estimates. A

preliminary investigation of this approach indicates that

for the time series and model under consideration, it

results in estimates of the leading eigenmodes, which are

used in the variational analysis that are essentially the

same as the estimates from the first approach (with

a relative difference of less than 1023). The benefit of the

second of these approaches is that it is more naturally

applied to analyses in which the time series are broken

down by season or time of day to account for annual or

diurnal cycles. A more general comparison of these two

approaches to handling non-Markov structure in the

time series is an interesting direction of future study.

This analysis demonstrates that the Crommelin and

Vanden-Eijnden estimation procedure is a powerful

tool for the estimation of model parameters, particularly

when the estimation process can be informed by an

understanding of the model dynamics. An important

outstanding challenge remains the problem of obtaining

unbiased parameter estimates when the data are driven

by noise that is autocorrelated in time. Consideration of

this more general problem is another important di-

rection of future study.
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