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DATA-DRIVEN STOCHASTIC REPRESENTATIONS OF
UNRESOLVED FEATURES IN MULTISCALE MODELS*

NICK VERHEUL! AND DAAN CROMMELIN*

Abstract. In this study, we investigate how to use sample data, generated by a fully resolved
multiscale model, to construct stochastic representations of unresolved scales in reduced models. We
explore three methods to model these stochastic representations. They employ empirical distributions,
conditional Markov chains, and conditioned Ornstein—Uhlenbeck processes, respectively. The Kac—
Zwanzig heat bath model is used as a prototype model to illustrate the methods. We demonstrate that
all tested strategies reproduce the dynamics of the resolved model variables accurately. Furthermore,
we show that the computational cost of the reduced model is several orders of magnitude lower than
that of the fully resolved model.
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1. Introduction

1.1. Background and motivation. Multiscale modeling is an active research
topic in such fields as biomedical engineering, materials science and climate modeling.
The common property of multiscale problems is the occurrence of a wide range of
spatial and/or temporal scales, often resulting in an inability of numerical simulations
to accurately resolve the small and/or fast scales. However, processes at these scales
can be instrumental in driving the large scale processes, hence they must be represented
in a simplified yet accurate manner in numerical models.

The motivation for this study comes primarily from atmosphere-ocean science,
where the problem of formulating suitable representations of unresolved processes is
well-known. In the field of atmosphere—ocean modeling, such representations are known
under the name parameterizations. In this field, early developments on multiscale prob-
lems used deterministic methods to represent the effect of unresolved processes. How-
ever, although deterministic methods can reproduce the mean effect of the unresolved
processes conditioned on the resolved variables, they lack the ability to reproduce the
fluctuations around this mean. Recent work has focused on overcoming this limita-
tion by using stochastic methods to model this noise-like behavior, particularly in at-
mospheric context [8,9,11,14, 18]. Notable examples for the present study include [3]
and [4], which propose data-inferred conditional Markov chains to represent atmospheric
convection in coarse climate models. Recently, stochastic parameterizations have also
started to receive attention in oceanic research, e.g. [1,2] and [15], which investigate
stochastic eddy-forcing in ocean currents.

In this study we investigate data-driven stochastic methods to drive reduced multi-
scale models. In atmosphere—ocean modeling, there are many scales but no strong scale
separation (or scale gap), so that techniques that rely on such a scale gap to achieve
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computational efficiency gains (e.g. averaging, equation-free modeling [10], heteroge-
neous multiscale methods [6]) are less attractive. A data-driven approach can be an
interesting alternative in such cases. The idea of such an approach is to infer a suitable
stochastic process from data (time series) of the feedback from the small/fast scales,
and to couple this process to a reduced model for the large/slow scales. The statistical
inference step is performed offline, i.e. the stochastic process for the unresolved scales
is precomputed. Thus, it can be considered a “sequential coupling” method [6]. As we
will demonstrate, the computational gain of this data-driven methodology can be very
substantial.

We emphasize that the methodology studied here is different from inferring a
stochastic process for the large scale dynamics itself. Rather, it is aimed at situa-
tions where an available but incomplete model for the large scale dynamics needs to be
augmented with a model for small scale feedbacks (as is the case in e.g. atmosphere—
ocean modeling). In general, a suitable stochastic model for the small scale feedbacks
must be dependent (conditioned) on the state of the large scale degrees of freedom.
The statistical inference step for such a conditioned stochastic process is not straight-
forward. We approach this issue by considering the large scale state as a covariate for
the stochastic process that needs to be inferred.

The data-driven methodology studied in this paper builds on the work presented
in [3]. There, finite-state Markov chains were used to model feedback from unresolved
scales in the context of the Lorenz ’96 model. This conditional Markov chain approach
gave good results but involved the estimation of many parameters. Furthermore, in [3]
no experiments were performed with different sets of conditioning variables (or covari-
ates). In the current study we explore methods that require far less parameters to be
estimated (or even none at all). For completeness, a method that stays close to [3]
is included in this exploration. We also investigate the effect that varying the set of
conditioning variables has on the resulting reduced model.

In the remainder of the introduction we formally pose the discussed problem and
the questions this work attempts to answer. Section 2 describes the prototype multiscale
model and details on its numerical implementation. Section 3 presents the three different
strategies used to fit the stochastic process to the sample data: the empirical, conditional
Markov chain and Ornstein—Uhlenbeck approaches, respectively. Lastly, the results and
their implications for future work are discussed in Section 4.

1.2. Problem description. Given a stationary time series X = (¢, ®1,...,Zn),
for &;eR%, we wish to formulate a model such that when we integrate this model
numerically, we generate a time series X = (o, %1,...,Zn), for &;€R?, whose statistics
accurately resemble those of X. Throughout this paper we compare given data sets,
where variables are denoted normally (e.g. «), with data sets, denoted with a tilde (e.g.
Z), generated by reduced models.

For the stochastic approach discussed here we assume that the given sample data
consists of both X and R, where R represents small-scale features. As an example,
one can think of fluid flow, with X and R time series of the resolved-scale flow and
the subgrid-scale stress term, respectively. Let X be generated by a reduced model g
together with a stochastic process R = (¥,71,...,7x), for 7;€R%, that is fitted to R.
This construction describes the class of systems:

&=g(&)+7, 7 =h(&,7), (1.1)

where & denotes the temporal derivative of & (and analogously for f') This class of
systems finds practical applications in, e.g, modeling the eddy forcing term with 7 in
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ocean flow models [1], and was the inspiration for this work.

Note that we assume analytic solutions to the discussed problem to be unknown.
Therefore, we will make use of numerical integration schemes. Let us introduce the
following notations: t; =iAt, x; =x(t;) denotes the (i + 1)th entry in the time series X,
and Ail!z =Tiy1 —L;.

Although we have no rigorous proof, we expect the statistics of X to be accu-
rately emulated by X if it were possible to sample 741 = 7(t;+1) from the conditional
distribution of r;11|(x; =&;,...,xo=To,7; =T4,...,70 =T0). In general, however, such
distributions are not known exactly, and the size of sample data needed to accurately ap-
proximate conditional distributions increases drastically with the number of conditions.
Therefore, we investigate how well the statistics of X approximate those of X when
conditioning 7;+1 on a selection of past values of @ and r. The approximation quality
of X is measured by the degree to which specific sample moments and autocorrelations
of X are captured by X.

Formally, let 7;;1 be sampled from the distribution of r;1|(x; =&;,...,x;—y =

Ti i, T =Tiyeo,Pi_in =T;_n), with 0<',i” <i, and consider the following questions:

e Let the sample mean and standard deviation of X be denoted by v1(X) =E(x;)
and vo(X) = (E(x?) — E(x;)?)"/2, respectively (with E denoting expectation).

Let the sth sample moment of X (with s>3) be given by

75(X) = E[(@; —E(2:))*] (Var(z:)) .

Let e(ys) :=s(X) —7s(X) be the error of the sth sample moment as reproduced
by X, and let S be the maximum moment one aims to reproduce. How does
€(7s) depend on the number of past values of & and r conditioning r;,1, i.e. how
does ¢(ys) depend on ¢ and i"? Particularly, let E denote a maximum error

one is willing to permit, for what i’ and " does €(vs) < F hold for 1<s<S5?

e Let the autocorrelation function of X with lag [ be given by

ACF(X) =E[(z; — E(2;))(zi+ — E(z,))] (Var(z;)) 7.

Let ¢(ACF;):=ACF;(X)—ACF;(X) be the error of the autocorrelation with
lag [ as reproduced by X, and let L be the maximum correlation lag time one
aims to reproduce. How does e(ACF;) depend on ¢’ and ¢”? Particularly, let
E’ denote a maximum error one is willing to permit, for what 7" and " does

¢(ACF,) < E’ hold for 0<I<L?

Rather than dealing with the technical intricacies and complications of testing
methodologies directly on highly complex multiscale models, we elect to test our ideas
on the simpler and more accessible Kac—Zwanzig heat bath model [7,19]. This model,
described below, also belongs to the class of systems in (1.1).

Assume a resolved heat bath model’s sample data, (X,R)=(Q,P,R), where Q =
(90,915,901 )5 P=(po,p1;---,pm), and R= (ro,71,...,701), for q;,p;, 7 €R, is given. The
question we attempt to answer here is: “How can we fit a stochastic process R to R
in such a way that the reduced model variables’ time series, Q and P, reproduce the
statistics of @ and P, respectively?” With respect to this heat bath model, a thorough
theoretical analysis of the questions asked in this section eludes us. Therefore, we
approach these questions from a numerical perspective.
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2. Kac—Zwanzig heat bath: a prototype model

2.1. Model description. In the heat bath model, one considers the temporal
evolution of a distinguished particle, moving in a potential V' and coupled to J heat
bath particles. The distinguished particle has unit mass, position ¢, and momentum
p. We use the set-up from [16], with a double-well potential V(q)=1/4(¢>—1)? and
linear coupling of the heat bath particles to the distinguished particle. The heat bath
particles are oscillators, each with their own momentum wu;, position v;, mass x; and
stiffness ¢;, with 1 <j < J. Following [16], let us define the oscillators’ natural frequency
through wjg- =¢;/X;, and choose the oscillator mass x; = G?/;? and stiffness £; = G®. The
considered heat bath model’s Hamiltonian system is then given by the following ordinary
differential equations (ODEs):

g=p, p=-V'(Q)+G*(r—Jq), j=v;, vj=—j*(u;—q), (2.1)
where V'(¢q)=dV(q)/dg and r(t) :=Z;.]=1uj(t). While these ODEs can be solved nu-
merically, the computational cost of evolving p and, more importantly, every u; and v;
over time will significantly slow down any numerical solver. Therefore, to decrease the
required computational work, we introduce a stochastic process R that approximates
the dynamical effect of R. Writing ry, for };;u;(tm), we have

R=(ro,r1,...,70)-

By using R instead of R, the heat bath particles (i.e., u; and v;) no longer need to be
evolved, thus reducing the full system in (2.1) to:

i=p, p=-V()+G*(F—-JG), 7=n(Gp,7), (2.2)

where the function h that evolves 7 over time is yet to be defined.

As mentioned in 1.2, this construction is meant to provide our strategies with a test
bed that naturally extends to geophysical fluid flow models. With this in mind, let us
motivate our choice for the heat bath model. First, the heat bath particles span a great
variety of time scales without a scale gap (because the natural frequencies range from
O(1) to O(J)), similar to the range of time scales in ocean flow models (as mentioned
in 1.1). Also, the reduced heat bath (2.2) and reduced ocean flow models [1] belong
to the same class of systems (1.1), in the sense that the stochastic term 7 enters in an
additive fashion (i.e. 7 is added linearly to the ODE for &, there is no multiplication with
a function of &). These reasons, together with its technical simplicity, make the heat
bath model a suitable choice for our experiments. We remark that we do not attempt to
preserve the Hamiltonian structure or the conserved quantities of (2.1) in the reduced
model, as this is less relevant for applications in geophysical fluid flow. Furthermore,
we do not consider the limit J— oo, as is done in e.g. [16], rather we keep J fixed at a
finite value.

2.2. Numerical integration schemes. System (2.1) is integrated in time
using the symplectic Euler method, which correctly resolves the distinguished particle’s
motion under the condition w;At=0(1) [16]. Table 2.1 shows all model parameter
settings used for the simulations in this paper. The discretized integration scheme for
(2.1) is the following;:

piv1=pi— At V'(q;) + At G*(ri — Jq;), Vip1,; =05 — At 52 (w5 —qi),
Qi+1=qi + At pitq, Uit1,j = Ui+ AL Vi1 ;.
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Let NV (z,y?) denote a normal distribution with mean x and variance y?; the har-
monic oscillators are initialized by v;(0)=0 and u;(0) ~N(0,1/(Bk;)). The distin-
guished particle is initialized at gy =1 and py =0.

Because of the chosen values for w; and the condition w;At=0O(1), one sees that
JAt=0(1) must also hold. This means that At must decrease as J increases for the
symplectic integration scheme to properly resolve all the heat bath particle’s scales.
Since u; and v; are not evolved in the reduced model, the integration time step of a
reduced simulation can generally be chosen to be much larger. Therefore, we make a
distinction between At and A7 to refer to the time steps of the resolved and reduced
model, respectively. Furthermore, the resolved time series is stored with a sampling
interval 0t (= At), see Table 2.1. Recall from Section 1.2 that, throughout this paper,
we use the notation ¢ to refer to a variable in the reduced model that is the counterpart
of the variable ¢ in the fully resolved model. Discretizing (2.2) results in the following
integration scheme for the reduced model:

Piv1=Pi— AT V(@) + At G2(Fi — I @),

Gi+1=Gi + AT Piy1, (2.3)

Fiv1 =7 + AT h(Gi,Pi,Ti),
where the initial conditions are chosen to be pg=po, go =qo and 7o =rg. The function
h in (2.3) is not known analytically, but will be inferred from the data (Q,P,R). The
different stochastic methods proposed here all aim to model R in such a way that Q

and P together with R reproduce the statistics of @ and P. In the next section we
discuss the binning procedure used in our methods.

Parameter Resolved model Reduced model
G?  mass and stiffness scaling 1 1
154 inverse temperature 1074 —
J number of harmonic oscillators 102 =
M number of sample points 107 107
5t sampling interval 1072 1072
At integration time step resolved model ~107% —
AT integration time step reduced model — 1072
Np number of bins per continuous con- 10 10

ditioning variable

TABLE 2.1. Heat bath model parameters.

2.3. Approximating conditional distributions by binning. In the reduced
model (2.3), R is approximated with the random process R. The strategies discussed
in this paper sample 7 from the distribution of r conditioned on a set of resolved model
variables ¢:=c¢(q,p,r):

Fiv1 ~Tip1](ci=G). (2.4)

A simple example is ¢; = {r;}; in this case 7;,1 is a time-correlated stochastic process. In
this work, we consider different methods of approximating the distribution ;41 | (¢; = &),
or ;41 |¢; for short, because the exact distribution is usually unknown. The majority
of these methods approximate this distribution using a binning procedure, as explained
further below.
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Let us consider a set of conditioning variables ¢; with cardinality C'+ D, where C
and D are the number of continuous and discrete conditioning variables, respectively.
The discrete variables only apply to the CMC approach, and are discussed in Section 3.2
(in other sections D =0 holds). The range between the minimum and maximum of each
continuous conditioning variable is then independently partitioned in Np equidistant
intervals. This partitioning results in C-dimensional disjoint bins «;, where 1 <b< B:=
(Np)¢. Each of these bins describes a set of r;;1-values py, also with 1<b< B. This
procedure is illustrated in Figure 2.1 for the case ¢; ={¢;} in (2.4). This figure shows
that through discretizing the g;-domain, one finds a mapping from intervals over ¢; to
sets of r;,1-values.

4000

Ti+1
o

-4000F | | | | |
-20 -10 0 10 20
qi

Fic. 2.1. An equidistant partitioning of the range of q in 20 bins.

The major advantage of the equidistant binning strategy is its simplicity in both
concept and implementation. A caveat is that bins are not guaranteed to contain sample
points, in fact, bins are frequently empty in higher dimensional discretizations. One
could extensively investigate strategies that describe how to handle these occurrences,
however, this is beyond the scope of the current study. Here we simply let empty bins be
described by the closest, in Euclidean sense, nonempty bin. In the occurrence of multiple
closest bins, our implementation chooses the first closest bin listed in the storage format
of the data set. While this is an ad hoc choice, we stress that with our chosen sample
size M and bin size Ng (see Table 2.1), this is an extremely rare occurrence. This did
not occur at all in most of our experiments; in the worst case (C' =4, see Section 3.3) it
affected only 0.01% of the reduced model time steps. However, this could be a point of
improvement in future work.

In Figure 2.2, we show the simple algorithm used to integrate the reduced heat bath
model (2.2) over time. In the following sections, we discuss the stochastic methods that
describe the temporal evolution of 7.

3. Numerical methods

3.1. Empirical distribution. In this section, we discuss the method of sampling
7 directly from the sample data’s empirical distribution, as formally defined in (3.1).
This strategy has an obvious limitation, in that it can only sample from the values
of r observed in the fully resolved simulation. However, for a stationary process, this
empirical distribution of r conditioned on past values (see Section 1.2) will converge to
the exact joint distribution in the limit of infinite data. Basic experiments show that
simulations sampling instead from an unconditioned empirical distribution are highly
unstable.



N. VERHEUL AND D.T. CROMMELIN 1219

mput: Q : vector of sample data for ¢, length M.
P : vector of sample data for p, length M.
R : vector of sample data for r, length M.
C; : set of conditioning variables, size C'.
ayp : C-dimensional bins, for all 1<b< B.
min(ap)  : vector of minimum values per dimension over all o,
length C.
step(ap)  : vector of bin size per dimension, length C'.
method : the stochastic approach used to approximate 7, options:

empirical, CMC, bin-wise OU and linear OU.

(qo,Po,70) = (q0,p0,70)

=0

for i:=0to N—1do
/* Update ¢ and p */
Pir1=Pi— AT V(@) + A1 G* (7 — J ;)
Gi+1=Gi — AT Dit1
/* Find the bin number b such that ¢; €y */
b=[¢; —min(ay)]./step(as)

/* Update 7 by random sampling */
Ti+1 ~ distr(method,b)
endfor

FiG. 2.2. Algorithm for the time integration of the reduced model for a given set of conditioning
variables ¢ and stochastic approach.

3.1.1. Reproducing statistical moments of distinguished particle. Let us
define U(pp) to denote the uniform distribution on the discrete set py, i.e. if U ~U(pp)
then U has equal probability of being any element of the set p,. The empirical approach
fits the conditional residual term 7 to r as follows:

Tix1 ~U(pp), where b:é; €. (3.1)

Since ¢; and 7; 11 show a strong correlation, let us consider sampling 7; 1 from the
distribution of r;41|¢;. We integrate the reduced model by using the algorithm in Figure
2.2 and (3.1) with ¢; ={¢;}, and compare the resulting distributions of p and ¢ to those
of the fully resolved p and ¢q. Each of the distributions is plotted in Figure 3.1.

Figure 3.1 shows that sampling from the distribution in (3.1) is effective in that
the general shape of the distributions is reproduced, but there is also clearly room for
improvement, e.g., one notices an underestimated standard deviation for both ¢ and
p. As suggested in Section 1.2, one expects better results when expanding the set
of conditioning variables ¢;. Therefore, let us compare the previous approach to the
conditioned distribution of 7;4+1]|¢;,r;. To clearly illustrate the differences, we plot the
absolute error of the resulting distributions in Figure 3.2.

Figure 3.2 shows that the distributions of p and ¢ for ¢; 1 :={¢;} are improved upon
greatly by ¢; 2:={q;,7;}. As suggested in Section 1.2, the first four sample moments of
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Fic. 3.1. The distributions for positions q,4 (left) and momenta p,p (right). The conditioned
empirical distributions approzimate sampling from riy1|qi. A comparison between

the distributions
resulting from the reduced model (dotted lines) and resolved model (solid lines).
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Fic. 3.2. Absolute errors of the distributions for positions (left) and momenta (right). The
conditioned empirical distributions approzimate sampling from r;4+1|c;. The absolute errors of both
cinn={qi} (dotted) and c; 2 ={q;,ri} (dashed) are plotted.

q and p, along with those of ¢ and p for several cases are compared in Table 3.1. From
this table one can conclude that conditioning on ¢; » provides an overall improvement
to ¢;,1, the major improvement being the accuracy of the standard deviation for both
¢ and p, but also the kurtosis is more accurately reproduced. Since both ¢; and r;
show a clear correlation with r;; 1, these results are expected. However, neither of the
conditioning parameters improves the temporal correlation, as both condition on the
same time step ¢. This is clearly shown in the autocorrelation functions plotted in Figure
3.3, where both of the approximations produce an inaccurate autocorrelation function.
Because these procedures condition on specific time steps, the autocorrelation functions
are dependent on the size of A7, the integration time step of the reduced simulation;
simulations discussed here use the parameter values as shown in Table 2.1.

3.1.2. Reproducing autocorrelation of distinguished particle. Our strat-
egy for improving the autocorrelation function is to build more temporal correlation into
the conditioning, i.e., we condition 7;,1 on system variables from previous time steps.
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mean std.dev. skewness  kurtosis
z; n(xi)  ye(w) v3(xi) vz
p; (reference) 0.00 68.4 3.7-1074 3.00
pi (ci1={aq}) 0.00 542  —8.6-1071 2.96
Di (Ci2={qi,ri}) 0.00 702  —1.8-1073 3.00
Pi (ciz={qi,ri,mi1}) 0.00 68.6 1.5-107* 3.02
q; (reference) 0.01 6.83 —55-107° 2.18
@ (cin={a:}) 0.00 604 —03-10°° 2.16
G (ci2=1{qi,ri}) -0.01 6.86  —0.5-1073 2.19
Gi (013—{(]“7“1,7“1 1}) 0.02 6.78 —4.8.1073 2.19

TABLE 3.1. Sample moments for empirical approzimations.

time lag time lag

Fic. 3.3. Autocorrelation functions for positions (left) and momenta (right). The conditioned
empirical distributions approzimate sampling from riy1|c;. The autocorrelations for both c; 1 ={q;}
(dotted lines) and c; 2 ={qi,ri} (dashed lines) are plotted against the resolved autocorrelations (solid
lines).

As comparison to the results in Section 3.1.1, let us sample 7;,1 from the distribution
of riv1]cis, with ¢;3={q;,r:,7i—1}. Both the probability distributions of the approxi-
mated p and ¢, as well as the associated autocorrelation functions are shown in Figure
3.4. As can be seen, they resemble the distributions and autocorrelations of the fully
resolved model very closely. One can conclude that adding a greater dependence on the
history of the sample data is greatly beneficial for approximating the autocorrelation
function. Also, the sample moments of the reduced model variables remain comparable
in quality (for ) or even improve (for p), see Table 3.1.

3.2. Conditional Markov chain approach. A natural evolution from the em-
pirical approach, as described in Section 3.1, is to attempt to fit a continuous stochastic
process to the sample data of . The empirical approach will likely not perform to speci-
fication, because the empirical distribution samples exclusively from previously observed
discrete values. This is especially true in situations where one cannot be convinced that
the sample data is sufficiently representative of the entire range of possible values. In
this section, we discuss how to use conditional Markov chains (CMCs) to model the
stochastic process, similar (but not identical) to the approach from [3] and [4] (see
also [12]).

3.2.1. Definition of the CMC. Expanding on the ideas put forward in [3], we
define a CMC in which 7 switches randomly between K deterministic functions fj, with
1<k < K. These functions describe the strong correlation between ¢ and r and is such
that r; = fx, (¢;), where k; = k(t;) denotes the index of the specific function f in the ith
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Fic. 3.4. Distributions (top) and autocorrelation functions (bottom) for positions (left) and mo-
menta (right). The conditioned empirical distributions are sampled from riy1|qi,ri,7i—1. A compar-
ison between the distributions and autocorrelations resulting from the reduced model (marked by +)
and from the resolved model (solid lines).

time step. Importantly, this method constructs 7 as a piece-wise (in time) deterministic
variable, therefore, one approximates transition distributions for k;;1|c; rather than
distributions of the form r;,1|¢;. The numerical integration steps for a reduced model
driven by a CMC residual term are defined as:

Piv1=pi— ATV (@) + AT G*(Fi—JGi),  Giv1 =G+ AT Piga,
- o ~ (3.2)
kivi~kivilci=¢, Tivr=ff,, (Gi+1)-

We take linear functions fi,. An illustration of such functions fitted over a (g,r)-
scatter plot is shown in Figure 3.5.

The conditioning variables ¢; contain both model variables (e.g. ¢;) and indices (e.g.
k;). The model variables are continuous, so they are binned as described in Section 2.3.
Although many choices for ¢; are possible, here we consider two sets ¢; 3 ={¢;,qi+1,k:}
and ¢; 4 ={¢i,¢i+1,ki,ki—1}. We emphasize that ¢; 3 and ¢; 4 are not implicit conditioning
sets, because ;11 is calculated before ;1 is updated (see (3.2)). As k; can take integer
values ranging from 1 to K, the transition from k; to k;41 is governed by a set of
(K x K) transition probability matrices in the case of ¢; 3, one matrix for every bin ay.
There are B=(Ng) bins in total, where C' is the number of continuous variables in ¢;
(C=2for ¢; 3 and ¢; 4). With ¢; 4, there are B K transition probability matrices of size
(K x K), due to the additional conditioning on k;_1.
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Fia. 3.5. Ezample of five linear functions fy, fitted over the scatter plot of q; vs. T;.

3.2.2. Numerical results. To approximate the bin-wise transition probabilities
one first applies the mapping (¢;,7;) — (¢i,k;) to all data points, where k; := argming |r; —
fi(q)|, i.e. k; is chosen so that fi, is the function with minimal distance to the point
(gi,7;) in the r-direction. After applying this mapping, one can easily count occurrences
of transition paths in the sample data.

Constructing the transition probability matrices in this manner implies that k; 1 is
dependent on all of k;, g;, and ¢;11. This has as effect that, for correct usage of these
transition probabilities in the reduced model, the conditioning variables should at least
include ¢;, g;+1, and k;. In fact, we found that simulations where ¢; does not include
all three of these are often unstable.

Figure 3.6 compares the reduced model results of the simulations with conditioning
variables ¢; 3 ={¢;,qi+1,k:} and ¢; 4 ={qi,qi+1,ki,ki—1}. The conditioning variable k;_q
added in ¢; 4 significantly improves the reproduced autocorrelation functions, similar to
the results of the empirical distribution in Section 3.1.2.

The sample moments of the resolved simulation and the reduced simulations are
shown in Table 3.2. This table shows that the conditioning parameters c; 3 give a better
approximation of moments of ¢ and p than ¢; 4, although with ¢; 4 the autocorrela-
tion functions are reproduced more accurately. Because, in Section 1.2, we posed that
additional conditional variables to the distribution of 7 should result in increased ac-
curacy of the reduced model, this result is unexpected. However, a large number of
parameters must be estimated to approximate the distribution of k; 11 |¢;. We recall the
following definitions: C' and D are the number of continuous and discrete variables in
¢i, B=(Np)Y is the total number of bins, and K is the number of different functions
fx(q). The number of parameters to be estimated for the CMC approach conditioning
on a set of variables ¢; is given by (Ng)¢ KP+1.

For the results in Figure 3.6 and Table 3.2 we used K =9 and B =100 (10 x 10 bins
for ¢; and ¢;4+1 combined). This results in 8100 parameters when using ¢; 3 and 72900
parameters when using c; 4. This exponential scaling of the number of parameters is
the bottleneck of the CMC approach: even for relatively simple problems it requires a
very large data set to approximate all transition probabilities accurately.

Due to the described stability issues and exponential scaling of the number of pa-
rameters we choose not to pursue the CMC approaches any further here. Instead, in
the next section we explore the use of a continuous-in-space stochastic process, so that
the number of parameters remains minimal.
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0.05

Fic. 3.6. Distributions (top) and autocorrelation functions (bottom) for positions (left) and mo-
menta (right). The CMC approach approximates sampling from ri+1|c;. A comparison between the
distributions and autocorrelations resulting from the reduced models for ¢; 3 ={qi,qi+1,ki} (marked by
+) and for ci4 ={qi,qi+1,ki, ki—1} (marked by O), and from the resolved model (solid lines).

#£params. mean std.dev. skewness  kurtosis
x; 71 (i) Ye(xi) v3(®i) Ya (i)
p; (reference) - 0.00 68.4 3.7-1074 3.00
ﬁi (Ci’4 = {Qi7Qi+17kia 72900 0.00 74.3 —3.4- 10_4 3.02

ki-1})

q; (reference) - 0.01 6.83 —5.5-103 2.18
qi (Ci,3 = {qi,qi+1,ki}) 8100 0.00 7.00 —3.4-1073 2.18
Gi (Ci74 = {qi,qi+1,k,~, 72900 0.00 711 -28-1073 2.19

ki-1})

TABLE 3.2. Sample moments for the CMC approzimations.

3.3. Ornstein—Uhlenbeck process. As discussed in Section 3.2.2, the CMC
strategy requires a very large number of estimated parameters. In this section we
present a stochastic representation that reduces the number of parameters significantly.

Let us assume that the evolution of r can be approximated by the following Ornstein—
Uhlenbeck (OU) process:

= —0(r —p)+ oW,
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with Wiener process W and unknown parameters u, 6, and o. The evolution of r, as
observed from the full model, is then used to approximate an OU process 7 defined by:

F=—0(F— ) +6W. (3.3)

The parameters 0 := (ﬂ,é,&) in (3.3) approximate the OU parameters 0 := (u,0,0),
thus implicitly fitting 7 to r. In the following sections we discuss different methods for
defining these OU estimators. We start in Section 3.3.1 with constant 0 (i.e., indepen-
dent of ¢;), whereas in later sections we let 0 depend on ¢;.

3.3.1. Unconditional parameters. Introduce the notations R, = Zf\il ri, Ry =
M M M .
DicqTie1s Rec= ZZ T2 Ry =>4 1?4, and Rep =, miri—1. The subscripts ¢
and m are chosen to denote current and minus, respectively. Then, assuming a zero-limit
of the sampling interval &¢, the standard discrete-in-time estimators 65 := (st 45t 55%)
for the OU parameters are given by [13]:

ﬂst _ ]\4—11,:{07
Ry — Rem — (% (R — Re)

St(Romm — 2[5 Ry, + M (f158)2)”

(62 =M 5t (Ree — 2R e + Ronm)-

ést _

(3.4)

Sometimes, however, a small ¢ cannot be guaranteed because of run-time require-
ments, or a small ¢ is undesired [13]. If 0t is not small, the estimators in (3.4) are
biased. Therefore, let us also consider the more exact maximum likelihood (ML) es-
timators % := ([Lex,éex,&ex), as discussed in, e.g, [17]. By omitting the assumption
0t— 0 and using the Markovian nature of the OU process, these exact ML estimators
follow from maximizing the log-likelihood function:

M
log £(0°| R) =log P(ro|6°%) + Z log P(r;|ri—1,0%). (3.5)

i=1

Making the additional assumption that the sample data is stationary, we know:

7“1"/“1 17 NN(TL 177+MCX(1 7]) (C&CX)Q)’

where 7:= exp(—09%6t) and ¢2:= (20°)~1(1—n?).
We assume the distribution of ro does not depend on 6. T herefore, we ignore the
term P(rg|0°*) for the maximization of (3.5). Substituting the conditional probabilities

and removing the conditional distribution P(r¢|@°) from (3.5) results in the following
log-likelihood:

M
log £(6°% | R) ~ Z log P(r|ri_1,0%)
i=1

M o 2
:—Elog(Zﬂ') Mlog (o) — Z —rimin— A% (1=n))". (3.6)

O-EX

By maximizing (3.6) with respect to each of the parameters, the exact ML estima-
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tors are found to equal:
_ RcRmm _Rchm
M(R7nm - chL) - R72n + RcRm ’
Rem — i (Re + Ru) + M (3°)?
Runm — 2f1* Ry + M (%)% (3.7)
(&EX)Q = QéexM_l(l _772)_1 ( RCC - 277Rcm + anmm
=20 (Re = Ryn) (1 =) + M (™)*(1=n)* ).

These estimators are equivalent to the standard ML estimators (3.4) if one assumes
the limits 0t —0 and M — o (see Appendix A). Note that the exact ML estimators
(3.7) can be calculated sequentially from sample data.

Next, let us compare the quality of the respective methods by fitting both sets of
estimators to sample data generated by a reference OU process with known parameters.
Because both it and i are independent of §t, we only compare approximations for o
and 0. Both the standard and exact ML estimators, fitted to this reference process, are
shown in Figure 3.7. This figure shows that the standard ML estimators (3.4) indeed
become strongly biased as dt increases, whereas the exact ML estimators (3.7) remain
very accurate up to at least dt values of 1.5, where sampling error starts to be an issue.
Therefore, the exact ML estimators are the clear choice for the rest of our experiments.

nex

0 = —6t'log

-
------ | P

0.25

0 0.5 1 1.5 2 0 0.5 1 1.5 2
ot ot

Fia. 3.7. Mean (solid) and standard deviation (dashed) of the standard (gray) and ezact (black)
ML estimators, in (3.4) and (3.7) respectively, for a reference OU process with (u,0,0)=(1,0.5,3).
The estimates plotted for each sampling interval 6t are averages over 100 independent OU simulations
with the given parameters. Each OU simulation stores 108 data points, where a data point is saved
after 100 time steps of the reference process. The sampling interval of the OU simulations is 1075,
We test the estimators as 6t ranges from 1073 to 2, in increments of 1073, This causes the growing
sampling error shown as 6t — 2. Note that while the standard deviation of the standard ML estimators
(gray dotted lines) is plotted in the figures, these dotted lines lie too close to the standard ML estimator
mean to be visible.

3.3.2. Conditional parameters with binning. We now generalize the meth-
ods from Section 3.3.1 to be in line with those in sections 3.1 and 3.2 by conditioning
the OU parameters (and thus the process R), on the model variables ¢. Building on the
binning strategy, as explained in Section 2.3, we define estimators ore = (ﬂpc,épc,6pc)
that are piece-wise constant in ¢;. It must be mentioned that this approach implicitly
relies on small dt because the piece-wise constant assumption.

The c¢;-dependency, being piece-wise constant, can be included in the likelihood
function. First, we introduce the following notation:

(P (ci) =P, OP(ci) =00, 6P°(c;) =60, if cieay.
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The parameters (95 = (e ,GEC, 51¢) can be calculated by restricting the estimators (3.7)
to the sample data points that lie in ;. Note that we assume that r; is only dependent
on ¢;, and not on ¢; with i’ <4. Similar to (3.6), the log-likelihood function can now be
written as,

M
log £(67°| R,C) ~ Z log P(r;|ri—1,00°), where ¢; 1 €. (3.8)

i=1

Maximizing (3.8) over the parameters (3B in total) is straightforward and leads to
the following estimators for each of the bins:

e = Ry Ry rmm _Rb,gLRb,cm 7
|po|(Rb,mm — Rb.em) — R, + R, Ro.m
Ry em — iy (Ry,c + Ro.m) + | po| (1)
Ry m — 2415 Rom + 03| ()
(682 =202l ™ (1=13) ™" ( Roce— 21 R,cm + 105 R
— 208 (Ry.c — o Rom) (1 —m) + oo (25)* (1 —m)* ),

égc =6t tlog

: (3.9)

where |pp| is the number of sample points in the bin a;. Analogous to before, the fol-
lowing notations are used to restrict terms to a specific bin b: —exp(—éfcét), Ry.=
Zf\il ril(ci—1€aw), Rpm= Zf\il ri—1l(cic1€ap), Rpee= Zl 12 1(cic1€qw), Rbmm=
Zﬁl r? 11(ci—1€ap) and Ry = Zf\il riri—11(ci—1 € ay).

Let us illustrate this approach by calculating the bin-wise estimators for the one-
dimensional conditioning ri+1]|q. The stationary distribution of an OU process with
parameters (aP°,00¢,6P¢) is N (D¢, (6£)2/26°); the resulting mean and standard de-
viation for each bin are plotted over a (g,r) scatter plot in Figure 3.8.

4000

—4000 | I I I I

qi

F1G. 3.8. The mean (solid lines) and standard deviation (dotted lines) described by the stationary
distribution of the OU estimators for each of the 20 bins approxzimating the distribution r;y1|q;. (Note
that only 1% of the total number of data points used to obtain the estimators is shown in the plot.)

3.3.3. Conditional parameters with a linearly fitted mean. In the specific
case Ti+1~Ti+1|¢i, the means and standard deviations of the OU processes in the dif-
ferent bins are approximately linear (in ¢) and constant, respectively, as can be seen
in Figure 3.8. In fact, our experiments show that the OU parameters themselves are
either (approxnnately) constant (AP and 6P°), or linear in ¢ (45°). This indicates that
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we can reduce the total number of parameters significantly by using constant or linear
functions of ¢. Thus, we define (1'(q),0"(q),6"(q)) by

(i) =l + i, 0"(qi) =04, "(q;) =361, (3.10)

where 6 := (o, gl (l)f,&(l)f) is constant. When compared to the piece-wise constant OU
estimators (3.9), this approach reduces the number of OU parameters from 3B to 4.
Similar to (3.8), one can write the log-likelihood function for the parameters in (3.10)
as,

M
log£(6"| R, Q) zZ P(ri|ri—1,qi—1,0"). (3.11)

Analogous to Section 3.3.1, one obtains expressions for the estimators ' by maxi-
mizing (3.11) with respect to each of the parameters filf, if, 0, and 61f (see Appendix
B for details on notation):

1 Ao
A
fy = 3P3 <P2+C+C>

Al (A)2 Ao + A By + Co

0 (Do + By

0 = —0t ™ log( (Rmm — 201 R — 242 Xyum + 206 Y Qu + M ()
+(A1f)2Qmm)—1( Alf(R +R ) Alf(Xcm'f‘Xmm)
+ 2/ A1 Qn + M (i ) +(21)*Qmm) ) (3.12)

(&%)f)QZQé%)fMi (1 _7]0)71 (Rcc_2770Rcm+nngm
+ (1 =n0) (2416 (10 R — Re) + 205 (00 X — Xem)
+(1_770)2(M( ) +2M%)fM11me ( llf)szm )-

The stationary distribution of the OU process with ¢ fixed is given by N(ff +
qfif, (65)2/2601); the resulting mean and standard deviation are plotted over a (g,r)

scatter plot in 3.9.

3.3.4. Numerical results. As discussed in Section 2.3, it is possible that not all
bins contain samples if they are equally sized. For the empirical approach in Section 3.1,
this posed no serious problem. However, the accuracy of the estimated OU parameters
is strongly affected if the sample size is too small. To keep the tests between methods
comparable, we opt not to change the binning procedure, but instead opt to consider
bins with less than 100 samples as empty.

Simulations that sample 7 from the unconditioned distribution of r (using the con-
stant ML estimators in (3.7)) are unstable. However, modeling 7 as an OU process that
is either piece-wise constant or linear in ¢; (using the bin-wise or linearly fitted ML
estimators, (3.9) or (3.12)) compares favorably to the previously discussed strategies.
Whereas both the empirical and CMC approaches need 2 and 3 conditioning variables,
respectively, to accurately reproduce the distributions of ¢ and p, the reduced simula-
tions using the conditioned OU process need only ¢; 1 ={¢;} to reproduce these distri-
butions very accurately. These results are illustrated in Figure 3.10 and presented with
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4000 —

Tit1
o
T

-4000 | I I I I

qi

Fic. 3.9. The mean and standard deviation of the stationary distribution described by linear OU
parameters that approzimate sampling T;+1 from the distribution of ri+1|q;. (Note that only 1% of
the total number of data points used to obtain the estimators is shown in the plot.)

0.05

time lag time lag

Fic. 3.10. Distributions (top) and autocorrelation functions (bottom) for positions (left) and
momenta (right). The applied OU approaches approzimate sampling from riy1|q;. A comparison
between the distributions and autocorrelations resulting from the bin-wise (marked by +) and linearly
fitted (marked by O) ML estimators, and from the resolved model (solid lines).

more detail in Table 3.3. The accurate reconstruction of the model variables’ distribu-
tions is especially impressive for the OU parameters with linearly fitted mean (referred
to from now on as linearly fitted OU parameters), because the linearly fitted OU pro-
cess only uses 4 parameters, whereas the CMC approach and bin-wise OU approach
need (Ng)® KP+1 (see Section 3.2.2) and 3(Np)¢ parameters respectively. However,
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#params. mean std.dev. skewness  kurtosis
T T(®)  ye(xs) Y3(®i)  ya(xs)
p; (reference) - 0.00 68.4 3.7-1074 3.00
i (Ci1=1{q:}) linearly i 000 692  45-10°1 3.01
fitted
pi (cii={¢}) bin- 30 0.00 70.3 —-1.2-1073 3.02
wise
Di (071,2 = {qq;,ri}) 300 0.00 721 —26-1073 3.02
Di (¢i3={qi,ri,mi—1}) 3000 0.00 69.3 —3.5-1073 2.99
qi (reference) - 0.01 6.83 —5.5-1073 2.18
Gi (¢i,1=1{q;}) linearly 4  -0.01 6.87 2.8-1073 2.18
fitted
g (cii={¢}) bin- 30 0.00 6.86 3.6-1071 2.19
wise
G (cio={q:}) 300 -0.01 6.94 —1.3-10* 2.19
G (cis=1{qiririo1}) 3000 0.01 6.82 —1.8-1073 2.18

TABLE 3.3. Sample moments for the OU approzimations.

0 1 0 1
time lag time lag

Fia. 3.11. Autocorrelation functions for positions (left) and momenta (right). The piece-wise
constant OU parameters are fitted to approzimate sampling from riy1|qi,mi,7i—1. A comparison be-
tween the autocorrelations resulting from the reduced model (marked by % ) and from the resolved model
(solid lines).

as is the case with all other strategies, the autocorrelation function is reconstructed less
accurately for ¢; ;.

A downside of the linearly fitted OU parameters is that they are defined specifi-
cally for the case ¢; 1 ={¢;}. Generalization to other cases is nontrivial. The piece-wise
constant OU parameters, however, can be easily conditioned on multiple variables. Simi-
larly to the empirical approach, the resolved autocorrelation functions are approximated
with high accuracy when the conditioning variables are extended to ¢; 3= {q;,7;,7i—1},
as shown in Figure 3.11.

4. Discussion

In this study we investigate how to use sample data, generated by a fully resolved
multiscale model, to construct stochastic representations of unresolved processes in re-
duced models. We discuss three methods to model these stochastic representations,
and tested the methods using the Kac-Zwanzig heat bath model. This heat bath model
describes the dynamics of a distinguished particle, which is coupled linearly to a num-
ber of heat bath particles and moves over a potential. The stochastic methods aim
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to model the dynamical effects of the heat bath particles to drive a reduced model
that only resolves the distinguished particle. We compared the fully resolved model
and the reduced models by the probability distributions, first four statistical moments
and autocorrelation functions of the position ¢ and momentum p of the distinguished
particle.

In the reduced models, the sum of the positions of the heat bath particles, denoted
r, is modeled as a stochastic process. This is done in three different ways: (i) sampling
from the empirical (conditional) distribution of r, (ii) using a discrete Markov chain
to switch between several functions r = fi(¢), and (iii) modeling r as an OU process
with ¢-dependent parameters. As mentioned before, the stochastic processes driving
the reduced model were conditioned on the position of the distinguished particle. In
some tests, the past state of r was also added to the set of conditioning variables.
Extending the set of conditioning variables improves results, as is demonstrated most
visibly in Section 3.1.2. We note that extending this set typically increases the number
of parameters in the stochastic model, so that more data may be needed to estimate
these accurately, see Section 3.2. Notwithstanding, with appropriate conditioning of
the stochastic process for r, the distributions and autocorrelations of ¢ and p in the
reduced model resemble those of ¢ and p of the fully resolved model very closely, see in
particular figures 3.4 and 3.11.

The advantage of the empirical distribution approach over the other methods is that
it is more robust if the available data set is rather small. The empirical distribution
samples uniformly from the data, so that any nonempty sample set is, by construction,
somewhat representative of the dynamics of . However, this also restricts the empirical
distribution sampling to the range of the data set, which might not be representative
of the exact joint distribution of r for small data sets. In this approach, no parameters
are estimated, the data only needs to be partitioned into bins. By contrast, the CMC
and binned OU approaches are more sensitive to small data sets, because limited data
affects the parameter estimates. These approaches involve a large number of parameters
that must be estimated, most notably the CMC approach, see tables 3.2 and 3.3.

The linearly fitted OU approach reduces the number of parameters to 4, and is
still able to reproduce the distributions of the resolved model variables very accurately.
However, we note that extending this approach to one where the OU parameters 6 and
o also have functional dependence on ¢ (or some other conditioning variable) will be
difficult, as will generalizations to nonlinear functional dependence.

As mentioned, the data needed for fitting the stochastic models for r come from a
simulation of the fully resolved model. It may seem superfluous to formulate a reduced
model if simulations with the full model are computationally feasible. However, if
one wishes to simulate a multiscale system over a very long time interval, but fully
resolved simulations are only feasible over a much shorter time interval, an efficient yet
accurate reduced model can be very useful. Furthermore, in some cases it is possible
to use data from observations instead of simulation data (see [5] for an example). In
those situations, data-driven modeling approaches are also useful. Finally, for spatially
extended systems such as atmospheric or oceanic flows, a fully resolved simulation may
be only computationally feasible on part of the spatial domain of interest. The methods
discussed in this study allow one to construct a spatially localized stochastic model for
unresolved processes. By using identical yet independent copies of this local stochastic
model, one can cover the entire spatial domain.

We emphasize that the computational gain of simulating with the reduced model
instead of the fully resolved model can be very large. The Kac—Zwanzig heat bath
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model as used in this study has 202 degrees of freedom (positions and momenta of the
distinguished particle and all 100 heat bath particles), and is integrated with time step
10~*. By contrast, the reduced model has 3 degrees of freedom (g, p,7) and integration
time step 1072. An application example is [4], where the fully resolved model is a large
eddy simulation (LES) model for atmospheric convection. The LES model in that study
used 512 x 512 x 80 gridpoints for spatial discretization, and an integration time step on
the order of seconds. The CMC used to represent convection as simulated by the LES
model contained 10 discrete states, with random switching between the discrete states
at time steps of 1 minute.

In future work we aim to use the methods presented here for ocean circulation
models. For example, the strategies described in [15] propose a covariate that correlates
strongly to the residual term in reduced vorticity equations. Investigating how our
methods can be applied to such models is an exciting topic for future study.

Appendix A. The equivalence of the exact and standard ML estimators
in appropriate limits. The unconditional maximum likelihood (ML) estimators, as
described in Section 3.3.1, are obtained by maximizing the log-likelihood in (3.6). Here
we make a distinction between two types of ML estimators: the standard estimators
05t = (0°°,6%°,6%") in (3.4), and the exact estimators 0 = (4°*,0°%,6°%) in (3.7). The
standard ML estimators are obtained by imposing the limit 6¢ | 0 on the log-likelihood
equation, but the exact ML estimators make no such assumption. However, we show
here that the exact estimators tend to the standard estimators as d¢t and the sample
size M go to 0 and oo, respectively.

Let us make the following assumptions about the model’s sample data R=
(royT1,-- 57 ar):

1. |ri] < oo, for 0<i< M.

2. 7:=E(r;) Vi (stationarity), and |F| <oco.

3. Var(r) =E(r; —7)? Vi (stationarity), and 0 < Var(r) < 0.

4. ACF :=(E(r;r;—1)—7?)Var(r)~!, and |ACF|<1. Note that ACF is dependent
on dt, therefore let us also assume:

(a) limACF =1.
otl0

(b) (lsiﬁré(ét_l(ACF—l)) =:—a, with 0 <a<oo. This essentially restricts the
right derivative of the autocorrelation function from nearing infinite or
zero as 0t goes to 0.

To show that the standard and exact ML estimators are equivalent in the limits
M — o0 and 6t |0, we will first consider each estimator in the limit M —oo0. Let us
therefore list the following known properties:
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Equivalence for fi. It follows directly from (A.1) that

lim 2% =7. (A.2)

Now, let us consider the estimator i (3.7):

R Rmm_Rchm
" M (R — Rem) — R2, + RoRon
_ Rm(R cm) +]%mm(rl\/f *TO)
M Rmm cm>+R (TM_TO)
_ Rﬁm(szm cm ) + Rjrc/n (T'AIJ\;T'U)

(e~ o)+ T ()

’\EX

7 ex

Because we analyze i°* in the limit of M — oo, we first show that the denominator
above does not go to 0 (using the properties in (A.1)):

<(Rmm_Rcm +R7m T]VI_TO)>

N v VA VA
=72+ Var(r) — 7% — Var(r) ACF
=Var(r)(1—ACF) >0, (A.3)

which allows us to split the limit. Thus

lim R—m lim me—Rcm + lim Rrnm lim M 7o
M- M ) M—wo M M Mo M M—o0 M

This together with (A.2) proves:

lim %= lim 4°*.

M—00 Maoo
Equivalence for 6. Directly from (A.1) we see that
lim 6t6% =1— ACF,
M—x0

and because 6t and M are independent, we even see that:

. . Nst T —1 - _
hm< lim 6 >—(1$1t%(5t (1-ACF)) =a. (A.4)

6tl0 \ M-
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Next, let us consider the following operations on the estimator ° (3.7):

- 67éex§t _ Rpyym — Rem — ﬂex(Rm - Rc)
Room — 200 Ry + M (1)

anm, _ Rcrn __Oex Rm _ Rc
M i — A (5 — 3F)
Rom

e — 20 g+ (1)

1

Let us first show that the above denominator does not tend to 0 in the limit of
M — 0.

. Rmm Aeme ~rex\2 |

This allows us to split the limit by using (A.3) and (A.5). Thus

lim (1—6—9“&) _ W

—1—ACF, (A.6)

M—0

which, since the logarithm function is continuous in 1 —ACF (because —1 < ACF < 1),
results in:

lim 0% = —§t~log(ACF). (A7)

M—x0

To evaluate (A.7) in the limit §¢ | 0, note that both log(ACF) and ¢ go to 0 in the
limit 6t | 0, let us apply L’Hospital’s rule for one-sided limits:

. o ex ) s d(ACF)
i (A}@J ) =im (_ACFd((St))
i (i1 1) =
_clsgf(l)( 6t ' (ACF—1)) =a. (A.8)
Therefore, from (A.4) and (A.8), one concludes that:

lim lim 6% =1lim lim 6 =a. (A.9)
5t10 Moo 5t10 Moo

Equivalence for o. Directly from (A.1) we see that:

lim (65%)% =26t~'(1— ACF)Var(r).

M—x0

Let us then use assumption 4(b) to arrive at:

: : ~Ast\2
}sltrl% J\}linoo (6°°)° =2aVar(r). (A.10)

Now, we recall from Section 3.3.1 the definition nzzexp(fée"(;t), and rewrite the
estimator 6°* (3.7) to:

20 R R R
. Lex\2 1 cc cm 2 2 mm
i (%) _A}IE}OO(PT,Z‘(M 2130 T
2 (R T (1) (2 (1)), (A11)
M M
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From (A.6) we know that
lim 1—-7>=1—ACF?>0,
M—o0

which shows that the denominator in (A.11) does not go to 0 in the limit M — oo,
therefore we can split up the limit and look at each of the elements separately. Rigorous
algebraic operations lead to the simplified equation:

lim (6°%)% = —26t *log(ACF)Var(r),
M—o0

to which we apply the limit §¢ | 0 (like in (A.8)) to finally obtain:

li lim (6°%)% ) =—-2 . A.12
tin (i, 597 = ~2aVar(r (A.12)

Therefore, from (A.10) and (A.12), one concludes:

lim lim (6°%)?=1lim lim (6°)% (A.13)
6tl0 M—oo 0tl0 M—o0

Appendix B. Explicit formulas for linearly fitted OU parameters.
First, let us introduce the following notation: 1 :=exp(—0}dt), chzij\il%, Qm =

M M M M M

Zizl qi—1, Qcc :Zizl qz'Qa Qmm :Zizl Q?,p Qcm :Zizl QiGi—1, Xee= Zizl TiQi, Xmm =
M M M

Zizl Ti—1qi—1, Xem :Zizl rigi—1, ch:Zizl Ti—194i and

AO = Qmm (Rc - Rm) - Qm(Xcm - Xmm)a

Al = M(Xcm - Xmm) - Qm(Rc - Rm)a

By =R (Xem + Xmm) + Qm(Rem — Rimm) —2Rc Xpm,
Bi =Xpum(Re+ Rin) — Qun (R — Rem) — 2Rm Xem,
Co=Rc.Rym — R Rem,

C1=RuumXem — RemXomm,

DO = M(Xcm - Xmm) - Qm(Rc - Rm)),

D= Qmm (Rc - Rm) - Qm(Xcm - Xmm)a
Eo=M(Rpm — Rem) + ReRy — R2,,

E, = Qmm (Rmm - Rcm) = Xmm (Xmm - Xcm)'

An explicit formula for fif is then given by the real root of the third order polyno-
mial ()3 Ps + (@)% Py + i Py + Py, where the polynomial coefficients are given by the
following:

Py=AgABy+ AgB1Dy— AgD1Ey — D3 E;

Py=A; B3 +2A0A,Co+ Ay B1Ey+ ByBy Dy + C, D3 — ByD Ey — CyDy Dy — 2Dy EyEy
Py =2A,ByCy+ BoB1Fy+ B1CyDgy +2C1 Dy Ey — CoD1 Ey — ES E;

Py=A,Cy+ B1CoEy+CLE2.

After introducing the last notation AO = P22 — SP)3P)17 Al = 2P22 —9P3P2P1 + 27P§P0
/A2 _ 3
and C =1 w7 one obtains the explicit formula for ff and sequentially ob-

tainable solutions for fiff, 6 and 61 in (3.12).
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