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ABSTRACT

A new approach to parameterising sub-grid scale processes is proposed:

The impact of the unresolved dynamics on the resolved dynamics, i.e. the

eddy forcing, is represented by a series expansion in dynamical spatial modes

that stem from the energy budget of the resolved dynamics. It is demonstrated

that the convergence in these so-called energy modes is faster by orders of

magnitude than the convergence in Fourier-type modes. Moreover, a novel

way to test parameterisations in models is explored. The resolved dynamics

and the corresponding instantaneous eddy forcing are defined via spatial fil-

tering that accounts for the representation error of the equations of motion on

the low-resolution model grid. In this way, closures can be tested within the

high-resolution model, and the effects of different parameterisations related

to different energy pathways can be isolated. In this study, the focus is on pa-

rameterisations of the baroclinic energy pathway. The corresponding standard

closure in ocean models, i.e. the Gent-McWilliams (GM) parameterisation, is

also tested, and it is found that the GM field acts like a stabilising direction

in phase space. The GM field does not project well on the eddy forcing and

hence fails to excite the model’s intrinsic low-frequency variability but it is

able to stabilise the model.
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1. Introduction30

It is crucial that climate models are able to accurately simulate the climate’s internal variability,31

in addition to the climate’s mean state and externally forced climate changes (IPCC 2013). For32

example, a correct representation of internal climate variability is needed in climate change de-33

tection and attribution studies. Such studies are based on signal-to-noise estimates for which the34

climate’s intrinsic low-frequency variability (LFV) must be estimated, at least in part, from long35

control integrations of climate models. Also for climate prediction studies a correct representation36

of the intrinsic climate variability is crucial such that internally generated sources of predictability37

can be exploited. Finally, the ability of models to make quantitative projections of changes in cli-38

mate variability, including the statistics of extreme events under a warming climate, is dependent39

on an accurate representation of the climate’s internal variability.40

The climate’s intrinsic LFV is typically described by large-scale modes of climate variability41

which are often either statistical eigenmodes (e.g. EOFs) or dynamical eigenmodes (e.g. linear42

instability modes, see Storch and Zwiers (1999); IPCC (2013); Dijkstra (2016)). The modes of43

climate variability are characterized as large-scale because they include large spatial structures44

such as basin-wide coupled modes of ocean-atmosphere variability (e.g. the El Niño-Southern45

Oscillation), Rossby wave-trains, mid-latitude jets and storm-tracks, etc.46

In particular with respect to the ocean, a number of LFV modes (i.e. multi-annual to multi-47

decadal time scales) have been described (Deser et al. 2010; Dijkstra 2016). It is clear from ob-48

servations that multidecadal patterns of sea surface temperature variability exist, e.g., the Atlantic49

Multidecadal Oscillation (Schlesinger and Ramankutty 1994; Kerr 2000) and the Pacific Decadal50

Oscillation (Mantua et al. 1997; England et al. 2014). Most of these modes have a particular re-51

gional or even global manifestation whose amplitude can be larger than that of human-induced52
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climate change. For example, intrinsic multidecadal variability of the ocean heat content has53

been held responsible for the relatively low recent trend in the global mean surface temperature54

anomaly, also referred to as the “Global Warming Hiatus” (Meehl et al. 2011, 2013).55

However, care is required when interpreting modes of climate variability since (i) their interpre-56

tation depends on how one separates modes of variability from forced changes in the time mean,57

(ii) they may change drastically in space, structure or probability distribution in response to cli-58

mate change, and (iii) in strongly nonlinear regimes they may be not strictly large scale but the59

large-scale structures can be entangled with smaller-scale structures such that some modes of60

climate variability may not be entirely representable in climate models with a too coarse spatial61

resolution.62

Moreover, due to the fact that the real ocean dynamics resides in a highly turbulent regime (with63

a large Reynolds number leading to a high-dimensional unstable manifold on the attractor) it still64

remains hard to understand the exact physical mechanisms behind the ocean’s LFV (Berloff and65

McWilliams 1999a; Hogg et al. 2005; Dijkstra 2016). Plenty of model studies analyzing eddy-66

resolving ocean models show that LFV in such models is commonplace (Berloff and McWilliams67

1999a; Hogg et al. 2005) and it is now known that the collective action of oceanic mesoscale68

eddies is one of the main drives of the midlatitude LFV (Kwon 2010). But at the same time the69

strong eddy field can obscure many features of the circulation, making it difficult to agree upon70

the mechanisms underpinning the variability (Hogg et al. 2005; Dijkstra 2016).71

Central questions still need further clarification: Which part of the ocean’s LFV is completely72

intrinsic to the ocean and which part involves a dynamical coupling to the atmosphere? Which73

part the ocean’s intrinsic LFV can be traced back to stationary modes at high viscosity (i.e. low-74

order bifurcations) and which part represents a genuinely eddy-driven turbulent phenomenon (i.e.75
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physical mechanisms solely active at high Reynolds numbers) (Hogg and Blundell 2006; Berloff76

et al. 2007; Le Bars et al. 2016; Dijkstra 2016)?77

Clarification of these questions is hampered by the fact that computational limitations force most78

studies on climate variability to employ climate models with ocean components that do not resolve79

the internal Rossby deformation radius (Hallberg 2013). In these coarse-resolution ocean models80

(typically operating at a horizontal resolution of 1◦) usually deterministic eddy parameterizations81

are applied which are based on diffusive terms that aim to model the potential and kinetic energy82

transfer from the mean field to the eddy field. These diffusive eddy parameterizations achieve a83

reasonable representation of the time-mean effect of the mesoscale eddy field on the time-mean84

flow (Bryan et al. 2014; Griffies et al. 2015; Viebahn et al. 2016) but they are not able to excite85

the ocean’s internal LFV observed in eddy-resolving ocean model simulations (Le Bars et al.86

2016). Consequently, the estimation of internal variability uncertainty (stemming from the chaotic87

nature of the system) in climate change detection or projections of climate change is still strongly88

hampered by model uncertainty (i.e. limitations of a model’s representation of the chaotic nature89

of the system) in many current climate change studies.90

Hence, the search for suitable eddy parameterizations remains a challenging theoretical topic91

with clear practical dimension. Recently, efforts have been made towards eddy parameterizations92

that aim to step out of the diffusive parameterization framework and try to represent the eddy93

effects in terms of stochastic eddy forcing (Berloff 2005c; Grooms and Majda 2013; Mana and94

Zanna 2014; Verheul et al. 2017). Stochastic climate modelling is based on the concept of scale95

separation in time (Franzke et al. 2015), namely, that the state vector of the system can be de-96

composed into fast modes and slow (low-frequency) modes such that the time scales of these97

modes strongly differ. The impact of the fast modes on the slow modes appears as eddy forcing in98
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the equations of motion for the slow modes. The development of stochastic climate models then99

proceeds by accounting for the effects of the unresolved fast modes in a stochastic fashion.100

Moreover, for models formulated in physical space (like most ocean models) the essential dif-101

ference between a high-resolution model and a low-resolution model is the extent of spatial infor-102

mation. The eddy forcing actually represents the impact of the spatially unresolved (or sub-grid103

scale or small-scale) processes on the spatially resolved (or larger scale) processes. Consequently,104

for models in physical space time-scale separation should imply scale separation in space. That105

is, the patterns associated with slow variability should exhibit strictly large-scale spatial structures106

whereas the patterns associated with fast variability should show strictly small-scale spatial struc-107

tures. Otherwise, the slow modes and the fast modes cannot be disentangled on the low-resolution108

model grid.109

However, scale separation only holds for regimes in which scales are weakly coupled whereas110

in turbulent regimes different scales are strongly nonlinearly coupled. The lack of time-scale sep-111

aration introduces non-Markovian memory effects and complicates the derivation of systematic112

parameterizations. The lack of scale separation in space implies that the dynamical modes are113

multiscale patterns both in the horizontal and vertical directions. For example, for the midlatitude114

ocean gyres it is found that due to the background flow most eigenmodes contain a large vari-115

ety of scales (Shevchenko et al. 2016). In this case, the LFV is not a single-mode pattern, but116

it is a coherent pattern phenomenon consisting of a large number of short period phase-related117

eigenmodes interacting with each other. We note that this can apply to both (high-resolution) sta-118

tistical eigenmodes like EOFs (Gille and Kelly 1996) and linear eigenmodes on a background flow119

(Shevchenko et al. 2016). Obviously, the small-scale structures of the dynamical modes are not120

resolvable on a low-resolution model grid.121
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In this study, we approach the formulation of eddy parameterisations in the following way: First,122

we define the resolved dynamics and the corresponding instantaneous eddy forcing via spatial123

filtering (instead of e.g. temporal averaging) such that we can account for the representation error124

of the equations of motion on the low-resolution model grid. Second, we represent the impact125

of the unresolved dynamics on the resolved dynamics (i.e. the eddy forcing) in terms of a series126

expansion in dynamical spatial modes that stem from the energy budget of the resolved dynamics.127

These so-called energy modes exhibit strictly large-scale spatial patterns and are equipped with a128

clear physical interpretation.129

In section 2, the resolved dynamics and the related instantaneous eddy forcing are defined: We130

describe our eddy-resolving ocean model and its LFV in section 2a. Our spatial filtering approach131

is introduced in section 2b. The corresponding filtered equations of motion and the related eddy132

forcing terms are presented in section 2c, and in section 2d we analyse the resulting large-scale and133

small-scale energetics. Subsequently, section 3 deals with developing and testing closures with a134

focus on the baroclinic energy pathway. We show how we can test parameterisations in a high-135

resolution model (section 3a), and test the performance of the standard closure of the baroclinic136

energy pathway in ocean models (i.e. the Gent-McWilliams (GM) parameterisation (Gent and137

McWilliams 1990)) in section 3b. Finally, in section 3c we define and test the representation of138

the eddy forcing in energy modes with a focus on representing the baroclinic energy pathway. We139

end with a summary (section 4) and discussion (section 5).140

2. Framework: Eddy forcing of the large-scale flow141

Our general starting point is the following (see e.g. Berloff (2005a)): First, an eddy-resolving142

(ER) model is given (section 2a) in order obtain a reference solution, say with state vector ψ ,143

which contains both the large-scale and eddy components. Second, a non-eddy-resolving (non-144

7



ER) model is supposed to have the same general set-up as the ER model (e.g. type of governing145

conservation equations, domain size and boundary conditions, see section 2c), but the former has146

a significantly coarser horizontal grid resolution (by a factor of ten in this study). Consequently,147

the non-ER model has far fewer degrees of freedom and it can only solve for the large-scale flow148

evolution. Moreover, the non-ER model may contain additional dynamical terms in the governing149

conservation equations (e.g. the current deterministic eddy parameterisations) which are supposed150

to parameterise part of the interactions between large-scale components and (sub-)mesoscale eddy151

components.152

Finally, the eddy forcing (EF) is a (not necessarily unique) dynamical term that still needs to be153

added to the governing conservation equations of the non-ER model at hand such that the non-ER154

solution, say with state vector ψ̂ , correctly approximates the large-scale structure of the original155

flow (i.e. of the ER model solution ψ). That is, the EF represents interactions between the large-156

scale flow and eddy fluctuations that are relevant for the large-scale flow evolution. The precise157

form of the EF depends on (i) the specific definition of the large-scale structure of the original flow158

(section 2b), and (ii) the eddy parameterisations already included in the chosen non-ER model159

equations (section 3).160

a. Eddy-resolving ocean model exhibiting low-frequency variability161

We consider a standard model of idealised ocean dynamics, namely, quasi-geostrophic (QG),162

potential-vorticity (PV) equations in a classical double-gyre configuration (see e.g. Vallis (2006)).163

The fluid-dynamic model describes idealised, wind-driven midlatitude ocean circulation with pre-164

scribed density stratification in a flat-bottom square basin with north-south and east-west bound-165

aries. We employ the QG PV conservation equations for two isopycnal layers which represents166
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the simplest description of baroclinically unstable dynamics (Olbers et al. 2012). These are167

∂tq1 + J(ψ1,q1) = AH∇
4
ψ1−

∂yτx

ρ0H1
, (1)168

∂tq2 + J(ψ2,q2) = AH∇
4
ψ2 , (2)169

where the PV of the two isopycnal layers is given by170

q1 = ∇
2
ψ1 +βy+

f0

H1
η , q2 = ∇

2
ψ2 +βy− f0

H2
η , (3)171

with the interface displacement η = ( f0/g′)(ψ2−ψ1), and horizontal velocities given by ui =172

(ui,vi) = ∇¬ψi = (−∂yψi,∂xψi).173

In our numerical model simulations, the flow is driven at the surface by the asymmetric double-174

gyre zonal wind stress (as e.g. in Berloff (2005a,c)),175

τ
x(y) = τ0

[
cos
(

2π(y−L/2)
L

)
+2sin

(
π(y−L/2)

L

)]
, τ

y = 0 , (4)176

where τ0 = 0.04 Nm−2, and L = 3500 km is the size of the square basin with 0 ≤ x,y ≤ L. The177

first internal Rossby radius of deformation, R =
√

g′H1H2/(H f 2
0 ), represents a length scale of178

baroclinic eddies. It is set to R = 40 km, a typical value for the midlatitude ocean circulation.179

We use mean isopycnal layer thicknesses of H1 = 250 m, and H2 = 3750 m, such that the mean180

ocean depth is H = 4000 m. We also use typical values for the mean density of sea water, ρ0 =181

1000 kgm−3, and the reference Coriolis parameter, f0 = 8.34 10−5 s−1, such that we have for182

the meridional variation of the Coriolis parameter, β = 1.87 10−11 m−1s−1, and for the reduced183

gravity, g′ = g(ρ2−ρ1)/ρ1 ≈ 0.048 ms−2. Finally, we use an eddy-resolving horizontal resolution184

of 10 km with a correspondingly small lateral viscosity coefficient, AH = 100 m2s−1, as well as185

no-slip boundary conditions (similar to Berloff (2005a,c)). The reference simulation is 500 years186

long and we analyse daily output.187
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Figure 1 shows a snapshot (Fig. 1c) and a temporal average (Fig. 1d) of the upper layer stream-188

function (similar to Fig. 1a,c in Berloff (2005a), and Fig. 1a and Fig. 2a in Berloff (2005c)). The189

upper-ocean time-mean circulation (Fig. 1d) consists of the southern (subtropical) and northern190

(subpolar) gyres that fill about 2/3 and 1/3 of the basin, respectively, which is consistent with the191

wind stress pattern. The time-mean flow is characterised by the Sverdrup balance in most parts of192

the basin. Only in regions related to the pair of the western boundary currents and their eastward-193

jet (EJ) extensions non-linear and frictional terms become dominant (Pedlosky 1996). We note194

that for our specific model setup the boundary currents do not merge with each other but the sub-195

polar gyre enters the subtropical region near the western boundary such that the point of separation196

from the coast of the subtropical western boundary current is pushed southward relative to the line197

of zero wind-stress curl (similar to Berloff (2005a,c)). This is a robust regime that appears at198

large Reynolds number in the stratified and baroclinically unstable double-gyre flow with no-slip199

boundary conditions (e.g. Haidvogel et al. (1992); Berloff and McWilliams (1999b); Siegel et al.200

(2001)). In terms of the fluctuations, the basin can be partitioned into the more energetic ‘west-201

ern’ part, characterized by strong vortices, and the less energetic ‘eastern’ part, dominated by the202

planetary waves (see Berloff et al. (2002) for details).203

The corresponding reservoirs of kinetic energy (KE) and available potential energy (PE) are204

given by205

KE =−ρ0

2

∫
(H1ψ1∇

2
ψ1 +H2ψ2∇

2
ψ2) dA , PE =

ρ0g′

2

∫
η

2 dA . (5)206

The two reservoirs are governed by the following conservation equations (obtained by multiplying207

Eq. (1)-(2) with −ρ0Hiψi followed by global integration),208

dKE
dt

= C(PE,KE)+G(KE)+D(KE) , (6)209

dPE
dt

= −C(PE,KE) , (7)210
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where C(PE,KE) represents the conversion between PE and KE, and the generation of KE, G(KE),211

and the dissipation of KE, D(KE), are given by212

G(KE) =
∫

ψ1∂yτ
x dA , D(KE) =−AHρ0

∫
(H1ψ1∇

4
ψ1 +H2ψ2∇

4
ψ2) dA . (8)213

Figure 5 shows the temporal evolution of the energetics of the reference simulation. The PE214

(Fig. 5a) exhibits clear cycles of decadal variability. The about 4 times smaller KE also shows215

cycles of decadal variability which lags the variability in PE by 1-2 years. The wind energy input216

G(KE) (Fig. 5b) is balanced by lateral dissipation D(KE) with both showing also significant high-217

frequency variability on top of low-frequency variability, with higher variance in D(KE) than in218

G(KE).219

Figure 1 also shows upper layer streamfunction anomalies corresponding to a low (Fig. 1e) and220

a high (Fig. 1f) in PE (see years 52 and 56 in Fig. 5a). These anomaly patterns are similar to those221

shown in Berloff et al. (2007) (see their Fig. 2 and Fig. 4), and demonstrate that the variability222

is concentrated around the subtropical EJ. More precisely, the decadal transitions are related to223

coherent meridional shifts and variations of the intensity of the subtropical EJ, likely governed by224

the nonlinear adjustment of the combined EJ-eddies system (see Berloff et al. (2007) for details).225

b. Flow decomposition into large-scale and eddy components via spatial mode filtering226

In this study, the large-scale flow structure is determined by spatial mode filtering. For that the227

ER model solution ψ is expanded in a set of spatial filter modes χi,228

ψ(x, t) =
N

∑
i

Ψi(t)χi(x) . (9)229

Note that the spatial filter modes χi are time-independent (i.e. non-dynamical). The corresponding230

large-scale (or filtered) component of ψ is given by a truncated expansion (equivalent to applying231
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a sharp spectral filter)232

[ψ](x, t) :=
N̂<N

∑
i

Ψi(t)χi(x) . (10)233

The cutoff N̂ has to be determined such that the retained spatial filter modes χi≤N̂ have a consistent234

representation on the coarse-resolution grid of the non-ER model (see the consistency conditions235

below). The non-ER model solution ψ̂ (denoting spatial fields on the non-ER model grid by a hat)236

would then optimally be given by1
237

ψ̂(x, t) =
N̂

∑
i

Ψi(t)χ̂i(x) . (11)238

More precisely, the specification of the spatial filter modes χi and the cutoff N̂ is guided by the239

following three consistency conditions:240

(SCC) Scale-content (or image) consistency: The scale content of the spatial filter modes χi≤N̂ has241

to be resolvable by the non-ER model grid resolution in order to avoid aliasing effects. The242

scale content of a spatial pattern is typically measured by the familiar Fourier modes (i.e.243

eigenmodes of the Laplacian). The corresponding cutoff N̂Nyquist is given by the well-known244

Nyquist criterion, which states that the smallest wavelength included in χi≤N̂Nyquist
must not245

be smaller than twice the grid spacing of the non-ER model. In particular, we note that246

filtering of the ER model reference solution ψ has to be done on the ER model grid (i.e. by247

using χi≤N̂ , and not by using χ̂i≤N̂ and the injection of ψ on the coarse grid) since otherwise248

aliasing errors occur.249

(BCC) Boundary conditions consistency: The large-scale flow is supposed to be a solution of the250

non-ER model equations and, hence, has to satisfy its boundary conditions. In the governing251

model equations, the differential operator with the highest order derivative (typically related252

1Identity with respect to time-evolution is meant in a statistical/dynamical sense.
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to dissipation) determines the number of boundary conditions that have to be specified. Con-253

sequently, the eigenmodes of this differential operator represent a set of spatial modes which254

are always able to satisfy the boundary conditions (i.e. span the correct function space), and,255

hence, represent the first choice if the Fourier modes (i.e. eigenfunctions of the Laplacian)256

cannot satisfy the boundary conditions.257

(DC) Dynamical consistency: The conservation equations governing the evolution of [ψ] are ob-258

tained by filtering the ER model equations (see section 2c). The non-ER model equations are259

supposed to represent these equations except that the terms including interactions with eddy260

components are replaced by eddy parameterisations. For that to hold, the spatial derivatives261

appearing in the governing equations have to be similar for both χi≤N̂ and χ̂i≤N̂ , that is, the262

differences in computing dynamical terms on the different grids must be not be significant.263

Otherwise, the EF does not solely represent the interactions between the large-scale flow and264

eddy fluctuations that are relevant for the large-scale flow evolution but it would also have to265

compensate for differences simply induced by computing the dynamical budget of the large-266

scale flow on different grids2. Consequently, one must generally require N̂ < N̂Nyquist .267

In our ER model no-slip boundary conditions are applied such that Fourier modes cannot be268

used as the spatial filter modes χi (see BCC condition). Consequently, we use as spatial filter269

modes the eigenmodes of the Bilaplacian,270

∇
4
χi = λiχi , (12)271

2Note that this criterion is expressed here with respect to the equations in physical space. With respect to the equations in modal/wavenumber

space it says that the constant interaction coefficients (obtained by computing the amplitude equations of the individual modes) related to the

resolved large-scale modes should not significantly change whether computed from the high-resolution or low-resolution representation of the

modes.
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for which no-slip boundary conditions can be prescribed. Note that λi represents the globally272

integrated lateral dissipation related to the normalised3 χi since λi =
∫

χi∇
4χi dxdy.273

Figure 2 shows selected leading eigenmodes (ortho-normalised) of the Bilaplacian with no-slip274

boundary conditions computed on the high-resolution (i.e. 10 km) grid. The overall structure (i.e.275

the scale content) of the χi is still very similar to the Fourier modes (but note that the quantitative276

differences are nevertheless global and not only localised at the boundary). Computing the eigen-277

spectrum of ∇4 on both the ER model grid (i.e. 10 km resolution) and the non-ER model grid278

(i.e. 100 km resolution) enables us to specify a cutoff N̂ in accordance with condition DC. Figure279

3 shows the corresponding eigenvalues and their relative difference. As a threshold we choose280

10% relative difference in globally integrated lateral dissipation which implies N̂ ≈ 54. The cor-281

responding relative difference in globally integrated kinetic energy (also shown in Fig. 3) is about282

5%.283

Figure 1 also shows the corresponding snapshot (Fig. 1a) and temporal average (Fig. 1b) of284

the large-scale (i.e. filtered with N̂ = 54) upper layer streamfunction. The overall structure of285

the double-gyre circulation is captured by the large-scale flow in both cases. In particular, the286

separation point of the subtropical western boundary current is exactly recovered. However, local287

differences are obvious (also in the time-mean patterns), for example, the locations of the local288

extremes are shifted. Consequently, spatial filtering and temporal filtering are not equivalent.289

c. Conservation equations of the large-scale flow290

The conservation equations governing the evolution of the large-scale flow [ψ] are obtained291

by applying the filtering operation to the QG-PV budget (1)-(2). Filtering and application of292

the Bilaplacian obviously commute for the eigenmodes of the Bilaplacian. However, for no-slip293

3Ortho-normalised in the streamfunction norm (equivalent to PE norm),
∫

χiχ j dxdy = δi j .
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boundary conditions filtering with the eigenmodes of the Bilaplacian does not commute with both294

the zonal derivative (i.e. linear beta term) and the Laplacian. Hence, filtering of the governing295

equations (1)-(2) leads to the following equations governing the filtered flow4,296

∂t [q1]+ J([ψ1], [q1]) = −R1 +AH∇
4[ψ1]−

[∂yτx]

ρ0H1
, (13)297

∂t [q2]+ J([ψ2], [q2]) = −R2 +AH∇
4[ψ2] , (14)298

where the filtered PV reads [qi] = ∇2[ψi] + β [y] + (−1)i−1 f0
Hi

[η ]. The residual PV fluxes Ri, rep-299

resenting interactions between the large-scale flow and eddy fluctuations that are relevant for the300

large-scale flow evolution, are given by301

Ri = RA
i +RT

i , (15)302

with the residual advection of PV, RA
i , and the residual related to the time tendency of relative PV,303

RT
i , given by304

RA
i ≡ [J(ψi,qi)]− J([ψi], [qi]) , (16)305

RT
i ≡ [∂t∇

2
ψi]−∂t∇

2[ψi] = [∇2
∂tψi]−∇

2[∂tψi] . (17)306

4Note that there is a subtlety here: We assume that the terms ∂t ∇
2[ψi] = ∇2[∂t ψi], β∂x[ψi], J([ψi], [∇

2ψi]), and J([ψi],
(−1)i−1 f0

Hi
[η ]) =

(−1)i−1 f 2
0

g′Hi
J([ψ1], [ψ2]) do not project on modes which lie outside the subspace defined by the filter cutoff N̂. Of course, every model dis-

cretised and stepped forward in physical space (and not directly in modal/wavenumber space) suffers from the fact that energy can be transferred

to small-scale modes which cannot be adequately represented on the spatial grid (leading e.g. to aliasing). However, since we use the eigenmodes

of the frictional term (which typically represents the most small-scale patterns) we expect to essentially remain within the subspace spanned by the

large-scale modes (defined via the filter cutoff N̂).
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The residual advection of PV can be further decomposed into RA
i = Rβ

i +RM
i +RB

i , with307

Rβ

i ≡ β [∂xψi]−β∂x[ψi] , (18)308

RM
i ≡ [J(ψi,∇

2
ψi)]− J([ψi],∇

2[ψi]) , (19)309

RB
i ≡ [J(ψi,

(−1)i−1 f0

Hi
η)]− J([ψi],

(−1)i−1 f0

Hi
[η ]) = (20)310

= (−1)i−1 f 2
0

g′Hi

(
[J(ψ1,ψ2)]− J([ψ1], [ψ2])

)
, (21)311

which are related to residual planetary vorticity advection, residual nonlinear momentum fluxes,312

and residual buoyancy fluxes (i.e. interface displacements), respectively.313

In the following, we focus on a twofold decomposition of the residual PV fluxes Ri into314

Ri = RH
i +RB

i , (22)315

where RB
i represents the part of Ri which is related to the vertical density distribution/layer inter-316

action/interface height/APE, whereas RH
i ≡Rβ

i +RM
i +RT

i is related to the horizontal eddy PV317

fluxes. In this study, the main focus will be on RB
i (see section 3).318

d. Lorenz energy cycle319

The Lorenz energy cycle (LEC) describes the balances of four mechanical energy reservoirs,320

the large-scale circulation’s kinetic energy ([KE]) and available potential energy ([PE]), the eddy321

kinetic energy (KE′) and eddy available potential energy (PE′). The four reservoirs are given by322

[KE] =−ρ0

2

∫
(H1[ψ1]∇

2[ψ1]+H2[ψ2]∇
2[ψ2]) dA , KE′ = KE− [KE] , (23)323

[PE] =
ρ0g′

2

∫
[η ]2 dA , PE′ = PE− [PE] , (24)324
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and they are governed by the following conservation equations (obtained by multiplying Eq. (13)-325

(14) with −ρ0Hi[ψi] and global integration),326

d[KE]
dt

= C(KE′, [KE])+C([PE], [KE])+G([KE])+D([KE]) , (25)327

dKE′

dt
= −C(KE′, [KE])+C(PE′,KE′)+G(KE′)+D(KE′) , (26)328

d[PE]
dt

= C(PE′, [PE])−C([PE], [KE]) , (27)329

dPE′

dt
= −C(PE′, [PE])−C(PE′,KE′) . (28)330

The respective generation and dissipation terms are given by331

G([KE]) =
∫
[ψ1][∂yτ

x] dA , (29)332

G(KE′) = G(KE)−G([KE]) , (30)333

D([KE]) = −AHρ0

∫
(H1[ψ1]∇

4[ψ1]+H2[ψ2]∇
4[ψ2]) dA , (31)334

D(KE′) = D(KE)−D([KE]) , (32)335

and the terms related to energy exchange between the large-scale flow and eddy components read336

C(KE′, [KE]) = ρ0

∫
(H1[ψ1]R

H
1 +H2[ψ2]R

H
2 ) dA , (33)337

C(PE′, [PE]) = ρ0

∫
(H1[ψ1]R

B
1 +H2[ψ2]R

B
2 ) dA (34)338

= −ρ0 f0

∫
[η ][J(ψ1,ψ2)] dA . (35)339

Note that all LEC terms are instantaneously given due to our spatial (instead of temporal) filtering340

approach.341

Figure 4 shows the different terms of the LEC averaged in time (over 500 years of daily output)342

and summarises the time-mean state and variance of the different energy reservoirs and energy343

pathways (for the reference simulation described in section 2a). The filtered terms G([KE]) and344

[PE] capture 96% and 89% of the full (i.e. unfiltered) G(KE) and PE values, respectively, imply-345

ing that G(KE) and PE are dominated by large-scale structures. In contrast, D([KE]) is very small346
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(1.8% of D(KE)) implying that D(KE) is dominated by small-scale structures. Consequently, al-347

most all of G(KE) has to be transferred to the eddy field via eddy fluxes. Both conversion terms,348

C([PE],PE′) and C([KE],KE′), have the same order of magnitude but C([PE],PE′) dominates (al-349

most twice as large both in temporal average and variance). The two eddy energy reservoirs are of350

similar magnitude with KE′ being almost 5 times larger than [KE] (capturing 83% of KE).351

The overall picture is similar to the one found in realistic global ocean models (e.g. von Storch352

et al. (2012)). Common in both the ocean and the atmosphere is that the dominant power pathway353

is the baroclinic pathway [PE] → PE′ → KE′ characterized by a conversion C([PE],PE′) from354

the large-scale available potential energy to the eddy available potential energy that has about355

the same magnitude5 as the conversion C(PE′,KE′) from the eddy potential energy to the eddy356

kinetic energy. That is, as in the atmosphere, oceanic mesoscale eddies are, to a large extent,357

generated by baroclinic instability which is the main mechanism in converting the large-scale358

available potential energy into the eddy kinetic energy in the ocean. Moreover, and in contrast to359

the atmosphere, the two conversion terms connected to the large-scale kinetic energy [KE] (i.e.,360

C([KE],KE′) and C([KE], [PE])) are directed away from [KE] in the ocean. That is, the two main361

power pathways in the ocean are [KE] → [PE] → PE′ → KE′ and [KE] → KE′. The oceanic362

large-scale circulation, being fuelled by the winds, converts its kinetic energy into the large-scale363

available potential energy by Ekman pumping. This conversion substantially facilitates density364

differences and hence the large-scale available potential energy from which the baroclinic pathway365

originates. The oceanic large-scale circulation converts also its kinetic energy into the eddy kinetic366

energy.367

Figure 5 shows different terms of the LEC evolving in time. The variability in [PE] (Fig. 5a) and368

G([KE]) (Fig. 5b) is essentially identical to the variability in PE and G(KE), respectively. This369

5In our model setup the two conversion terms are identical in the time-mean (see Fig. 4) due to the absence of buoyancy sources/sinks.
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means that the low-frequency variability in these fields is indeed large-scale, and hence, can in370

principle be adequately captured by a non-ER model. The converse is true for lateral dissipation371

D(KE) (Fig. 5b) for which also the variability (next to the time-mean value) of its large-scale372

component D([KE]) is very small. The KE reservoir (Fig. 5a) represents an intermediate quantity373

in the sense that its large-scale component [KE] only captures part of the low-frequency variability.374

The large-scale wind energy input G([KE]) (Fig. 5b) is balanced by the energy transfer to the375

eddy components via C([KE],KE′) (Fig. 5c) and C([KE], [PE])→C([PE],PE′) (Fig. 5d,e). Most376

importantly, both C([PE],PE′) and C([KE],KE′) regularly show backscatter, that is, energy transfer377

from the eddy components to the large-scale components. Moreover, the variances of C([PE],PE′)378

and d[PE]/dt (both part of Eq. (27)) are significantly larger than the variances of C([KE],KE′) and379

C([KE], [PE]). We note that C([PE],PE′) and d[PE]/dt are highly anti-correlated with a correlation380

coefficient of -0.89 (they tend to be positively correlated when C([KE], [PE]) < C([KE],KE′)),381

whereas the correlation coefficient of C([PE],PE′) and C([KE], [PE]) (d[PE]/dt and C([KE], [PE]))382

is 0.42 (0.12).383

3. Closures for the baroclinic energy pathway384

In stratified flows two distinctively different types of energy conversions between large-scale and385

eddy components exist. Namely, the energy conversion C([PE],PE′) involving density perturba-386

tions (see Eq. (34)), and the energy conversion C([KE],KE′) solely related to (horizontal) velocity387

perturbations (see Eq. (33)). In the temporal average (see Fig. 4), the latter represents a sink of388

[KE], whereas the former represents a sink of [PE] as part of the baroclinic energy pathway, [PE]389

→ PE′→KE′. Instantaneously, both conversion terms can also backscatter, that is, transfer energy390

from the small-scale components to the large-scale components (Fig. 5c,e). In a non-ER model391

these two energy transfers have to be adequately modelled. In this study, we focus on closures for392
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C([PE],PE′), corresponding to RB
i in the large-scale PV budget (see Eq. (34) and Eq. (20)), and393

leave the development of adequate closures for C([KE],KE′) (i.e. RH
i ) for future work (note that394

C([PE],PE′) generally dominates over C([KE],KE′), see Fig. 4).395

a. Testing closures in an eddy-resolving model396

In order to be able to isolate the direct effects of RB
i and the performance of corresponding397

closures we adopt the following approach: For a large-scale flow defined via spatial filtering (sec-398

tion 2b) the corresponding conservation equations (section 2c) can be computed instantaneously399

from the corresponding eddy-resolving model equations (section 2a). In other words, the non-ER400

model, Eq. (13)-(14), can be considered as part of the ER model, Eq. (1)-(2). In order to be able401

to test closures for RB
i (Eq. (20)) in an isolated way, that is, without the need to also parame-402

terise RH
i , we perform simulations with the ER model equations (1)-(2) in which we employ the403

following decomposition of the Jacobian J at every time step,404

J(ψi,
(−1)i−1 f0

Hi
η) = [J(ψi,

(−1)i−1 f0

Hi
η)]+∆J =405

Eq. (20)
= J([ψi],

(−1)i−1 f0

Hi
[η ])+RB

i +∆J , (36)406

where ∆J ≡ J(ψi,
(−1)i−1 f0

Hi
η)− [J(ψi,

(−1)i−1 f0
Hi

η)] corresponds to the small-scale component6 of407

J(ψi,
(−1)i−1 f0

Hi
η). Note that J([ψi],

(−1)i−1 f0
Hi

[η ]) can be computed form the large-scale fields408

and only redistributes large-scale energy but does not contribute to large-scale energy dissipa-409

tion/generation.410

Then a parametersation of RB
i , say R̃B

i , can be tested by performing simulations with the ER411

model equations (1)-(2) and including at every time step the replacement RB
i → R̃B

i in Eq. (36).412

That is, the large-scale component of the Jacobian, RB
i (which is needed in the non-ER model), is413

parameterised whereas the small-scale component, ∆J, remains explicitly computed. We empha-414

6Note that [∆J] = 0 since we use a sharp filter.
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sise that the ‘true’ RB
i is always available since we solely perform simulations with the ER model.415

Hence, quantities like the relative error ||RB
i − R̃B

i ||/||RB
i || can be computed at every time step.416

As demonstrated in the following (sections 3b and 3c), it is by no means a trivial task to parame-417

terise RB
i in such a way that the energy level and low-frequency variability of the large-scale flow418

are captured.419

b. Standard GM parameterisation420

In general, the GM parameterisation is interpreted as the standard down-gradient parameteri-421

sation for the horizontal component of the isopycnal eddy flux (Vallis 2006; Olbers et al. 2012).422

In a layer model, this corresponds to down-gradient diffusion of interface displacement η . More423

precisely, the isopycnal interface PV flux is given by uiη . Assuming a Reynolds decomposition424

into mean (denoted by an overbar) and eddy (denoted by a prime) components (e.g. via temporal425

averaging, see e.g. Pope (2000)), the isopycnal interface eddy PV flux is given by u′iη ′, and the426

GM parameterisation reads427

u′iη ′ =−KGM∇η , (37)428

where KGM is an interfacial diffusivity typically O(1000 m2s−1). Finally, the divergence of the429

interface eddy PV flux (which actually appears in the mean PV budget) becomes430

J(ψ ′i ,η ′) = ∇ ·u′iη ′ =−∇ ·KGM∇η . (38)431

The equivalent to J(ψ ′i ,η ′) in case the eddy components are defined via spatial filtering is RB
i432

(Eq. (20)) . That is, in our case the GM parameterisation reads433

R̃B
i =−(−1)i−1 f0

Hi
∇ ·KGM∇[η ] , (39)434
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such that the unresolved buoyancy fluctuations are represented as local interfacial diffusion. In-435

serting Eq. (39) into Eq. (34) and assuming a spatially constant KGM > 0 we get436

C̃(PE′, [PE]) = ρ0g′KGM

∫
[η ]∇2[η ] dA≤ 0 . (40)437

Consequently, the GM parameterisation represents a sink of [PE] at every instant of time and,438

hence, excludes any backscatter (Eq. (40) actually corresponds to the kinetic energy of the large-439

scale baroclinic mode).440

1) CONSTANT GM DIFFUSIVITY441

A constant KGM can be directly estimated from the energetics of the reference simulation by442

combining the temporal average (denoted by an overbar) of Eq. (34), shown in Fig. 4, and the443

temporal average of Eq. (40), such that7444

KGM =
C(PE′, [PE])

ρ0g′
∫
[η ]∇2[η ] dA

. (41)445

This way the GM parameterisation accounts exactly for the time-mean [PE] dissipation, given the446

reference large-scale flow. For our model results we get a typical value of KGM ≈ 1067 m2/s.447

Figure 6a shows time series of PE resulting from simulations in which the GM parameterisation448

with a constant KGM is employed (blue and green lines). In order to assure numerical stability449

KGM ≥ 1500 m2/s is necessary in our model8. The GM parameterisation does its job by ex-450

tracting [PE] from the large-scale flow such that a statistical equilibrium results. However, the451

low-frequency variability exhibited by the reference simulation (black line) is absent. The dynam-452

ics exclusively reside below the PE-level of the low-PE regime of the reference simulation. That453

is, the low-frequency transitions in phase space to the high-PE regime are suppressed in case the454

7Note that this estimation is not affected by rotational eddy fluxes since it is not computed on the level of fluxes (like Eq. (37)) but on the level

of dynamical terms appearing in the PV budget.
8Note that the model blows up if R̃B

i is simply set to zero, consistent with the fact that RB
i acts as a sink of time-mean [PE] (see Fig. 4).
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GM parameterisation with a constant KGM is used. Presumably, backscatter is necessary for the455

dynamics in order to be able to reach high-PE states.456

2) TIME-DEPENDENT GM DIFFUSIVITY457

For a time-dependent KGM the GM parameterisation (Eq. (39)) reads458

R̃B
i =−(−1)i−1 f0

Hi
KGM(t)∇2[η ] . (42)459

We diagnose KGM from the model results via projection on ∇2[η ] (equivalent to a least-squares460

estimation), that is,461

KGM(t) =− Hi

(−1)i−1 f0

∫
RB

i ∇2[η ] dxdy∫
(∇2[η ])2 dxdy

, (43)462

where RB
i represents the explicitly computed residual PV flux. That is, KGM represents the expan-463

sion coefficient of RB
i in ∇2[η ] (see also section 3c, Eq. (44)).464

Figure 6a shows the time series of PE resulting from a simulation in which the GM parame-465

terisation is employed with KGM obtained from projection (i.e. Eq. (43)) at every time step (red466

line). Now a form of low-frequency variability is indeed excited but the corresponding high-PE467

regime resides at and below the low-PE regime of the reference simulation (black line), and the PE468

variability has smaller variance (see also the second row of Tab. 1). The low-frequency variability469

actually oscillates around the PE level of the simulation in which the GM parameterisation with470

KGM = 1500 m2/s is employed (blue line). This is consistent with the fact that the time-mean of471

KGM obtained from projection is given by KGM ≈ 1585 m2/s (see the second row of Tab. 1 and also472

the next paragraph). Consequently, also in case of the GM parameterisation with a time-dependent473

KGM obtained from Eq. (43) the transitions in phase space to the high-PE regime of the reference474

simulation are not captured.475
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Figure 6b shows the estimated pdf of KGM computed from Eq. (43) and either employed in the476

GM parameterisation (red) or just diagnosed from the reference simulation (black). Both KGM-477

distributions are unimodal and slightly positively skewed. Most strikingly, however, is that in both478

cases KGM captures a significant amount of negative values. Negative KGM-values are not consis-479

tent with a diffusion model. Hence, the low-frequency variability (red line in Fig. 6a) presumably480

emerges from the wrong reason, namely, backscatter due to a negative diffusivity. We also note481

that the temporal average and standard deviation of KGM is significantly smaller when only di-482

agnosed from the reference simulation (448± 697 m2/s) than when the GM parameterisation is483

actually applied (1585±1374 m2/s, see also the second row of Tab. 1). We discuss this difference484

in detail in the next section (subsections c3,4).485

Finally, we emphasise that the relative error ||RB
i − R̃B

i ||/||RB
i || of the GM parameterisation is486

about 97% and hence extremely high (see the second row of Tab. 1). This holds for when the GM487

parameterisation is employed as well as for when the GM parameterisation is just diagnosed from488

the reference simulation (see also Fig. 7a discussed below in subsections c3,4).489

c. Dynamical spatial mode representation of the eddy forcing based on energetics490

It is well-known that the diffusive closure approach is limited since eddies also act up-gradient491

in geophysical turbulence (Starr 1968; Berloff 2005a), implying energy transfer from the eddy492

components to the large scale (i.e. backscatter, see Fig. 5c,e). Consequently, instead of aiming493

for an improved turbulent diffusion closure (e.g. via a spatially/temporally/stochastically varying494

eddy diffusivity tensor) we seek for additional dynamical large-scale spatial fields (next to the495

large-scale isopycnal gradient) to represent the eddy forcing more adequately. That is, in order496

24



to extend or replace the GM parameterisation we think in terms of a dynamical9 spatial mode497

expansion of the eddy forcing,498

R̃B
i (x, t) =

l

∑
k=1

ξk(t)ϕk(x, t) , (44)499

with time-dependent spatial modes ϕk(x, t), and evolution coefficients ξk(t). The GM parameteri-500

sation (42) represents a special case with l = 1, ξ1 =− (−1)i−1 f0
Hi

KGM(t), and ϕ1 = ∇2[η ].501

Optimally, the spatial modes ϕk(x, t) can be efficiently obtained from terms of the large-scale502

flow equations, and the evolution coefficients ξk(t) have clear dynamical or statistical properties503

such that they may be modelled deterministically or stochastically, ξk(t)→ ξk(t;ω). Also a small504

set of modes should be sufficient in order to assure feasibility. However, dynamical modes are505

typically constructed via generalised eigenproblems (e.g. linear instability modes (Dijkstra 2005;506

Berloff 2005b; Shevchenko et al. 2016)) or optimisation problems (e.g. Lyapunov vectors, CNOPs507

(Dijkstra 2013; Dijkstra and Viebahn 2015)) and, hence, are generally expensive to compute, if at508

all.509

1) SPECIFICATION OF SPATIAL ENERGY MODES510

In this study, we explore whether spatial fields that stem from the large-scale energetics can suit511

as dynamical spatial modes ϕk(x, t) (as in Eq. (44)) to parameterise the eddy forcing. More pre-512

cisely, we focus on large-scale available potential energy budget, Eq. (27), since the eddy forcing513

related to the baroclinic route, RB
i , directly appears therein. The capital letters in Eq. (27) denote514

globally integrated LEC-terms. In order to express the respective LEC-terms as spatially extended515

PV fields (i.e. as integral kernels of the globally integrated energetics) we use lower-case letters.516

9Dynamical modes are time-dependent and budget-based in the sense that their computation explicitly involves the governing conservation

equations (see e.g. Dijkstra (2016)). In contrast, for example, statistical modes (e.g. EOFs) are data-based and not budget-based.
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We then have517

∂t [pe] = c(pe′, [pe])− c([pe], [ke]) ⇔ c(pe′, [pe]) = ∂t [pe]+ c([pe], [ke]) , (45)518

with519

∂t [pe] = − 1
R2 ∂t [η ] , (46)520

c(pe′, [pe]) =
f0

g′

(
RB

1 −RB
2 +

1
R2 J([ψ1], [ψ2])

)
= (47)521

=
f0

g′R2 [J(ψ1,ψ2)] , (48)522

−c([pe], [ke]) =
f0

g′

(
RH

1 −RH
2 + J([ψ1],∇

2[ψ1])]− J([ψ2],∇
2[ψ2]))

)
−523

−β∂x[η ]−∂t∇
2[η ]+AH∇

4[η ]+
f0[∂yτx]

ρ0H1g′
= (49)524

=
f0

g′

(
[J(ψ1,∇

2
ψ1)]− [J(ψ2,∇

2
ψ2)]

)
−β [∂xη ]− [∂t∇

2
η ]+525

+AH∇
4[η ]+

f0[∂yτx]

ρ0H1g′
. (50)526

Note that multiplication of Eq. (45) with−ρ0g′R2[η ] and global integration gives Eq. (27). For the527

2-layer model considered in this study, Eq. (45) corresponds to the PV evolution equation of the528

large-scale interface displacement [η ] (i.e., first baroclinic mode) which is obtained by subtracting529

Eq. (13) from Eq. (14). Combining Eq. (20) with Eq. (48) gives530

RB
i =

(−1)i−1

Hi

(
f0R2c(pe′, [pe])−

f 2
0

g′
J([ψ1], [ψ2])

)
= (51)531

Eq. (45)
=

(−1)i−1

Hi

(
f0R2(∂t [pe]+ c([pe], [ke]))−

f 2
0

g′
J([ψ1], [ψ2])

)
, (52)532

such that RB
i is solely expressed in terms of large-scale (i.e. filtered) quantities.533

This motivates us to consider the following two types of dynamical spatial energy modes534

ϕ
r
τ(x, t) := ∂t [pe](x, t− τ) and ϕ

c
τ (x, t) := c([pe], [ke])(x, t− τ) , (53)535

where ϕr
τ is related to the temporal change of the APE reservoir at previous time t− τ < t, and ϕc

τ536

is related to the conversion between large-scale APE and KE at previous time t− τ < t. Here τ537
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represents the lag relative to the current time t. Note that ∂t [pe] and c([pe], [ke]) are not available538

in a numerical model at time t but are given only after the equations of motion are solved. Addi-539

tionally, the temporal derivatives of the spatial energy modes ϕr
τ and ϕc

τ can be considered (since540

e.g. these may improve the convergence behaviour of Eq. (44) analogous to a Taylor expansion).541

Hence, in terms of a numerical model with a discrete time step ∆t the overall set of spatial energy542

modes reads543

Φ :=
∞⋃

k,l=1

{∂ l−1
t ϕ

r
k∆t ,∂

l−1
t ϕ

c
k∆t} . (54)544

The set Φ is obviously infinite. Moreover, the energy modes are generally non-orthogonal. Note545

that the eddy forcing of the previous time step, i.e. RB
i (x, t−∆t), is exactly given via the energy546

fields ϕr
∆t and ϕc

∆t (see Eq. (52)). Consequently, it is essentially the increment of the eddy forcing,547

RB
i (x, t)−RB

i (x, t−∆t), that has to be modelled by Eq. (44) with energy modes.548

2) SELECTION OF FINITE SUBSET OF SPATIAL ENERGY MODES549

In order to compute a dynamical spatial mode expansion of the eddy forcing as in Eq. (44) in a550

numerical model one has to select a finite subset of energy modes out of Φ. A detailed analysis of551

(finding) the optimal subset of energy fields is a topic for future research (see discussion section552

5). In this study we investigate the following subsets of Φ,553

Φ
n
∆τ := {ϕr

∆t ,ϕ
c
∆t}

n⋃
k=1

{∂tϕ
r
(∆t+(k−1)∆τ),∂tϕ

c
(∆t+(k−1)∆τ)} , (55)554

where ∆τ represents the lag step size, and n determines the cardinality of Φn
∆τ

, given by |Φn
∆τ
| =555

2+2n. Note that for each Φn
∆τ

the contained energy modes vary in time but ∆τ and n are fixed.556

In other words, the subspace spanned by Φn
∆τ

is enlarged by increasing n which corresponds557

to additionally including realisations of the fields ∂tϕ
r,∂tϕ

c further in the past. Enlarging the558

subspace used to approximate the eddy forcing by field realisations further in the past is a form559
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of delay embedding (Takens 1981). Moreover, it is motivated by the Mori-Zwanzig formalism560

which demonstrates that the representation of unresolved physics includes (the estimation of) a561

memory term that involves the past history of the resolved physics (Wouters and Lucarini 2013;562

Gottwald et al. 2016). The possible relevance of the flow history for ocean eddy parameterizations563

has also been pointed out recently by Bachman et al. (2018) in the context of a non-Newtonian564

fluid mechanics approach to eddy parameterization.565

More precisely, in the following sections we investigate the convergence behaviour of the fol-566

lowing dynamical spatial mode expansion of the eddy forcing,567

R̃
Φn

∆τ

i := ξ
J
0 (t)J([ψi],

(−1)i−1 f0

Hi
[η ])+ξ

r
0(t)ϕ

r
∆t +ξ

c
0 (t)ϕ

c
∆t +568

+
n

∑
k=1

[
ξ

r
k (t)∂tϕ

r
(∆t+(k−1)∆τ)+ξ

c
k (t)∂tϕ

c
(∆t+(k−1)∆τ)

]
. (56)569

In this study we consider 0 ≤ n ≤ 16 and ∆τ ∈ {3hrs,6hrs,12hrs}. For completeness we also570

include the large-scale Jacobian, J([ψi],
(−1)i−1 f0

Hi
[η ]), in the expansion (see Eq. (52)). For each571

choice of n and ∆τ the expansion (56) represents a parameterisation of the eddy forcing RB
i .572

The expansion coefficients in Eq. (56) are computed at each model time step by using ordinary573

least squares with respect to RB
i . Analysing the dynamical and statistical behaviour of the expan-574

sion coefficients as well as proposing a (possibly stochastic) model for the expansion coefficients575

in order to build a fully self-consistent closure is a topic for future research (see discussion section576

5). Here the aim is to investigate how well the expansion (56) approximates (converges to) RB
i .577

Finally, we contrast the convergence behaviour of Eq. (56) in two ways. We first consider the578

similar dynamical spatial mode expansion,579

R̃
Φn

∆τ
,GM

i := ξ
J
0 (t)J([ψi],

(−1)i−1 f0

Hi
[η ])+ξ

GM
0 (t)∇2[η ]+ξ

r
0(t)ϕ

r
∆t +ξ

c
0 (t)ϕ

c
∆t +580

+
n

∑
k=1

[
ξ

r
k (t)∂tϕ

r
(∆t+(k−1)∆τ)+ξ

c
k (t)∂tϕ

c
(∆t+(k−1)∆τ)

]
, (57)581
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where the GM term (see Eq.(42)) is additionally included in the expansion. In this way we inves-582

tigate the impact of the GM field on the convergence behaviour.583

In addition, we also analyse the convergence behaviour of the spatial filter modes χi as given10
584

in section 2b. That is, we consider the same expansions as in (56) and (57) but instead of using585

the energy modes Φn
∆τ

we use the filter modes χi (ordered by decreasing eigenvalue/wavenumber).586

The expansions read587

R̃F n

i := ξ
J
0 (t)J([ψi],

(−1)i−1 f0

Hi
[η ])+

n

∑
k=1

ξ
f

k (t)χk , (58)588

R̃F n,GM
i := ξ

J
0 (t)J([ψi],

(−1)i−1 f0

Hi
[η ])+ξ

GM
0 (t)∇2[η ]+

n

∑
k=1

ξ
f

k (t)χk . (59)589

Again, the expansion coefficients are computed at each model time step by using ordinary least590

squares with respect to RB
i .591

3) APPROXIMATION OF THE EDDY FORCING ON THE REFERENCE ATTRACTOR592

In the following we analyse the approximation of the eddy forcing RB
i by the different series593

expansions defined in the previous section (see Eq. (56)-(59)). In this section the terms in Eq. (56)-594

(59) are diagnosed from the reference simulation (described in section 2a). That is, the replacement595

RB
i → R̃B

i (see section 3a) is not applied in the simulation and, hence, the state vector is always596

on the attractor of the reference ER model.597

(i) Relative error of eddy forcing. Figure 7a shows the time-mean relative error of the eddy598

forcing for the filter mode expansion either with GM term (black, Eq. (59)) or without GM term599

(red, Eq. (58)). The two curves are almost identical which demonstrates that the GM term is600

not able to significantly reduce the relative error of the eddy forcing. In other words, the GM601

field (as a direction in phase space) is largely orthogonal to the eddy forcing field. For both602

10Loosely speaking, these are Fourier-type modes. More precisely, the spatial filter modes χi are eigenmodes of the Bilaplacian in this study.
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curves the decrease in relative error (i.e. the slope of the curve) is minimal at the beginning and603

monotonically increasing with increasing number of filter modes. The value of the relative error604

for the filter modes is in the order of 10−1 and only reaches a very small value (i.e. O(10−13))605

when all filter modes are used. That is, the convergence of Eq. (58)-(59) is slow.606

Figure 7b shows the time-mean relative error of the eddy forcing for the energy mode expansion607

Eq. (57) with ∆τ = 3hrs (blue), ∆τ = 6hrs (black), ∆τ = 12hrs (magenta). Note the logarithmic608

scale on the ordinate. The effect of the GM term on the relative error is again very small such that609

the curves related to Eq. (56) are indistinguishable from the shown curves. In contrast to the filter610

modes, the decrease in relative error (i.e. the slope of the curve) is maximal at the beginning and611

monotonically decreasing with increasing number of energy modes (for comparison the curve of612

the filter modes is shown by the blue dashed line). With only 4 energy modes used in Eq. (56) the613

relative error drops to O(10−5) and for ∆τ = 3hrs a relative error of O(10−12) is reached with 30614

energy modes. That is, the convergence of Eq. (56)-(57) is very fast since adding energy modes615

reduces the order of magnitude of the relative error. Finally, it holds for the reference simulation616

that the smaller ∆τ the smaller the relative error.617

(ii) GM diffusivity. Figure 8a shows the time-mean GM diffusivity KGM for the filter mode ex-618

pansion with GM term (blue, Eq. (59)). The GM diffusivity KGM decreases nearly linearly due to619

the subsequent inclusion of more and more filter modes. However, the value of KGM remains in620

the order of 100 m2/s. Only when almost all filter modes are included the value of KGM becomes621

small and, hence, the impact of the GM term is insignificant.622

Figure 8b shows the time-mean GM diffusivity KGM for the energy mode expansion with GM623

term (Eq. (57)) with ∆τ = 3hrs (blue), ∆τ = 6hrs (black), ∆τ = 12hrs (magenta). The behaviour624

of KGM resembles the behaviour of the relative error (Fig. 7b). Note again the logarithmic scale625
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on the ordinate. Including energy modes drastically reduces the value KGM, that is, by orders of626

magnitude. With only 4 energy modes used in Eq. (57) the value of KGM drops to O(10−3m2/s)627

indicating that the GM term is essentially without impact. Finally, it holds for the reference simu-628

lation that the smaller ∆τ the smaller KGM.629

4) APPROXIMATION OF THE EDDY FORCING IN THE PRESENCE OF ERROR PERTURBATIONS630

In this section we analyse the approximation of the eddy forcing RB
i by the different series631

expansions defined by Eq. (56)-(59). At each time step the corresponding replacement RB
i → R̃B

i632

is performed (see section 3a) resulting into a different simulation for each parameterisation (e.g.633

series expansion). Consequently, error perturbations due to the approximate representation of the634

eddy forcing RB
i are introduced in each simulation and, hence, the state vector can be pushed635

away from the attractor of the reference simulation. If the parameterisation of the eddy forcing636

is accurate enough it can compensate for the error perturbations and can keep the system within637

or near the attractor of the reference simulation. On the other hand, if the parameterisation of the638

eddy forcing is not accurate enough then the respective model will exhibit a different attractor.639

(i) Relative error of eddy forcing. Figure 7a shows the time-mean relative error of the eddy forc-640

ing for the filter mode expansion either with GM term (blue, Eq. (59), see also Tab. 1) or without641

GM term (magenta, Eq. (58)). The relative error for the simulations with error perturbations is642

slightly smaller than for the reference simulation (black and red curves). Nevertheless, the overall643

behaviour is very similar to the reference simulation: The blue and magenta curves are nearly644

identical which indicates that the GM term is not able to significantly reduce the relative error of645

the eddy forcing. For both curves the decrease in relative error (i.e. the slope of the curve) is646

minimal at the beginning and monotonically increasing with increasing number of filter modes.647

31



The convergence of Eq. (58)-(59) is slow since the value of the relative error is in the order of 10−1
648

and only reaches a very small value (i.e. O(10−13)) when all filter modes are used.649

A crucial point in Fig. 7a is that the filter mode expansion without GM term (magenta, Eq. (58))650

leads to a model blow-up if less than 10 filter modes are used (the magenta curve only starts at651

#modes = 10). On the other hand, the filter mode expansion with GM term (blue, Eq. (59)) leads652

to stable model simulations for any number of filter modes (see also Tab. 1). Hence, the effect of653

the GM term becomes clearer: the GM term cannot not significantly reduce the relative error of654

the eddy forcing but it can stabilise the model. In dynamical systems terms the GM term acts as a655

stablising direction in phase space. That is, the GM term cannot direct the system’s state along the656

attractor (it cannot excite the intrinsic low-frequency variability transitions in phase space as done657

by unstable directions) but it mainly keeps the system from diverging.658

Figure 7b shows the time-mean relative error of the eddy forcing for the energy mode expansion659

Eq. (57) with ∆τ = 3hrs (red, see also Tab. 1), ∆τ = 6hrs (green), ∆τ = 12hrs (cyan). Note the660

logarithmic scale on the ordinate. The effect of the GM term on the relative error is again very661

small such that the curves related to Eq. (56) are indistinguishable from the shown curves. On662

the other hand, the stabilising effect of the GM term also appears for the energy modes: for the663

application of Eq. (56) (i.e. energy mode expansion without GM term) with only 2 energy modes664

the model blows up whereas for the application of Eq. (57) (i.e. energy mode expansion with GM665

term) the model is stable.666

The overall behaviour of the relative error for the simulations with error perturbations (red,667

green, cyan) is similar to the results of the reference simulation (blue, black, magenta). That is,668

the relative error decreases much faster (adding energy modes reduces the order of magnitude669

of the relative error) than for the filter modes (shown for comparison by the blue dashed line).670

However, due to the induced error perturbations the decrease in relative error is weaker than for671
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the reference simulation. For example, for 30 energy modes and ∆τ = 3hrs the relative error is672

O(10−5) instead of O(10−12) for the reference simulation. Moreover, the impact of ∆τ is more673

complicated than for the reference simulation. Roughly speaking, if less than 20 energy modes674

are used in Eq. (56) or Eq. (57) then the relative error is slightly smaller for larger ∆τ whereas if675

more than 20 energy modes are used then the situation of the reference situation is reencountered676

(i.e. the smaller ∆τ the smaller the relative error).677

(ii) GM diffusivity. Figure 8a shows the time-mean GM diffusivity KGM for the filter mode ex-678

pansion with GM term (red, Eq. (59), see also Tab. 1). The behaviour is largely similar to the679

results of the reference simulation (blue), namely, the GM diffusivity KGM decreases nearly lin-680

early due to the subsequent inclusion of more and more filter modes. However, the value of KGM681

is significantly larger (about one order of magnitude) than when diagnosed from the reference682

simulation. This in accordance with the interpretation of the GM term as a stabilising direction683

in phase space because in the presence of error perturbations (driving the system away from the684

attractor) the eddy forcing will project more on stable directions (driving the system back to the685

attractor). In other words, in the presence of error perturbations the GM term has work to do.686

Figure 8b shows the time-mean GM diffusivity KGM for the energy mode expansion with GM687

term (Eq. (57)) with ∆τ = 3hrs (red, see also Tab. 1), ∆τ = 6hrs (green), ∆τ = 12hrs (cyan).688

The behaviour is largely similar to the results of the reference simulation (blue, black, magenta),689

namely, including energy modes drastically reduces the value KGM, that is, by orders of magnitude.690

It also largely holds that the smaller ∆τ the smaller KGM. On the other hand, the value of KGM is691

larger than when diagnosed from the reference simulation (i.e. the stabilising direction projects692

on the error perturbations). Nevertheless, the value of KGM is still significantly smaller (O(1) for693

only 4 energy modes) compared to the values typically used in ocean models (O(1000)).694
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(iii) Time series of potential energy. Figure 9 shows time series of PE related to simulations695

employing the filter mode expansion with GM term (red, Eq. (59), see also Tab. 1) and the energy696

mode expansion with GM term and ∆τ = 3hrs (blue, Eq. (57), see also Tab. 1). For comparison697

the time series of the PE of the reference simulation is shown in black.698

The energy mode expansion exhibits monotonic and fast convergence behaviour in terms of PE699

(i.e. low-frequency variability). If only 2 energy modes are used (panel d) the PE variability is still700

significantly different from the reference PE. Intense low-frequency variability is present but it is701

situated between the low-PE regime of the reference simulation and another very-low-PE regime.702

Already with 4 energy modes in the expansion the high-PE regime of the reference simulation is703

regularly reached (not shown). But the low-PE regime is still bit lower than for the reference case.704

For 6 ≥ energy modes (panels f, h, j) the PE variability of the reference simulation appears to be705

essentially recovered.706

As expected, the situation is different for the filter mode expansions. The convergence behaviour707

is non-monotonic. Even for 20 filter modes (panel i) the PE variability is significantly different708

from the reference simulation. When using filter modes it appears to be difficult to reach the high-709

PE regime of the reference simulation. Either the PE variance is significantly smaller than for the710

reference simulation (panels c, g) or the low-PE regime is lower than for the reference simulation711

(panels e, i). This is also visible in Tab. 1.712

4. Summary713

The three key points of this study can be summarized as follows: First, we propose a new714

approach to parameterising sub-grid scale processes. In this approach the impact of the unresolved715

dynamics on the resolved dynamics, that is the eddy forcing, is represented by a series expansion716

in dynamical spatial modes that stem from the energy budget of the resolved dynamics. More717
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precisely, the so-called energy modes are directly obtained from the equations of motion of the718

resolved flow by identifying the integral kernels that lead to the different reservoir, generation,719

dissipation, and conversion terms in the large-scale energy budget. Hence, the energy modes720

exhibit strictly large-scale patterns and they are equipped with a clear physical interpretation in721

terms of energetics. Convergence towards the eddy forcing is accomplished via delay embedding722

by including additional realisations of these fields further in the past. We also note the relation to723

the Mori-Zwanzig formalism which indicates that the representation of unresolved physics needs724

to include a memory term that involves the past history of the resolved physics. For the 2-layer QG725

ocean model considered in this study, we demonstrate that the convergence of a series expansion726

in the energy modes is by orders of magnitude faster than the convergence of a series expansion in727

Fourier-type modes. That is, the eddy forcing can be accurately approximated with a very limited728

number of energy modes which enables a feasible parameterisation.729

Second, we explore a novel way to test parameterisations in models. The resolved dynamics730

and the corresponding instantaneous eddy forcing are defined via spatial filtering which accounts731

for the representation error of the equations of motion on the low-resolution model grid. In this732

way closures can be tested within the high-resolution model. Whereas in low-resolution models all733

energy pathways between large-scale and eddy components must be parameterised simultaneously,734

testing parameterisations in the high-resolution model offers the possibility to isolate the effects735

of a single parameterisation (related to a single energy pathway) while the other large-scale eddy736

energy conversions are correctly computed. For the 2-layer QG ocean model considered in this737

study, we focus on parameterisations of the baroclinic energy pathway while the barotropic energy738

pathway is correctly computed by the high-resolution model.739

Third, we test the standard closure of the baroclinic energy pathway in the ocean components740

of state-of-the-art climate models, i.e. the Gent-McWilliams (GM) parameterisation with a scalar741
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diffusivity, in the high-resolution QG ocean model considered in this study. It turns that the GM742

field steers trajectories along a stabilising direction in phase space. That is, the GM field does743

not project well on the eddy forcing (it exhibits a very high relative error) and fails to excite the744

model’s intrinsic low-frequency variability (i.e. it is not able to propagate the model’s state along745

the correct attractor e.g. along an unstable direction). The GM field mainly stabilises the model.746

That is, if the representation of the eddy forcing is very inaccurate (e.g. small number of modes747

used in expansion) the GM term performs the necessary dissipation of available potential energy748

such that the model does not diverge.749

5. Discussion750

Finally, we elaborate on open issues of this study and related future research directions:751

Self-consistent closure of the baroclinic energy pathway. A closure of the baroclinic energy path-752

way is self-consistent if it does not involve the actual (“true”) baroclinic eddy forcing. However,753

in this study we still use RB
i for the computation of expansion coefficients (i.e. the coefficients754

that appear in a spatial mode expansion) via ordinary least squares. Determining a self-consistent755

closure of the baroclinic energy pathway is related to three intricate and intimately related issues:756

(i) determining the optimal subset of energy fields (see Eq. (54)), (ii) diagnosing the correspond-757

ing expansion coefficients, and (iii) proposing a (possibly stochastic) self-consistent model for758

the expansion coefficients. The choices made with respect to (i)− (iii) can have an effect on the759

accuracy of the approximation (as indicated in this study by the different choices for ∆τ), the com-760

putational cost and complexity of the model, the regularity of the expansion coefficients, and the761

uniqueness and hence physical interpretation of the series expansion in energy modes.762

For example, a problem related to these issues and well-known in statistics and machine learning763

is the issue of overfitting-versus-underfitting or the bias-variance tradeoff. Low-bias approaches764
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can usually give accurate representation of the data but produce large variances. In contrast, mod-765

els with higher bias produce lower variances but less accurate representations. Regularization766

methods introduce bias into the regression solution that can reduce variance considerably. In this767

way the behaviour of the expansion coefficients becomes simpler and easier to model but the ap-768

proximation becomes less accurate.769

Self-consistent closure of the barotropic energy pathway. In order to make the equations for the770

large-scale flow (Eq. (13)-(14)) completely self-consistent one also has to specify a self-consistent771

closure of the barotropic energy pathway (i.e. RH
i ). The standard closure of the barotropic energy772

pathway is lateral viscous dissipation with an enhanced ‘eddy’ viscosity coefficient. Similar to the773

GM parameterisation the lateral viscosity parameterisation suffers from the lack of backscatter (see774

Fig. 5). But an adequate closure of the energy exchange between large-scale and eddy components775

is necessary in order to be able to perform low-resolution model simulations exhibiting eddy-776

driven low-frequency variability. One option is to proceed in a way similar to this study: explore777

whether spatial fields that stem from the large-scale kinetic energy budget can suit as dynamical778

modes to parameterise the eddy forcing RH
i .779

Dynamical systems analysis of the large-scale flow in the turbulent regime. As soon as adequate780

closures for both the baroclinic and the barotropic energy pathways are available it is in principle781

possible (i.e. feasible due to low model resolution) to analyse the dynamics of the large-scale flow782

in the turbulent regime in a systematic way. In case of deterministic closures this is related to the783

existence of multiple equilibria, stability properties, bifurcations and chaotic attractors (Dijkstra784

2005). In case of stochastic closures the investigation will be from the perspective of random785

dynamical systems which is related to stochastic bifurcations (i.e. changes in the probability den-786

sity function), pullback attractors and invariant measures (Dijkstra 2013). We note that in case of787

low model resolutions a whole set of numerical techniques to investigate transitions in stochastic788
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dynamical systems becomes feasible (Dijkstra et al. 2016). For example, it becomes possible to789

numerically solve the SPDEs via dynamical mode expansions (Sapsis and Lermusiaux 2009) and790

to investigate the interaction of external noise forcing with internal nonlinear variability in the791

turbulent regime (Sapsis and Dijkstra 2013).792

Comparison with other approaches to eddy parameterization. In this study, we compared turbu-793

lence closures based on energy modes with the GM eddy parameterisation approach. We focussed794

on a positive and spatially constant KGM because it is straightforward to diagnose (e.g. not enter-795

ing issues around rotational eddy fluxes), and, more importantly, because a spatially homogenous796

KGM is still regularly applied in state-of-the-art realistic ocean models. On the other hand, the esti-797

mation and performance of a spatially inhomogeneous (and possibly tensor-valued) KGM remains798

a crucial topic (Eden et al. 2007, 2009; Viebahn and Eden 2010). The relation between energy799

modes and the GM parameterisation, as well as other approaches to eddy parameterisation (Mana800

and Zanna 2014; Jansen and Held 2014; Bachman et al. 2018), will hopefully be further elucidated801

in future studies.802

More realistic ocean model configurations. The ocean model considered in this study is situated803

at the more idealised end in the hierarchy of ocean models. Several features and processes must804

be included in order to make the details more realistic. These include higher vertical resolution,805

diabatic terms like buoyancy forcing and buoyancy sinks, and realistic topography and coastlines.806

We are currently extending our results to a 3-layer model including realistic topographic interac-807

tions. Eventually, one also has to consider the primitive equations in order to be able to investigate808

global realistic ocean models. The corresponding energy budgets are more complicated but de-809

tailed analyses are becoming available nowadays (von Storch et al. 2012; Wu et al. 2017; Jüling810

et al. 2018).811
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Climate model simulations subject to intrinsic (eddy-driven) low-frequency variability. Finally,812

when adequate closures for the energy pathways in realistic ocean models are available then long-813

period low-resolution climate model simulations exhibiting eddy-driven low-frequency variability814

become possible. This is crucial since then issues related to anthropogenic climate change (forced815

variability) versus intrinsic low-frequency variability (internal variability) can be addressed in a816

statistically significant manner.817
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TABLE 1. Temporal average and standard deviation of PE, the GM diffusivity KGM , and the relative error of the

eddy forcing for different model setups with R̃B
i expanded in either filter modes (indicated by F(# f ilter modes)

and based on Eq. (59)) or energy modes (indicated by E(#energy modes) and based on Eq. (57) with ∆τ =3

hours). The values are based on daily output of about 200 years. Note that the values are still subject to small

trends since for perfect convergence simulation lengths of O(1000 years) would be necessary (see also Fig. 9).

943

944

945

946

947

setup PE [PJ] KGM [m2/s] ||RB
i − R̃B

i ||/||RB
i ||

reference 967±116 - -

GM 685±58.3 1585±1374 0.97±0.03

J-GM 743±74.9 1126±1140 0.80±0.11

J-GM-F(2) 855±56.3 1713±1477 0.78±0.11

J-GM-F(4) 843±78.1 1931±1607 0.77±0.11

J-GM-F(6) 770±88.9 1720±1446 0.77±0.11

J-GM-F(8) 803±96.7 1750±1511 0.77±0.11

J-GM-F(10) 868±74.8 1726±1508 0.77±0.11

J-GM-F(20) 778±107 1315±1223 0.73±0.11

J-GM-F(30) 952±104 1063±1054 0.67±0.12

J-GM-E(2) 782±103 8.0±28 0.67±0.11

J-GM-E(4) 893±126 2.2±33 0.51±0.10

J-GM-E(6) 940±99.6 1.1±24 0.37±0.08

J-GM-E(8) 946±99.9 0.7±18 0.28±0.07

J-GM-E(10) 959±113 0.6±14 0.21±0.06

J-GM-E(20) 971±123 0.02±1 0.01±10−3

J-GM-E(30) 973±117 10−3±0.02 10−5±10−5
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FIG. 1. Large-scale component of an upper layer streamfunction (a) snapshot and (b) time-mean. (c) and (d)

show the corresponding reference (i.e. unfiltered) upper layer streamfunctions. Anomalies of the reference (i.e.

unfiltered) upper layer streamfunction (with respect to the time-mean shown in d) corresponding to (e) a low and

(f) a high in the low-frequency variability of PE (see Fig. 5a). The contour interval in all panels is 2.5 Sv.
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FIG. 2. Selected leading eigenmodes (ortho-normalised) of the Bilaplacian with no-slip boundary conditions

computed on the high-resolution grid (i.e 3492 grid points).
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FIG. 3. First 300 eigenvalues of the Bilaplacian (left axis) for the ER model (blue) and the non-ER model

(red). The relative difference (right axis), i.e. |
(
λ̂i/λi−1

)
∗100|, is also shown (green). Moreover, the relative

difference in globally integrated kinetic energy, i.e. |
(
(
∫

χ̂i∇
2χ̂i dxdy)/(

∫
χi∇

2χi dxdy)− 1
)
∗ 100|, is shown

(black). Note that the number of eigenmodes for the ER (non-ER) model is 3492 (342). The Nyquist cutoff for

the non-ER model is N̂Nyquist = 172 = 289.
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[KE]
G([KE])

D([KE])

D(KE')

KE'

C([KE],KE')

PE'

[PE] C([KE],[PE])

C([PE],PE')

C(PE',KE') G(KE')

22 ± 2 GW40 ± 9.3 PJ856 ± 99 PJ

0.4 ± 0.1 GW

13.4 ± 13.2 GW 8.3 ± 6.4 GW

111 ± 15 PJ 194 ± 34 PJ 1 ± 0.3 GW

22 ± 4 GW

13.4 ± 6 GW

13.4 ± 11 GW

FIG. 4. Lorenz energy cycle (temporal average and standard deviation) of the 2-layer QG model based on

spatial filtering and 500 years of daily output. Shown are the reservoirs of large-scale available potential energy

([PE]), large-scale kinetic energy ([KE]), eddy available potential energy (PE’), and eddy kinetic energy (KE’),

as well as the corresponding energy generation (G), dissipation (D), and conversion (C) terms.
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FIG. 5. Time series of (a) energy reservoirs, (b) energy generation and dissipation, (c) conversion between

large-scale and small-scale kinetic energy, (d) conversion between large-scale kinetic energy and large-scale

available potential energy, (e) conversion between large-scale available potential energy and small-scale avail-

able potential energy, and (f) temporal tendency of the large-scale available potential energy reservoir. Note that

the last three terms constitute the large-scale available potential energy budget (Eq. (27)).
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FIG. 6. a) Potential energy corresponding to the reference simulation (black, same as in Fig. 5a), and for

simulations in which the GM parameterisation (Eq. (39)) is employed with KGM either a constant (blue, green)

or given via Eq. (43) (red). b) Estimated probability density function of KGM (computed via Eq. (43)) for a

simulation in which the GM parameterisation is employed (red) and for the reference simulation (black, the GM

parameterisation is not employed in the model but KGM is just diagnosed). The average and standard deviation

are 1585±1373 m2/s (red) and 448±697 m2/s (black).
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FIG. 7. Time-mean relative error of eddy forcing, ||RB
i − R̃B

i ||/||RB
i ||, with R̃B

i given by (a) the series

expansions (58) or (59) related to the filter modes and (b) the series expansion (57) related to the energy modes

(the results for the series expansion (56) are virtually identical). Here ‘ref’ refers to the reference simulation

(R̃B
i is only diagnosed) and ‘app’ refers to simulations in which R̃B

i is applied. The lag step size ∆τ is given in

hours.
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FIG. 8. Time-mean of the GM diffusivity KGM for (a) the series expansion (59) and (b) the series expansion

(57). Here ‘ref’ refers to the reference simulation (R̃B
i is only diagnosed) and ‘app’ refers to simulations in

which R̃B
i is applied. The lag step size ∆τ is given in hours.
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FIG. 9. Time series of PE for the reference simulation (black), and for simulations with R̃B
i expanded in either

filter modes (red, with F(# f ilter modes) and based on Eq. (59)) or energy modes (blue, with E(#energy modes)

and based on Eq. (57) with ∆τ =3 hours).
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