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Abstract—This paper presents a probabilistic power flow
model subject to connection temperature constraints. Renewable
power generation is included and modelled stochastically in order
to reflect its intermittent nature. In contrast to conventional
models that enforce connection current constraints, short-term
current overloading is allowed. Temperature constraints are
weaker than current constraints, and hence the proposed model
quantifies the overload risk more realistically. Using such a
constraint is justified the more by the intermittent nature of
the renewable power source.
Allowing temporary current overloading necessitates the incor-
poration of a time domain in our model. This substantially
influences the choice of model for the renewable power source,
as we explain. Wind power is modelled by use of an ARMA
model, and appropriate accelerations of the power flow solution
technique are chosen. Several IEEE test case examples illustrate
the more realistic risk analysis. An example shows that a
current constraint model may overestimate these risks, which
may lead to unnecessary over-investments by grid operators in
grid connections.

Keywords- Probabilistic power flow, renewable generation,
Monte Carlo, reliability analysis

I. I NTRODUCTION

Renewable energy generation is increasingly integrated,
but high penetration of renewable generators is expected to
strain the power grid. The limited predictability of distributed
renewable sources implies that substantial implementation in
the grid will result in a significantly increased risk of power
imbalances. Uses of storage, trade or unit commitment may
mitigate these risks. Above all, a quantitative uncertainty
analysis of the power flow has to be performed, which is the
topic of this paper.
An electricity network should fulfill the following constraints:

• The absolute voltage should be between acceptable
bounds at all nodes. Formally stated,

Vmin < |V (t)| < Vmax (1)

should hold at all nodes for all timest.
• The reactive power should be between acceptable bounds

at all generation nodes:

Qmin < Q(t) < Qmax, (2)

should hold at all nodes for all timest.

• The temperature of each connection should be bounded:

T (t) < Tmax, (3)

should hold at all node connections for all timest. Tmax

is assumed to be the critical temperature of the connection
above which operation failure or degradation over time
may occur.

A straightforward method to satisfy the latter constraint, is to
ensure that the current never exceeds a certain maximum. That
is,

|I(t)| < Imax, (4)

should hold at all node connections for all timest. In this
paper, we assume thatImax corresponds toTmax in the sense
that if I(t) = Imax for all times t, then

lim
t→∞

T (t) = Tmax. (5)

These maxima depend on the material and thickness of the
connection. Tables displaying this correspondence for cables
can be found in [1], for example.
However, the transient temperature adjustment incurs some lag
time, so a mild violation of a given current maximum—with
a short duration—may not lead to violation of the temperature
constraint. Hence, directly imposing the current constraint
may be too restrictive. In fact, the grid dimensioning should
anticipate the most extreme event, which may very well be
accidental and of short duration. Underestimating the connec-
tion capacities in this way, may lead to over-investments in
grid connections. Therefore, this article will treat an improved
“soft” current constraint, which basically demands that the
current be not too high for too long, by focusing on constraint
(3) instead of (4).
To include renewable generation units, one must model their
uncertain nature. The choice of model should be consistent
with available data. Often, and especially when considering
investments in new infrastructure, power generation data are
scarce, and data of their meteorological sources (e.g. wind
speed, solar radiation) are preferred because of their wide
availability. Further, the power generation and therefore the
connection currents exhibit time correlation. This means that
checking for short-term current overloading necessitates the
inclusion of chronology in our model, which discourages the
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choice for frequency domain approaches [2], [3], [4]. Instead,
we prefer a model which involves time correlation of the
meteorological sources.
A second reason for proposing a time domain based model
is the possible inclusion of storage devices. In order to know
the storage capacity and maximum power at some time step,
the state of charge information is required. This information
will depend on the device behaviour at the previous time step,
again necessitating the introduction of chronology into the
model. Since storage is one of the main solutions proposed to
mitigate the very problem of highly variable renewable power
generation, the possibility to extend the model with storage
is a welcome feature. Furthermore, we will show that the
theoretical benefit of mitigation will be underestimated by use
of the current constraint, which implies that storage mitigation
is even more promising.
Monte Carlo techniques are one way to quantify the risk of
violating the three mentioned constraints. In a straightforward
approach, one would first sample the meteorological source.
Then the corresponding power injection would be used in a
steady state power flow problem. In this way, many power flow
solution samples are drawn, after which the risk of constraint
violation can be estimated statistically.
This paper elaborates on this approach, using wind power as
the straining renewable resource. First, Section II-A presents a
time integration scheme for the dynamic connection tempera-
ture. Section II-B describes a stochastic wind power simulation
method. In Section II-C, we investigate an efficient solver for
the steady state power flow problem. Simulation results are
presented in Section III. After proposing possible extensions
in Section IV, we conclude this paper in Section V.

II. M ETHODOLOGY

A. Short-term overloading

Short-term overloading may warm up a connection insuf-
ficiently to increase the temperature to dangerous levels. In
fact, the actual quantity to be controlled is the connection
temperatureT (t), and not the current itself. Fortunately, as
is well-known [5], the transient temperature of the connection
is described by a first order ordinary differential equation:

τ
dΘ(t)

dt
+ Θ(t) =

|I(t)|2

I2
max

, (6)

with

Θ(t) =
T (t) − T0

Tmax − T0
. (7)

Here,T0 denotes the ambient temperature andI(t) the current.
The other three coefficients are determined by the connection
properties:τ denotes the thermal time constant for the heating
of the conductor, whereasTmax and Imax are as defined in
Section I.
The solution of (6) is obtained by direct integration:

T (t) = T0 +
Tmax − T0

τI2
max

∫ t

0

|I(s)|2e(s−t)/τds. (8)

To qualitatively demonstrate to what sense a temperature
constraint weakens the current constraint, let us first assume
a constant currentI(t) ≡ I. In this case, the formula above
simplifies to

T (t) = T0 +
|I|2

I2
max

(

Tmax − T0

)(

1 − e−t/τ
)

. (9)

Practically, this equation states that in order to satisfy con-
straint (3), one requires

1 −
I2
max

|I|2
< e−t/τ ∀ t. (10)

This inequality naturally shows that no excessive temperature
can occur as long as|I| < Imax. Otherwise,I is allowed to
take on some (constant) value higher thanImax for a maximum
duration of

− τ ln

(

1 −
I2
max

|I|2

)

, (11)

as long as the current subsequently drops belowImax.
In reality, I(t) is neither constant in time nor known an-
alytically, so we cannot find the analytic solution of (6).
However, suppose that we obtain a numeric sample path for
I(t). Then we can construct a corresponding sample path for
the temperature, by discretizing (6):

τ
Θt − Θt−∆

∆
+ Θt−∆ =

|It|2

I2
max

. (12)

Here,Θt andIt denote the numerical approximation forΘ(t)
and I(t), respectively, and∆ is the time step. Solving this
equation forΘt yields a numerical scheme for the relative
temperatureΘ(t), and thus for the absolute temperatureT (t).
In order to fufill the temperature constraint,Θt < 1 should
hold for all t.

B. ARMA based wind power model

In this article, we will choose wind power as the intermittent
power resource. To check the time dependent temperature
constraint (3), we require a time domain for the wind speed
model. Secondly, the model should capture the wind speed
distribution as observed in nature, which is assumed to be
the Weibull distribution. Further, to reflect inertia and recur-
rence of meteorological systems, spatial correlation between
meteorological sources as well as temporal periodicity should
be incorporated. The autoregressive moving-average (ARMA)
model is a well-known technique to fulfill these requirements.
The authors of [6] elaborate on an ARMA-GARCH wind
speed time series model and demonstrate that the simulated
times series realistically represent wind speed observations.
For simplicity, we use an ARMA model, thus using the model
in [6] except that homoscedasticity is assumed. The autore-
gressive moving-average model captures the time correlations
naturally. The Weibull distributed nature of the wind speed
is preserved: the input wind data are first transformed from
Weibull realizations to standard normal realizations. On these
transformed data, an ARMA(1,1) model is fitted. Parameters
are estimated using a standard statistical tool in MatLab
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(armax). New time series samples, simulated from this model,
are then transformed back to Weibull samples. The daily
periodicity is automatically attained by fitting different Weibull
cdf’s to each hour of the day. The yearly periodicity can be
incorporated as well, but is neglected as we consider time
series of no longer than one month.
Spatial dependency of wind speeds at different nodes is
estimated from the residuals as fitted to the transformed data.
The model in turn imposes this dependency by simulating
correlated white noise terms: consider the vector of white noise
termsY ∈ R

m at a specific time step of a specific Monte
Carlo sample, where its elements correspond to allm wind
farm locations in the network. Suppose first that we desire the
white noise to be a multivariate normally distributed random
variable with zero mean:

Y ∼ σN (0,Σ), (13)

with σ > 0 the desired standard deviation andΣ ∈ R
m×m

the correlation matrix exhibiting the spatial wind speed de-
pendence. Then we sample the multivariate standard normal
random variableZ ∼ N (0, I) with independent elements,
and perform a Cholesky decompositionΣ = LL⊤, with
L ∈ R

m×m lower triangular. By setting

Y := σLZ, (14)

Y will indeed be a multivariate normally distributed with mean
zero, standard deviationsσ and correlation matrixΣ. Alter-
natively, we may desire a multivariate Student’s t-distributed
random variableYk as white noise, where all elements havek
degrees of freedom and where the same dependence structure
is assumed. In this case, we extend the above procedure
by independently sampling a chi-squared distributed random
variablev with k degrees of freedom, and set

Yk := Y
√

k/v. (15)

ThenYk is as desired (more details can be found in [7]).
One month of hourly wind speed measurements from the
KNMI 1 [8] are used as data.. For a specific wind turbine, the
relation between the wind speed and the wind power is known,
as illustrated in Fig. 1. We transform wind speed time series
by use of this function, thus obtaining wind power time series.

C. Accelerated power flow method

In order to achieve a satisfactory accuracy level for a
connection reliability analysis, one should use a realistic time
frame as well as a sufficient number of Monte Carlo samples.
Then, for each time step and each Monte Carlo sample, a
steady state power flow problem has to be solved. This means
that each power flow problem should be solved reasonably fast.
This requirement will drive the choice of power flow method.

1Koninklijk Nederlands Meteorologisch Instituut. The wind speed at each
hour is estimated by the last 10 minutes mean wind speed of the previous
hour, in open landscape at 10 meters height
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Figure 1. Wind power as function of the wind speed.

A steady state power flow problem involves the solution of
the power balance equations:

Pi =

N
∑

j

|Vi||Yij ||Vj | cos(ψij + δj − δi), (16)

Qi = −
N

∑

j

|Vi||Yij ||Vj | sin(ψij + δj − δi). (17)

Here, Pi, Qi ∈ R denote the active and reactive power,
respectively, injected at nodei. |Vi|, δi ∈ R denote the voltage
magnitude and angle, respectively, in grid nodei. |Yij |, ψij ∈
R denote the absolute value and angle, respectively, of the
connection admittance between nodesi andj.N is the number
of grid nodes. This nonlinear system of equations has to be
solved for the state vectors|V | and |δ|, which is normally
done using a Newton-Raphson method [9].
The Fast Decoupled Load Flow (FDLF) method [10] speeds up
the conventional method, mainly by assuming approximations
which ensure that the Jacobian depends on the admittance
matrix Y only. This implies that the Jacobian will be constant
in the Newton-Raphson iteration number, and it thus has to
be inverted only once. This feature is particularly beneficial in
our proposed Monte Carlo method, since the inverse can be
reused for all samples.
Elements of the admittance matrixY are zero precisely when
there is no edge between the corresponding nodes. The number
of edges in a typical power grid topology is on the order
of the number of grid nodes. This means thatY is typically
sparse, as is illustrated in Fig. 2, based on two IEEE-test cases
[11]. This sparsity can be used to accelerate computations.
The nodal power estimates in one Newton-Raphson iteration
are computed from the state vectors using (16) and (17). For
example, we can rewrite the first equation as

Pi/|Vi| =
∑

j

|YijVj | cos(ψij + δj − δi), (18)

for all nodesi, or in vector form:

P /|V | = A(Y, δ)|V |. (19)
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Figure 2. Sparsity of admittance matrix of IEEE-30 and IEEE-300 cases.

Here, P ,V , δ ∈ R
N are vectors, the division on the left-

hand side is performed elementwise, and the matrixA(Y, δ) ∈
R

N×N depends onY andδ:

A = (aij), with aij = |Yij | cos(ψij + δj − δi). (20)

Now note thatA will be as sparse asY . Therefore, to evaluate
(19), it will be beneficial to compute only the necessary terms
in the summand by precaching the indices of nonzero elements
of Y . Then, we use the necessary elements ofδ to update
the necessary elements ofA. In this way, significantly fewer
computations have to be performed in this computation step.
Another acceleration for the power flow method involves the
power flow solution from the previous time step. Since the
amount of renewable power is a piecewise continuous function
of time, one may expect that two subsequent solutions will be
close. Therefore, the previous solution will be a reasonable
first guess for the current problem.
The three acceleration techniques discussed above (i.e. use of
FDLF method, sparse computations, and smart initialization)
significantly speed up the Newton-Raphson iteration loop.
Table I gives an impression of the CPU times2 of some
standard IEEE-test cases: the test case number corresponds to
the number of grid nodes. All average CPU times are based
on 1000 trials, and a Newton-Raphson tolerance error of10−5

is used. The table clearly shows that a sparse FDLF method is
accelerating the conventional power flow method, especially
for large grids. Smart initialization may yield some further
acceleration, depending on the test case.
We conclude that the computational time for a steady state
power flow is on the order of milliseconds. This order of
magnitude is desirable, since an accurate uncertainty analysis
requires a large number of Monte Carlo samples, each of
which involves as many steady state power flow problems as
the number of time steps.

2MATLAB Version 7.12.0.635 (R2011a), on an Intel(R) Core(TM) i7 CPU
M 640 2.80GHz, 2.79 GHz, 3.24 GB of RAM.

Table I
THE AVERAGE CPUTIME (MS) OF A SOPHISTICATED POWER FLOW

METHOD IS ON THE ORDER OF MILLISECONDS.

IEEE-test case (# nodes) 14 30 57 118 300
Conventional power flow 0.96 1.66 4.0 12.3 116.4
FDLF, sparse 0.72 0.78 1.5 12.2 111.6
FDLF, sparse, smart initialization 0.57 0.76 1.5 11.1 111.9

I II. RESULTS

A. Comparison between current and temperature constraint

To demonstrate the use of the temperature constraint in
a time domain based model, we consider the IEEE-14 test
case [11]. The conventional generators at nodes 3 and 6 are
replaced by wind farms with comparable rated power (4 base
MVA). Wind power time series samples are generated 1000
times, on an interval of one month, on an hourly basis, using
spatially correlated KNMI wind speed measurements during
August 2011 at Valkenburg and IJmuiden, the Netherlands.
Consumption is assumed constant in time. For simplicity, we
chooseImax = 3.7Ibase uniformly at all connections. Precisely
this value is used since then the current exceeds this maximum
at some connection approximately once a year. We choose
τ = 3 hours (see [12] for realistic values of the thermal time
constant).
In our results, the current overloading occurs most of the

times at the same connection during periods of high val-
ues of wind power generation. Fig. 3 shows an example
of temporary overloading at this critical connection, when
the temperature constraint is not violated. One can see that
the temperature time series is indeed following the current
time series. However, local temperature peaks are lower, less
frequent and smoother than local current peaks, and slopes are
more gradual. This illustrates the “softness” of temperature
constraint (3) compared to current constraint (4).
In the upper graph of Fig. 4, all 1000 current time series
samples at the critical connection are displayed. In the lower
graph of the same figure, the corresponding temperature time
series are displayed. One can see from this figure that the
current and temperature indeed exceed their maximum only

Table II
THE AUTOREGRESSIVE COEFFICIENTφ AND MOVING -AVERAGE

COEFFICIENTθ OF THE ARMA(1,1) MODELS AT THE TWO WIND NODES.

φ θ

Valkenburg 0.94 -0.34
IJmuiden 0.93 -0.15

4 6 8 10

Imax,Tmax

Time (days)

 

 

Current
Temperature

Figure 3. Example: temporary current overloading, which is allowed since
the temperature constraint is fulfilled.τ = 3.
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Table III
NUMBER OF CONSTRAINT VIOLATIONS FOR DIFFERENTIEEE TEST

CASES. 1000TIME SERIES SAMPLES OF1 MONTH, τ = 3

Test cases IEEE-14 IEEE-30 IEEE-57 IEEE-118
Current Violations 88 69 152 101
Temperature Violations 6 16 20 16

rarely. The graph magnification in Fig. 5 clearly illustrates
that a current overload does not necessarily imply excess
temperature at this connection. This result can be extended to
the other connections. In fact, in total 88 current violations
were incurred over all samples, which indeed corresponds
to approximately once a year. In contrast, the temperature
exceedsTmax only 6 times. Other IEEE test cases yield similar
results, as can be seen in Table III.

B. Sensitivity toτ

It is clear that the higher the thermal time constantτ , the
more the grid capacity will be underestimated when checked

Figure 4. The current and temperature at the critical connection, 1000 time
series samples,τ = 3.
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Figure 5. Magnification of Fig. 4: the temperature constraintis violated less
frequently than the current constraint.

by use of current constraints. Table IV shows a quantification
estimate of this sensitivity. We repeated the simulation of
the previous subsection for different values ofτ . The table
suggests that our proposed model will yield a significantly
more accurate reliability estimate forτ > 1.5. For values of
τ close to the time step∆ = 1, our discrete model loses its
ability to detect any differences. To explain this, note that for
τ → ∆, equation (12) goes to:

Θt =
|It|2

I2
max

, (21)

and thus becomes independent of the previous time step.
This model phenomenon is partly realistic. On the one hand,
the decreasing difference between the two constraints indeed
corresponds to reality:τ reflects the time the temperature
requires to reach1 − 1/e = 63.2% of its asymptotic value,
in case of constant current. So for small values ofτ , the
temperature will be close to its asymptotic value, which will
cause the two constraints to agree. On the other hand, the
total agreement between current and temperature constraints
is an overestimation. Current peaks with a duration less than
the time step size do not necessarily violate the temperature
constraint in reality, in contrast to our model which regards
the current as constant during one time step∆. Therefore, the
number of temperature violations in Table IV is overestimated.
Since hourly based data limit us to a time step of one hour,
this overestimation cannot be reduced by choosing a smaller
time step size. It therefore makes no sense to chooseτ < ∆
in the model, whereas the overestimation can be reduced by
acquiring data with a smaller time step.

IV. FURTHER RESEARCH

We aim to extend the model with distributed storage devices,
in order to investigate their potential mitigating effect on
variable power flows. In fact, Fig. 4 and Fig. 5 suggest that
the theoretical benefit of grid mitigation is expected to be
substantially higher when estimated using the temperature con-
straint rather than the current constraint. Specifically, the mean
current of all time series is24% of Imax, whereas the mean
temperature is only8% of Tmax. In other words, the peaks that
can be mitigated by use of decentralized storage are relative
to the mean even more extreme than conventionally estimated.
This implies that mitigation can theoretically increase the
connection ampacity by an even higher factor than estimated
using the current constraint. Note that mitigation during one
time step increases this ampacity even more (although to an
extent which is not estimable by our model).
Since storage devices produce and consume, and both to
varying degrees, the uncertain nature of their strategies makes

Table IV
NUMBER OF CONSTRAINT VIOLATIONS IN THEIEEE-14TEST CASE AS

FUNCTION OFτ . 1000TIME SERIES SAMPLES OF1 MONTH.

τ (hours) 1 1.5 2 3 4 5 6
Current Violations 119 80 100 88 95 100 101
Temperature Violations 119 50 25 6 3 0 0
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such an extension challenging. Further, we aim to increase
the efficiency of the Monte Carlo technique, to achieve higher
accuracy with the same number of simulations. We already
explained the computational intensity of the proposed model,
so an extension with storage devices will definitely necessitate
an increase of computational efficiency.
A time frame of one year may simply be incoorporated in
the model by iterating the work of this paper twelve times.
In this way, the model will automatically exhibit approximate
yearly periodicities, since each month model will be calibrated
separately.
Other forms of renewable generation may be included in
the model as well. Suppose that the characteristics of the
considered meteorological source are known, data are available
and the relation between the source and power parameters
is known. Then one may try to fit an ARMA model and
simulate power generation as done in Section II-B. Note that
the proposed model can be applied to transportation networks
as well as to distribution networks. Finally, stochastic, time-
varying consumption can be analogously included.

V. CONCLUSION

Due to the implementation of uncertain energy generators
in power grids, grid operators require quantitative uncer-
tainty analysis of power flow. Grids should satisfy certain
constraints in order to match the demand while controlling
overload risks. Using a conventional current constraint for
grid connections, Monte Carlo simulations underestimate the
grid capacity. Instead, a temperature constraint quantifies the
risk more accurately. Especially for connections with a high
thermal time coefficient, the temperature constraint estimate
for overloading frequency may be many times smaller than the
current constraint estimate. Therefore, using a model allowing
for temporary overloading may save costs by avoiding over-
investments.
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