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Abstract In scientific topics ranging from protein folding to the thehaline
ocean circulation, itis useful to model the effective macapic dynamics of com-
plex systems as noise-driven motion in a potential landsdaghis paper we con-
sider the estimation of such models from a collection of shon-equilibrium tra-
jectories between two points in phase-space. We genegrligeently introduced
spectral methodology for the estimation of diffusion psms from timeseries, so
that it can be used for non-equilibrium data. This methogplmakes use of the
spectral properties (leading eigenvalue-eigenfunctairsp of the Fokker-Planck
operator associated with the diffusion process. It is watksl to infer stochastic
differential equations that give effective, coarse-gedidescriptions of multiscale
systems. The generalization to the non-equilibrium situes illustrated with nu-
merical examples in which potentials and diffusion coedfits are estimated from
ensembles of short trajectories.

Keywords parameter estimationdiffusion process non-equilibrium data
stochastic differential equatiorsubsampling

1 Introduction

The description of complex processes as noise-driven matia potential land-
scape has been an appealing concept in various areas ofescgrch as bio-
physics, chemistry and climate science [11,12,1,7,6].uthsa description, the
effective macroscopic dynamics of the system of interestasleled as a diffu-
sion process in a reduced phase-space of one or two key learigehg. reaction
coordinates). The drift of the process is given by the gratdi¢ a potential. Find-
ing the correct drift and diffusion coefficients of the efige stochastic process
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is challenging. In many practical cases, an analyticaivdédn of the effective
drift and diffusion coefficients is not possible, so thaythaust be estimated from
simulation or observation data.

Estimation of drifts and diffusions can be a difficult tast; §everal reasons.
The dynamics in the reduced phase-space is a projectior déihdynamics, so
that it will typically not be a Markov process on short timaks, only on long
timescales. For the estimation, these short timescales Ipeuavoided in order
to avoid biased estimates [9,4], by using data sampled & itiervals that are
sufficiently long. Estimation from such "low-frequency dats challenging, be-
cause various popular estimators are only valid in the lwhismall sampling
intervals. Their results are affected by time discretmaterrors in the case of
non-infinitesimal sampling intervals. Furthermore, thiéugion coefficient is of-
ten allowed to be coordinate-dependent, rather than cesdriio be constant in
space. This makes the estimation more complicated. Fjrthkyavailable data
can consist of a collection of short non-equilibrium tragees, rather than one
long equilibrium trajectory.

In this paper, we will generalize a recently introduced rodtitogy for the
estimation of diffusion processes [2,4], so that it can keddsr non-equilibrium
data. This methodology makes use of the spectral prop€htiading eigenvalue-
eigenfunction pairs) of the Fokker-Planck operator asgediwith the diffusion
process. It was shown to be suitable for estimation from fimguency data,
because it makes no time discretization errors [4]. By gdizéng to the non-
equilibrium situation, it can be used for estimating patdatand space-dependent
diffusion coefficients from ensembles of short trajecterie

We consider 1-dimensional diffusion processes on a do@ainR, described
by the stochastic differential equation (SDE)

dX = B(X)dt + /2D(X) dW. (1)

Here, B(x) is the drift function,D(x) the (possibly space-dependent) diffusion
coefficient, andM a standard Wiener process. The SDE (1), and all other SDEs
in this paper, are Ito SDEs. Typically, the drift is deteredrby the gradient of a
potential B(x) = —dkV (X), as in the case of overdamped Langevin dynamics.

In [2] and [4], a spectral procedure was introduced to eggBandD from a
sampling of the process in equilibrium. Thus, the focus wassiimating the drift
and diffusion functions from a single, long equilibriumjeetory of the process.
Here we are interested in estimationB®&ndD from non-equilibrium data, con-
sisting of an ensemble of short trajectories. The probghilstribution of the data
in this ensemble can be very different from the invarianbplility distribution
associated with (1) (in fact, it may be the case that the obseprocess (1) has
no invariant measure at all). The prototype example we denss the case where
the process starts at an initial stateand the trajectory stops when the process
reaches the final state. In this paper we generalize the procedure presented in
[4] so that it can be used to estim@andD from a collection of such trajectories.

The key element is to view the ensemble of trajectories asiessef observa-
tions of a process with re-injection, as was recently predas [13]. Because the
trajectories stop at;, there is an absorbing boundaryxat Concatenating these
trajectories is equivalent to the situation where the pgsdéginstantaneously rein-
jected atg; whenever it hits<;. We start with considering a fixed initial poirt



Later on we generalize to the situation whgrés not the same for each trajectory
in the ensemble, but randomly sampled from a given disiobut

In section 2 we give a summary of the estimation procedum®duoted in
[2,4]. How this procedure can be adapted to deal with a refige process is
discussed in section 3. Random initial poirtsare considered in section 4. In
section 5, we investigate estimation in a multiscale sgttivhere it is necessary
to use data with long sampling intervals to be able to obtalniased estimates of
the coarse-grained process. We finish with a conclusiondticse6.

2 Spectral estimation of diffusion processes. a summary

In this section we give a brief summary of the estimation raétthogy presented
in [2,4]. We focus on 1-dimensional diffusion processesnote that the method-
ology can also be used for multivariate diffusions (see][&ydmore details and
numerical examples).

We denote by the diffusion operator associated with (1):

and byL* its adjoint inL(Q, dx):
L*r = —0x(Br) + dx(Dr) (3)

for suitable functions (x). L* is also known as the Fokker-Planck operator. In
absence of special boundaries, the probability densithe@ptocess (1), denoted
p(x,t), evolves according to the Fokker-Planck equation

dp=Lp. (4)

The formal solution of this equationgx,t + 1) = (P; p) (x,t) with Py = exp(TL*).

EstimatingB(x) andD(x) from timeseries ok, is challenging because the data
almost always have a finite sampling interval. A timeserieX;ovith sampling
intervalt gives direct information abow®;’, but not abouB andD. With only few
exceptions, the time-transition probabilities embodied B are unknown func-
tions of B andD, causing great difficulties for estimation. Approximasauch as
P ~ 1+ 1L* andD(x) ~ (21) 1E( (Xt — %)?| % = X) are frequently used, but
these are only valid for smatl (formally, valid in the limitt — 0). However, one
cannot always use smai] for example because the available data have large
because of the need to avoid non-Markov effects at shorstiales, as explained
earlier (see also section 5 of [4] for a detailed discussfdhie issue).

The semigroup structuf@ = exp(7L*) implies that if ((x),A) is an eigen-
function-eigenvalue pair d?;, then(((x),A) with

A =1 tlogA (5)

is an eigenpair oL*. This relation is valid regardless of the valuemfand pro-
vides a way to estimate (the coefficientsof)without making time discretization
errors (errors due to finite). The methodology in [2,4] is based on this property,
and consists of two steps. First we estimate the leadingpaies(y, /\x) of P;.
These give us, after application of (5), the leading eigeafd, Ax) of L*. The



pairs are ordered by decreasing eigenvalue, Ay > |Az| > |As| > ..., implying
that ¢ is the invariant probability density?; 1 = (1 andL*(1 = 0, cf. (4). In
the second step, we reconstruct the functBmasidD by minimizing the residuals
L* i — Ay under variation oB andD.

In [4], several possibilities to estimate the eigenpaird@mimize the residu-
als are discussed. For the estimation of eigenpairs, wafoere on what is named
the "binning method” in [4]. For this method, the state spgces discretized into
bins Q;, i = 1,..,M, andP; is approximated by the set of probabilities to jump
between bins over a time interval An alternative method is a Galerkin approx-
imation in which the domain of the operatBy is projected onto a finite basis
of smooth functions, see [4]. The binning method can be vieaga discontinu-
ous Galerkin method, where the discretizatioPpis aM x M stochastic matrix
whose elements are the transition probabilifggs= Prob(X;: € Qj|X € Q).
The maximum likelihood estimat®¥for this matrix is easily calculated, by count-
ing transitions between bins as observed in the data, amdatiaing afterwards.
The left eigenvectors and eigenvaluesadire the estimates of the (spatially dis-
cretized) eigenpairs ¢#'. Using (5) we obtain estimatégy, Ax) of the eigenpairs
of L*. Overall, the binning method is straightforward to useh@ligh some care
has to be taken not to chookktoo small if T is (very) small (see [4] for a discus-
sion of this). R

From ({k, Ak), we inferB andD by minimizing the residuals* ) — Ak K. It
is possible to minimize the norms of the residuals, as wasgz®d in [2], but in
order to do so, one must provide the first and second derasatif to calculate
L*{i. These derivatives are a major source of error, becauselisgneprors on
() are strongly amplified by differentiation. Therefore a nfiedi procedure was
introduced in [4] that allows to avoid differentiation @. The residuals are inte-
grated against test functions and then minimized. The testtions are smooth,
0j(x) € C3(Q), j = 1,..,Ng, with known derivatives. We use the adjoint property
to rewrite (L* Yk, 0j) as{yk,Laj) (where(.,.) denotes th&?(Q,dx) inner prod-
uct), so that we can use the (exact, error-free) derivatives; rather than the
(estimated) derivatives af.

Let 8 be the set of unknown parameterdSimandD, soL = L(8). The spectral
estimator forf is

R K Ng R
G:argeminz S ail (P, L(8)0)) — (A, 7). (6)
K=1j=1

The ay; are non-negative weights; we smt; = 1 for all k, j in this paper. The
inner products Ji, f), wheref is L(8)o; or gj, can be evaluated either by using
numerical integration (quadrature) or by casting them g&etations:

(W, ) = /Q A () &) F(X) = E&(X) T (%), )

whereéy is defined such thap, = 1 ék (recall thaty; is the invariant density of
the process).

A necessary condition for a unique minimum in (6) is @ < KNg. If 8 —
L(8) is a linear map, i.eL(cO) = cL(0) for any scalac, an additional condition
is K > 2. We note that the minimization problem is convex quadiiéticis linear
in 6, making numerical solution of (6) straightforward.



3 Fokker-Planck equation for areinjection process

The estimation procedure summarized in the previous seetas developped
with the equilibrium situation in mind, where the availadkga consists of a sin-
gle long trajectory of the process (1) in equilibrium. If tHata consists of an
ensemble of non-equilibrium trajectories, each starting and terminating as,

the procedure must be adapted. As was already explainee imtttoduction, a
sequence of trajectories fromto x; can be regarded as a single trajectory of the
process (1) with an absorbing boundaryatand instantaneous reinjectionxat
[13]. The Fokker-Planck equation for such a reinjectiorcpss is

ap(xt) = (L'p)(x.t) + 3(x=x)D(x)(dxp) (Xr,t)  X>Xxi,  (8a)
p(xs,t) = 0Vt, (8b)

where we have assumeg > X;. The FP operatotL* was defined in (3). The
domain of the reinjection process@= [Xs, ).

Observations from a long, single trajectory of (1) withodosarbtion/reinjection
would approach the equilibrium POgeq(x) defined byl * peq= 0 (assuming there
exists such equilibrium PDF). By contrast, observatiomsfithe concatenation
of short trajectories fronx; to x; approach the non-equilibrium stationary PDF
Pneq(X) defined by

(L"Pneqg) (X) = —8(X—X)D(Xr ) (FxPreg) (X1) X > Xt , (9a)
Preq(X) =0 X< Xg (9b)

The probability flux associated wibheq is defined byneq= Bpneq— 0x(Dpneq)-
Because of the absorbtion/reinjection mechanism, theosuthf J.eq atxs equals
the inflow atx;, hence the source term at the right hand side of (9a).

We define the modified Fokker-Planck operdtbias

(L p)(xt) = (L*p) (x.t) + (X —X)D (Xt ) () (Xt 1) (10)

so the Fokker-Planck equation for the reinjection proceggo = L*p. The cor-
responding finite-time transition operatoHs = exp(TL*). This operator, and its
leading eigenpairs, can be estimated from the non-equitibdata by binning, in
the same way as explained in the previous section. The dmsurginjection is
treated as a jump from the bin containixgto the bin containing;.

Because of the source termiih, a smart choice of test functiows is required
to be able to infeB andD from the eigenpairs. Assunigy, A«) is an eigenpair of
L*. The eigenfunction satisfigfi () = @ () = Pi(xr) = 0. It is easy to show
that

(o)) = [ (T B0

= ({i, Lay) + D(xs) P(xs) (0 (%) — 0} (X¢)) (11)

with L as defined in (2). By choosing; such thatoj(x) = oj(x;) we have
(L*@, 0j) = (J, Loj). This implies that we can estimate the parameterk of
from the eigenpairs of*, using the methodology from [4]. Note that we do not
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Fig. 1 Distribution of data for the system with double-well poiehtand constant diffusion
considered in example 3.1. The left panel shows a histogrfaitmeodata that results if the ab-
sorbtion/reinjection mechanism is active (i.e., non-#guium data). The right panel contains a
histogram of the data that results if the absorption/retigea mechanism is absent (i.e., equilib-
rium data).

need to estimaté,, i/, nor do we need to estimalExt ) pf,e4(Xr) by other means
(asisrequiredin[13]).

Summarizing: Le(tf/k,ﬂk)~be estimates of the leading eigenpairs of the mod-
ified Fokker-Planck operatdr* in (10), obtained via the eigenpairs Bf. The
spectral estimator for the parametéref L is

X K No .
6=argminy 3 [{fk.Loj) — (Allic, o) 2, (12)
0 Kk=1j=1

provided the test functions satisfy

0 (%) = 03 (x1). (13)

3.1 Example: constai

In this example, the drift in (1) i8(x) = —V’(x) with double-well potential
V(x) = (1—x%)2. The diffusion is constant (i.e., additive noise) wih= 0.5.
The absorbing boundary is &t = —1, reinjection is ak = 1. Thus, trajectories
start at the bottom of one potential well and end at the bottbthe other well.
For this system, we generate data with constant sampliegveidtr by numeri-
cally integrating the SDE (1), using the Euler-Maruyamaeseh with time step
10~%. The absorption/reinjection mechanism is implementeatingX; jump to
X+ (% — x¢) whenever < x; during the integration.

Figure 1 shows the distributions of the data that are geeéiifithe absorb-
tion/reinjection mechanism is present (left panel) andig absent (right panel).
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Fig. 2 (Color online) Results for example 3.1 with double-wellgmtial (cubic drift) and con-
stant diffusion. The parameters of drift and diffusion aséreated from 100 different nonequi-
librium datasets, each consisting of 100 trajectoriesistaatx; = 1 and terminating at; = —1.
Shown in blue are the mean of the estimated potentials armbthesponding errorbars (indicat-
ing the standard deviation). The curve in red is the truergi@e The timeseries were sampled
with interval T = 0.01 (left panel) and = 0.1 (right panel). Results for the estimated diffusion
coefficient are given in table 1.

The latter case is the equilibrium situation, added heredonparison. Its distri-
bution differs strongly from the nonequilibrium situatitimat is the central topic
of this study.

We fit a drift function of the formB = by + box+ bsx2 4 bsx® and constant
diffusion D. This drift corresponds to a potentiél= co — byx — 3 bpx? — 1 bgx® —
%b4x4, wherecg is an irrelevant overall constant that we will setggp= 1. The
parameters; andD are estimated from timeseries that each contain 100 consec-
utive trajectories fromx; to x; (i.e., nonequilibrium data). For the spectral esti-
mation procedure, we udd = 200 bins andK = 3 eigenpairs. The test func-
tions are linear combinations of the functior’s x® — x,x*. They are obtained
by Gram-Schmidt orthonormalization with respect to theeobsd distribution
of X. Thus, if the data consists oy, X¢,...,Xnr, the test functions are such
that(N+ 1)~ 5N 6i(Xnr) 0j(Xnr) = &j. They satisfy the requirement (x) =
0j(X¢) V] by construction.

The estimation is repeated with 100 different timeserisggisampling inter-
valst = 0.01 as well ag = 0.1. Figure 2 shows the mean of the 100 estimated
potentials, together with the true potential. The standidations (std) of the
estimates are indicated by the errorbars of width 2 std . Téamof the estimates
agrees very well with the true potential. For the larger galtr, the errorbars are
larger, but the mean remains unbiased.

The mean and standard deviation of the estimated diffusiwarpeteD are
given in table 1. For comparison, we also include result®festimated using the



Table 1 Estimates of the diffusion coefficie® in example 3.1. Shown are the means and
standard deviations of the estimates obtained with thetisp@rocedure and with the quadratic
variation (QV) estimator (14). The QV estimates have lovwafance than the spectral estimates,
but are substantially biased for the longer sampling irtisr@c = 0.1).

true | spectral, | spectral, QVv, QVv,
T=001| =01 | T=001| =01
mean| 0.5 0.487 0.465 0.485 0.385

std 0.059 0.092 0.002 0.006
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Fig. 3 (Color online) Results for example 3.2 with double-wellgrial (cubic drift) and space-
dependent diffusion. The mean and errorbars of the estihpatientials are shown in blue in the
left panel; those of the estimated diffusions are in thetnmgnel. The curves in red are the true
potential and diffusion, respectively.

guadratic variation (QV) of the path:

. 1 N )

qu = m n;(x(mrl)r - an)

For the QV estimates, the jumps fraxa to x; are omitted from the calculation
(recall that these jumps are not part of the physical trajées; they are the con-
sequence of concatenating the individual trajectoria® fxoto x;, therefore they
must be left out of the QV estimate). As can be seen in the taieQV esti-
mates have lower variance than the spectral estimatestdatbstantially biased
for the longer sampling intervalg & 0.1). This is because the QV estimator is
consistent (unbiased) in the lintit— 0; away from this limit it is affected by time
discretization errors. As was discussed in section 2, thetsgl procedure is not
affected by these errors.

(14)

3.2 Example: space dependént

In this example, the diffusion coefficient is no longer camst but space depen-

dent:D(x) = 7 (1+ 1+3§X2). The potential is the same as in the previous example,




V(x) = (1—x2)2. We fit the driftB(x) = by + byx + bgx? + byx® (as before) and
diffusion D(x) = dy +dy/(1+ 2x?). The sampling interval used heretis= 0.01.
For numerical integration of the SDE we use the Milstein sohesvith time step
104, All other details, such as number of trajectories and ahofdest functions,
are the same as in the previous example.

In figure 3 we have plotted the mean estimated potential arahrastimated
diffusion, as well as their errorbars. They are in good agesd with the true
potential and diffusion (both also shown).

4 Random x;

If the starting point; is not the same for each short trajectory, but instead drawn
randomly from a distributiomg(x), the modified Fokker-Planck operator in (10)
must be generalized to

(L*p)(xt) = (L*p) (x.t) + Po(X)D (Xt ) () (Xt 1), (15)
see [13]. As a result we have
(L4, 07) = (W, Loj) +D(xs) e (x1) ({0, 07) — T (X)) - (16)

Thus, we have to generalize the conditiof(x;) = 0j(X¢) to (po, 0}) = gj(Xt),
in order to eliminate all boundary terms. Constructing sagks easy: ifgj is an
arbitrary function, thew; = G + axwith a = (6j(Xt) — (po, G;))/({Po,X) — Xt)
will satisfy this generalized condition.

4.1 Example: Gaussian distribution fqr

We use the same model as in example 3.2 (i.e., space-depatiffiesion), but
instead of keeping; fixed at 1, we draw th& from a Gaussian distribution with
mean 1 and standard deviation 0.25. We kegfixed at -1. Results from the same
kind of numerical experiment as in example 3.2 (100 timesasith each 100 tra-
jectoriesx; — X;) are shown in figure 4. For numerical integration we use again
the Milstein scheme with time step 18 The test functions are constructed as
described just above, starting frai € {x2,x3 — x,x*}. The results are compara-
ble to the case with constaxt(figure 3), except that the errors on the estimated
diffusion are somewhat higher here.

5 Multiscale systems, hon-Markov data and low sampling frequency

The spectral estimation procedure from [2,4], generaliaatbn-equilibrium data
in this paper, is suitable for situations where one wishemtalel the coarse-
grained dynamics of an observed multiscale system withfagiliin process. In
such situations, the aim is typically to find effective madfar the observed dy-
namics for selected (slow) variables. The effective mothelutd be consistent
with the coarse-grained (long timescale) features of thvesiables, but it can
be inconsistent with the dynamics on short timescales.dfédfiective model is
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Fig. 4 (Color online) Results for example 4.1, with random inifints x; for each trajec-
tory. As in example 3.2, the potential has a double well (cuhift) and the diffusion is space-
dependent. The mean and errorbars of the estimated pdsertashown in blue in the left panel;
those of the estimated diffusions are in the right panel. direes in red are the true potential
and diffusion, respectively.

inferred from observations, these short timescales shioeldvoided, implying
that data with a low sampling frequency must be used for egitim. If T is too
short, the estimated drifts and diffusions can be strongigdd [9,8,4]. As al-
ready discussed in section 2, the spectral estimation guweehas no inherent
time discretization error, unlike some other estimatorg. (e QV estimator in
(14)). Clearly, this is an advantage whenever data with kamgpling intervals is
used for estimation.

The question whether one can infer a correct coarse-granmuekdl from ob-
servations of a multiscale system, can be systematicasiigated in the context
of multiscale diffusion processes, as was done in e.g.49,8nder some mild as-
sumptions, it can be shown rigorously that the slow dynami¢hese multiscale
processes converge to an effective (averaged or homoggridif@usion process
in the limit of large scale separation [10]. In some cases,@an derive analytical
expressions for the effective drift and diffusion coeffiti® These analytical re-
sults can be compared with results from estimation, forssseent of estimation
procedures in a multiscale setting.

A detailed analysis of the spectral estimation procedutbeércontext of mul-
tiscale processes is given in section 5 of [4]. We will sumizeaa few key results
of this analysis here. Starting point is the multiscaleudifbn process$X;,Y;) €
Qy x Qy C R" x R™with SDEs

dX = (%Fl()({,Yt)—FFO()(t,Yt)) dt + a (X, Yi) dW* (17a)

1 1
dy; = ;Gm,mdwgmxt,vt)dey (17b)

wheree is a small parameter, aWg* andWy are independent Wiener processes of
dimensiom andm, respectively. In the limi¢ — 0, the slow variabl&; converges
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in law to the solutiorX; of the effective (homogenized) SDE

dX = F (%) dt + a (%)W, (18)

provided the following assumptions hold: (i)Xf is fixed atx, the fast variablé;
is ergodic with unique invariant measyug(y), and (ii) the centering condition

/Q u(dy)Fa(x.y) =0 (19)

is satisfied for alk € Qy. We will also assume that,(y) admits a densityy(y),
i.e. tx(dy) = px(y)dy.

The Fokker-Planck operataf* of the homogenized system (18) has leading
eigenpairs that are asymptotically close to the leadingrggirs of the Fokker-
Planck operatoL* of the full multiscale system (17). More precisely:

L* e = A, LM uy = A ug (20a)
k(X Y) = (X)px(y) + O(€) (20b)
A=A +0(¢) (20c)

A similar results holds for the diffusion operators (or baekd Fokker-Planck
operators). andL", see [4].

If we can only observe the slow variabtgof (17), but not the fast variabhg,
it is still possible to estimate the leading eigenpairs efithultiscale operators
andL*. However, the sampling interval should be large enoughigdase. With
only X observed, we effectively observe the projected openatey rather than
Pr, wherePr = exp(TL), as in section 2, anfl is the projection operator defined
as(Mh)(x) = [ px(y)h(x,y)dy. If T > €2, the leading eigenpairs ¢7P; andP;
(and their adjoints) are aga®(¢) close. However, for the estimation we need the
leading eigenvalues afrather than those & (or its projected counterpaltP;).
Let A/ and A be leading eigenvalues &1P; and Py, respectively, and define
AT =1"togA[", A= 17 tlog/y, see (5). As mentioned)/" — A = O(¢) if
T > £2. Under the stricter requirement= £9 with 0 < g < 1 we have\]! — A =
O(g179), and thus\]" — A¢ ase — 0.

Summarizing: if we observe the slow variablgbut not the fast variabl¥
of (17), we can estimate the leading eigenp&ifd, A") of (IMP;)*. Applying
(5) gives the eigenpairaif! ,A1). If T > ¢, these eigenpairs are asymptotically
close the the leading eigenpaiis, A") of the Fokker-Planck operataf* of the
homogenized system (18). Thus, we hés, A7) — (u, A\") ase — 0, provided
T > €. This implies that with the spectral estimation procedure can infer the
correct coarse-grained process (18) from the eigengaffsA’). This will be
demonstrated in the following numerical examples.
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5.1 Example: multiplicative red noise and Stratonovichlrections

We revisit the example with space-dependent diffusion aradifi; (section 3.2),
but replace the white noise by red noise. Thus, we have

dX = —V/(X)dt + %\/ZD(Xt)Ytdt, (21a)
1 1
dy; = _?Ytdt"' EdV\é, (21b)

with € <« 1. As can be seen, the fast variable ("red noi&$ an Ornstein Uhlen-
beck process. The dynamicsXfon O(1) timescales can be well approximated
by the homogenized SDE

dX = F(X)dt +/2D(X) dW (22)
with

F(X)=-V'(X)+3v/2D(X)y/2D(x) = —V'(x) + 3D'(x). (23)

The termD’(x)/2 is the well-known Stratonovich correction, the contribntto
the drift that arises if one interpretes an SDE in the Stratam sense and passes
over to the corresponding Ito form. We refer to [10] for a dethintroduction of
SDE homogenization and related techniques.

As in example 3.2V (x) = (1—x?)? and the space-dependent diffusion is
D(x) = (14 173 )- Furthermore, we set = 0.01. We generate data with the
multiscale system (21), using the Euler-Maruyama intégmatcheme with time
step 10°. The variableX; is subject to absorption a¢ = —1 immediately fol-
lowed by reinjection ak; = 1. There is no absorption/reinjection fg. Using
only observations o; with sampling intervalt = 0.01, we fit the SDE (22)
with drift B(X) = by 4 bpx 4 bgx? + byx® + bsx/ (14 2x?)? and diffusionD(x) =
dy +da/(1+ 2x?). Details of the estimation are identical to example 3.2.

In figure 5 we show the resulting mean and standard deviafemsrbars)
of the estimated potentials and diffusions. The potential diffusion functions
predicted by homogenization theory are plotted as wellsghmorrespond to the
parameter valuef, by, bz, bs,bs,di,dy) = (0,4,0,—4,—1.5,0.25,0.75)).

5.2 Example: subsampling and biased estimates

Inferring the correct coarse-grained diffusion procesmfdata of the underlying
multiscale process is nontrivial, as was analysed in ditd9,8,4]. When esti-
mating the homogenized process (22) from observationsedltw variablex; in
(21), one obtains strongly biased results if the sampliteyual 7 is too short, due

to non-Markov effects at short timescales. In such a cadsasapling (skipping
datapoints in order to increasgis needed to avoid bias. However, if one uses an
estimator that suffers from time discretization errorg, tésults deteriorate with
growing . The QV estimator (14) is an example. By contrast, the spkgtoce-
dure central to this paper is not affected by time discrétnaerrors (however, if

is very large, one needs very long timeseries in order toomvee sampling error).
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Fig. 5 (Color online) Results for the multiscale example 5.1. Treamand errorbars of the
estimated potentials are shown in blue in the left panekehaf the estimated diffusions are in
the right panel. The curves in red are the potential and slifu predicted by homogenization
theory.

It allows one to do estimation at valuesmifarge enough to avoid the non-Markov
effects, without being affected by time discretizatioroesr

To demonstrate this issue, we return to the example withtaoh® (section
3.1), and replace the white noise by red noise, similar toptlegious example.
Thus, we consider the multiscale system (21) vilite 0.5 andV (x) = (x* — 1),

As before, the variabl¥; is subject to absorption &t = —1 immediately followe

by reinjection ak; = 1. There is no absorption/reinjection fgr We sete = 0.01.
Using observations of;, we fit the SDE (22) with drifB(x) = by 4 bpx+ bax? +
bsx® and diffusionD. Details of the estimation are identical to example 3.1. We
also estimat® with the QV estimator (14).

For the estimation, we use timeseries consisting of 308dtajies fromx; to
Xs. This is more than in previous examples, thereby enablirtg tecus better on
the t-dependent bias because of the smaller sampling error.rajeztories are
generated with the Euler-Maruyama integration schemetwita step 10°. They
are sampled at intervals that are integer multiples@905, i.e.r = h0.0005 with
1 <h<400. Furthermore, the estimation is repeated using 10rdiffdimeseries
(each with 300; — Xxs trajectories). The mean of the estimate®af shown in
figure 6, for all values of . Both the estimates obtained with the spectral procedure
and those from the QV estimator are visibly affected by ncaridv effects at the
smallest values of. In the range W05 < 1 < 0.1, the mean of the spectral esti-
mates is 0.48, only slightly below the correct value 0.5. $taadard deviation in
this range is about 0.015. For> 0.1, sampling error becomes substantial (eventu-
ally, for very large values of, the estimates tend to decrease again). By contrast,
the QV estimates reach a maximum near the correct vallieaifr ~ 0.005 and
decreases again for largerdue to the time discretization error inherent to the QV
estimator (14). The QV estimates have much smaller varigaizmut 0.0025) than
the spectral estimates, but they are significantly biaseddarly all values of.



14

0.55 T T T T T T T T T T

0.451

0.4r

mean estimate of D

0.351

O  spectral
X Qv
Il

0'3 Il L L L L L
0 0.02 0.04 006 008 01 012 014 016 0.18 0.2

sampling interval T

Fig. 6 (Color online) Results for the multiscale example 5.2 withhstantD. The spectral esti-
mation procedure is affected by non-Markov effects at swalles oft, but gives good results
if larger T are used. For > 0.1, sampling errors become substantial. The quadraticti@ria
(QV) estimator (14) is affected both by non-Markov effedtsraall T and by time discretization
errors at larger values af The correct diffusion coefficient B = 0.5.

Rather similar results, using equilibrium data, can be tourthe last example of
[4]. A detailed analysis of the smatllimit is included there as well.

6 Conclusion

In this paper, we considered the estimation of diffusiorcpeses from collections
of short trajectories of the process. Each trajectorystarthe initial pointg; and
ends in the final point;. The distribution of the data (observations) of the trajec-
tories can be far from the equilibrium distribution of théfasion process. These
non-equilibrium datasets can result from e.g. laboratapeements or numeri-
cal experiments where a system is brought in a certain stasdter which it is
released and observed until it reackes

We generalized a spectral estimation approach, introdteeehtly [2,4], so
that it can be used for inferring diffusion processes frorohsnon-equilibrium
data. This was made possible by viewing the collection ¢éttaries fromx; to x;
as a single trajectory of a process with absorptioxs aimmediately followed by
reinjection at;, as proposed in [13]. In sections 3 and 4 the estimation @yl
functions and diffusion coefficients from non-equilibriudata with the spectral
method was discussed and demonstrated with numerical égaspowing good
results.

Because the spectral estimation procedure has no inh@rentdiscretization
error, it is a suitable method for situations where an eiffectoarse-grained dif-
fusion process must be estimated from data of a multiscakesy In these situ-
ations, data with long sampling intervalsnust be used in order to avoid biased
results, posing problems for estimation methods that akg\@aiid in the limit
7 — 0. In section 5 we showed the favorable properties of thetsgdenethod in
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this respect, using examples with non-equilibrium datapadfrom a multiscale
system.

The discussion in this paper was limited to cases wheseconstant through-
out the dataset. However, we expect that estimation from wéh non-constant
sampling intervals is well possible, following the approgooposed in [3]. Al-
though the context in [3] was the estimation of Markov jumpaasses by the
spectral method, we anticipate that the treatment of datamwein-constant pre-
sented there will carry over to diffusion processes.

Furthermore, the focus throughout the paper was on inferefit-dimensional
processes. Clearly, generalization to processes witbrdiwill be useful for var-
ious practical applications. For equilibrium data, sek2+fdimensional numerical
examples were already treated in [2] and [4], with positegults. For the case of
non-equilibrium data as considered here, generalizatidrigher dimensions is
more complicated, because it involves generalization@ftbpping poink; to a
hypersurface. We leave this for future study.

Finally, we note that the spectral procedure as presentedi©ia method for
parametric estimation. The potentials and diffusion fioret are expanded in a fi-
nite number of basis functions, requiring estimation ofékpansion coefficients.
We intend to investigate the extension of our procedure tpaametric estima-
tion in future work.
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