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Abstract In scientific topics ranging from protein folding to the thermohaline
ocean circulation, it is useful to model the effective macroscopic dynamics of com-
plex systems as noise-driven motion in a potential landscape. In this paper we con-
sider the estimation of such models from a collection of short non-equilibrium tra-
jectories between two points in phase-space. We generalizea recently introduced
spectral methodology for the estimation of diffusion processes from timeseries, so
that it can be used for non-equilibrium data. This methodology makes use of the
spectral properties (leading eigenvalue-eigenfunction pairs) of the Fokker-Planck
operator associated with the diffusion process. It is well suited to infer stochastic
differential equations that give effective, coarse-grained descriptions of multiscale
systems. The generalization to the non-equilibrium situation is illustrated with nu-
merical examples in which potentials and diffusion coefficients are estimated from
ensembles of short trajectories.

Keywords parameter estimation· diffusion process· non-equilibrium data·
stochastic differential equation· subsampling

1 Introduction

The description of complex processes as noise-driven motion in a potential land-
scape has been an appealing concept in various areas of science, such as bio-
physics, chemistry and climate science [11,12,1,7,6]. In such a description, the
effective macroscopic dynamics of the system of interest ismodeled as a diffu-
sion process in a reduced phase-space of one or two key variables (e.g. reaction
coordinates). The drift of the process is given by the gradient of a potential. Find-
ing the correct drift and diffusion coefficients of the effective stochastic process
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is challenging. In many practical cases, an analytical derivation of the effective
drift and diffusion coefficients is not possible, so that they must be estimated from
simulation or observation data.

Estimation of drifts and diffusions can be a difficult task, for several reasons.
The dynamics in the reduced phase-space is a projection of the full dynamics, so
that it will typically not be a Markov process on short timescales, only on long
timescales. For the estimation, these short timescales must be avoided in order
to avoid biased estimates [9,4], by using data sampled at time intervals that are
sufficiently long. Estimation from such ”low-frequency data” is challenging, be-
cause various popular estimators are only valid in the limitof small sampling
intervals. Their results are affected by time discretization errors in the case of
non-infinitesimal sampling intervals. Furthermore, the diffusion coefficient is of-
ten allowed to be coordinate-dependent, rather than restricted to be constant in
space. This makes the estimation more complicated. Finally, the available data
can consist of a collection of short non-equilibrium trajectories, rather than one
long equilibrium trajectory.

In this paper, we will generalize a recently introduced methodology for the
estimation of diffusion processes [2,4], so that it can be used for non-equilibrium
data. This methodology makes use of the spectral properties(leading eigenvalue-
eigenfunction pairs) of the Fokker-Planck operator associated with the diffusion
process. It was shown to be suitable for estimation from low-frequency data,
because it makes no time discretization errors [4]. By generalizing to the non-
equilibrium situation, it can be used for estimating potentials and space-dependent
diffusion coefficients from ensembles of short trajectories.

We consider 1-dimensional diffusion processes on a domainΩ ⊆R, described
by the stochastic differential equation (SDE)

dXt = B(Xt)dt +
√

2D(Xt)dWt . (1)

Here, B(x) is the drift function,D(x) the (possibly space-dependent) diffusion
coefficient, andWt a standard Wiener process. The SDE (1), and all other SDEs
in this paper, are Ito SDEs. Typically, the drift is determined by the gradient of a
potential,B(x) =−∂xV (x), as in the case of overdamped Langevin dynamics.

In [2] and [4], a spectral procedure was introduced to estimateB andD from a
sampling of the process in equilibrium. Thus, the focus was on estimating the drift
and diffusion functions from a single, long equilibrium trajectory of the process.
Here we are interested in estimation ofB andD from non-equilibrium data, con-
sisting of an ensemble of short trajectories. The probability distribution of the data
in this ensemble can be very different from the invariant probability distribution
associated with (1) (in fact, it may be the case that the observed process (1) has
no invariant measure at all). The prototype example we consider is the case where
the process starts at an initial statexi and the trajectory stops when the process
reaches the final statex f . In this paper we generalize the procedure presented in
[4] so that it can be used to estimateB andD from a collection of such trajectories.

The key element is to view the ensemble of trajectories as a series of observa-
tions of a process with re-injection, as was recently proposed in [13]. Because the
trajectories stop atx f , there is an absorbing boundary atx f . Concatenating these
trajectories is equivalent to the situation where the process is instantaneously rein-
jected atxi whenever it hitsx f . We start with considering a fixed initial pointxi.
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Later on we generalize to the situation wherexi is not the same for each trajectory
in the ensemble, but randomly sampled from a given distribution.

In section 2 we give a summary of the estimation procedure introduced in
[2,4]. How this procedure can be adapted to deal with a reinjection process is
discussed in section 3. Random initial pointsxi are considered in section 4. In
section 5, we investigate estimation in a multiscale setting, where it is necessary
to use data with long sampling intervals to be able to obtain unbiased estimates of
the coarse-grained process. We finish with a conclusion in section 6.

2 Spectral estimation of diffusion processes: a summary

In this section we give a brief summary of the estimation methodology presented
in [2,4]. We focus on 1-dimensional diffusion processes, but note that the method-
ology can also be used for multivariate diffusions (see [2,4] for more details and
numerical examples).

We denote byL the diffusion operator associated with (1):

L = B(x)∂x +D(x)∂xx , (2)

and byL∗ its adjoint inL2(Ω ,dx):

L∗r =−∂x(Br)+∂xx(Dr) (3)

for suitable functionsr(x). L∗ is also known as the Fokker-Planck operator. In
absence of special boundaries, the probability density of the process (1), denoted
ρ(x, t), evolves according to the Fokker-Planck equation

∂tρ = L∗ρ . (4)

The formal solution of this equation isρ(x, t+τ)= (P∗
τ ρ)(x, t)with P∗

τ = exp(τL∗).
EstimatingB(x) andD(x) from timeseries ofXt is challenging because the data

almost always have a finite sampling interval. A timeseries of Xt with sampling
intervalτ gives direct information aboutP∗

τ , but not aboutB andD. With only few
exceptions, the time-τ transition probabilities embodied byP∗

τ are unknown func-
tions ofB andD, causing great difficulties for estimation. Approximations such as
P∗

τ ≈ 1+ τL∗ andD(x)≈ (2τ)−1
E((Xt+τ −Xt)

2 |Xt = x) are frequently used, but
these are only valid for smallτ (formally, valid in the limitτ → 0). However, one
cannot always use smallτ, for example because the available data have largeτ, or
because of the need to avoid non-Markov effects at short timescales, as explained
earlier (see also section 5 of [4] for a detailed discussion of this issue).

The semigroup structureP∗
τ = exp(τL∗) implies that if(ψ(x),Λ ) is an eigen-

function-eigenvalue pair ofP∗
τ , then(ψ(x),λ) with

λ = τ−1 logΛ (5)

is an eigenpair ofL∗. This relation is valid regardless of the value ofτ, and pro-
vides a way to estimate (the coefficients of)L∗ without making time discretization
errors (errors due to finiteτ). The methodology in [2,4] is based on this property,
and consists of two steps. First we estimate the leading eigenpairs(ψk,Λk) of P∗

τ .
These give us, after application of (5), the leading eigenpairs (ψk,λk) of L∗. The
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pairs are ordered by decreasing eigenvalue, 1= Λ1 > |Λ2| ≥ |Λ3| ≥ ..., implying
that ψ1 is the invariant probability density:P∗

τ ψ1 = ψ1 andL∗ψ1 = 0, cf. (4). In
the second step, we reconstruct the functionsB andD by minimizing the residuals
L∗ψk −λkψk under variation ofB andD.

In [4], several possibilities to estimate the eigenpairs and minimize the residu-
als are discussed. For the estimation of eigenpairs, we focus here on what is named
the ”binning method” in [4]. For this method, the state spaceΩ is discretized into
bins Ωi, i = 1, ..,M, andP∗

τ is approximated by the set of probabilities to jump
between bins over a time intervalτ. An alternative method is a Galerkin approx-
imation in which the domain of the operatorPτ is projected onto a finite basis
of smooth functions, see [4]. The binning method can be viewed as a discontinu-
ous Galerkin method, where the discretization ofP∗

τ is aM×M stochastic matrix
whose elements are the transition probabilitiespi j = Prob(Xt+τ ∈ Ω j|Xt ∈ Ωi).
The maximum likelihood estimator̂P for this matrix is easily calculated, by count-
ing transitions between bins as observed in the data, and normalizing afterwards.
The left eigenvectors and eigenvalues ofP̂ are the estimates of the (spatially dis-
cretized) eigenpairs ofP∗

τ . Using (5) we obtain estimates(ψ̂k, λ̂k) of the eigenpairs
of L∗. Overall, the binning method is straightforward to use, although some care
has to be taken not to chooseM too small ifτ is (very) small (see [4] for a discus-
sion of this).

From(ψ̂k, λ̂k), we inferB andD by minimizing the residualsL∗ψ̂k − λ̂kψ̂k. It
is possible to minimize the norms of the residuals, as was proposed in [2], but in
order to do so, one must provide the first and second derivatives ofψ̂k to calculate
L∗ψ̂k. These derivatives are a major source of error, because sampling errors on
ψ̂k are strongly amplified by differentiation. Therefore a modified procedure was
introduced in [4] that allows to avoid differentiation ofψ̂k. The residuals are inte-
grated against test functions and then minimized. The test functions are smooth,
σ j(x) ∈C2(Ω ), j = 1, ..,Nσ , with known derivatives. We use the adjoint property
to rewrite〈L∗ψk,σ j〉 as〈ψk,Lσ j〉 (where〈., .〉 denotes theL2(Ω ,dx) inner prod-
uct), so that we can use the (exact, error-free) derivativesof σ j rather than the
(estimated) derivatives of̂ψk.

Let θ be the set of unknown parameters inB andD, soL = L(θ ). The spectral
estimator forθ is

θ̂ = argmin
θ

K

∑
k=1

Nσ

∑
j=1

αk j|〈ψ̂k,L(θ )σ j〉−〈λ̂kψ̂k,σ j〉|
2 . (6)

The αk j are non-negative weights; we setαk j = 1 for all k, j in this paper. The
inner products〈ψ̂k, f 〉, where f is L(θ )σ j or σ j, can be evaluated either by using
numerical integration (quadrature) or by casting them as expectations:

〈ψk, f 〉=
∫

Ω
dxψ1(x)ξk(x) f (x) = Eξk(Xt) f (Xt) , (7)

whereξk is defined such thatψk = ψ1ξk (recall thatψ1 is the invariant density of
the process).

A necessary condition for a unique minimum in (6) is dim(θ )≤ KNσ . If θ 7→
L(θ ) is a linear map, i.e.L(cθ ) = cL(θ ) for any scalarc, an additional condition
is K ≥ 2. We note that the minimization problem is convex quadraticif L is linear
in θ , making numerical solution of (6) straightforward.
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3 Fokker-Planck equation for a reinjection process

The estimation procedure summarized in the previous section was developped
with the equilibrium situation in mind, where the availabledata consists of a sin-
gle long trajectory of the process (1) in equilibrium. If thedata consists of an
ensemble of non-equilibrium trajectories, each starting at xi and terminating atx f ,
the procedure must be adapted. As was already explained in the introduction, a
sequence of trajectories fromxi to x f can be regarded as a single trajectory of the
process (1) with an absorbing boundary atx f and instantaneous reinjection atxi
[13]. The Fokker-Planck equation for such a reinjection process is

∂tρ(x, t) = (L∗ρ)(x, t)+δ (x− xi)D(x f )(∂xρ)(x f , t) x > x f , (8a)

ρ(x f , t) = 0∀t , (8b)

where we have assumedxi > x f . The FP operatorL∗ was defined in (3). The
domain of the reinjection process isΩ = [x f ,∞).

Observations from a long, single trajectory of (1) without absorbtion/reinjection
would approach the equilibrium PDFρeq(x) defined byL∗ρeq= 0 (assuming there
exists such equilibrium PDF). By contrast, observations from the concatenation
of short trajectories fromxi to x f approach the non-equilibrium stationary PDF
ρneq(x) defined by

(L∗ρneq)(x) = −δ (x− xi)D(x f )(∂xρneq)(x f ) x > x f , (9a)

ρneq(x) = 0 x ≤ x f (9b)

The probability flux associated withρneq is defined byJneq= Bρneq−∂x(Dρneq).
Because of the absorbtion/reinjection mechanism, the outflow of Jneq atx f equals
the inflow atxi, hence the source term at the right hand side of (9a).

We define the modified Fokker-Planck operatorL̃∗ as

(L̃∗ρ)(x, t) = (L∗ρ)(x, t)+δ (x− xi)D(x f )(∂xρ)(x f , t) , (10)

so the Fokker-Planck equation for the reinjection process is ∂tρ = L̃∗ρ. The cor-
responding finite-time transition operator isP̃∗

τ = exp(τL̃∗). This operator, and its
leading eigenpairs, can be estimated from the non-equilibrium data by binning, in
the same way as explained in the previous section. The absorption/reinjection is
treated as a jump from the bin containingx f to the bin containingxi.

Because of the source term inL̃∗, a smart choice of test functionsσ j is required
to be able to inferB andD from the eigenpairs. Assume(ψ̃k, λ̃k) is an eigenpair of
L̃∗. The eigenfunction satisfies̃ψk(∞) = ψ̃ ′

k(∞) = ψ̃k(x f ) = 0. It is easy to show
that

〈L̃∗ψ̃k,σ j〉 =

∫ ∞

x f

dx (L̃∗ψ̃k)(x)σ j(x)

= 〈ψ̃k,Lσ j〉+D(x f )ψ̃ ′
k(x f )

(

σ j(xi)−σ j(x f )
)

(11)

with L as defined in (2). By choosingσ j such thatσ j(xi) = σ j(x f ) we have
〈L̃∗ψ̃k,σ j〉 = 〈ψ̃k,Lσ j〉. This implies that we can estimate the parameters ofL
from the eigenpairs of̃L∗, using the methodology from [4]. Note that we do not
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Fig. 1 Distribution of data for the system with double-well potential and constant diffusion
considered in example 3.1. The left panel shows a histogram of the data that results if the ab-
sorbtion/reinjection mechanism is active (i.e., non-equilibrium data). The right panel contains a
histogram of the data that results if the absorption/reinjection mechanism is absent (i.e., equilib-
rium data).

need to estimatẽψ ′
k, ψ̃

′′
k , nor do we need to estimateD(x f )ρ ′

neq(x f ) by other means
(as is required in [13]).

Summarizing: Let( ˆ̃ψk,
ˆ̃λk) be estimates of the leading eigenpairs of the mod-

ified Fokker-Planck operator̃L∗ in (10), obtained via the eigenpairs ofP̃∗
τ . The

spectral estimator for the parametersθ of L is

θ̂ = argmin
θ

K

∑
k=1

Nσ

∑
j=1

|〈 ˆ̃ψk,Lσ j〉−〈 ˆ̃λk ˆ̃ψk,σ j〉|
2 , (12)

provided the test functions satisfy

σ j(xi) = σ j(x f ) . (13)

3.1 Example: constantD

In this example, the drift in (1) isB(x) = −V ′(x) with double-well potential
V (x) = (1− x2)2. The diffusion is constant (i.e., additive noise) withD = 0.5.
The absorbing boundary is atx f = −1, reinjection is atxi = 1. Thus, trajectories
start at the bottom of one potential well and end at the bottomof the other well.
For this system, we generate data with constant sampling interval τ by numeri-
cally integrating the SDE (1), using the Euler-Maruyama scheme with time step
10−4. The absorption/reinjection mechanism is implemented by lettingXt jump to
Xt +(xi − x f ) wheneverXt ≤ x f during the integration.

Figure 1 shows the distributions of the data that are generated if the absorb-
tion/reinjection mechanism is present (left panel) and if it is absent (right panel).
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Fig. 2 (Color online) Results for example 3.1 with double-well potential (cubic drift) and con-
stant diffusion. The parameters of drift and diffusion are estimated from 100 different nonequi-
librium datasets, each consisting of 100 trajectories starting atxi = 1 and terminating atx f =−1.
Shown in blue are the mean of the estimated potentials and thecorresponding errorbars (indicat-
ing the standard deviation). The curve in red is the true potential. The timeseries were sampled
with intervalτ = 0.01 (left panel) andτ = 0.1 (right panel). Results for the estimated diffusion
coefficient are given in table 1.

The latter case is the equilibrium situation, added here forcomparison. Its distri-
bution differs strongly from the nonequilibrium situationthat is the central topic
of this study.

We fit a drift function of the formB = b1 + b2x+ b3x2 + b4x3 and constant
diffusionD. This drift corresponds to a potentialV = c0−b1x− 1

2 b2x2− 1
3 b3x3−

1
4 b4x4, wherec0 is an irrelevant overall constant that we will set toc0 = 1. The
parametersbi andD are estimated from timeseries that each contain 100 consec-
utive trajectories fromxi to x f (i.e., nonequilibrium data). For the spectral esti-
mation procedure, we useM = 200 bins andK = 3 eigenpairs. The test func-
tions are linear combinations of the functionsx2,x3 − x,x4. They are obtained
by Gram-Schmidt orthonormalization with respect to the observed distribution
of Xt . Thus, if the data consists ofX0,Xτ , ...,XNτ , the test functions are such
that(N +1)−1 ∑N

n=0 σi(Xnτ)σ j(Xnτ) = δi j. They satisfy the requirementσ j(xi) =
σ j(x f ) ∀ j by construction.

The estimation is repeated with 100 different timeseries, using sampling inter-
valsτ = 0.01 as well asτ = 0.1. Figure 2 shows the mean of the 100 estimated
potentials, together with the true potential. The standarddeviations (std) of the
estimates are indicated by the errorbars of width 2 std . The mean of the estimates
agrees very well with the true potential. For the larger value ofτ, the errorbars are
larger, but the mean remains unbiased.

The mean and standard deviation of the estimated diffusion parameterD are
given in table 1. For comparison, we also include results forD estimated using the
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Table 1 Estimates of the diffusion coefficientD in example 3.1. Shown are the means and
standard deviations of the estimates obtained with the spectral procedure and with the quadratic
variation (QV) estimator (14). The QV estimates have lower variance than the spectral estimates,
but are substantially biased for the longer sampling intervals (τ = 0.1).

true spectral, spectral, QV, QV,
τ = 0.01 τ = 0.1 τ = 0.01 τ = 0.1

mean 0.5 0.487 0.465 0.485 0.385
std 0.059 0.092 0.002 0.006
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Fig. 3 (Color online) Results for example 3.2 with double-well potential (cubic drift) and space-
dependent diffusion. The mean and errorbars of the estimated potentials are shown in blue in the
left panel; those of the estimated diffusions are in the right panel. The curves in red are the true
potential and diffusion, respectively.

quadratic variation (QV) of the path:

D̂qv =
1

2N τ

N

∑
n=0

(X(n+1)τ −Xnτ)
2 (14)

For the QV estimates, the jumps fromx f to xi are omitted from the calculation
(recall that these jumps are not part of the physical trajectories; they are the con-
sequence of concatenating the individual trajectories from xi to x f , therefore they
must be left out of the QV estimate). As can be seen in the table, the QV esti-
mates have lower variance than the spectral estimates, but are substantially biased
for the longer sampling intervals (τ = 0.1). This is because the QV estimator is
consistent (unbiased) in the limitτ → 0; away from this limit it is affected by time
discretization errors. As was discussed in section 2, the spectral procedure is not
affected by these errors.

3.2 Example: space dependentD

In this example, the diffusion coefficient is no longer constant, but space depen-
dent:D(x) = 1

4 (1+
3

1+2x2 ). The potential is the same as in the previous example,
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V (x) = (1− x2)2. We fit the driftB(x) = b1+ b2x+ b3x2+ b4x3 (as before) and
diffusion D(x) = d1+d2/(1+2x2). The sampling interval used here isτ = 0.01.
For numerical integration of the SDE we use the Milstein scheme with time step
10−4. All other details, such as number of trajectories and choice of test functions,
are the same as in the previous example.

In figure 3 we have plotted the mean estimated potential and mean estimated
diffusion, as well as their errorbars. They are in good agreement with the true
potential and diffusion (both also shown).

4 Random xi

If the starting pointxi is not the same for each short trajectory, but instead drawn
randomly from a distributionρ0(x), the modified Fokker-Planck operator in (10)
must be generalized to

(L̃∗ρ)(x, t) = (L∗ρ)(x, t)+ρ0(x)D(x f )(∂xρ)(x f , t) , (15)

see [13]. As a result we have

〈L̃∗ψk,σ j〉= 〈ψk,Lσ j〉+D(x f )ψ ′
k(x f )

(

〈ρ0,σ j〉−σ j(x f )
)

. (16)

Thus, we have to generalize the conditionσ j(xi) = σ j(x f ) to 〈ρ0,σ j〉 = σ j(x f ),
in order to eliminate all boundary terms. Constructing suchσ j is easy: ifσ̃ j is an
arbitrary function, thenσ j = σ̃ j +αx with α = (σ̃ j(x f )−〈ρ0, σ̃ j〉)/(〈ρ0,x〉− x f )
will satisfy this generalized condition.

4.1 Example: Gaussian distribution forxi

We use the same model as in example 3.2 (i.e., space-dependent diffusion), but
instead of keepingxi fixed at 1, we draw thexi from a Gaussian distribution with
mean 1 and standard deviation 0.25. We keepx f fixed at -1. Results from the same
kind of numerical experiment as in example 3.2 (100 timeseries with each 100 tra-
jectoriesxi → x f ) are shown in figure 4. For numerical integration we use again
the Milstein scheme with time step 10−4. The test functions are constructed as
described just above, starting from̃σ j ∈ {x2,x3− x,x4}. The results are compara-
ble to the case with constantxi (figure 3), except that the errors on the estimated
diffusion are somewhat higher here.

5 Multiscale systems, non-Markov data and low sampling frequency

The spectral estimation procedure from [2,4], generalizedto non-equilibrium data
in this paper, is suitable for situations where one wishes tomodel the coarse-
grained dynamics of an observed multiscale system with a diffusion process. In
such situations, the aim is typically to find effective models for the observed dy-
namics for selected (slow) variables. The effective model should be consistent
with the coarse-grained (long timescale) features of thesevariables, but it can
be inconsistent with the dynamics on short timescales. If the effective model is
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Fig. 4 (Color online) Results for example 4.1, with random initialpoints xi for each trajec-
tory. As in example 3.2, the potential has a double well (cubic drift) and the diffusion is space-
dependent. The mean and errorbars of the estimated potentials are shown in blue in the left panel;
those of the estimated diffusions are in the right panel. Thecurves in red are the true potential
and diffusion, respectively.

inferred from observations, these short timescales shouldbe avoided, implying
that data with a low sampling frequency must be used for estimation. If τ is too
short, the estimated drifts and diffusions can be strongly biased [9,8,4]. As al-
ready discussed in section 2, the spectral estimation procedure has no inherent
time discretization error, unlike some other estimators (e.g. the QV estimator in
(14)). Clearly, this is an advantage whenever data with longsampling intervals is
used for estimation.

The question whether one can infer a correct coarse-grainedmodel from ob-
servations of a multiscale system, can be systematically investigated in the context
of multiscale diffusion processes, as was done in e.g. [9,8,4]. Under some mild as-
sumptions, it can be shown rigorously that the slow dynamicsof these multiscale
processes converge to an effective (averaged or homogenized) diffusion process
in the limit of large scale separation [10]. In some cases, one can derive analytical
expressions for the effective drift and diffusion coefficients. These analytical re-
sults can be compared with results from estimation, for assessment of estimation
procedures in a multiscale setting.

A detailed analysis of the spectral estimation procedure inthe context of mul-
tiscale processes is given in section 5 of [4]. We will summarize a few key results
of this analysis here. Starting point is the multiscale diffusion process(Xt ,Yt) ∈
Ωx ×Ωy ⊂R

n ×R
m with SDEs

dXt =

(

1
ε

F1(Xt ,Yt)+F0(Xt ,Yt)

)

dt +α(Xt ,Yt)dW x
t (17a)

dYt =
1
ε2 G(Xt ,Yt)dt +

1
ε

β(Xt ,Yt)dW y
t (17b)

whereε is a small parameter, andW x
t andW y

t are independent Wiener processes of
dimensionn andm, respectively. In the limitε → 0, the slow variableXt converges
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in law to the solutionX̄t of the effective (homogenized) SDE

dX̄t = F̄(X̄t)dt + ᾱ(X̄t)dW x
t , (18)

provided the following assumptions hold: (i) ifXt is fixed atx, the fast variableYt
is ergodic with unique invariant measureµx(y), and (ii) the centering condition

∫

Ωy

µx(dy)F1(x,y) = 0 (19)

is satisfied for allx ∈ Ωx. We will also assume thatµx(y) admits a densityρx(y),
i.e. µx(dy) = ρx(y)dy.

The Fokker-Planck operatorLh∗ of the homogenized system (18) has leading
eigenpairs that are asymptotically close to the leading eigenpairs of the Fokker-
Planck operatorL∗ of the full multiscale system (17). More precisely:

L∗ψk = λkψk, Lh∗uk = λ h
k uk (20a)

ψk(x,y) = uk(x)ρx(y)+O(ε) (20b)

λk = λ h
k +O(ε) (20c)

A similar results holds for the diffusion operators (or backward Fokker-Planck
operators)L andLh, see [4].

If we can only observe the slow variableXt of (17), but not the fast variableYt ,
it is still possible to estimate the leading eigenpairs of the multiscale operatorsL
andL∗. However, the sampling interval should be large enough in this case. With
only Xt observed, we effectively observe the projected operatorΠPτ rather than
Pτ , wherePτ = exp(τ L), as in section 2, andΠ is the projection operator defined
as(Πh)(x) =

∫

ρx(y)h(x,y)dy. If τ ≫ ε2, the leading eigenpairs ofΠPτ andPτ
(and their adjoints) are againO(ε) close. However, for the estimation we need the
leading eigenvalues ofL rather than those ofPτ (or its projected counterpartΠPτ ).
Let Λ Π

k andΛk be leading eigenvalues ofΠPτ andPτ , respectively, and define
λ Π

k = τ−1 logΛ Π
k , λk = τ−1 logΛk, see (5). As mentioned,Λ Π

k −Λk = O(ε) if
τ ≫ ε2. Under the stricter requirementτ = εq with 0≤ q < 1 we haveλ Π

k −λk =

O(ε1−q), and thusλ Π
k → λk asε → 0.

Summarizing: if we observe the slow variableXt but not the fast variableYt
of (17), we can estimate the leading eigenpairs(uΠ

k ,Λ Π
k ) of (ΠPτ )

∗. Applying
(5) gives the eigenpairs(uΠ

k ,λ Π
k ). If τ ≫ ε, these eigenpairs are asymptotically

close the the leading eigenpairs(uk,λ h) of the Fokker-Planck operatorLh∗ of the
homogenized system (18). Thus, we have(uΠ

k ,λ Π
k )→ (uk,λ h

k ) asε → 0, provided
τ ≫ ε. This implies that with the spectral estimation procedure,we can infer the
correct coarse-grained process (18) from the eigenpairs(uΠ

k ,λ Π
k ). This will be

demonstrated in the following numerical examples.
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5.1 Example: multiplicative red noise and Stratonovich corrections

We revisit the example with space-dependent diffusion and fixedxi (section 3.2),
but replace the white noise by red noise. Thus, we have

dXt = −V ′(Xt)dt +
1
ε
√

2D(Xt)Ytdt , (21a)

dYt = −
1
ε2Ytdt +

1
ε

dWt , (21b)

with ε ≪ 1. As can be seen, the fast variable (”red noise”)Yt is an Ornstein Uhlen-
beck process. The dynamics ofXt on O(1) timescales can be well approximated
by the homogenized SDE

dXt = F(Xt)dt +
√

2D(Xt)dWt (22)

with
F(x) =−V ′(x)+ 1

2

√

2D(x)
√

2D(x)
′
=−V ′(x)+ 1

2D′(x) . (23)

The termD′(x)/2 is the well-known Stratonovich correction, the contribution to
the drift that arises if one interpretes an SDE in the Stratonovich sense and passes
over to the corresponding Ito form. We refer to [10] for a detailed introduction of
SDE homogenization and related techniques.

As in example 3.2,V (x) = (1− x2)2 and the space-dependent diffusion is
D(x) = 1

4(1+
3

1+2x2 ). Furthermore, we setε = 0.01. We generate data with the
multiscale system (21), using the Euler-Maruyama integration scheme with time
step 10−5. The variableXt is subject to absorption atx f = −1 immediately fol-
lowed by reinjection atxi = 1. There is no absorption/reinjection forYt . Using
only observations ofXt with sampling intervalτ = 0.01, we fit the SDE (22)
with drift B(x) = b1+ b2x+ b3x2+ b4x3+ b5x/(1+ 2x2)2 and diffusionD(x) =
d1+d2/(1+2x2). Details of the estimation are identical to example 3.2.

In figure 5 we show the resulting mean and standard deviations(errorbars)
of the estimated potentials and diffusions. The potential and diffusion functions
predicted by homogenization theory are plotted as well (these correspond to the
parameter values(b1,b2,b3,b4,b5,d1,d2) = (0,4,0,−4,−1.5,0.25,0.75)).

5.2 Example: subsampling and biased estimates

Inferring the correct coarse-grained diffusion process from data of the underlying
multiscale process is nontrivial, as was analysed in detailin [9,8,4]. When esti-
mating the homogenized process (22) from observations of the slow variableXt in
(21), one obtains strongly biased results if the sampling intervalτ is too short, due
to non-Markov effects at short timescales. In such a case, subsampling (skipping
datapoints in order to increaseτ) is needed to avoid bias. However, if one uses an
estimator that suffers from time discretization errors, the results deteriorate with
growingτ. The QV estimator (14) is an example. By contrast, the spectral proce-
dure central to this paper is not affected by time discretization errors (however, ifτ
is very large, one needs very long timeseries in order to overcome sampling error).
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Fig. 5 (Color online) Results for the multiscale example 5.1. The mean and errorbars of the
estimated potentials are shown in blue in the left panel; those of the estimated diffusions are in
the right panel. The curves in red are the potential and diffusion predicted by homogenization
theory.

It allows one to do estimation at values ofτ large enough to avoid the non-Markov
effects, without being affected by time discretization errors.

To demonstrate this issue, we return to the example with constantD (section
3.1), and replace the white noise by red noise, similar to theprevious example.
Thus, we consider the multiscale system (21) withD = 0.5 andV (x) = (x2−1)2.
As before, the variableXt is subject to absorption atx f =−1 immediately followed
by reinjection atxi = 1. There is no absorption/reinjection forYt . We setε = 0.01.
Using observations ofXt , we fit the SDE (22) with driftB(x) = b1+b2x+b3x2+
b4x3 and diffusionD. Details of the estimation are identical to example 3.1. We
also estimateD with the QV estimator (14).

For the estimation, we use timeseries consisting of 300 trajectories fromxi to
x f . This is more than in previous examples, thereby enabling usto focus better on
the τ-dependent bias because of the smaller sampling error. The trajectories are
generated with the Euler-Maruyama integration scheme withtime step 10−5. They
are sampled at intervals that are integer multiples of 0.0005, i.e.τ = h0.0005 with
1≤ h ≤ 400. Furthermore, the estimation is repeated using 10 different timeseries
(each with 300xi → x f trajectories). The mean of the estimates ofD is shown in
figure 6, for all values ofτ. Both the estimates obtained with the spectral procedure
and those from the QV estimator are visibly affected by non-Markov effects at the
smallest values ofτ. In the range 0.005< τ < 0.1, the mean of the spectral esti-
mates is 0.48, only slightly below the correct value 0.5. Thestandard deviation in
this range is about 0.015. Forτ > 0.1, sampling error becomes substantial (eventu-
ally, for very large values ofτ, the estimates tend to decrease again). By contrast,
the QV estimates reach a maximum near the correct value ofD at τ ≈ 0.005 and
decreases again for largerτ, due to the time discretization error inherent to the QV
estimator (14). The QV estimates have much smaller variance(about 0.0025) than
the spectral estimates, but they are significantly biased for nearly all values ofτ.



14

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.3

0.35

0.4

0.45

0.5

0.55

sampling interval τ

m
ea

n 
es

tim
at

e 
of

 D

 

 

spectral
QV

Fig. 6 (Color online) Results for the multiscale example 5.2 with constantD. The spectral esti-
mation procedure is affected by non-Markov effects at smallvalues ofτ , but gives good results
if larger τ are used. Forτ > 0.1, sampling errors become substantial. The quadratic variation
(QV) estimator (14) is affected both by non-Markov effects at smallτ and by time discretization
errors at larger values ofτ . The correct diffusion coefficient isD = 0.5.

Rather similar results, using equilibrium data, can be found in the last example of
[4]. A detailed analysis of the smallτ limit is included there as well.

6 Conclusion

In this paper, we considered the estimation of diffusion processes from collections
of short trajectories of the process. Each trajectory starts in the initial pointxi and
ends in the final pointx f . The distribution of the data (observations) of the trajec-
tories can be far from the equilibrium distribution of the diffusion process. These
non-equilibrium datasets can result from e.g. laboratory experiments or numeri-
cal experiments where a system is brought in a certain statexi, after which it is
released and observed until it reachesx f .

We generalized a spectral estimation approach, introducedrecently [2,4], so
that it can be used for inferring diffusion processes from such non-equilibrium
data. This was made possible by viewing the collection of trajectories fromxi to x f
as a single trajectory of a process with absorption atx f , immediately followed by
reinjection atxi, as proposed in [13]. In sections 3 and 4 the estimation of potential
functions and diffusion coefficients from non-equilibriumdata with the spectral
method was discussed and demonstrated with numerical examples, showing good
results.

Because the spectral estimation procedure has no inherent time discretization
error, it is a suitable method for situations where an effective, coarse-grained dif-
fusion process must be estimated from data of a multiscale system. In these situ-
ations, data with long sampling intervalsτ must be used in order to avoid biased
results, posing problems for estimation methods that are only valid in the limit
τ → 0. In section 5 we showed the favorable properties of the spectral method in
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this respect, using examples with non-equilibrium data sampled from a multiscale
system.

The discussion in this paper was limited to cases whereτ is constant through-
out the dataset. However, we expect that estimation from data with non-constant
sampling intervals is well possible, following the approach proposed in [3]. Al-
though the context in [3] was the estimation of Markov jump processes by the
spectral method, we anticipate that the treatment of data with non-constantτ pre-
sented there will carry over to diffusion processes.

Furthermore, the focus throughout the paper was on inference of 1-dimensional
processes. Clearly, generalization to processes with dim≥ 2 will be useful for var-
ious practical applications. For equilibrium data, several 2-dimensional numerical
examples were already treated in [2] and [4], with positive results. For the case of
non-equilibrium data as considered here, generalization to higher dimensions is
more complicated, because it involves generalization of the stopping pointx f to a
hypersurface. We leave this for future study.

Finally, we note that the spectral procedure as presented here is a method for
parametric estimation. The potentials and diffusion functions are expanded in a fi-
nite number of basis functions, requiring estimation of theexpansion coefficients.
We intend to investigate the extension of our procedure to nonparametric estima-
tion in future work.
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