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Abstract. A variational approach to the estimation of generators for Markov jump processes
from discretely sampled data is discussed and generalized. In this approach, one first calculates the
spectrum of the discrete maximum likelihood estimator for the transition matrix consistent with the
discrete data. Then the generator that best matches the spectrum is determined by solving a convex
quadratic minimization problem with linear constraints (quadratic program). Here, we discuss the
method in detail and position it in the context of maximum likelihood inference of generators from
discretely sampled data. Furthermore, we show how the approach can be generalized to estimation
from data sampled at non-constant time intervals. Finally, we discuss numerical aspects of the
algorithm for estimation of processes with high-dimensional state spaces. Numerical examples are
presented throughout the paper.
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1. Introduction. Markov jump processes with finite state-space are used in
many scientific disciplines: physics, chemistry, biology, finance, sociology, etc. The
properties of these models are specified by their generator, here denoted by Q, also
known as rate matrix or intensity matrix ([1, 21]). An important practical issue for
modeling is the inference of the generator from time-series data. This issue is the
topic of the present paper.

When the time-series is sampled continuously, the natural framework to infer the
generator of the chain is to maximize the likelihood function associated with these
continuous time data. In this case, there is an analytic expression for the maximum
likelihood estimator (MLE) of Q which involves quantities easily computable from
the data (e.g. [5]). Continuously sampled time-series, however, are rarely available
in real applications. Most often, one is given a time series of the process sampled
at discrete points in time. Maximum likelihood estimation can be generalized to
discretely sampled data, but in this case, inference is not as straightforward as it is
in the continuously sampled case. There is no analytical expression for the MLE of Q
in this case, and its calculation is a nontrivial computational task in general because
the likelihood function associated with the discrete time data may have several local
maxima. Even worse, the MLE may not exist (i.e. the likelihood function may be
non-coercive).

These difficulties were discussed in details in [6] and their origin is quite simple:
Since the discrete time data only carry incomplete information about the continuous-
time process, it is possible that several continuous-time Markov jump processes oscil-
lating at different rates between the states are consistent with the data. This leads
to multiplicity of the (local) MLE. It may also be that by considering generators Q
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consistent with faster and faster oscillations between the states (i.e. by making the
amplitude of the entries of Q larger and larger), one keeps on increasing the likelihood
of Q given the data. In this case the MLE will not exist. These problems typically
tend to disappear when the sampling rate of the discrete time data is increased (i.e.
the time lag between the observations is shortened). However, this may not be a vi-
able option in practice, for example because there is some practical limit imposed on
the sampling rate of the data. Furthermore, the underlying continuous-time process
may in fact not be exactly Markov at very short time scales. The latter situation is
often encountered in practical applications, and in such cases one would like to infer
a generator consistent with the data sampled at time intervals which are long enough
to have filtered out the non-Markov properties.

For all of these reasons, it may be preferable to use another framework than max-
imum likelihood estimation to infer generators from discrete time data in situations
when the sampling lag is not small enough. An alternative procedure was proposed
in [8]. The basic idea behind this procedure is simple, especially when the time lag
between the observations is constant (an assumption that we will relax below). In
this case, the data can be viewed as a sample of a discrete-time Markov chain. The
MLE for the transition matrix can be easily computed from the discretely sampled
data. The spectrum of the MLE is calculated, and, consistent with this spectrum car-
rying the relevant information about the process, it is used to identify the generator
Q whose spectrum is the closest to the spectrum of the MLE. Here, closeness is mea-
sured in terms of a convex quadratic objective function which needs to be minimized
subject to a set a linear constraints that guarantee that the minimizer is a generator.

Our main objective here is to analyze in more detail the mathematical and com-
putational aspects of the procedure proposed in [8]. In doing so we will simplify the
procedure, and generalize it to inference from time series sampled at non-constant
lags. Overall, the approach has several advantages. First, it bypasses completely the
issue related to non-uniqueness or nonexistence of the MLE of Q because the con-
strained minimization problem, being convex, always has a unique generator Q as
solution. This is especially appealing when studying data that is not exactly consis-
tent with a Markov jump process, a problem which, as mentioned above, is rather
common in practical applications. Second, this solution can be computed efficiently,
even when the number of states in the chain is large, using the numerical tools of
quadratic programming established after years of improvements by the numerical op-
timization community. Third, the method is versatile and can be adapted to Markov
jump processes of special type (e.g. birth-death process) or to impose additional con-
straints in order that the generator matches exactly rather than approximately one
or more elements from the spectrum (e.g. the invariant distribution).

The paper is organized as follows. In section 2 we review some basic properties
of generators and discuss convergence of the estimates of the spectrum. We present a
simplified and improved version of the estimation procedure from [8] and position it
with respect to the maximum likelihood estimation procedure (as in [6]). The general-
ization to estimation from timeseries with non-constant sampling interval is the topic
of section 3. We present a procedure to obtain estimates for the generator spectrum
from such timeseries and we apply it to infer a generator from data with random sam-
pling intervals (drawn from a gamma distribution). Section 4 deals with numerical
aspects of large-scale quadratic programs, relevant for estimation of jump processes
in high-dimensional state spaces. For such processes, an adequate formulation of the
optimization problem and suitable choice of solution method are needed. In section 5
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we conclude and we briefly discuss the relation with estimation of diffusion processes
from discretely sampled data.

2. Generator inference using the eigenspectrum.

2.1. Basic properties of generators. We will consider the continuous-time
Markov jump process {Xt : t ≥ 0} on the finite state space S = {1, . . . , d}. Assuming
time-homogeneity, we will denote the transition matrices of this process by P (τ) =
(pi,j(τ))i,j∈S , i.e.

pij(τ) = P(Xt+τ = j|Xt = i), t, τ ≥ 0 . (2.1)

We will assume that the process is ergodic, implying that there exists a unique vector
µ = (µ1, . . . , µd)

T with positive entries µi > 0 such that

µTP (τ) = µT ,
∑

i∈S

µi = 1 . (2.2)

This vector is referred to as the stationary distribution of the Markov jump process.
If P (τ) is right-differentiable at zero, i.e. if the following limit exists

lim
τ→0+

P (τ) − I

τ
= Q (2.3)

where I denotes the identity matrix, the matrix Q = (qij)i,j∈S is called the (infinites-
imal) generator of the process {Xt : t ≥ 0}. The entries of the generator Q satisfy
the two conditions:

qij ≥ 0 for all i, j ∈ S, i 6= j (2.4a)
∑

j∈S

qij = 0 for all i ∈ S (2.4b)

Conversely, any matrix satisfying these two conditions is the generator of some con-
tinuous-time Markov jump process. Note that (2.3) implies that P (τ) is related to Q
via the matrix exponential:

P (τ) = exp(Qτ). (2.5)

Also, in terms of Q (2.2) reads

µTQ = 0. (2.6)

2.2. Inference from discretely sampled data: maximum likelihood es-

timation and its difficulties. Let Xt1 , ..., XtN+1 be a series of observations of
{Xt : t ≥ 0} at the discrete points in time 0 < t1 < · · · < tN+1. In this sec-
tion, we assume that the process is observed at a constant sampling interval, i.e.
tn+1 − tn = ∆t is constant for all n = 1, . . . , N . In section 3 we will relax this
condition. When the sampling interval is constant, the data Xt1 , ..., Xt1+N∆t can be
viewed as the sample path of a discrete-time Markov jump process. Consistently, we
can calculate the discrete-time based maximum likelihood estimator (MLE) P̂ of the
transition probability matrix P (τ = ∆t) from these data, i.e. the maximizer of

LD(P ) =
∏

i,j∈S

p
K

(N)
ij

ij (2.7)
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where K
(N)
ij denotes the number of transition from state i to state j observed in

the data Xt1 , Xt1+∆t, ..., Xt1+N∆t. The likelihood function (2.7) can be maximized
explicitly (e.g. [5]) and the entries p̂ij of P̂ are given by

p̂ij =











K
(N)
ij

∑

j∈S K
(N)
ij

if
∑

j∈S K
(N)
ij 6= 0

0 otherwise

(2.8)

The MLE P̂ is related to the discrete-time based maximum likelihood estimator
Q̂ of the generator Q, i.e. the maximizer of

LC(Q) =
∏

i,j∈S

(

eQ∆t
)K

(N)
ij

ij
(2.9)

where (eQ∆t)ij denote the entries of the matrix exp(Q∆t). Indeed, if the equation

exp(Q∆t) = P̂ (2.10)

admits a solution Q which is a generator (i.e. such that (2.4) is satisfied), then this
solution is a MLE Q̂ since we then have LC(Q̂) = LD(exp(Q̂∆t)). There are, however,
two difficulties, as discussed in detail in [6]. The first is that (2.10) may admit several
solutions which are generators. If this is the case, each of these solutions is a MLE Q̂,
i.e. the MLE of the generator is non-unique. In statistical terms, this means that the
parameterization of the distribution of the data Xt1 , ..., Xt1+N∆t by Q may not be
identifiable. The second, more serious difficulty is that (2.10) may have no solution
which is a generator. This difficulty is related to the so-called imbedding problem
which states that the law of a discrete-time Markov chain is not always the law of
a continuous-time Markov chain sampled at discrete times. If (2.10) has no solution
which is a generator, the MLE Q̂ may or may not exist. Even when it does exist, it
is nontrivial to identify this MLE numerically because the likelihood function (2.9) is
nonconvex and its gradient with respect to Q is complicated. For recent algorithmic
advances in this direction, see [6, 16, 17].

2.3. Sampling error and spectral decomposition. To understand better the
origin of the difficulties discussed in the last section, let us assume that the generator
Q admits the spectral decomposition

Q = UDλU
−1 (2.11)

where U denotes the matrix whose columns are eigenvectors of Q, and Dλ is the di-
agonal matrix with the eigenvalues of Q on the diagonal, Dλ = diag(λ1, λ2, . . . , λd).
We order the eigenvalues λi by increasing amplitude of their absolute value. Then
by ergodicity we have λ1 = 0 and Reλi < 0 for i = 2, . . . d. Using the decomposi-
tion (2.11), the matrix P (∆t) = exp(Q∆t) can be computed explicitly and is given
by

P (∆t) = UDΛU
−1 (2.12)

where DΛ = diag(Λ1,Λ2, . . . ,Λd) with

Λi = eλi∆t, i = 1, . . . , d. (2.13)
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This implies that we can infer U , U−1 and Dλ in (2.11) from data by constructing
the MLE P̂ , calculating its spectral decomposition and using the relation (2.13). In
this section, we investigate how sampling errors on P̂ affect the estimates of Dλ and
of U and U−1.

First of all, (2.13) implies that for all eigenvalues Λi such that Reλi∆t is very
large negative, the modulus of Λi will be very small. Therefore, if one uses the MLE
P̂ to get estimates of the Λi , one expects that the estimates of the large Λi will be
better than those of the small Λi. This effect can be quantified as follows:

Theorem 1. Assume that Q admits the spectral decomposition (2.11) and let
D̂Λ = diag(Λ̂1, Λ̂2, . . . , Λ̂d) be the eigenvalues of the MLE P̂ given in (2.8). Assume
also that the multiplicity of each eigenvalue is one. Then as N → ∞ for fixed ∆t, we
have

√
N

(

D̂Λ −DΛ

)

→ diag(r1, . . . , rd) (2.14)

in probability. Here r = (r1, . . . , rd) is a Gaussian vector with mean zero and covari-
ance

E(rirj) =
∑

k,l∈S

ūikūjk(pkl − ΛiΛjδkl)uliulj

µk
, i, j = 1, . . . , d (2.15)

where E denotes expectation over the law of the process {X(t) : t ≥ 0}, uij denote the
entries of U , and ūij those of U−1.

Theorem 1 follows from a central limit theorem for Markov chains [2]; the proof is
given in Appendix A. From the theorem it can be seen that the sampling error does not
propagate among the eigenvalues of P̂ . More specifically, if the estimate Λ̂i is such that√
N |Λ̂i| ≫ 1, then this eigenvalue is accurately estimated, even if there are some other

estimates Λ̂j that are inaccurate because
√
N |Λ̂j| . 1. Based on this we can obtain

a precise classification of which eigenvalues are reliable. We introduce a constant
0 < σ ≪ 1, whose magnitude can be interpreted as a tolerance for the relative error
on Λ̂i. For large N we have Λ̂i−Λi ≈ 1√

N
ri, see Theorem 1. Thus, the expectation of

the squared error is (approximately) 1
N E(r2i ). The estimate Λ̂i is classified as reliable

if this expectation is smaller than σ2 |Λ̂i|2, i.e. if 1
N E(r2i ) < σ2 |Λ̂i|2. We do not know

E(r2i ) but if we replace the elements of U,U−1, P and µ in (2.15) by their estimates

Û , Û−1, P̂ and µ̂ we obtain an a posteriori error estimate E(r̂2i ). Using this gives the
following reliability criterion:

The estimate Λ̂i is reliable if σ|Λ̂i| >
1√
N

√

E(r̂2i ) . (2.16)

The results above have important consequences for estimating the spectrum of
the underlying generator Q via the spectrum of the MLE P̂ . If Λ̂i 6= 0 (which is
increasingly likely as N → ∞ since Λi 6= 0), we can compute

λ̌i =
1

∆t
log Λ̂i, (2.17)

and this quantity gives an estimate of an eigenvalue λi of Q. We may wonder whether
the condition in (2.16) will guarantee reliability of the λ̌i calculated from (2.17).
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Unfortunately, λ̌i may be unreliable even if Λ̂i is reliable. This can happen if the
sampling interval is small, so that Λ̂i is close to 1. The reverse situation is also
possible: for Λ̂i close to 0, λ̌i may be reliable while Λ̂i is not. This typically occurs if
the sampling interval is large.

Provided one picks the right branch of the logarithm when Λ̂i is complex, Theo-
rem 1 implies

√
N(λ̌i − λi) →

1

∆t
e−λi∆tri in probability as N → ∞ (2.18)

This leads to a reliability criterion similar to (2.16):

The estimate λ̌i is reliable if σ|λ̌i| >
1

∆t Λ̂i

1√
N

√

E(r̂2i ) (2.19)

where σ is again a tolerance on the relative error. Comparing (2.16) with (2.19) it
can be seen that if ∆t |λ̌i| < 1, it is possible that the criterion in (2.16) is satisfied but
the one in (2.19) is not (i.e., Λ̂i is reliable while λ̌i is not). If ∆t|λ̌i| > 1, the reverse
situation can occur.

We note that Theorem 1 concerns the limit N → ∞ with ∆t fixed. It must be
kept in mind that pkl and Λi in (2.15) both depend on ∆t. In Appendix B the small
∆t limit of the errors on the estimated eigenvalues is discussed.

Regarding the left and right eigenvectors of P associated with an eigenvalue of
multiplicity one, we have the following result.

Theorem 2. Assume that P and P̂ admit the spectral decompositions P =
UDΛU

−1 and P̂ = ÛD̂ΛÛ
−1, where DΛ = diag(Λ1,Λ2, ...,Λd) and D̂Λ = diag(Λ̂1,

Λ̂2, ..., Λ̂d), both ordered by decreasing |Λj|. Assume also that the eigenvalue Λi has
multiplicity one. We denote its associated left and right eigenvectors by ψi and φi.
Then as N → ∞ for fixed ∆t, we have

√
N(φ̂i − φi) →

∑

j 6=i

ψT
j S φi

Λj − Λi
φj (2.20a)

√
N(ψ̂i − ψi) →

∑

j 6=i

ψT
i S φj

Λj − Λi
ψj (2.20b)

in probability. As before, S is a Gaussian matrix whose elements have mean zero and
covariance given by (A.2).

The theorem is proven in Appendix C. From (2.20a) it follows that in the limit
N → ∞,

E ‖φ̂i − φi‖ →E

∥

∥

∥

∥

∥

∥

∑

j 6=i

1√
N(Λj − Λi)

(

ψT
j Sφi

)

φj

∥

∥

∥

∥

∥

∥

in probability

≤ 1√
N dΛi

∑

j 6=i

‖φj‖E |ψT
j Sφi| ,

(2.21)

where

dΛi = min
j (j 6=i)

|Λj − Λi| . (2.22)
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Using, as before, the tolerance σ, the requirement E ‖φ̂i − φi‖ < σ‖φ̂i‖ is satisfied if

σ
√
N dΛi ‖φ̂i‖ >

∑

j 6=i ‖φj‖E |ψT
j Sφi|, see (2.21). If we replace all φi, ψi and Λi by

their estimates and assume the eigenvectors are normalized such that ‖φ̂i‖ = ‖φ̂j‖ for

all i, j, the latter condition simplifies to σ
√
N dΛ̂i >

∑

j 6=i E |ψ̂T
j Ŝφ̂i|. For ψ̂i − ψi a

similar expression holds. Therefore we formulate the following reliability criteria:

φ̂i is reliable if σ dΛ̂i >
1√
N

∑

j 6=i

E |ψ̂T
j Ŝφ̂i| (2.23a)

ψ̂i is reliable if σ dΛ̂i >
1√
N

∑

j 6=i

E |ψ̂T
i Ŝφ̂j | (2.23b)

As can be seen, the reliability of the estimated eigenvectors φ̂i and ψ̂i depends crucially
on dΛ̂i, the separation of the i-th eigenvalue Λ̂i from all other eigenvalues.

If we denote by Û the matrix of eigenvectors of P̂ and assume that this matrix
has full rank, we have the following estimate for the solution of (2.10):

Q̌ = ÛĎλÛ
−1 (2.24)

where Ďλ = diag(λ̌1, . . . , λ̌d) and the λ̌i are given by (2.17). For the errors on P̂
we have the central limit theorem (A.1); by contrast, the errors introduced by the
unreliable part of the spectrum will propagate through the matrix Q̌ given by (2.24)
in a way that is difficult to control. In many instances, Q̌ will not even be a generator:
it will violate the constraints (2.4) and/or have complex matrix elements.

Summing up: In situations where one or more of the eigenvalues or eigenvectors
of P̂ are unreliable in the sense of (2.16) and (2.23), Q̌ is unsuitable as an estimate
for the solution of (2.10) because it contains many unreliable elements. If we observe
a jump process at discrete points in time, we expect that the MLE P̂ may very well
be non-embeddable because of sampling error, even though the true stochastic matrix
P (∆t) is embeddable. In many practical cases, the sampling interval ∆t is too large to
infer the fast timescale features of the process {Xt : t ≥ 0}, resulting in a P̂ that has
an unreliable part in its spectrum. In these situations, we expect that the approach
based on maximum likelihood estimation will encounter the difficulties discussed in
section 2.2. However, the results above suggest that even if part of the spectrum of
P̂ is unreliable, there are important features of the process which may be inferred
from the reliable part of the spectrum (we stress “may” because of the problem of the
choice of the branch of the logarithm, to be discussed below). How to use this reliable
part of the spectrum to infer Q is the core of the approach we propose, as explained
next.

2.4. Inference as a convex optimization problem. We now explain our
inference procedure assuming that the MLE P̂ inferred from the data admits the
spectral decomposition

P̂ = ÛD̂ΛÛ
−1 (2.25)

If the decomposition (2.25) does not exist, i.e. if the geometric multiplicity of some
eigenvalues Λi is lower than their algebraic multiplicity (in which case Û does not
have full rank), the procedure described below can be generalized using the Jordan
decomposition of P̂ .

From D̂Λ we compute Ďλ according to (2.17) using the principal branch of the
logarithm. We classify the eigenvalues in Ďλ as (un)reliable according to (2.19).
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Since the eigenvalues Λ̂i are estimates of eλi∆t, any real negative Λ̂i should have even
multiplicity if it is estimated accurately. Therefore we also classify as unreliable any
λ̌i whose corresponding Λ̂i is real negative with odd multiplicity, by adjusting σ so
that this Λ̂i falls in Nσ2|Λ̂i|2 ≤ E(r̂2i ). All other eigenvalues are classified as reliable.

We then construct the diagonal matrix D̂λ = diag(λ̂1, . . . , λ̂d), where the λ̂i are

λ̂i = λ̌i (reliable λ̌i) (2.26a)

λ̂i = λ̌i (unreliable λ̌i with Λ̂i /∈ (−∞, 0]) (2.26b)

λ̂i =
1

∆t
log max(|Λ̂i|, δ) (unreliable λ̌i with Λ̂i ∈ (−∞, 0]) (2.26c)

where δ > 0 is a threshold parameter such that |Λ̂i| ≫ δ for all reliable Λ̂i. This pa-
rameter is introduced in case some of the Λ̂i are identically 0. The eigenvalues (2.26c)
will turn out to have little impact on the reliable part of the spectrum of our inferred
Q, so the precise recipe in (2.26c) is not important except for ensuring that the mag-
nitude of unreliable eigenvalues computed from (2.26c) is larger than the one of the
reliable eigenvalues computed from (2.17). We remark that is not necessary for the
eigenvalues to be simple. Although for the error analysis in the previous section we
assumed multiplicity one for each Λ̂i, the procedure described here remains applicable
if there are repeated eigenvalues.

We wish to construct a generator Q such that, if there are n reliable eigenvalues
in D̂λ and n associated eigenvectors in Û , Q has n eigenvalues and associated eigen-
vectors which closely match them. We also want the other eigenvalues of Q to have a
larger magnitude than these n smallest eigenvalues. To get such a Q, we propose to
minimize, subject to the constraints (2.4), the following objective function

E(Q) = ‖Û−1QÛ − D̂λ‖2
c (2.27)

Here ‖·‖2
c denotes a weighted Frobenius norm: given any square matrix A with entries

aij ,

‖A‖2
c =

∑

i,j∈S

cicj |aij |2 (2.28)

where c is a vector with positive entries ci > 0 which is introduced to put more weight
on the reliable eigenvalues and less on the unreliable ones. This can be achieved by
making the ci dependent on the typical magnitude of the errors of λ̂i. By setting
ci = c̃i|λ̂i|−1 (i > 1), relative errors of equal magnitude are weighted equally if all

c̃i = 1. As the typical relative error of λ̂i is proportional to (|λ̂i||Λ̂i|)−1, see (2.18), a

straightforward choice is c̃i = |λ̂i||Λ̂i| and thus ci = |Λ̂i|.
The objective function (2.27) is a simplification of the one originally proposed

in [8], and it has desirable features both from a theoretical and a computational
viewpoint. Because Û has full rank by assumption, the quadratic E(Q) is strictly

convex. Therefore, since the admissible region for the entries qij in Rd2

imposed

by (2.4) is a convex region, there is a unique minimizer Q∗. If Q∗∗ = ÛD̂λÛ satisfies
the constraints (2.4), then Q∗ = Q∗∗ and E(Q∗) = 0. If Q∗∗ does not satisfy the
constraints (2.4), then Q∗ 6= Q∗∗ and E(Q∗) > 0; in this case the minimizer Q∗ can
be identified using well-established quadratic programming techniques, as discussed
in section 4.2.

As was shown in the previous section, Û , Û−1 and D̂Λ all converge to their true
values: as N → ∞ and ∆t fixed, Û → U , Û−1 → U−1 and D̂Λ → DΛ. For reversible
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jump processes, all Λi are real positive so that the logarithm in (2.17) determines
the λi uniquely. In that case, D̂λ → Dλ and thus the minimizer Q∗∗ is a consistent
estimator of Q = UDλU

−1: Q∗∗ → Q as N → ∞ with ∆t fixed. Moreover, for large
enough N , P̂ must be embeddable (because the underlying process is a continuous-
time jump process) and thus Q∗∗ must satisfy (2.4), so that Q∗ = Q∗∗. For jump
processes with complex Λi, the convergence of D̂λ hinges on the selection of the correct
branch of the logarithm for complex Λ̂i. This issue is discussed in detail below.

If P̂ is embeddable, the MLE Q̂ exists and satisfies exp(Q̂∆t) = P̂ . Then Q̂ must
admit the spectral decomposition Q̂ = ÛD̃λÛ

−1 with D̃λ = diag(λ̃1, ...λ̃d) such that
D̂Λ = exp(D̃λ ∆t). If there are several D̃λ such that D̂Λ = exp(D̃λ ∆t) and ÛD̃λÛ

−1

satisfies (2.4), Q̂ is non-unique. If Q̂ is unique, it coincides with the minimizer Q∗

if for the latter we picked the correct branch of the logarithm when determining the
λ̂i via (2.17). In case all eigenvalues of P̂ are real positive because the process is
reversible, non-uniqueness of the logarithm is not an issue and Q̂ must coincide with
Q∗.

By adjusting the weights in c, we can ensure that the part of the spectrum of Q∗

associated with its n eigenvalues of lower magnitude matches the reliable part of the
spectrum of Q∗∗; and that the other d − n eigenvalues of Q∗ have larger magnitude
than the n first. The MLE P̂ may be non-embeddable but the reliable part of its
spectrum must be close to the spectrum of P , which in turn is embeddable if Xt

is a jump process. Thus, there must exist a generator with a spectrum that closely
matches the reliable part of the spectrum of P̂ .

We note that the choice of the weights in c does not affect the absolute, un-
constrained minimizer Q∗∗. Provided all ci remain positive, Q∗∗ is invariant under
changes in c. Thus, if Q∗∗ satisfies (2.4), minimization of (2.27) always results in the
same Q∗ = Q∗∗. However, if Q∗∗ does not satisfy (2.4), Q∗ lies on the boundary of
the feasible set defined by (2.4) and its precise location depends on c.

The non-uniqueness of the logarithm can complicate the determination of complex
eigenvalues through (2.26a). Assume for simplicity that the estimate Λ̂j is without

error, i.e. Λ̂j = exp(∆tλj). If we use the principal branch of the logarithm in (2.26a),

we obtain an estimate λ̂j that can differ from the true eigenvalue λj by i2πm/∆t:

λ̂j = λj + i
2πm

∆t
with m ∈ Z. (2.29)

In principle, the value of m is not available to us. This complication is closely related
to the fact that Xt is only observed at a single fixed sampling interval ∆t. As will be
discussed below, the problem disappears if Xt is observed at several different sampling
intervals satisfying rather mild conditions.

Before discussing the situation with non-constant sampling intervals, we have two
remarks about the situation with a single ∆t. First, if desired one can carry out a
search among different branches of the logarithms of the complex Λ̂j. This search is
finite (see e.g. [14] and references therein) but can be very expensive if d is large. Our

second remark is of a heuristic nature: Increasing |m| for some complex pair (λ̂j , λ̂
∗
j )

implies increasing the rate of rotation associated with the decay of this eigenmode.
Thus, by increasing |m| one introduces ever faster oscillations in the corresponding
two-dimensional eigenspace, although the sampling interval is too long to actually
observe these fast oscillations. We consider this to be undesirable. By choosing the
principal branch of the logarithm, we effectively pick the slowest oscillation consistent
with Λ̂j .
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As already mentioned, the non-uniqueness of the logarithm no longer poses a
problem if the jump process is observed at at least two sampling intervals ∆t1 and
∆t2 whose ratio is irrational (i.e. ∆t1/∆t2 ∈ R\Q). In that case, if we have Λ̂j,1 =

exp(∆t1λj) and Λ̂j,2 = exp(∆t2λj), the correct λj can be identified uniquely. If we

cannot calculate Λ̂j,1 and Λ̂j,1 explicitly because Xt is observed at random sampling
intervals, the correct λj can still be recovered if the sampling intervals are drawn
from a non-atomic distribution. This will be explained in detail in section 3 where we
consider inference from data with random sampling intervals.

2.5. Numerical examples. We conclude this section with two examples to
illustrate the advantages of our procedure.

Example 1. The first example demonstrates that our approach performs well
even when the spectrum of the MLE P̂ has an unreliable part. We consider a Markov
jump process with d = 24 states on a periodic ring and a generator with elements

qij =











eβ(Vi−Vj) if j = i± 1(mod d)

−eβ(Vi−Vi+1) − eβ(Vi−Vi−1) if j = i

0 otherwise

(2.30)

where β > 0 is a parameter and

V = (0, 4, 8, 12, 16, 13, 10, 7, 4, 7, 10, 13, 16, 12, 8, 4, 0, 4, 8, 12, 16, 12, 8, 4)T (2.31)

This chain models the motion of a particle in the sawtooth triple-well potential V ,
which has minima at states 1, 9 and 17 where V1 = V17 = 0 and V9 = 4, separated
by maxima at states 5, 13 and 21 where V5 = V13 = V21 = 16. The parameter β
plays the role of an inverse temperature. Taking β = 1/8, the chain is metastable
over the states 1, 9 and 17 in the sense that it remains for long periods of times in
or near these states, and moves very quickly through the intermediate states during
its (infrequent) transitions from one metastable state to the other. This metastable
behavior is apparent from the eigenvalues of Q, with the magnitudes of λ2 and λ3

being much smaller than those of λ4, . . . , λ20, see table 1 and figure 1. The first three
leading eigenvalues and their associated eigenvectors explain the long time dynamics
of the chain, hence they are the important quantities to capture in this example.

To construct P̂ , we first compute

P = exp(Q∆t) with ∆t = 20 (2.32)

This value of the sampling lag ∆t captures the slow transitions between the metastable
states 1, 9 and 17, but it is too long to capture the phenomena arising on the shorter
time scales associated with λ4, etc.(for instance, Λ4 = eλ4∆t = 2.7 × 10−5 whereas
Λ2 = eλ2∆t = 0.758 and Λ3 = eλ3∆t = 0.624). As a result, the sampling errors on Λ̂i

and λ̂i will be large for all i > 3, unless the time series is exceptionally long.
We generate a time series of N = 106 data points by simulating the Markov

chain with stochastic matrix (2.32). From the time series we construct the MLE
P̂ (2.8), calculate its spectral decomposition (2.25) and the associated estimates for

the generator eigenvalues (2.26). As expected, the estimates λ̂2 = −0.0139 and λ̂3 =

−0.0236 are accurate, whereas all the other λ̂i are not (see figure 1). Correspondingly,

any value of σ between 0.005 and 4 will result in a classification of λ̂2, λ̂3 as reliable
and λ̂i with i ≥ 4 as unreliable. Also, the matrix Q̌ in (2.24) is not a generator.
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Fig. 1. Eigenvalue spectra for Example 1. The circles indicate the original eigenvalues λi of
Q; the stars the estimates λ̂i, inferred from a time series of length N = 106; and the squares the
eigenvalues of the generator Q∗ inferred by our procedure. The first two non-zero eigenvalues, λ2

and λ3 are well-captured despite the fact that the others are not.

Table 1

Example 1: The first few eigenvalues λi computed from Q, their estimates λ̂i and the corre-
sponding eigenvalues λ∗

i of the inferred generator Q∗.

index i 2 3 4 5
λi -0.0139 -0.0236 -0.5254 -0.6067

λ̂i -0.0139 -0.0236 -0.2627 -0.2690 + i 0.0426
λ∗

i -0.0139 -0.0236 -0.2708 -0.2716 + i 0.0160

We minimize (2.27) subject to (2.4) with

c1 = 100, c2 = 100|λ̂2|−2, c3 = 100|λ̂3|−2, and ci = |λ̂i|−2 for i = 4, . . . , 24
(2.33)

to put most weight on the reliable eigenvalues. The minimization is carried out using
the Matlab internal QP solver quadprog, requiring about 30 seconds computation
time on a modern PC. The eigenvalues λ∗i of the minimizer Q∗ are displayed in
figure 1, and the value of the first few are listed in table 1. The first two nontrivial
eigenvalues λ∗2 and λ∗3 are in excellent agreement with the exact λ2 and λ3. The first
three eigenvectors of Q∗ are also in very good agrement with those of Q (results not
shown). Thus, Q∗ accurately captures the long timescale features of Q. The fast
(short timescale) features of Q are not accurately captured, due to the large sampling
interval and the finite sample size. Correspondingly, the eigenvalues λ∗i with i ≥ 4 are

inaccurate (but note that most of them are quite close to λ̂i). Because of sampling
error, the minimizer Q∗ is different from the original Q entry-wise; however, those
errors only significantly affect the fast features of Q∗ and not its slow features.

Similar results were obtained with other values of the weights in c, indicating that
the procedure is robust against the choice of these parameters.
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Example 2. Our approach is tailored to capture the dynamics arising on the
time scale of the lag ∆t at which the data is observed, regardless of the details of the
dynamics arising on much shorter time scales. As a result, it does not matter much
whether the process {Xt : t ≥ 0} is actually Markov on these short time scales. To
illustrate this point, we present the following example.

Consider the process (Xt, Yt) ∈ S = {1, 2, .., d} × {1, 2} whose generator consists
of two parts: Q = QX ⊗QY . The elements of QX are given by

qX
ij =



















3s if j = i+ 1(mod d)

4s if j = i− 1(mod d)

−7s if j = i

0 otherwise

(2.34)

and QY reads

QY =
1

ǫ

(

−r1 r1
r2 −r2

)

(2.35)

The value of s depends on Yt: s(Yt = 1) = s1, s(Yt = 2) = s2. The (positive)
parameters ǫ, r1, r2, s1 and s2 will be determined later on. As is clear, the combined
process (Xt, Yt) is Markov; the process Xt by itself is not. If s were fixed, Xt could
be regarded as an asymmetric random walk on a discrete periodic domain with d
states. However, s is not constant but switches between the two values s1 and s2 with
switching rates ǫ−1r1, ǫ

−1r2.
Although Xt is non-Markov, in the limit ǫ → 0+, when Yt switches much faster

than Xt, the law of the discrete time process X0, X∆t, X2∆t, ... with ∆t ≫ ǫ ap-
proaches that of the discretely observed Markov jump process with generator Qa

which is identical to QX with s fixed at sa = s1r2(r1 + r2)
−1 + s2r1(r1 + r2)

−1, cf.
(2.34). Thus, at timescales much longer than the switching timescale of Yt, the ef-
fective jump rate of Xt is determined by the average of s1 and s2 weighted by the
invariant distribution of Yt. We refer to [15, 22] for more details on the asymptotic
analysis of this type of two timescale stochastic processes.

We take parameters s1 = 1, s2 = 3, r1 = 1, r2 = 2, ǫ = 10−3, d = 10 and generate
a sample path of the process (Xt, Yt) with total time length T . We record Xt every
δt = 10−2 time units; from this time series we construct the MLE P̂ for Xt only.
We use every data point so that the the number of data points is N = 102 T . As
explained before, the generator estimated from these observations should approach
Qa if ∆t≫ ǫ, where Qa equals QX with s = 5/3.

The experiment is repeated for several values of T . In table 2 we show, for
T = 102, 103, 104, 105, the eigenvalues λ̂2, λ̂4 inferred from the data, the eigenvalues
λa

2, λ
a
4 of Qa and λ∗2, λ

∗
4 of Q∗ (the minimizer of (2.27) with ci = 1 for all i). For

all three sets of eigenvalues, λ1 = 0 and λ3, λ5 are the complex conjugates of λ2, λ4;
those are therefore not included. We also show the difference ‖Q∗−Qa‖/‖Qa‖ (using
Frobenius norm).

3. Inference from data with non-constant sampling intervals. In this
section we show how the inference procedure described in section 2.4 can be gener-
alized so that it can handle estimation from timeseries with non-constant sampling
intervals. In case of a constant sampling interval ∆t, estimates of the eigenvalues
and eigenvectors of Q can be readily obtained through the spectral decomposition
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Table 2

Example 2: The eigenvalues λ2, λ4 inferred from timeseries of total length T , and those of
the inferred generator Q∗ and the predicted generator Qa (see text). Also shown are the differences
‖Q∗ − Qa‖/‖Qa‖ in Frobenius norm.

T N inferred from data generator Q∗ generator Qa ‖Q∗−Qa‖
‖Qa‖

102 104 λ2 -2.17+0.91i -2.23+0.91i -2.23+0.98i 0.099
λ4 -7.81+1.45i -7.92+1.44i -8.06+1.59i

103 105 λ2 -2.25+1.01i -2.27+1.01i -2.23+0.98i 0.033
λ4 -8.13+1.62i -8.16+1.63i -8.06+1.59i

104 106 λ2 -2.23+1.01i -2.23+1.01i -2.23+0.98i 0.011
λ4 -8.07+1.64i -8.07+1.64i -8.06+1.59i

105 107 λ2 -2.23+0.97i -2.23+0.97i -2.23+0.98i 0.0039
λ4 -8.05+1.57i -8.05+1.57i -8.06+1.59i

of the MLE P̂ , which in turn is easily calculated from the frequency matrix K(N),
cf. (2.8). The meaning of P̂ is clear in this case: its elements are estimates of the
transition probabilities (2.1) with τ = ∆t. However, if the sampling interval is not
constant throughout the timeseries, it is less obvious what P̂ given by (2.8) means.
Because there is no constant ∆t, the relation (2.13) can no longer be used to infer
the eigenvalues of Q through the eigenvalues of P̂ . Nevertheless, it is still possible to
infer the spectrum of Q from the timeseries, as will be shown in this section. Once the
spectrum of Q is estimated, the inference of Q proceeds in the same way as described
in section 2.4.

We note that in [17] an algorithm is presented for estimation from inhomoge-
neously sampled data using the MLE approach. The computational cost of this MLE
based algorithm scales linearly with the number of different observed sampling inter-
vals, limiting its use in practice to data where the sampling interval takes on only
a few different values. For the procedure described in this paper, there is no such
limitation.

3.1. Inferring the spectrum. Suppose we observe a jump process Xt at dis-
crete points in time, resulting in a timeseries that consists of observations at times tn,
n = 1, ..., N+1. We want to infer the spectrum of eigenvalues and eigenvectors of the
generator Q from the timeseries. As mentioned, the sampling intervals τn := tn+1−tn
are not constant, but depend on n. We will focus on the case where the τn are random.

Let us denote the probability distribution of the sampling intervals by π and the
expectation with respect to the law of τn by Eτ . As before, we denote by P (τn) the
transition probability matrix with associated time step τn(≥ 0), cf. (2.1) and (2.5).
We define P e as the expectation of P (τn):

P e := Eτ P (τn) =

∫ ∞

0

P (τ)dπ(τ) (3.1)

We propose the estimator P̂ e for P e, with its elements defined by

p̂e
ij :=

∑N
n=1 1(Xtn

= i)1(Xtn+1 = j)
∑N

n=1 1(Xtn
= i)

. (3.2)

Both P e and P̂ e are stochastic matrices by construction. We will prove strong con-
sistency of the estimator P̂ e under the following condition:

All sampling intervals τn are i.i.d. random variables with distribution π.

π may have atoms but not at zero. (3.3)
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Theorem 3. Let Xt1 , ..., XtN+1 be the discrete sampling of an ergodic jump pro-

cess with unique invariant distribution µ. Under condition (3.3), P̂ e → P e almost
surely as N → ∞.

The theorem is proven in appendix D. Note that there is no loss of generality
by requiring that π has no atom at zero. After all, τn = 0 would imply that the
observation Xtn

is simply repeated in the data (tn+1 = tn), making the observation
Xtn+1 redundant (it is the same as Xtn

). Furthermore, the case where the process
Xt is sampled at a constant sampling interval, τn = ∆t for all n, corresponds to a
distribution π that is a single atom at ∆t.

Assuming that Q admits the spectral decomposition Q = UDλU
−1 and thus

P (τ) = UDΛ(τ)U
−1, P e can be decomposed as

P e = UDe
ΛU

−1 (3.4)

where De
Λ = diag(Λe

1, ...,Λ
e
d), with

Λe
i = Eτ eλiτn (3.5)

Because we have assumed that the process generated by Q has a unique invariant
distribution µ, P e has the same unique invariant distribution and its eigenvalues
satisfy Λe

1 = 1 and |Λe
i | < 1 for all i > 1.

We estimate U , U−1 and De
Λ in (3.4) by computing the spectral decomposition

of the estimator P̂ e:

P̂e = ÛD̂e
ΛÛ

−1 (3.6)

with D̂e
Λ = diag(Λ̂e

1, ..., Λ̂
e
d). Given (estimates of) Λe

i , the generator eigenvalues λi

follow from (3.5). Hence, we construct estimates λ̂i by solving

f(λi; Λ̂
e
i ) := Λ̂e

i −
1

N

N
∑

n=1

eλiτn = 0 (3.7)

This equation can easily be solved with Newton’s method, using the exact gradient

d

dλi
f = − 1

N

N
∑

n=1

τn eλiτn (3.8)

If Λ̂e
i is real, the solution λ̂i must satisfy

∑

n exp(τn Re λ̂i) sin(τn Im λ̂i) = 0. This

implies Im λ̂i = 0 except for degenerate distributions of τn. If Λ̂e
i and λi are both

real and Λ̂e
i > 0, (3.7) has a unique solution (< 0) because f(0; Λ̂e

i ) = Λ̂e
i − 1 < 0,

f(−∞; Λ̂e
i ) = Λ̂e

i > 0 and df/dλi < 0. There is no solution if Λ̂e
i , λi ∈ R and Λ̂e

i ≤ 0.

If Λ̂e
i is complex, establishing uniqueness is more complicated. It comes down

to the question under what conditions on π the mapping λi 7→ Λe
i (λi,Λ

e
i ∈ C)

is one-to-one. We will not explore this question in full detail here, but only make
the following observation. Suppose λ̂i and λ̂′i are both solutions to (3.7), so that
∑

n(eλ̂i)τn =
∑

n(eλ̂i eλ̂′

i−λ̂i)τn . Clearly, this equality holds if (eλ̂′

i−λ̂i)τn = 1 for all n,

which implies Re λ̂i = Re λ̂′i and τn Im (λ′i−λi) = 2πmn for all n (mn ∈ Z). The latter
requirement cannot be met if some of the sampling intervals have irrational ratios,
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unless Im λ̂i = Im λ̂′i (see also the discussion at the end of section 2.4). We will not

consider the possibility that
∑

n(eλ̂i)τn =
∑

n(eλ̂i eλ̂′

i−λ̂i)τn and yet (eλ̂′

i−λ̂i)τn 6= 1
for some n.

Finding all λ̂i with i = 2, ..., d amounts to solving d−1 uncoupled one-dimensional
numerical problems (Λ̂e

1 = 1 and λ̂1 = 0 by construction). Once we have found the

λ̂i, we have inferred the spectrum of Q from the timeseries and we can start to infer
Q itself using the convex optimization procedure described in section 2.4.

As a final remark, we expect (3.2) to be a consistent estimator of (3.1) also in
many cases where the sampling intervals are not i.i.d. (as was required in condition
(3.3)). Examples are situations where τn is itself a stochastic process or where τn is
a periodic function of n. We will not investigate this generalization here.

3.2. Numerical example with random sampling intervals.

Example 3. We take the jump process whose generator Q has elements

qij =
2d+ i

2d(i− j)2
if i 6= j (3.9)

where i and j run from 1 to d = 10. The diagonal elements of Q follow from the
property (2.4b). The nonzero eigenvalues of Q range from λ2 = −0.678 to λ10 =
−5.88. We generate timeseries with N+1 points by Monte Carlo simulation, drawing
the sampling intervals from a gamma distribution with density

γ(τ ; a, b) =
1

ba Γ(a)
τa−1e−τ/b (3.10)

and parameters

a = 4, b =
1

8|λ2|
. (3.11)

The gamma distribution has mean ab = 0.5/|λ2| = 0.737 with these parameters. The
variance is ab2 = 0.136. Thus, the sampling intervals are on the order of the timescale
of the slowest decaying eigenmode, but have significant variance.

For comparison, we also generate timeseries with constant sampling interval ∆t =
0.5/|λ2|, with the same length (N+1 points). We estimate the spectrum of eigenvalues
of Q from both timeseries, either by using the procedure described in this section (for
non-constant sampling intervals), or by calculating the spectrum {Λ̂i} of the estimator

(2.8) and taking the usual λ̂i = (∆t)−1 log Λ̂i (for constant sampling intervals). After
reconstruction of the spectrum, we calculate Q∗ following the procedure from section
2.4.

The test is carried out using various lengths of the timeseries (N = 104 and
N = 105). We repeat the experiment (generating data, reconstructing the spectrum,
calculating Q∗) 100 times for each N . In tables 3 and 4 the mean and standard devia-
tion of the leading estimated eigenvalues are shown, together with the true eigenvalues
of Q. In table 5 we show the mean and standard deviation of the average element-wise
error

∑

i,j |q∗ij − qij |/d2. As can be seen in the tables, the mean errors and variance
of the eigenvalues inferred from non-homogeneously sampled data are very similar to
those of the eigenvalues obtained from data with constant sampling interval. The
mean errors on the inferred generators themselves (table 5) are even smaller with the
random sampling intervals than with the constant intervals.
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Table 3

Estimation of generator eigenvalues from timeseries with random and constant sampling inter-
vals. Shown are the leading true eigenvalues λi of Q and the mean and standard deviation of the
estimated eigenvalues λ̂i from 100 different timeseries of the same length (N = 104).

random sampling intervals constant sampling intervals

i λi mean(λ̂i) std(λ̂i) mean(λ̂i) std(λ̂i)
2 -0.678 -0.677 0.019 -0.678 0.017
3 -1.539 -1.535 0.044 -1.542 0.042
4 -2.369 -2.377 0.085 -2.369 0.069

Table 4

Same as table 3 but with N = 105.

random sampling intervals constant sampling intervals

i λi mean(λ̂i) std(λ̂i) mean(λ̂i) std(λ̂i)
2 -0.678 -0.679 0.0055 -0.678 0.0049
3 -1.539 -1.539 0.015 -1.540 0.012
4 -2.369 -2.372 0.028 -2.371 0.023

Table 5

Generator inference from timeseries with random and constant sampling intervals. Shown are
the mean and standard deviation of the average element-wise error

∑

i,j |q
∗
ij − qij |/d2 from 100

different timeseries of the same length (N + 1).

random sampling intervals constant sampling intervals
N mean(error(Q∗)) std(error(Q∗)) mean(error(Q∗)) std(error(Q∗))
104 0.13 0.021 0.15 0.025
105 0.046 0.0064 0.070 0.017
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4. Numerical aspects of high-dimensional problems. In section 2, we
showed that the estimation of Q can be cast as a minimization problem that falls
in the class of convex quadratic programs (QP) with linear equality and inequality
constraints. This means that the problem (2.27) has the form

Q∗ = argminE(Q) (4.1)

where the objective function E can be written compactly as

E = 1
2V

THV + V TF + E0 . (4.2)

The vector V contains the elements of Q. E must be minimized under the linear
constraints (2.4).

The objective function E is strictly convex because Û has full rank by assumption;
this implies that the Hessian matrix H is positive definite. Since the constraints (2.4)
define a convex domain, the constrained QP has a unique solution. It is straightfor-
ward to absorb the equality constraints (2.4b) into the objective function by eliminat-
ing the diagonal elements of Q from the QP, so that the problem can be reformulated
as a strictly convex QP of lower dimension with only inequality constraints (nonneg-
ative variables). Without restrictions on Q other than (2.4), the QP has d2 variables
with d equality constraints; thus, it can be reduced to a QP with d2 − d variables,
without equality constraints. If the jump process is restricted to be of certain type,
the problem reduces further: for example, if only jumps from i to i ± 1(mod d) are
allowed (birth-death process on a periodic domain), the QP has only 2d degrees of
freedom.

If the dimension of the QP becomes too large, numerical solution methods that
require explicit storage of the Hessian matrix H (for example, the internal Matlab
solver quadprog) become impractical. Instead, one has to use solution methods that
do not ask for H itself, but only for matrix-vector products HV . As is shown in the
next part of this section, these products can be calculated cheaply, without forming
H explicitly. In the last part, we discuss numerical solution methods for large-scale
QP, and present a large-scale numerical example (d = 250).

4.1. Efficient evaluation without explicit Hessian. If we hold on to the
matrix notation for Q (rather than convert it into the vector V ), we can write the
objective function (2.27) as

E(Q) = ‖Û−1QÛ‖2
c + ‖D̂λ‖2

c − Trace(QF ) (4.3)

where F = ÛD̂∗
c2λÛ

−1 + complex conjugate, and D̂∗
c2λ = diag(c21λ̂

∗
1, c

2
2λ̂

∗
2, ...). We

define the matrices

Φ = Û∗DcÛ
T (4.4a)

Ψ = (Û−1)TDc(Û
−1)∗ (4.4b)

in which Dc = diag(c1, c2, ...) and ∗ denotes (element-wise) complex conjugation. Φ
and Ψ are both Hermitian matrices. With these definitions, the quadratic term can
be written as

‖Û−1QÛ‖2
c = Trace(QT ΨQΦ). (4.5)

The gradient of the quadratic term with respect to the elements of Q (i.e., the equiv-
alent of the matrix-vector product HV mentioned earlier) is ΨQΦ + ΨT QΦT . Its
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evaluation is cheap, requiring only a few matrix multiplications. Ψ and Φ need to be
constructed only once, at the beginning of the minimization procedure. It must be
stressed that Ψ and Φ are matrices of the same dimensions as Q.

As a final remark, we note that dealing with the equality constraints (2.4b) is
straightforward. We take the diagonal elements qii to be dependent variables and the
non-diagonal elements of Q as the independent variables of the minimization problem.
The gradient of E with respect to the independent variables is

dE

d qij
=

∂ E

∂ qij
− ∂ E

∂ qii

= (ΨQΦ + ΨT QΦT − FT )ij − (ΨQΦ + ΨT QΦT − FT )ii .

(4.6)

4.2. Large-scale QP solution methods and numerical examples. Solu-
tion methods for quadratic programs are covered extensively in the literature, see
for example [20] for an overview and references. The special case of QP problems
with bounds on the variables as only constraints is sometimes referred to as ”box
constrained” QP problems. Because of the relative simplicity of the box constraints,
these problems can be solved in high dimensions. Large-scale QP problems with box
constraints are studied in for example [18], [12], [7] and [10]. Below, we show two
examples using the solution method described in detail in [10], which is a variant of
the gradient method known as the projected alternating Barzilai-Borwein (PABB)
method (due to [4]). This method is easy to implement and does not require explicit
construction of the Hessian matrix. It is a non-monotonic method, meaning that the
decrease of the objective function need not be monotone. The following two exam-
ples show that the PABB method makes fast minimization of the objective function
possible even if the number of variables of the minimization problem is high.

Example 4. We consider the jump process with generator (3.9) and state-space
dimension d = 250. This implies that the QP problem has 62250 independent vari-
ables, making the need for a large-scale solution algorithm obvious. As mentioned,
we use the PABB method (without line search) described in [10] for solving the con-
strained QP problem. To see the numerical convergence of the PABB method without
the results being influenced by sampling errors, we use in the objective function for
Û and D̂λ the spectral decomposition of the true generator (3.9). As initial guess,
we take qij = 1 for all non-diagonal elements (i 6= j), which is clearly far from the
optimum. The weights ci in the objective function are all set to one: ci = 1 ∀i.

In the upper panel of figure 2 the value of the objective function E is shown
during 1000 iterations with the PABB algorithm without line search (requiring about
57 seconds computation time using Matlab on a modern PC). The lower panel shows

the error ‖Q −Qtrue‖/‖Qtrue‖ in the Frobenius norm, ‖A‖ =
√

∑

i,j a
2
ij . As can be

seen, the algorithm converges rapidly to the correct solution.
Example 5. As our next example we consider a stochastic matrix P that is

non-embeddable because it has real negative eigenvalues of multiplicity one:

pij =







di

|i− j| if i 6= j

di if i = j
(4.7)

where di = (1 +
∑

i6=j
1

|i−j| )
−1. As in the previous example, we set the state space

dimension to d = 250. The matrices Û and D̂λ needed in the objective function are
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Fig. 2. Generator reconstruction for large-scale system (generator (3.9) with d = 250 states).
For numerical minimization the PABB method is used (see text), starting from initial guess qij = 1
for all i, j with i 6= j. Shown are the objective function E (upper panel) and the error norm
‖Q−Qtrue‖/‖Qtrue‖ (lower panel) during 1000 iterations of the PABB minimization algorithm. All
objective function weights were set to one: ci = 1 ∀i.
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Fig. 3. Generator reconstruction for large-scale system (stochastic matrix (4.7) with d = 250
states). For numerical minimization the PABB method is used (see text), starting from initial guess
qij = 1 for all i, j with i 6= j. The upper panel shows the objective function E; the lower panel shows
the reference eigenvalues derived from P given by (4.7) and the eigenvalues of the generator Q after
1000 iterations of the PABB minimization algorithm.
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taken from the spectral decomposition of P . We set the weights to ci = |λi|−1 for
i > 1 and c1 = 10 c2 in order to emphasize the leading eigenvalues and eigenvectors.
In the upper panel of figure 3 the value of the objective function E is shown during
1000 iterations of the PABB algorithm (with initial guess, as before, qij = 1 for all
i, j, with i 6= j). It can be seen that the PABB algorithm gives a non-monotonic
decrease of the objective function. The lower panel of figure 3 shows the spectrum of
eigenvalues of the generator after 1000 iterations as well as the reference eigenvalues
λ̂i. Except for the trailing eigenvalues (i & 200), the shape of the spectrum is well
recovered; for the first few dozen eigenvalues, the match is particularly close.

5. Conclusion. The inference of generators for Markov jump processes from
discretely sampled timeseries is a well-known problem, relevant in various fields of
science. Maximum likelihood estimation, the preferred approach for many inference
problems in statistics, faces several difficulties with this type of generator estimation,
in particular if the sampling interval ∆t of the data is not small, see sections 2.2
and 2.3. In this paper, a different approach to generator estimation is discussed that
provides an alternative in cases where likelihood inference is not a viable option (for
example, because of large ∆t or high computational costs).

The approach was first introduced in [8]; in this paper we simplified the procedure
(section 2.4) and generalized it to handle inference from data with non-constant sam-
pling intervals (section 3). It consists of two steps: first the spectrum of the generator
is estimated from the data, then the generator is fitted to the spectrum through a
convex optimization procedure. The result is guaranteed to be a generator, since it
satisfies (2.4). In the fitting step we can emphasize the part of the spectrum that is
accurately estimated, thereby avoiding that the entire inferred generator is affected
in an uncontrolled way by sampling error.

The minimization problem that must be solved to infer the generator is a qua-
dratic program (QP): it has a strictly convex quadratic objective function and linear
equality and inequality constraints, see sections 2.4 and 4. Numerical solution meth-
ods to find its unique minimum are well-studied and readily available; in section 4
we discussed numerical aspects of estimation for jump processes in high-dimensional
state spaces.

The objective function measures the distance between the spectrum of the genera-
torQ and the reference spectrum derived from the MLE P̂ . This distance is minimized
by minimizing the objective function. We point out that adding linear equality con-
straints to a convex QP does not change its convex quadratic nature, therefore it
is possible to construct generators that match elements from the reference spectrum
exactly, rather than approximately. An example is the observed invariant distribu-
tion µ̂: adding the condition µ̂TQ = 0 to the QP guarantees that the minimizer Q∗

satisfies µ̂TQ∗ = 0 exactly.

Finally, we remark that the approach to generator estimation presented and dis-
cussed in this paper can also be used for the estimation of diffusion processes from
discrete observations. A first step in this direction was made in [9]. In case of diffu-
sions, the technical details are more complicated because of the presence of continuous
instead of discrete state spaces. Nevertheless, the estimation can still be cast as a con-
vex optimization problem. We expect that the generalization to inference from data
with non-constant sampling intervals will carry over to the diffusion estimation as well.
Further work on diffusion estimation using this approach will be presented elsewhere.
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Appendix A. Proof of Theorem 1.

Theorem 1 is a consequence of a central limit theorem for Markov chains [2] which
states that

√
N

(

P̂ − P (∆t)
)

→ S in probability as N → ∞ (A.1)

where S is a Gaussian matrix whose entries sij have mean zero and covariance

E(sijsi′j′ ) = δii′pij(∆t) (δjj′ − pi′j′(∆t)) /µi, i, j, i′, j′ = 1, . . . , d (A.2)

A standard result in matrix perturbation theory (e.g., [23]) states that if Λi is a simple
eigenvalue of P , and P is perturbed to P + δP , then P + δP has a unique eigenvalue
Λi + δΛi with

δΛi =
ψT

i δPφi

ψT
i φi

+O(‖δP‖2) (A.3)

where ψi and φi are the left and right eigenvectors of P associated with Λi. Without
loss of generality we can assume that the eigenvectors are normalized so that ψT

i φi = 1.

Specializing to the perturbation P̂ of P (∆t) as in (A.1), this gives

√
NδΛi = ψT

i Sφi +O(
1√
N

‖S‖2). (A.4)

Since the matrix elements of S have mean zero we find, as N → ∞,

E
√
NδΛi → EψT

i Sφi = 0 (A.5)

and

E
√
NδΛi

√
NδΛj → EψT

i Sφiψ
T
j Sφj =

∑

k,l,k′,l′

ūikūjk′uliul′jE sklsk′l′ (A.6)

Using (A.2) gives

E
√
NδΛi

√
NδΛj →

∑

k,l

ūikūjk(pkl − ΛiΛjδkl)uliulj

µk
. (A.7)

This shows that
√
NδΛi → ri in probability as N → ∞, with E ri = 0 and E rirj as

in (2.15).

Appendix B. Small ∆t limit of eigenvalue estimates.

In this section we consider the ∆t dependence of the sampling errors on the
eigenvalues. In the limit ∆t→ ∞, the real part of the factor ∆t−1 exp(−λi∆t) blows
up the amplitude of the random error (2.18). For convergence as ∆t → ∞, N must
be exponentially large in −(Reλi)∆t.

For the limit of small ∆t the following lemma on the covariances of the random
errors (2.15), (A.2) will be useful.

Lemma 1. In the limit ∆t → 0+ we have

lim
∆t→0+

E

(rirj
∆t

)

= Cij (B.1a)

lim
∆t→0+

E

(sijsi′j′

∆t

)

= C′
iji′j′ (B.1b)
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where Cij and C′
iji′j′ are defined as

Cij =
∑

k,l∈S

ūikūjk

(

qkl − δkl(λi + λj)
)

uliulj

µk
(B.2a)

C′
iji′j′ =

δii′ (δjj′qij − δijqi′j′ − δi′j′qij)

µi
(B.2b)

Proof of Lemma 1. Substitution of the expansions pkl = δkl + qkl∆t + O(∆t2)
and Λi = 1 + λi∆t+ O(∆t2) in (2.15) and (A.2) leads to E(rirj) = Cij ∆t+O(∆t2)
and E(sijsi′j′ ) = C′

iji′j′ ∆t+O(∆t2).

For the errors on Λ̂i and λ̌i we have N E(Λ̂i −Λi)
2 → E(r2i ) and N E(λ̌i −λi)

2 →
(∆t2 Λ2

i )
−1 E(r2i ) as N → ∞, cf. (2.14), (2.15) and (2.18). A time series with sampling

interval ∆t and total length T consists of N = ⌊T/∆t⌋ data points. If we substitute
N = T/∆t we obtain

lim
T→∞

T E(Λ̂i − Λi)
2 = ∆t2 E

( r2i
∆t

)

(B.3a)

lim
T→∞

T E(λ̌i − λi)
2 = Λ−2

i E

( r2i
∆t

)

(B.3b)

By (B.1a), the limit ∆t→ 0+ gives

lim
∆t→0+

lim
T→∞

T E(Λ̂i − Λi)
2 = 0 (B.4a)

lim
∆t→0+

lim
T→∞

T E(λ̌i − λi)
2 = Λ−2

i Cii (B.4b)

with Cii defined as in Lemma 1. Thus, as already implied by (2.14) and (2.18), the
errors on Λ̂i and λ̌i disappear in the limit T → ∞ with ∆t fixed. However, (B.4)
strongly suggests that the error on λ̌i does not vanish in the limit ∆t → 0+ with T
fixed (even though N → ∞ in this limit). By contrast, T E(Λ̂i − Λi)

2 is of order ∆t2

for small ∆t (and large T ), suggesting that the error on Λ̂i disappears in the limit
∆t → 0+ with T fixed (which should not be surprising, because Λi → 1 for all i as
∆t→ 0+).

Note that the MLE Q̂ (assuming it exists) has a similar limiting behavior as
∆t→ 0+. Because P̂ − P (∆t) = ∆t(Q̂−Q) +O(∆t2), we have

lim
T→∞

T E(q̂ij − qij)(q̂i′j′ − qi′j′) = E

(sijsi′j′

∆t

)

+O(∆t) (B.5)

Recalling (B.1b), we see that the error on Q̂ does not vanish in the limit ∆t → 0+
with T fixed.

Appendix C. Proof of Theorem 2..
Assume that Λi is a simple eigenvalue of P with associated left and right eigen-

vectors ψi and φi, and P is perturbed to P + δP . From matrix perturbation theory
it is known that if δP is sufficiently small, P + δP has a simple eigenvalue Λi + δΛi

given by (A.3) and an associated right eigenvector φi + δφi with

δφi =





∑

j 6=i

φjψ
T
j

Λj − Λi



 δPφi +O(‖δP‖2) . (C.1)
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If δP = P̂ − P then δP → S/
√
N in probability as N → ∞, see (A.1), and we find

(2.20a); (2.20b) is found in a similar way.

Appendix D. Proof of Theorem 3.

We will prove that

(i) lim
N→∞

1

N

N
∑

n=1

1(Xtn
= i) → µi a.s. (D.1a)

(ii) lim
N→∞

1

N

N
∑

n=1

1(Xtn
= i)1(Xtn+1 = j) → µip

e
ij a.s. (D.1b)

Convergence p̂e
ij → pe

ij a.s. then follows from the almost sure version of Slutzky’s
theorem ([11]). We note that the observation times tn are determined by the random
sampling intervals τn:

tn = t1 +

n−1
∑

m=1

τm (D.2)

First, we define

Λ∗ := Eτ eλτn < 1 (D.3)

where, as before, λ = Reλ2 < 0. It can be shown that Λ∗ < 1 by considering the
function Λ(λ) = Eτ eλτn and noting that Λ(λ = 0) = 1 as well as dΛ

dλ ≥ 0 for all λ ∈ R.

Furthermore, dΛ
dλ (λ = 0) = Eτ τn > 0. The last inequality follows from the fact that

π can not be atomic at zero, condition (3.3). Therefore, Λ(λ) is strictly smaller than
one if λ is strictly smaller than zero.

For notational convenience, we also define

Si
N :=

N
∑

n=1

1(Xtn
= i) , Sij

N :=

N
∑

n=1

1(Xtn
= i)1(Xtn+1 = j) (D.4a)

U i
n := 1(Xtn

= i) − µi , U ij
n := 1(Xtn

= i)1(Xtn+1 = j) − µipij(τn) (D.4b)

as well as

p̃ij(t) := pij(t) − µj (D.5)

Furthermore, we write EX for the expectation with respect to the law of Xt and E for
the expectation with respect to the law of both Xt and τn, i.e. E = EτEX . Finally,
let ρ denote the probability distribution for Xt1 :

ρi := E1(Xt1 = i) (D.6)

Because Xt is an ergodic process with unique invariant measure, there exists a
positive constant C1 such that for all i, j ∈ S and all t ≥ 0,

|p̃ij(t)| ≤ C1 eλt . (D.7)

Using (D.7) and the fact that the τn are i.i.d.,

Eτ |p̃ij(tn′ − tn)| ≤ C1(Λ∗)
n′−n . (D.8)
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For any ε > 0,

P
(∣

∣

1
N S

i
N − µi

∣

∣ ≥ ε
)

= P

(

(

1
N S

i
N − µi

)4 ≥ ε4
)

≤ 1

ε4N4
E

(

Si
N −Nµi

)4
(D.9)

using Chebyshev’s inequality. We prove that E
(

Si
N −Nµi

)4
= O(N2).

|E
(

Si
N −Nµi

)4 | = |E(
∑

n

U i
n)4|

≤
∑

n

|E(U i
n)4| + n1

∑

n<n′

|EU i
n(U i

n′)3| + n2

∑

n<n′<n′′

|EU i
nU

i
n′(U i

n′′)2|

+n3

∑

n<n′<n′′<n′′′

|EU i
nU

i
n′U i

n′′U i
n′′′ | (D.10)

where n1, n2, n3 are positive constants determined by permutations of n, n′, n′′, n′′′.

The summation
∑

n<n′

is shorthand notation for
N

∑

n′=1

n′−1
∑

n=1

, etcetera.

• −1 ≤ U i
n ≤ 1 for all i, n, hence (U i

n)4 ≤ 1 and |E
∑

n

(U i
n)4| ≤ N

• EXU
i
nU

i
n′ =

[

∑

i′

ρi′pi′i(tn − t1)p̃ii(tn′ − tn) −
∑

i′

ρi′µip̃i′i(tn′ − t1)
]

. Using

(D.8),

we find |E
∑

n<n′

U i
n(U i

n′)3| ≤ |E
∑

n<n′

U i
nU

i
n′ | ≤

∑

n<n′

Eτ |EXU
i
nU

i
n′ |

≤ C1

∑

n<n′

[

(Λ∗)
n′−n + (Λ∗)

n′−1
]

≤ 2C1N

1 − Λ∗
.

•
∣

∣E
∑

n<n′<n′′

U i
nU

i
n′(U i

n′′)2
∣

∣ ≤
∣

∣

∣E
∑

n<n′<n′′

U i
nU

i
n′

∣

∣

∣ ≤ N
∣

∣E
∑

n<n′

U i
nU

i
n′

∣

∣ ≤ 2C1N
2

1 − Λ∗

• By arranging terms (and assuming n < n′ < n′′ < n′′′) we can write

EXU
i
nU

i
n′U i

n′′U i
n′′′ =

∑

i′

ρi′

[

p̃ii(tn′′′ − tn′′)p̃ii(tn′′ − tn′)p̃ii(tn′ − tn)pi′i(tn − t1)

−µi

(

p̃ii(tn′′′ − tn′′)p̃ii(tn′′ − tn)pi′i(tn − t1) + p̃ii(tn′′′ − tn′)p̃ii(tn′ − tn)pi′i(tn − t1)

−p̃ii(tn′′′ − tn′′)p̃ii(tn′ − tn)pi′i(tn − t1) − p̃ii(tn′′′ − tn′′)p̃ii(tn′′ − tn′) ×
(pi′i(tn − t1) − pi′i(tn′ − t1))

)

+ µ2
i p̃ii(tn′′′ − tn′)(pi′i(tn′ − t1) − pi′i(tn − t1))

+(µi)
2p̃ii(tn′′′ − tn′′)(pi′i(tn′′ − t1) − pi′i(tn′ − t1)) − (µi)

3p̃i′i(tn′′′ − t1)

]
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Using pi′i(t) − pi′i(s) = p̃i′i(t) − p̃i′i(s) as well as (D.8), we find

|E
∑

n<n′<n′′<n′′′

U i
nU

i
n′U i

n′′U i
n′′′ |

≤
∑

n<n′<n′′<n′′′

Eτ |EXU
i
nU

i
n′U i

n′′U i
n′′′ |

≤ C2

∑

n<n′<n′′<n′′′

[

Λn′′′−n′′

∗ Λn′′−n′

∗ Λn′−n
∗ + Λn′′′−n′′

∗ Λn′′−n
∗ + Λn′′′−n′

∗ Λn′−n
∗

+Λn′′′−n′′

∗ Λn′−n
∗ + Λn′′′−n′′

∗ Λn′′−n′

∗ Λn
∗ + Λn′′′−n′′

∗ Λn′′−n′

∗ Λn′

∗

+Λn′′′−n′

∗ Λn′

∗ + Λn′′′−n′

∗ Λn
∗ + Λn′′′−n′′

∗ Λn′′

∗ + Λn′′′−n′′

∗ Λn′

∗ + Λn′′′

∗

]

≤ C′
2

∑

n<n′<n′′<n′′′

[

Λn′′′−n′′

∗ Λn′−n
∗ + Λn′′′−n′′

∗ Λn
∗
]

≤ C′
2

(

∑

n′′<n′′′

Λn′′′−n′′

∗

)(

∑

n<n′

[Λn′−n
∗ + Λn

∗ ]
)

≤ 2C′
2N

2

(1 − Λ∗)2

with positive constants C2, C
′
2.

Thus, we have established that |E (Sx
N −Nµ(x))

4 | ≤ C3N
2 with some constant C3 >

0. Therefore

P
(∣

∣

1
N S

i
N − µi

∣

∣ ≥ ε
)

≤ C3

ε4N2
(D.11)

By the Borel-Cantelli lemma, (D.1a) follows.
We prove (D.1b) in a similar way. In particular, we need to show that E(Sij

N −
Nµip

e
ij)

4 = O(N2). We write

E(Sij
N −Nµip

e
ij)

4 =
1

N4
E(

∑

n

U ij
n )4 (D.12)

and decompose and bound |E(
∑

n U
ij
n )4| in a similar manner as in (D.10):

• −1 ≤ U ij
n ≤ 1 hence (U ij

n )4 ≤ 1 and |E
∑

n

(U ij
n )4| ≤ N

• EXU
ij
n U

ij
n′ =

∑

i′

ρi′pij(τn)pij(τn′)
[

pi′i(tn − t1)p̃ji(tn′ − tn+1) − µi×

p̃i′i(tn − t1)
]

, therefore |E
∑

n<n′

U ij
n (U ij

n′)
3| ≤ |E

∑

n<n′

U ij
n U

ij
n′ |

≤
∑

n<n′

Eτ |EXU
ij
n U

ij
n′ | ≤

∑

n<n′

Eτ

(

|p̃ji(tn′ − tn+1)| + |p̃i′i(tn − t1)|
)

≤
∑

n<n′

C1

(

Λn′−n−1
∗ + Λn−1

∗
)

≤ 2C1N

Λ∗ − Λ2
∗

• |E
∑

n<n′<n′′

U ij
n U

ij
n′(U

ij
n′′)

2| ≤ |E
∑

n<n′<n′′

U ij
n U

ij
n′ | ≤ N |E

∑

n<n′

U ij
n U

ij
n′ |

≤ 2C1N
2

Λ∗ − Λ2
∗
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• Assuming n < n′ < n′′ < n′′′:

EXU
ij
n U

ij
n′U

ij
n′′U

ij
n′′′ =

∑

i′

ρi′pij(τn′′′)pij(τn′′)pij(τn′)pij(τn) ×
[

p̃ji(tn′′′ − tn′′+1)p̃ji(tn′′ − tn′+1)p̃ji(tn′ − tn+1)pi′i(tn − t1)

−µip̃ji(tn′′′ − tn′+1)p̃ji(tn′ − tn+1)pi′i(tn − t1)

−µip̃ji(tn′′′ − tn′′+1)p̃ji(tn′′ − tn+1)pi′i(tn − t1)

+µip̃ji(tn′′′ − tn′′+1)p̃ji(tn′ − tn+1)pi′i(tn − t1)

+µ2
i p̃ji(tn′′′ − tn+1)pi′i(tn − t1)

+µip̃ji(tn′′′ − tn′′+1)p̃ji(tn′′ − tn′+1)(pi′i(tn − t1) − pi′i(tn′ − t1))

+µ2
i p̃ji(tn′′′ − tn′+1)(pi′i(tn′ − t1) − pi′i(tn − t1))

+µ2
i p̃ji(tn′′′ − tn′′+1)(pi′i(tn′′ − t1) − pi′i(tn′ − t1)) − µ3

i p̃i′i(tn′′′ − t1)
]

We note that tn′ − tn+1 ≥ 0 if n < n′, and find

|E
∑

n<n′<n′′<n′′′

U ij
n U

ij
n′U

ij
n′′U

ij
n′′′ |

≤
∑

n<n′<n′′<n′′′

Eτ |EXU
ij
n U

ij
n′U

ij
n′′U

ij
n′′′ |

≤ C4

∑

n<n′<n′′<n′′′

[

Λn′′′−n′′−1
∗ Λn′′−n′−1

∗ Λn′−n−1
∗ + Λn′′′−n′−1

∗ Λn′−n−1
∗

+Λn′′′−n′′−1
∗ Λn′′−n−1

∗ + Λn′′′−n′′−1
∗ Λn′−n−1

∗ + Λn′′′−n−1
∗

+Λn′′′−n′′−1
∗ Λn′′−n′−1

∗ (Λn
∗ + Λn′

∗ ) + Λn′′′−n′−1
∗ (Λn′

∗ + Λn
∗ )

+Λn′′′−n′′−1
∗ (Λn′′

∗ + Λn′

∗ ) + Λn′′′

∗

]

≤ C′
4N

2

with some positive constants C4, C
′
4.

We conclude that for any ε > 0 there is a constant C5 > 0 such that

P

(∣

∣

∣

1
N S

ij
N − µip

e
ij

∣

∣

∣ ≥ ε
)

≤ C5

ε4N2
(D.13)

Using the Borel-Cantelli lemma we find (D.1b).



28 CROMMELIN AND VANDEN-EIJNDEN

REFERENCES

[1] W. J. Anderson, Continuous-time Markov chains, Springer, New York, 1991.
[2] T. W. Anderson and L. A. Goodman, Statistical inference about Markov chains, Ann. Math.

Statist., 28 (1957), pp. 89–110.
[3] S. Asmussen, O. Nerman and M. Olsson, Fitting phase-type distributions via the EM algo-

rithm, Scan. J. Stat., 23 (1996), pp. 419–441.
[4] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal.,

8 (1988), pp. 141–148.
[5] P. Billingsley, Statistical inference for Markov processes, University of Chicago Press,

Chicago, 1961.
[6] M. Bladt and M. Sørensen, Statistical inference for discretely observed Markov jump pro-

cesses, J. R. Statist. Soc. B, 67 (2005), pp. 395–410.
[7] T. F. Coleman and Y. Li, A reflective Newton method for minimizing a quadratic function

subject to bounds on some of the variables, SIAM J. Optim., 6 (1996), pp. 1040–1058.
[8] D. T. Crommelin and E. Vanden-Eijnden, Fitting timeseries by continuous-time Markov

chains: A quadratic programming approach, J. Comp. Phys., 217 (2006), pp. 782–805.
[9] , Reconstruction of diffusions using spectral data from timeseries, Comm. Math. Sci., 4

(2006), pp. 651–668.
[10] Y. -H. and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained

quadratic programming, Numer. Math., 100 (2005), pp. 21–47.
[11] T. S. Ferguson, A course in large sample theory, Chapman & Hall, London, 1996.
[12] A. Friedlander and J. M. Mart́ınez, On the maximization of a concave quadratic function

with box constraints, SIAM J. Optim., 4 (1994), pp. 177–192.
[13] I. Holmes and G. M. Rubin, An expectation maximization algorithm for training hidden

substitution models, J. Mol. Biol., 317 (2002), pp. 753–764.
[14] R. B. Israel, J. S. Rosenthal and J. Z. Wei, Finding generators for Markov chains via

empirical transition matrices, with applications to credit ratings, Math. Finance, 11 (2001),
pp. 245–265.

[15] T. G. Kurtz, A limit theorem for pertrubed operator semigroups with applications to random
evolution, J. Functional Analysis, 12 (1973), pp. 55–67.

[16] P. Metzner, E. Dittmer, T. Jahnke and Ch. Schütte, Generator estimation of Markov
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