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Abstract

The dynamics of large-scale atmospheric flow is characterised by both noisy, diffusive
behaviour, stemming mainly from small-scale, high-frequency atmospheric processes,
and by more structured, non-diffusive aspects, coming from e.g. the internal non-
linear dynamics of the flow system. In this study an attempt is made to isolate the
latter influence from the former, in an analysis of observational data of the atmo-
sphere system during winter. The data is projected onto the unit sphere in a reduced
3-dimensional phase space of dominant variability patterns. The probability density
function (PDF) associated with the data on the unit sphere shows clear maxima
that correspond with flow regimes also found in previous studies. Concepts from the
theory of Markov chains and phase space partitions are used to bring out the non-
diffusive, conservative dynamics of the large-scale atmospheric flow. By inspecting
the asymmetries of transitions between different phase space cells, a preferred, closed
path, with a preferred direction, over the unit sphere of the reduced phase space is
detected. This path, or cycle, connects episodes of zonal and blocked flow in the
Atlantic sector. It is reminiscent of the remnants of a heteroclinic cycle found to

guide regime transitions in a model study by the author.



1 Introduction

The old topic of large-scale atmospheric flow dynamics and its relation the phenomenon
of circulation regimes does not cease to be a field of active research in the age of climate
change studies. Indications (Palmer 1999, Corti et al. 1999) exist that climate change
causes changes in the occupation statistics of naturally occurring circulation regimes, rather
than that it induces new patterns of atmospheric circulation. Compared with the 1950s
and 60s, some regimes have been visited more frequently in the 1970s and 80s, others less
frequently. This change is thought to be due to the overall change of climate over the last 50
years. Such a perspective on climate change clearly calls for a better understanding of the
dynamics of large-scale flow and of regime transitions. It is the sensitivity of that dynamics
to changing climate parameters that will eventually determine which flow patterns will be
realised more or less often.

The study of large-scale flow dynamics from observational data is particularly difficult.
A range of scales of motion, many of them highly turbulent, interacts with the large-
scale flow, burying whatever structured dynamics the large scales may posses under great
amounts of noisily behaviour. Such structured behaviour may come e.g. from the internal
nonlinear dynamics of the large-scale flow system. For the flow statistics techniques are
known that can determine whether the anomalously frequent realisation of a flow pattern
is a structural phenomenon or rather the accidental aggregation of realisations of an es-
sentially random system. An example is the estimation of probability density functions
(PDFs) in combination with Monte-Carlo simulations.

The existence of atmospheric circulation regimes is a somewhat controversial issue,
and in particular the question whether or not large-scale flow data are characterised by
multimodal distributions is intensely debated. Compare, for instance, studies by Mo and
Ghil (1988), Molteni et al. (1990), Kimoto and Ghil (1993a, 1993b), Corti et al. (1999) and
Smyth et al. (1999) with those by Wallace et al. (1991), Toth (1991), Nitsche et al. (1994),



Hannachi and O’Neill (2001) and Stephenson et al. (2004). It needs to be stressed that
an unimodal distribution of data does not preclude the possibility of preferred circulation
patterns. As is pointed out by for instance Wallace et al. (1991) and Stephenson et al.
(2004), a distribution can be unimodal but skewed (or kurtotic), giving rise to preferred
patterns.

In this study we will use 500-mb geopotential height winter data from the NCEP
Reanalysis dataset (1948-2000), not only to calculate (spherical) PDFs, but also to extract
information about structured phase-space motion that may be present in the data. This
is done by dividing a reduced phase space (that of the leading three EOFs) in cells and
studying the transitions, observed in the data, between the various cells. The transition
probability matrix obtained by the division in cells and the counting of transitions between
cells determines a Markov chain, and its symmetric and antisymmetric components can
give information about the probability flow through the reduced phase space.

The analysis technique is inspired by the work of Pasmanter and Timmermann (2002),
who use phase space partitions and Markov chains to study ENSO dynamics. This ap-
proach allows to distinguish between the purely diffusive (irreversible) dynamics in a sys-
tem, which has an inherently stochastic nature, and the non-diffusive (conservative, re-
versible) dynamics in the system. The influence of dynamical structures such as periodic
orbits, or preferred paths due to heteroclinic or homoclinic connections, should be visible
in the latter part of the dynamics. We will use this approach to study the observational
data of the NH flow.

In section 2 the preparation of the NCEP observational data, to make it suitable for
analysis, is summarized. In section 3 the calculation of the probability density function
(PDF) is described. The datapoints in the normalized reduced phase space of the first three
Principal Components (PCs) are projected onto the unit sphere. The PDF of the projected
data is calulated on the sphere, making the non-Gaussianity of the data-distribution, and

the flow regimes present, clearly visible. In section 4 we review some theory on Markov



chains and phase space partitions, and use it on some simple examples. In section 5 these
concepts are used to analyse the flow of the atmospheric system through the reduced phase

space, or more precise, on the unit sphere. A conclusion follows in section 6.

2 Data

The data used are the 1948-2000 NCEP Reanalysis data for the Northern Hemisphere
(17.5N-87.5N). Since we are interested in large scale flow characteristics, a resolution of
5° of the latitude-longitude grid will be sufficient, giving 1080 grid points in total. The
500 hPa geopotential height field (Z500) is a good representative of the planetary scale
midlatitude flow. As regime behaviour mainly plays a role during the winter season, we
perform our analysis on the data from the winter half year, which we define to be the 181
days starting at November 1. Thus, the dataset used consists of 52 winters of each 181
days long, the first winter starting on 1 November 1948, the last winter ending on 29 April
2000. To prepare the data for analysis we remove the seasonal cycle: if Z(d, 1) is the field

at day d of winter season i, we subtract from it the average Z,,(d),

1 d+15 52
Za(d) = 37— d,;s Z:j Z(d, ). (2.1)

This gives the anomaly for each day with respect to the long term mean of the 31-day time
segment centered around day d of the season. At the beginning and end of each winter
15 days are lost this way, leaving us with 151 daily data points for each winter. From
the resulting dataset Empirical Orthogonal Functions (EOFs) and their corresponding
Principal Components (PCs) are calculated. The increasing density of gridpoints at higher
latitudes is taken into account in the EOF calculation by multiplying each gridpoint value
with the square root of the cosine of the gridpoint latitude. Note that no detrending was
performed on the data.

In figure 1 the flow patterns corresponding to the first 3 EOFs are shown, with the



standard deviation of their respective PCs as amplitudes. EOFs 1 and 2 closely resemble
those of Kimoto and Ghil (1993a, KG1). The patterns of the first three EOF's are hardly
different when calculated from 3-, 5- or 10-day means, but the variance spectrum changes.
The variance associated with EOFs 1, 2 and 3 together ranges from 22.0% for daily data
to 31.2% for 10-day means.

We will restrict our analysis to the reduced phase space spanned by the first three
EOFs, instead of the full 1080-dimensional phase space. A justification for this restriction
comes from the fact that the low-frequency behaviour of the large-scale atmospheric flow
is dominated by the leading EOFs. In KG1 it is found that this low-frequency behaviour
is largely captured in the leading 8 EOFs. However, as is also discussed there, the limited
amount of data in practice prevents a study of the dynamics in the subspace of the first
8 EOFs. E.g., for a reliable PDF estimation in 8 dimensions, over 40000 (independent)
datapoints are necessary. Even more data will be needed for a study of transitions and
phase space motion in 8 dimensions. The restriction to the first 3 EOF's is a compromise
between dimensional requirements on the one hand and limited sample size on the other
hand. The effect of the adddition of more dimensions can only be studied thoroughly with
a long model dataset.

In what follows we will mainly deal with the timeseries of the PCs normalized by their
respective standard deviations. These normalized PCs will be denoted by a;, as and as.

The corresponding normalized reduced phase space will be denoted by P.

3 A spherical PDF

In studies of atmospheric regime behaviour it is rather common to focus on the projection
of the data (either from observations or from model simulations) onto the plane spanned
by the first two EOFs, i.e. the (a1, a3) plane. Calculations of PDFs in this plane typically

use Euclidean distance as a measure of similarity (e.g. Kimoto and Ghil 1993a, KG1).



However, one can also use angular distance in phase-space (which equals the arccosine of
the pattern correlation) as a similarity measure of similarity between two flow patterns.
This was done by Kimoto and Ghil (1993b, KG2) for the calculation of PDFs of the large-
scale NH flow in the Atlantic resp. the Pacific sector. They remark that “the larger
significance attached to the pattern relative to the magnitude of the anomaly is in concert
with usual meteorological intuition”. Prior to KG2, Horel (1985) and Mo and Ghil (1987,
1988) used spatial correlation of flow patterns as a distance measure for cluster analysis of
NH atmospheric flow data.

In this study we will project the data onto the unit sphere in the reduced phase space
P and calculate the PDF on the sphere. This involves a coordinate transformation, from

the Cartesian coordinates (a1, ag, a3) to the spherical coordinates (p, 8, ¢) according to

a; = pcosfsing
ay = psinfsing (3.1)
ag = pcoso

with 0 < p, 0 <6 <27, 0 < ¢ < m. By projecting onto the unit sphere, more information
about the structure of the flow patterns is retained than in the (a1, as) projection. However,
information on the amplitudes (p) of flow patterns is ignored: two flow patterns that have
spatial correlation 1 (as far as the restriction to the first 3 EOF's is concerned), but different
amplitudes, i.e. p; # p2, project onto the same point (#, ¢). We use angular distance as a
a measure of distance between two points on the sphere: the angle between the two lines
that connect those two points with the center point of the sphere (that is, with the origin of
P). As mentioned, the cosine of this angle equals the correlation between the two points.

Before calculating the actual PDF, let us consider the timeseries of the PCs projected
onto the unit sphere. Their autocorrelation functions are shown in figure 2. After 7 days,
the correlations have largely disappeared, since they have all dropped below e~!. Since the

use of Markov chains in later sections of this study would be problematic for timeseries
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with highly correlated subsequent datapoints, we will use 7-day means of the PCs described
in the previous section. This gives us 1 datapoint every 7 days, or 21 datapoints for every
winter. The 7-day means are again projected onto the unit sphere.

The spherical PDF for the 7-day means is estimated using kernel density estimation
with an Epanechnikov kernel (Silverman (1986), KG1). The estimated PDF f(6, ¢) is a
summation of the contributions f*(6, ¢) from each datapoint 7 with coordinates (p°, 6¢, ¢*),
or equivalently (at,ab,a). Each contribution f*(f,¢) is an Epanechnikov kernel on the
sphere, centered at (6%, %), with smoothing parameter . The total PDF f(6, ¢) gives the
probability per unit area sin ¢ dfd¢. Thus,

N (A N2 (i )2
0.0 -1 r0e,  ree-{ TSNy
=1 0 otherwise
in which o is the angle spanned by the points (f, ¢), the center of the sphere, and (#¢, ¢*).
It is easily evaluated as o' = arccos(v'v?) with v = a/p and v' = a’/p;, the unit length
vectors in P pointing to (#, ¢) and (6, ¢*) on the sphere. The normalisation constant c
guarantees that the integral of the PDF over the sphere equals one: [dfd¢ fsin¢ = 1.

We do not use an adaptive kernel estimator (as is done in KG1), since the projection on
the sphere does not give a distribution with low-probability tails, as one would have when
considering the distribution in P. As we will see, the difference between the minimum
and the maximum values of the estimated spherical PDF is less than a factor two for our
choice of 0. An estimation method designed to handle long tails is therefore not considered
necessary here.

In figure 3, the estimated PDF of the 7-day means is shown with bandwidth parameter
o = 7 /6. The value of the PDF at each point was divided by fg (6, ¢) = 1/(4x). This is the
value of the PDF all over the sphere in case of a perfectly spherically symmetric distribution
(e.g. a Gaussian distribution, eiher univariate or multivariate - recall that the PCs were

normalized) of datapoints in P. Thus, it is very easy to see that the PDF in figure 3 is



not spherically symmetric. Several areas of maximal probability can be identified, as well
as regions of minimal probability. Figure 3 shows a rectangular projection of the sphere,
as well as “north pole” and “south pole” stereographic projections (NPS resp. SPS) of the
upper half and the lower half of the sphere. We define the north pole of the sphere to be
the point ¢ = 0 and the south pole the point ¢ = 7.

The statistical significance of the regions of increased and decreased probability (com-
pared to a Gaussian distribution) was tested by calculating 10000 random PDFs from
Gaussianly distributed datasets, each 1092 datapoints long. Regions where 80% or more
of the random Gaussian PDFs have lower probability than the PDF of figure 3 are shown
in figure 4. Five regions of significantly increased probability are present in the spherical
PDF; they are indicated with letters A-E. PDF-maxima A, C and D are significant at
the 95% level, B at 90% and E at 85%. From now on we shall refer to these maxima as
regimes.

It must be stressed that the calculation of the spherical PDF and the statistical signif-
icance levels of its maxima do not provide any proof of multimodality of the distribution
of states in the reduced phase space P (nor do they provide proof of unimodality). Since
the datapoints were projected onto the unit sphere in P, all that can be concluded here is
that the 7-day means have several preferred patterns (regardless of their amplitudes) but
not per se preferred states (which would require specification of amplitudes). The pres-
ence of preferred patterns may reflect multimodality of the dataset, but can equally well
be due to the dataset being non-Gaussian yet unimodal. It rules out multinormality (i.e.
Gaussianity) of the data, however.

The flow patterns corresponding to the five maxima visible in the spherical PDF are
shown in figure 5. Their amplitudes correspond with points on the unit sphere in P, i.e.
p = 1. The maxima of the PDF were identified by visual inspection.

The five flow regimes in figure 5 are in reasonable correspondence with the results of

earlier studies, such as Mo and Ghil (1998, MG), Cheng and Wallace (1993, CW), Kimoto



and Ghil (1993a, KG1), Smyth et al. (1999, SIG), Corti et al. (1999, CMP) and Monahan
et al. (2001, MPF). Our regime A resembles the R-regime of CW, also found by MPF
and SIG, the PNA (Pacific/North American) regime of KG1, and MG’s cluster 1. Regime
B, with zonal NAO (North Atlantic Oscillation) character, does not have a counterpart in
the A-R-G classification of CW, but corresponds with the ZNAO regime of KG1. CMP’s
cluster A is in between our A and B. Our regime C can be seen to correspond well with
SIG’s and MPF’s regime A, MG’s cluster 2 and CMP’s cluster B. CW’s regime A looks
more like our D. KG1’s RNA pattern as well as CMP’s cluster C resemble both C and D.
Finally, regime E can be identified as the G- (CW, SIG, MPF) or BNAO regime (KG1),
also dubbed cluster D by CMP.

As a final remark, it must be said that the focus in this study is on hemispheric flow,
and thus the regimes studied and discussed here are hemispheric flow regimes. This is not
meant to imply that the notion of sectorial regimes (i.e. flow patterns restricted to the
Pacific or Atlantic sector) would be less meaningful or less reliable than the hemispheric
version. Simply because we study hemispheric flow patterns do we end up with hemispheric
regimes. The analysis could be carried out using data of sectorial flow patterns as well,

but this would be subject for a different study.

4 Phase space partitions and Markov chains

The PDF reveals the preferred flow patterns, or more generally the regions of increased
and decreased probability. However, it does not tell much about the dynamical behaviour
of the system under consideration, since the PDF presents a rather static view. It shows
the stationary distribution of states (assuming stationarity of the system), but not the flow
of the system through phase space. In order to get an idea of this phase space flow, we
will divide the normalized, reduced phase space P in cells and consider the probabilities

of transitions between the various cells.
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The description of the time evolution of a system as a probability vector p(t) (assigning
a probability to each cell) at time ¢, which is multiplied by a matrix M of transition
probabilities to arrive at the next timestep, i.e. p(t + At) = M p(t), is known as a Markov
chain description. It has been used in the past to model atmospheric regime behaviour
by Spekat et al. (1983), Mo and Ghil (1987, 1988), Molteni et al. (1990) and Kimoto
and Ghil (1993b). These studies determine a number of regimes and calculate transition
matrices by counting regime transitions. During the transitions the system is assumed to
be in a transient state that is not classified. Thus, not the entire (reduced) phase space
is studied, but (transitions between) a few bounded regions of it. In this manner, certain
preferred orders of transitions between regimes are found, see Mo and Ghil (1987, 1988)
and Kimoto and Ghil (1993b).

In this section, we will not limit ourselves to specific phase space regions identified as
regimes, but rather divide all of P into cells. The transition matrix associated with such
a partition can reveal information on preferences and inhomogeneities of the flow of the
system through P. More specifically, we will partition P into k cells all containing an equal
number of datapoints, as was done in e.g. Pasmanter and Timmermann (2002). We shall
refer to such a partition into cells all with an equal amount of data as an equipartition. The
transition probability matrix M associated with an equipartition has the useful property
that the sum over each row or column of the matrix equals one. Thus, if the Markov chain

description is
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the matrix M satisfies

My > 0 Vi, j, (4.2)

J

Matrices satisfying all three properties are called doubly stochastic matrices. A detailed
treatment of equipartitions and (doubly) stochastic matrices in a geophysical context can
be found in Pasmanter and Timmermann (2002, PT from now on).

In PT, the matrix M is split up in its symmetric part M° and antisymmetric part M*
in order to distinguish between the diffusive or dissipative part of the dynamics (called irre-
versible) and the non-diffusive or conservative part (called reversible). M? is again doubly
stochastic, M# is not. PT calculate (AI), the average information loss, or entropy pro-
duction, associated with the system p(t + At) = Mp(t), and distinguish two contributions

to the information loss:

k k
1
=1 ':1
1< j
(A)g = —EZZMSInMS, (4.5)
i= lj 1
2
MA MS + M
. s i A %) %
(AT)ys = ——;JZ;M In (Mg) + MjjIn (7M5_M£ .

(Al)g is the information loss one would have in a system p(t + At) = M%p(t). Both
(AI) > 0 and (AI)s > 0. In contrast, (AI),;s < 0, so the total information loss in
a system is decreased by the presence of a nonzero M“. These observations lead PT to
associate M# with the conservative, or non-diffusive part of the dynamics of the system
p(t+At) = M p(t). A system with purely diffusive dynamics has zero M4; in contrast, M*

is still nonzero in case of purely conservative dynamics. PT present yu=1—k""Y", . [Mj;
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as a measure of the purely diffusive dynamics inherent to M, ranging from 1 (totally
diffusive, all M;} are zero) to 0 (totally conservative, M is a permutation matrix).

It is not obvious that the atmospheric flow system can be represented by a Markov
process. The Markovian assumption implies that the probability of the transition i — j
does not depend on the state of the system previous to arriving at state ;. A Markovian
system has no memory of its history. On a day-to-day timescale, the large-scale atmospheric
flow system may well be non-Markovian, since the large-scale flow is highly correlated at a
one-day time lag. For this reason we use 7-day means instead of daily data in our analysis.
The consecutive datapoints of the 7-day means are largely uncorrelated, so it is reasonable
to assume that the atmospheric system has no memory of its history after 7 days.

A study, drawn to our attention by one of the reviewers, that uses techniques similar to
the analysis used here, was carried out by Egger (2001). He determines a Master equation
(also based on the Markovian assumption) from data and uses it to obtain information
about a transition velocity vector(field) which relates to the mean motion in phase space.
This vector also stems from asymmetries in transition rates. Egger uses 6-hourly data of
angular momentum of the atmosphere, and finds oscillating motion with a drift towards

the origin of phase space.

4.1 Examples

It will be instructive to look at some simple examples to see how the information obtained
by inspecting the transition matrix and its antisymmetric part relates to the behaviour
of a system. As a first example we consider a system with 4 different states (or 4 cells).
It is governed by completely periodic behaviour, since it always follows the trajectory

1—-2—3—4—1—.... The transition probability matrix (in this case a permutation
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matrix) is

(o

its symmetric and antisymmetric parts are

My

[0

1
0

\1

0

0
10
M1:
0 1
\00
0 1)
10
, M} =
0 1

10)

\—1 0

/ 0 -1 0
1 0 -1

0 1 0

1

0 )

(4.7)

Note that M} is nonzero even though this system is periodic. The matrix M{* + |[MA]|

recovers the periodic motion of the system:

M} + M =

0

o 1)

00
00

10 )

(4.8)

For the second example we modify the previous system slightly: at each step, the

system has a probability of 0.7 to continue along the cycle of the previous system, and

probabilities of 0.1 to go to each of the other 3 cells (including itself). In other words, the

transition matrix is now

S
I

(01

0.7
0.1

\ 0.1

0.1
0.1
0.7
0.1

14

0.1
0.1
0.1
0.7

0.7 \

0.1
0.1

0.1



resulting in

( 0 —-03 0 0.3\ /0 0 0 0.6\
M — 03 0 —03 0 Y S 06 0 0 0  410)
0 03 0 -03 0 06 0 0
\—0.3 0 03 0 ) \ 0 0 06 0 /

The matrix M2 + | M3| recovers the preferred cycle still present in the system. Note that
direct transitions between cells 1 and 3 and between cells 2 and 4 are possible in this
system. However, they do not appear in M2 + |M3'|, because each of these transitions is
as probable as its reverse, and is thus due to diffusion.

The last example is a purely diffusive system, with transition matrix

(0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25
M; = . (4.11)
0.25 0.25 0.25 0.25

\0.25 0.25 0.25 0.25)

The absence of periodic motion is reflected in the fact that M = 0.

The average information loss and measure p of diffusive dynamics confirm, for each
of these examples, the conclusion drawn from MA + |M?|. The first system has y = 0
and (Al)s = —(Al)a/s = In2, resulting in zero information loss or (AI) = 0. This
reflects the completely periodic, nondiffusive character of the first system. For the second
system, p = 0.4, (Al)s = 1.19,(Al)s/s = —0.25 and thus (AI) = 0.94. This system
has significant diffusivity (nonzero p) but also still considerable nondiffusive structure:
0 < (AI) < (AI)s. The third system is completely diffusive, so the upper bound of u
is saturated: g = 1. The information loss is not suppressed by any nondiffusivity, i.e.

(A)ass =0 and (AT) = (AT)g = In4.
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4.2 Significance test

The examples made clear that the matrix M4 + | M| reflects the structured, conservative
dynamics present in the system described by the transition probability matrix M. When
calculating M from data, it will be necessary to estimate which elements in the matrix
M# are statistically significant (implying some presence of conservative dynamics) and
are unlikely to be the result of finite sample size. Calculating M from data can hardly
be expected to give a precisely symmetric matrix, even if the underlying system is purely
diffusive. Thus, a test is needed to determine which elements of M# are significantly
different from zero.

From the equipartition of P in k cells with each N, datapoints the transition matrix
T can be calculated, counting the number of transitions between cells. The transition
probability matrix M is derived from 7' by M = N, ' T. Their respective symmetric and
antisymmetric parts have the same relation: M5 = N, ' T%, M4 = N;'T4. An element
Mif} is significant if the corresponding element T;; differs significantly from Tz‘j . That is,
Ti‘; should lie outside, say, 1 or 2 standard deviations associated with Tg

If the system dynamics is driven by M?°, we expect the N, transitions from cell j to
other cells to result in T}, = N,M, transitions to cell i. T is the expectation value
from N, independent binomial Bernoulli trials with at each trial a probability M;; of
“success” (transition to i) and a probability 1 — M;j of “no success” (transition to any
other cell). The standard deviation associated with the binomial distribution is S;; =
(MZ(1 — Mg)Ng)'/2. For large enough Ny the binomial distribution can be approximated
by the normal distribution (Feller, 1968). T;; will therefore with 68.3% certainty lie in the
interval (T}; — S, T,] + Sij), with 95.4% certainty in the interval (T;] — 2 S;;, T} + 2 Sj)),
etcetera. We will require T;7 > 10 for TZ‘? to be potentially significant at all.

T;; lies with 95% certainty between TJ + 1.96 Sj;, so T;;‘ is significant at the 95%

YK

confidence level if |T}| > 1.96S5;;. To be significant at the 90%, 85%, 80% and 75%
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confidence level, |T/}| must exceed 1.64 S;;, 1.44 Sj;, 1.28 Sy; resp. 1.15 S;;. Note that it is
T4 rather than M4 which is tested, since a small but nonzero element of M4 may very
well be significant if IV, is large enough, whereas a large element of M4 can be insignificant

if Ny is small.

5 Results

We will partition P such that the cell boundaries only depend on # and ¢. The partition can
be drawn on the unit sphere on which the PDF was calculated, thereby enabling an easy
visualisation and interpretation of probability flows. First we draw boundaries of constant
¢, dividing the unit sphere in P into zonal bands. These bands are then each divided into
cells, by drawing boundaries of constant § within each band. The total number of cells is
k, the number of datapoints used is k/Ny. A possible remainder of 1092 — kN, points at the
end of the dataset is not used. Once the partition is made, M is calculated by counting
transitions. Transitions from the last datapoint of one winter to the first datapoint of
the next winter are left out, thereby introducing an unavoidable but small deviation of M
from the precise properties of doubly stochastic matrices (equations (4.3) and (4.4)). This
deviation will be ignored.

We made four different equipartitions, whose structures are visible in figure 6. The
associated matrices 7" and M* +|M*| are given below. The nonzero elements of M*+|M*|
show their significance level using typographic means (boldface, underline, italic): > 95%,
95% — 90%, 90% — 85%, 85% — 80%, 80% — 75%, < 75%.

The first partition gives

/123 48 64 22\ / 0 0 7.7 0.7\
76 98 42 46 y y 1 102 0 0 0
43 48 100 71 001 o 22 0o 77

\20 66 50 123) \ 0 73 0 0 /
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the seco

\

For the

and for

nd partition

( 62 33 9 24 33 10
43 55 28 6 28 16
21 14 70 32 6 34

21 14 29 33 34 24
22 30 7 29 56 26
5 29 28 28 15 66

third partition we find

( 117 70 43 33 \
62 105 33 57
64 33 116 44

\19 47 67 130/

the fourth partition

( 112 74 42 34 )
49 119 25 65
69 18 133 42
\32 44 58 124 )

, MA+ M =

, MA+ M7 =

, M* M7 =

100

100

1

100

9.

©

\0

[0 o0
55 0
66 0
0 44
0 1.1

\ 0 7.1

[0 2.9
0 0
770

\ 0 0

0

0

1.6

6.0

In table 1, the values of (AT), (AI)g, (AI)a/s and p are shown for these four partitions.

Diffusive dynamics clearly dominates the behaviour of all four systems. However, some

structured, non-diffusive behaviour is also present. The partitions in four cells all posses

a preferred cycle, with all or most of its segments significant at more than 85%, and some

segments significant at 90% (partition 3, 3 — 4; partition 4, 2 — 1) and 95% (partition

1, 1 — 2, partition 4, 1 — 3). Because of the differences between the partitions, the

cycles detected in the various partitions are not identical. However, their similarities are

remarkable, and are an indication of the robustness of the phenomenon. The partition in
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6 cells also recovers the preferred cycle, but significance levels are lower for some of its
segments (in particular transition 5 — 1), due to the limited amount of data available.

Shortage of data makes it very difficult to reach higher significance levels in the deter-
mination of the cycle segments, or to explore the structure of the cycle in more detail using
a finer partition with more cells. It is unlikely one can get around this by using other ways
of partitioning. For instance, defining cells to be centered around the regions of observed
regimes will run into the same problem: the cells have to contain enough datapoints and
will therefore in practice be so large that not all datapoints in one cell can really be clas-
sified into one regime anymore. It will also make the partitioning into equally probable
cells much more complicated. Lifting the constraint of equally probable cells may only
worsen the problem, as part of the data could end up in cells having too few datapoints to
yield any statistically significant results. That part would then effectively be lost for the
analysis. In this respect, an equipartition is an efficient way of making use of data.

In figures 7 and 8 the evolutions of the atmospheric flow along the preferred paths of
partitions 1 and 4 are shown. For # and ¢ we picked the mean values within each cell, and
the average of these mean values for the steps in between the cells. The flow patterns are
500 mb geopotential height anomalies, with p = 1 chosen as amplitude.

The two evolutions are quite similar, the main difference being that in figure 7 the
Pacific sector sees more activity than in figure 8. The positive and negative phases of the
Artic Oscillation (AO) visible in figure 8 (steps 1-3 and 4-2) get more Pacific emphasis
in figure 7 (steps 2 and 3). Positive and negative phases of the North-Atlantic Oscillation
(NAO) are present in evolution 1 (figure 7) but not as pronounced as in evolution 4 (figure
8). It is difficult to say which of the two evolutions is the more truthful. Results from
a preliminary version of this study (Crommelin, 2003a), as well as the results from the
partition in 6 cells (figure 6) suggest that the transitions between the upper and lower
halves of the sphere (and back) take place at values of # most in agreement with the

evolution of figure 8. Partition 1 locates these transitions at somewhat too small values of
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The evolution of partition 4 (figure 8) shows an alternation between episodes of mainly
zonal anomalies (1-3, 4-2, ¢ ~ 7/2) and episodes of more meridionally oriented anomalies
(2-1, 34, ¢ =~ 0, ). The negative anomalies over the North Atlantic and the Pacific (2-1)
start to merge, and form one large negative arctic anomaly (1-3). Further down the path,
this negative anomaly gets elongated meridionally over the Eurasian continent and the
westcoast of North America. Over the North Atlantic and the North Pacific, it is replaced
by positive anomalies. Reaching the bottom of the unit sphere (3—4), the pattern consists
again of mainly meridionally oriented anomalies. The second half of the cycle shows a
reverse evolution: positive North Atlantic and Pacific anomalies merge, forming a positive
arctic anomaly with negative anomalies surrounding it (4-2). In the last part of the cycle,
the arctic anomaly again stretches southward, and at 2-1 the anomaly pattern is back in
its meridional state.

Interpreted in terms of phases of the AO and the NAO, the preferred cycle of partition
4 shows the positive phase of the NAO (1) preceding the positive phase of the AO (1-
3) and negative NAO (4) preceding negative AO (4-2). A similar preferred path was
found by Crommelin (2003b) using a barotropic model of northern hemisphere flow. That
preferred path was interpreted as the remnant of a heteroclinic cycle, a cycle of phase space
connections back and forth between regime-like steady states.

The cause of the preferred cycle(s) showing up here remains elusive. It is tempting to
associate the non-diffusive part of the dynamics with the internal nonlinear dynamics of
the large-scale atmospheric flow, and to relate the diffusivity to the noise caused by small-
scale, high-frequency atmospheric processes. However, as is shown by Majda et al. (1999,
2003), noise processes can induce systematic corrections in the large-scale flow system. Not
only does the noise tend to “smooth out” the structured behaviour of the large scales, it
can also alter the structured behaviour itself.

If, nevertheless, we hypothesize about interpreting the non-diffusive behaviour using
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concepts from dynamical systems theory, the first possibility that comes to mind is that of
an unstable periodic orbit. The system can be captured by the orbit for a (short) while,
following (part of) the orbit, leaves it, returns for a while, and so on. One can see some
traces of the periodic behaviour, but the system never follows the periodic orbit for long.
Selten and Branstator (2003) detect a preferred cycle in a 3-layer quasi-geostrophic model
of northern hemisphere flow, and interpret this cycle in terms of an unstable periodic orbit.
As mentioned previously, in Crommelin (2003b) a preferred cycle, similar to the one found
here, was detected and related to remnants of a heteroclinic cycle connecting regimes.
Some phases of the preferred cycle detected here resemble regimes shown in figure 5: 3
(figure 8) resembles C well; some, but not total, resemblance can be seen between 2-1 and
A, 1-3 and B, 4-2 and E. Unfortunately, the partitioning carried out here is too coarse to
see whether the preferred cycle really connects (some of) the regimes. An interpretation
along the same lines as in Crommelin (2003b) must therefore remain speculative at this
point.

It must be stressed that although the structure detected and discussed here is one of
a preferred cycle, this does not imply that the atmosphere often, or even ocassionally,
completes one or more full cycles. At each step, the chances of evolving into another
direction than along the cycle are high (due to high diffusivity), therefore the chances
of completing several steps along the cycle are very small. This is even the case in the
second example of section 4, where a preferred cycle dominates the behaviour: the chance

of completing the cycle in 4 steps is only 0.24.

6 Conclusion

It has been known for some time that the distribution of observational atmospheric flow
data, in a reduced phase space spanned by the leading EOF's, tends to show preferred

phase space regions. Such regions, or regimes, can be hard to make visible. In this study,
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the projection of the data onto the unit sphere in the space of the leading (normalized)
three PCs resulted in a PDF in which regions of increased probability were clearly visible.
The atmospheric circulation regimes associated with these regions correspond with earlier
found flow regimes. All the regimes presented in previous studies such as CW, KG1, SIG,
CMP and MPF are found in the spherical PDF.

Since a probability distribution does not provide information on the dynamics of the
system under study, the reduced phase space was divided into cells, all with an equal
number of datapoints. The transition probability matrix M, describing (probabilities of)
transitions between cells, reflects the effect of the dynamical processes governing the sys-
tem behaviour, in particular the regime transitions. Contributions to M come from both
diffusive, irreversible dynamics (e.g. noise-driven motion in a potential field) and conser-
vative, reversible dynamics (generated by e.g. periodic orbits or tori in phase space). The
diffusive dynamics add to the symmetric part M° of M, whereas the antisymmetric part
MA4 is in principle generated by the conservative dynamics. A statistical significance test
of the elements of M# (to select elements unlikely to be due to finite sample size) left us
with a set of transition asymmetries forming a closed path or cycle over the unit sphere in
the reduced phase-space.

No pertinent conclusions can be drawn about the dynamical origin of the preferred
cycle on the basis of the results presented here. Concepts from dynamical systems theory,
such as unstable periodic orbits or heteroclinic cycles, could provide an explanation. But
noise, stemming form the small, turbulent scales of motion, can also cause structured
behaviour of the large scales, as was shown by Majda et al. (1999, 2003). Unambiguously
separating “noise” from “structure”, if possible at all, probably needs a more sophisticated
analysis than was used here. An approach that goes beyond the limitations of the Markov
chain modelling may provide better possbilities in this respect. The Markovian assumption,
justified in this study by the use of 7-day means leading to largely uncorrelated consecutive

datapoints, restricts the kind of information that can be extracted from the data.
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Interpreted physically, the evolution of the atmospheric flow pattern along the preferred
path shows an alternation between anomaly states with considerable zonal symmetry and
states with mainly meridionally oriented anomalies. In particular the preferred cycle of
partition 4 shows that positive and negative phases of the NAO are followed (or rather
concluded) by positive resp. negative phases of the AO. It resembles, in this respect, re-
sults from an earlier study by the author (Crommelin, 2003b), obtained using a barotropic

model of NH flow.
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partition | (AI) | (Al)s | (Al as | 1
1 1.260 | 1.268 | -0.008 | 0.91
2 1.590 | 1.603 | -0.013 | 0.90
3 1.246 | 1.253 | -0.007 | 0.93
4 1.224 | 1.233 | -0.009 | 0.91

Table 1: Average information loss (AI), its constituents (Al)g and (ATl)4;s (see text),
and p (a measure of the relative importance of diffusive dynamics, see text), for four

equipartitions.
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Figure 1: EOFS 1, 2 and 3 of the 500 mb geopotential height field, calculated from NCEP
Reanalysis data (1948-2000, November to April) of the Northern Hemisphere. The EOFs
have been multiplied by the standard deviation of their respective PCs. Contour interval
is 15 m., solid contours are positive, dashed contours negative (zero contour not drawn).

The variance associated with EOFs 1-3 is 22.0 %
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Figure 2: Autocorrelation functions for PCs 1-3 projected onto the unit sphere in the
reduced phase space P.
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Figure 3: Spherical PDF of NH atmospheric flow data (7-day means) in normalized reduced
phase space P, calculated with bandwidth parameter ¢ = 7/6. Shown is f(6, )/ fq,
the PDF divided by the (constant) probability density fg(6,¢) = 1/47 of a spherically
symmetric (e.g. Gaussian) distribution. A value higher (lower) than 1 indicates higher
(lower) probability than Gaussian. Top: rectangular projection, (0, ¢) € [0,27) x [0, ].
Bottom: NP (left) and SP (right) stereographic projections, (6, ¢) € [0,27) x [0, 7/2] resp.
(0,¢) € [0,27) x [7/2,7]. Contour interval is 0.1. The letters A-E indicate five main
maxima in the PDF; their corresponding flow patterns are shown in figure 5. Significance
levels are shown in figure 4.
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Figure 4: Regions of the spherical PDF of figure 3 with significantly increased probability
compared to a Gaussian PDF. Shown are regions where 80% or more of 10000 random
Gaussian PDFs have lower probability than the PDF of figure 3. Contour interval is 5%.
Regions with a statistical significance level of 90% or higher are shaded.
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Figure 5: Regime anomalies corresponding to the five maxima in the spherical PDF (see
figure 3). All maxima are taken to be on the unit sphere in P, so p = 1. A: (0,¢) =
(0.90,0.82), B: (0, ¢) = (1.65,1.87), C: (6, ¢) = (2.84,2.36), D: (6,¢) = (4.04,1.57), E:
(0, ) = (0.15,2.36). Contour interval is 15 m, zero contour not drawn.
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Figure 6: Four different equipartitions of the data. Solid arrows indicate transition asym-
metries significant at 85% or more (several are significant at 90% or 95% or more, see
text). Dotted arrows indicate asymmetries significant at 80%-85%. Thin lines are con-
tours of the scaled spherical PDF f(6, ¢)/fq of the 7-day means data (see figure 3), with
contour interval 0.1, solid contours for valuegs;> 1, dashed contours for values < 1).



Figure 7: Evolution of the atmospheric flow (500 mb geopotential height anomaly) along
the preferred path (partition 1) through the reduced phase space P (see figure 6). Contour
interval is 15 m.
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Figure 8: Evolution of the atmospheric flow (500 mb geopotential height anomaly) along
the preferred path (partition 4) through the reduced phase space P (see figure 6). Contour
interval is 15 m.
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