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Abstract

Several different ways of constructing optimal bases for efficient dynamical mod-

elling are compared: Empirical Orthogonal Functions (EOFs), Optimal Persistence

Patterns (OPPs) and Principal Interaction Patterns (PIPs). Past studies on fluid-

dynamical topics have pointed out that EOF-based models can have difficulties re-

producing behaviour dominated by irregular transitions between different dynam-

ical states. We address this issue in a geophysical context, by assessing the abil-

ity of these strategies for efficient dynamical modelling to reproduce the chaotic

regime transitions in a simple atmosphere model. The atmosphere model is the

well-known Charney-DeVore model, a 6-dimensional truncation of the equations de-

scribing barotropic flow over topography in a beta-plane channel geometry. This

model is able to generate regime transitions for well-chosen parameter settings. The

models based on PIPs are found to be superior to the EOF- and OPP-based models,

in spite of some undesirable sensitivities inherent to the PIP method.
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1 Introduction

Within the climate research community, a need is felt for efficient models which produce

realistic dynamics using as few degrees of freedom as possible. The investigation of the cou-

pled atmosphere-ocean system is limited by the unfortunate fact that spectral atmosphere

models have to be quite detailed in order to generate the reasonably realistic behaviour

needed in many studies of the climate system. A detailed, complex spectral atmosphere

model slows down the numerical integration of coupled atmosphere-ocean models enor-

mously, thus hampering the study of the climate system on long timescales. It is known,

however, that spectral models are very inefficient: their dynamics can be generated by far

simpler models, if only a suitable model basis is chosen. Finding such suitable, or optimal,

bases is therefore of obvious interest.

A number of studies have been devoted to the construction and use of optimal bases for

atmospheric modelling. Typically, these studies arrive at a reduced model for atmospheric

flow in two steps. First, an optimal basis is chosen and calculated, and the atmosphere

model to be reduced is transformed to the new basis. Empirical Orthogonal Functions

(EOFs) are the most common choice for the optimal basis (Rinne and Karhilla 1975;

Schubert 1985, 1986; Selten 1993, 1995, 1997a,b; Achatz and Branstator 1999; D’Andrea

and Vautard 2001; Achatz and Opsteegh 2003a,b), but other choices such as Principal

Interaction Patterns (Achatz et al. 1995; Kwasniok 1996, 2004) and Optimal Persistence

Patterns (DelSole 2001) have also been made. In the second step the transformed model is

truncated, and some kind of closure scheme is applied to the truncated model to account

for the effect of the unresolved degrees of freedom on the still resolved modes. The closure

ranges from adding extra damping (Selten 1995) to empirical fitting of the forcing and
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linear terms (Achatz and Branstator 1999) and from calculating linear, nonlinear and

stochastic correction terms (Majda et al. 1999, 2003) to optimization of deterministic

model coefficients (Kwasniok 2003).

A separate class of reduced models consists of linear models with stochastic forcing, in

which the use of an optimal basis is combined with a closure that uses linear and stochastic

correction terms to represent not only unresolved modes but also nonlinear processes (e.g.

Branstator and Haupt 1998; Winkler et al. 2001).

Under the name Proper Orthogonal Decomposition (POD), or Karhunen-Loève (KL)

expansion, the technique of EOFs is also used in other fluid-dynamical contexts to arrive

at reduced models (e.g. Aubry et al. 1988, Sirovich 1989, Cazemier et al. 1994). It

is there that a serious shortcoming of EOF- (or POD-) models was first noticed. The

amount of variance of a system represented by the leading n EOFs is often taken as an

indication of the quality of a reduced model using those first n EOFs. If n EOFs describe,

say, 99% of the variance, one (naively) expects the reduced model using n EOFs to be

nearly perfect. These expectations were severely contradicted in a study by Aubry et al.

(1993), in which POD-models of the Kuramoto-Sivashinsky equation were studied. They

found that a model based on the leading 6 POD modes could not reproduce the right

dynamics, even though those 6 POD modes represent 99.9995% of the variance. Similar

problems with models based on POD-modes were reported by Armbruster et al. (1992) in

a study of Kolmogorov flow in a regime of bursting behaviour. Modes representing only a

tiny amount of variance can be crucial in the generation of certain types of dynamics. In

particular systems that exhibit sudden transitions between different states (i.e. bursting

behaviour) will be susceptible to this kind of problems when trying to model them using
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EOFs or POD-modes. The modes excited during the transitions do not represent a large

amount of variance, yet they are crucial in generating the right dynamics.

Although the atmosphere does not possess extreme forms of bursting behaviour, it is

nevertheless marked by episodes of more and less turbulent behaviour. The large-scale

circulation can be caught for a while in some flow configuration (or regime), before it

makes a relatively swift transition to another state. Having in mind the dramatic failure

of EOF-models as reported by Aubry et al. one can wonder whether EOF-models of

the atmosphere will similarly have problems reproducing atmospheric regime behaviour,

and whether other choices of optimal bases will perform differently. In this paper we

will look into this issue by comparing various optimal bases in their ability to reproduce

the regime behaviour generated by a simple atmosphere model. The model we shall use

is the well-known Charney-DeVore model (Charney and DeVore 1979, CDV hereafter).

Long considered to be a model possessing regime-like steady states but unable to produce

transitions between these regimes, Crommelin et al. (2004) show that the CDV model

can, by itself, generate regime transitions at realistic parameter settings. They find the

transitions to be guided by a perturbed heteroclinic cycle connecting the steady states

of the CDV model. This cycle is due to the interaction of barotropic and topographic

instabilities, the two instability mechanisms present in the model.

After introducing the model and its regime behaviour in section 2, we compare 3 differ-

ent types of optimal bases: Empirical Orthogonal Functions in section 3, Optimal Persis-

tence Patterns in section 4 and Principal Interaction Patterns in section 5. The focus is on

the ability of the reduced models, formulated in terms of these optimal bases, to reproduce

the chaotic regime transitions of the CDV model at the parameter settings described in
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section 2. All reduced models are obtained by projecting the CDV model onto one of the

optimal bases, and then truncating to the desired number of basis patterns. No closure

scheme of any kind is applied, since we want to study the quality of optimal bases, not of

closure schemes. Moreover, there is not much of a physical rationale for applying a closure

scheme to reduced versions of the CDV model: being low-order models, they do not possess

a cascade or small-scale processes, so there is no argument for closures based on e.g. eddy

viscosity. Thus, in this paper we study only bare truncations.

2 Charney-DeVore model with regime transitions

The starting point for the comparison of various optimal bases will be the 6-dimensional

truncation of the equations for barotropic flow in a β-plane channel with orography that

is known as the Charney-DeVore model (Charney and DeVore 1979, CDV hereafter). The

formulation of the model as it is used here was presented by De Swart (1988, 1989), who

used a slightly different scaling and a more general zonal forcing profile than CDV. The

model can show rapid transitions between flow regimes if the parameters of the model are

carefully chosen (Crommelin et al. 2004).

The set of ordinary differential equations that makes up the 6-dimensional model is as
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follows:

ẋ1 = γ∗1 x3 −C (x1 − x∗1)

ẋ2 = −(α1 x1 − β1) x3 −C x2 − δ1 x4 x6

ẋ3 = (α1 x1 − β1) x2 − γ1 x1 −C x3 + δ1 x4 x5

ẋ4 = γ∗2 x6 −C (x4 − x∗4) + ε (x2 x6 − x3 x5)

ẋ5 = −(α2 x1 − β2) x6 −C x5 − δ2 x4 x3

ẋ6 = (α2 x1 − β2) x5 − γ2 x4 −C x6 + δ2 x4 x2

(2.1)

The model coefficients are given by

αm =
8
√

2

π

m2

4m2 − 1

b2 +m2 − 1

b2 +m2
, βm =

βb2

b2 +m2
,

δm =
64
√

2

15π

b2 −m2 + 1

b2 +m2
, γ∗m = γ

4m

4m2 − 1

√
2b

π
, (2.2)

ε =
16
√

2

5π
, γm = γ

4m3

4m2 − 1

√
2b

π(b2 +m2)
.

A timestep of ∆t = 1 is interpreted as 1 day. For a detailed account of the derivation of

this model, see De Swart (1988, 1989).

In the model equations, one can recognise advection by the zonal flow with components

x1, x4 (terms with αi, δi and ε), the β-effect (terms with βi), topographic interaction terms

(γi, γ
∗

i ), Ekman damping (C-terms) and zonal forcing (x∗1, x
∗

4). The free parameters in the

model determine the damping timescale (C), the zonal forcing (x∗1 and x∗4), the topographic

height (γ), the beta-effect (β) and the length-width ratio of the beta-channel (b).

Crommelin et al. (2004) found that the model shows transitions between flow regimes

if the parameters are set to (x∗1, x
∗

4, C, β, γ, b) = (0.95,−0.76095, 0.1, 1.25, 0.2, 0.5). For a

discussion and interpretation of these parameter settings, see their paper. Here we only

point out that the regime behaviour in this model, present at realistic parameter values, is
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due to the combination of topographic and barotropic instabilities. The latter is the result

of the more general zonal forcing than was used in CDV.

In figure 1 (top) the datapoints are shown of one 4000-day long integration of the

model (output every 0.1 day, initial transient of 500 days not shown). In order to assess

the size of the basin of attraction of the attractor to which the system is drawn in this

one particular integration, 40 000 integrations were made, each starting from randomly

chosen initial conditions (each xi(t = 0) drawn from a uniform distribution on the interval

(−1, 1)). Each integration is 2000 days long. All 40 000 end points are shown in figure 1

(bottom). Together they give a good coverage of the attractor shown in the top panel, so

the basin of attraction has considerable size, and may very well be the entire phase space.

In figure 2 (bottom), a piece of one model integration projected onto its first EOF is

shown, making the regime transitions clearly visible. In Crommelin et al. (2004) this regime

behaviour was related to the formation of a heteroclinic cycle between steady states, at

parameter settings for which the onset of barotropic instability coincides with the onset of

topographic instability. The structure of the heteroclinic cycle is such that the minimum

number of phase-space dimensions needed for the embedding of this cycle is three. We

therefore cannot expect deterministic reduced models with less than three dimensions to be

able to faithfully reproduce the regime behaviour. Conversely, the cycle structure suggests

that 3 degrees of freedom should be enough for a reduced model to reproduce the cycle.

The swift regime transitions make this model a good test case for model reduction

strategies and optimal bases used in atmospheric science, as the model has (far) more geo-

physical relevance than the Kuramoto-Sivashinsky equation or Kolmogorov flow equations.

After all, the model describes atmospheric flow, albeit severely simplified. In the following
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sections three different types of optimal bases will be tested, to see if they can reproduce

the chaotic regime transitions described above.

3 Empirical Orthogonal Functions

The technique of calculating EOFs and using them as a model basis is well known and will

not be explained in detail here. Having chosen a metric Mk, the EOFs pi are simply the

eigenvectors of the eigenvalue problem

CMkpi = λ2
i pi (3.1)

in which C is the covariance matrix:

Cij = (xi − x̄i)(xj − x̄j). (3.2)

If the time-mean x̄ is not subtracted when calculating C, the leading EOF will to a large

extent coincide with the time-mean state. Leaving out the subtraction of x̄ did not improve

the performance of the EOF models; those results are therefore not shown here.

Table 1 gives the variance spectra associated with the EOFs, using alternately the

streamfunction L2-norm M0 and the kinetic energy norm M1. These norms are defined by

∫
ψ2 = xTM0 x, (3.3)

1

2

∫
ψ∆ψ = xTM1 x, (3.4)

in which x is the vector of variables of the CDV model, ψ the associated streamfunction

field, and the integration runs over the physical domain of the model. The EOFs were cal-

culated from a 105000-day integration of the original model, 1 datapoint each day, leaving
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out an initial transient period of 5000 days. The cumulative variance associated with the

leading three EOFs is very high: 97 % or more. In spite of the minimal variance associated

with the trailing EOF modes, their inclusion in the model can be crucial in reproducing the

regime transitions with an EOF model. A 5 EOF model could not reproduce the regime

transitions, independent of the norm used. Interestingly, a 4 EOF model with EOFs calcu-

lated using the M1 norm. was able to generate regime transitions. Using the M0 norm, no

regime transitions were observed with 4 EOFs. Models using 3 EOFs could not reproduce

regime transitions.

The 4 EOF model that was able to generate transitions did so in a much too regular

way: it reproduced the transitions between different parts of the attractor seen in the

original CDV model, but not their irregular or chaotic appearance. Rather, its behaviour

was periodic. A really faithful reproduction of the dynamics of the CDV model, including

its chaotic nature, was not seen for any of the EOF models. The EOF models that could

not reproduce the transitions were either drawn to some stable fixed point, or to a peri-

odic solution not having any characteristic of regime-like behaviour. To summarize the

asymptotic behaviour of the various models, their properties are listed in table 2. To be

able to do so, ensemble integrations were made for all models, in much the same way as

for the original CDV model previously: 2000 integrations, each 4000 days long, starting

from randomly chosen initial conditions.

Figure 2 gives an impression of the periodic regime behaviour generated by the 4 EOF

model, the EOFs of which were calculated using the M1 norm. The upper left panel shows

the result of a 2000-day integration of that model, projected onto the plane spanned by

the leading two EOFs. For comparison, the output of the CDV model is projected onto
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the same plane, see upper right panel. In the lower two panels timeseries are plotted, both

for the 4 EOF model and the CDV model. It is clear that the regime transitions generated

by the reduced EOF model are much too regular.

4 Optimal Persistence Patterns

The previous section made clear that models based on EOFs have indeed difficulties re-

producing transitional behaviour, as observed earlier by Aubry et al. (1993). Even using

5 EOFs, representing up to 99.8 % of the variance, no model could reproduce the chaotic

regime behaviour of the original CDV model. In this section models using another optimal

basis will be investigated, to see whether they will do better. This time, the Optimal Per-

sistence Patterns (OPPs) proposed by DelSole (2001) will serve as a basis for the models.

These patterns are chosen to maximize either of two measures of persistence, both related

to the decorrelation time of the system:

T1 =

∫
∞

0

ρ (τ) dτ or T2 = 2

∫
∞

0

ρ2(τ) dτ, (4.1)

in which ρ(τ) is the correlation function depending on time lag τ . The idea is, given a

dataset g(t) in some phase space P, to find a vector e1 ∈ P such that the time series

v1(t) = eT
1 g(t) has maximal T1 (or T2), then a second vector e2, orthogonal in some sense

to e1, that again maximizes T1 or T2, and so on. The ordering of the patterns based on

their persistence or correlation time makes the OPPs an interesting type of optimal basis.

If one aims to reproduce the long timescale behaviour of a system, a set of patterns with

maximal correlation times is a natural candidate for the basis of a reduced model.

The system under investigation, the CDV model in a dynamical regime of chaotic
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transitions, has significant oscillatory aspects to its behaviour. We therefore use T2 to

calculate optimals rather than T1, as the former measure is more suitable to use on systems

with oscillatory correlation functions. The dataset, generated by the CDV model, that is

used for the calculations is the same as the one used for the calculation of the EOFs in

the previous section: 100 000 datapoints, each 1 time unit apart, after an initial transient

period of 5000 days. It will be denoted by xCDV instead of g(t) from now on. The set

of optimals is calculated by maximizing T2 under the constraint that the patterns ei are

mutually orthogonal in time. That is, they are orthogonal using the lag-zero covariance

matrix C0 as metric: eT
j C0 ei = 0 if i 6= j.

DelSole refers to the patterns ei as filter patterns, and identifies the actual optimal

persistence patterns as ri = C0 ei. The maximally persistent time series vi(t) are the

expansion coefficients for the expansion of the dataset xCDV in terms of the OPPs:

xCDV(t) =
L∑

i=1

rivi(t), vi(t) = eT
i xCDV(t). (4.2)

Orthogonality in time implies that the covariance of two timeseries vi(t), vj(t) is zero:

〈vi(t) vj(t)〉 = eT
i C0ej = 0, i 6= j, (4.3)

with 〈 〉 denoting time-average. For details of the calculation, see DelSole (2001).

The resulting six optimal patterns, and their associated values of T2, are robust when

varying the initial guesses needed for the minimization routine; however, the order in which

we find them is not. That is, the set of patterns is robust but not always by itself entirely

ordered according to descending T2. This may be due to the existence of local maxima

for T2. The six patterns break up into three groups: one pattern with T2 = 92.8, two
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with T2 = 15.3, 13.8 and three with T2 = 7.5, 6.3, 5.7. We arrange the OPPs in order of

descending T2 (i.e. the first OPP has largest T2).

Figure 3 shows autocorrelation functions for the CDV model dataset xCDV(t) and for

the timeseries {vi} obtained using (4.2). For comparison, the autocorrelation functions of

the EOFs (norm M1 used) are also shown. As can be seen, the OPP technique works well

in isolating the pattern (the first OPP) responsible for the long timescale correlation in

the system. Several of the original variables project significantly onto the first OPP (in

particular x1, x3, x4) and have therefore rather long ‘tails’ in their correlation functions.

Having determined the set of filter patterns {ei} and OPPs {ri} from the dataset

xCDV(t), we use them as a new basis for the CDV model. This means we expand the CDV

model variables x(t) on the OPP basis to arrive at equations describing the time evolution

of the expansion coefficients v(t):

v̇i(t) = eT
i ẋ(t) (4.4)

This defines a projection from the 6-dimensional phase-space of the CDV model into the

L-dimensional phase space of a (reduced) OPP-model (L ≤ 6). The coefficients vi(t),

i = 1, . . . , L, are the variables of the OPP-based model.

Projection onto the leading OPPs results in reduced OPP-based models none of which

is able to reproduce the chaotic regime transitions observed in the CDV model. Using

5 OPPs, the model is attracted to either a fixed point or a periodic solution. With 4

OPPs, the model is unbounded; the 3 OPP model is attracted to one fixed point. These

conclusions are drawn based on ensemble integrations with 2000 members and randomly

chosen initial conditions.

Although the regime behaviour of the CDV model can be considered a long timescale
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phenomenon, it is possible that some short timescale processes are indispensable for gen-

erating transitions. Other combinations of OPPs than those with largest T2 may therefore

give better results. Trying all possible combinations of 3, 4 and 5 OPPs did not yield a

single OPP-based reduced model able to reproduce the chaotic regime transitions. Most

of them were unbounded or were attracted to a fixed point. Only one combination was

partially able to generate periodic regime transitions: the 5-OPP model consisting of vari-

ables v1, v2, v3, v5, v6 was drawn either to a periodic solution with a structure resembling

the CDV model attractor, or to a nearby fixed point. Figure 4 shows the endstates from

40000 integrations with this 5-OPP model, starting from random initial states. The results

were projected back onto the original CDV model variables, so they can be easily compared

with the results of the CDV model itself as depicted in figure 1. For the projection shown

in figure 4, the fixed point is located at (x1, x4) ≈ (0.725,−0.320). It attracted more than

half of the 40000 initial states.

5 Principal Interaction Patterns

5.1 Outline of the method

The technique of Principal Interaction Patterns, or PIPs, was introduced by Hasselmann

(1988) and refined by Kwasniok (1996, 1997, 2001, 2004). A technique similar to PIPs is

presented by Wu (1996). The calculation of PIPs takes into account the dynamics of the

model for which one tries to find an efficient description; PIP-based models therefore can

be expected to be more suitable than EOF-based models to reproduce the behaviour of

some complex, high-dimensional model. Extensive accounts of the way to calculate PIPs
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can be found in the papers by Kwasniok; in particular Kwasniok (1997) gives many details.

Here we only give a brief review of the method.

Assume we have a model represented by an n-dimensional set of coupled ODEs,

ẋ = F (x), xT = (x1, . . . , xn). (5.1)

Let xp denote the projection of x onto a number of PIPs. The projection of system (5.1)

onto the PIPs yields a reduced system:

ẋp = Fp(xp) (5.2)

If we integrate the system (5.1) over time τ , starting from initial state x0, we end up in xτ .

Projection of the initial state yields x0
p. Now we integrate the PIP system (5.2) from this

projected initial state x0
p and end up in xτ

p. The difference at time τ between the state of

the PIP model (5.2) and that of the original model (5.1) is denoted by

dτ = xτ
p − xτ . (5.3)

We can integrate the norm of the difference:

Q =

∫ τmax

0

[dτ , dτ ] dτ. (5.4)

(A slight variation is made in Kwasniok (2004), where Q is defined as Q = [dτmax , dτmax], i.e.

as the difference between the endpoints rather than the integrated difference.) Q depends

on the details of the projection P , on the initial state x0 and on the integration time τmax.

Taking the ensemble average of Q over all initial states x0 on the attractor results in the

error function χ:

χ(τmax, P ) = 〈Q(x0, τmax, P )〉 (5.5)
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Finding PIPs boils down to minimizing χ under variation of P . In principle, one could also

consider the parameters of the PIP model (5.2) as independent variables in the minimiza-

tion procedure, rather than have them determined by projection of system (5.1) according

to P . This is done in Kwasniok (2004). In this way, the minimization procedure not only

generates the optimal patterns but also acts as a kind of closure algorithm. However,

for the current study we did not use this extended type of PIP calculation. Our results

were obtained with PIP models that resulted from projection and truncation, without the

application of a closure scheme.

The integration time τmax remains undetermined; it can be chosen on the basis of some

physical argument or other consideration. The resulting PIP system can be quite sensitive

to the choice of τmax, see Kwasniok (2004). We will come back to this issue later on.

For the actual computation of the PIPs the gradient of the error function χ with respect

to the PIP-coefficients is needed. An expression for that gradient is derived in Kwasniok

(1997). Furthermore, we need to choose τmax, a metric M defining our inner product [., .]

and some constraints on the PIPs. The latter is necessary since each PIP-model allows

for a linear transformation of the basis vectors (i.e. the PIPs) resulting in an equivalent

PIP-model. To remove this ambiguity, Kwasniok imposes constraints on the set of PIPs:

the patterns must be orthonormal, and their amplitudes mutually uncorrelated.

5.2 Results

The PIP method was applied to the CDV model, using again the dataset consisting of 100

000 datapoints also used for the calculation of EOFs and OPPs. The metric was chosen to

be the kinetic energy metric. As initial guess for the minimization of χ we used the EOFs
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calculated using the same metric. The ensemble average was taken over Nint ensemble

members (i.e. the PIP model was integrated Nint times for each calculation of χ).

In practice, the behaviour of the PIP model resulting from the minimization procedure

not only depends on the choice of τmax, but also on Nint. To reduce the computation time,

usually not the full dataset of 100 000 points was used, but only a segment of it. In other

words: usually Nintτmax < 100000. As we will see, the best results were obtained using

only the first 1% of the datapoints of the full dataset.

It is not a priori clear what should be the measure of performance of a PIP model. We

could use the error χ as a measure, but that does not give an indication whether the PIP

model can reproduce the chaotic regime behaviour of the original 6-dim. model. This may

not be a big surprise, as the regime behaviour is a low-frequency phenomenon, whereas χ

measures the error developing in a time-interval [0, τmax]. Thus, χ measures the “predictive

skill” of the PIP model rather than its ability to reproduce the “climate statistics” of the

original model. Choosing τmax to be very large (e.g. 1000) is unlikely to solve this problem:

Kwasniok (2004) notes that PIP models derived with large τmax have too little variance.

Besides, we do not require the PIP model to be able to follow the orbit of the original

model for a long time (that would be a too stringent requirement), but rather to show

grosso modo the right low-frequency behaviour.

For lack of a better criterion, we judge the performance of the PIP models (that is, their

ability to reproduce the chaotic regime behaviour of the original CDV model) qualitatively

by eye and quantitatively by the power spectra of their time series. We found models

with 5, 4 and 3 PIPs able to reproduce the regime behaviour. Timeseries resulting from

integrations of these models are shown in figures (5)-(7). The 5-PIP model was obtained
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using τmax = 20, Nint = 50 and yielded χ = 0.014; for the 4-PIP model τmax = 10, Nint = 100

was used, giving χ = 0.19. The 3-PIP model was calculated with τmax = 25, Nint = 40 and

yielded χ = 0.37. Similar to Kwasniok (1996, 1997) we found the differences between PIPs

and EOFs to show up in the trailing PIPs. The first few PIPs were almost identical to the

leading EOFs.

For these three different PIP models generating chaotic regime behaviour, power spec-

tral densities (PSDs) are shown in figure 8. The PSDs were calculated from the timeseries

of the first PIPs (shown in figures 5 - 7). For comparison, the PSD resulting from pro-

jecting the CDV model data onto the same first PIP of the 5-PIP model is also shown

(using the first PIP from the 4- or 3-PIP models gave almost identical PSDs). As can be

seen, all three PIP models reproduce the main features of the CDV data PSD : similar

spectral power at low frequencies, and a rapid decrease of power for frequencies higher

than 0.1 days−1. The 3- and 4-PIP models show extra spectral power between 0.2 and 0.3

days−1, not present in the 6-dim. model. The maximum of the PSD of the CDV model

data, between 0.003 and 0.004 days−1, is less prominent in the PIP models; there the PSD

maxima are at somewhat higher frequencies (0.008 - 0.009 days−1).

5.3 Method sensitivities

The PIP method works well for the test case under consideration in this paper. However,

the results depend sensitively on a few parameter choices that must be made for doing the

PIP calculation. The problem of choosing τmax is known, and has been discussed previously

by Kwasniok (2004). For our test case, we have found no other way of determining a

suitable τmax than by trial-and-error. No a priori identifiable, physically relevant timescale
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was available, nor have we found significant coherence among the values of τmax giving

good results for the 5-, 4- and 3-PIP models (τmax ranging from 10 to 25).

In table 3 an overview is given of a number of different PIP models, with varying τmax

and Nint. As can be seen there, the succesful 5-PIP model with τmax = 20, Nint = 50 is

somewhat robust under changes in τmax and Nint. In contrast, the 4-PIP models cannot

reproduce the chaotic regime behaviour anymore when modest changes from τmax = 10 or

Nint = 100 are made. The 3-PIP model still generates the right behaviour when changing

Nint from 40 to 30 or 50, but not when changing τmax away from 25.

Another interesting aspect to be seen in table 3 is the disappointing performance of

models calculated with large Nint. A large number of ensemble members in the calculation

of the error χ does not guarantee a good PIP model - on the contrary. We suspect that

a too large Nint leads to a kind of overdetermination in the PIP calculation. Something

similar is likely to happen when τmax is too large. Kwasniok (2004) reports that his models

are too much damped when τmax is too large. In table 3 it can be seen that the 4- and

3-PIP models calculated with τmax = 100 and Nint = 10 end up in a fixed point. However,

the 5-PIP model with those parameters still produces the right behaviour.

A final sensitivity of the PIP calculation relates to the way the ensemble members are

chosen. For our PIP calculations we took Nint consecutive segments, each of length τmax,

from the dataset of the CDV model (recall the CDV model dataset consists of one long

forward numerical integration). Thus, those segments are not completely independent

of each other. Redoing the calculations with more independent segments (by having a

considerable amount of time, about 1000 timesteps, in between those segments), for 4

PIPs with τmax = 10, Nint = 100 and for 3 PIPs with τmax = 25, Nint = 40 resulted in
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models showing periodic behaviour without regime characteristics. The model with 5 PIPs

and τmax = 20, Nint = 50, calculated using independent segments, still generated chaotic

regime transitions. Thus, fitting the PIP model to a dataset containing a few complete

instances of the regime transition cycles apparently works better than fitting it to a dataset

with numerous little pieces of those cycles.

It is likely that this sampling sensitivity is to some extent related to the dynamics of

the CDV model. At the chosen parameter settings, the CDV model is only weakly mixing,

reflected in its long timescale correlations, and its attractor is highly inhomogeneous. Be-

cause of this inhomogeneity, two sample sets can give different outcomes when used in the

PIP calculation: the two sets represent various regions of the attractor in different ways.

Realistic systems have attractors that are generally more homogeneous than the CDV

model attractor, and the sampling sensitivity reported here can well be less severe for such

systems. Nevertheless, even high-dimensional, realistic systems seldom have completely

homogeneous attractors, and may therefore be prone to some form of sampling sensitivity

when constructing reduced models.

6 Conclusion

Three different types of optimal bases have been tested in this study: Empirical Orthogo-

nal Functions, Optimal Persistence Patterns and Principal Interaction Patterns. All three

types have been used to construct reduced model versions of a simple atmosphere model

generating transitions between flow regimes (the Charney-DeVore model with a zonal forc-

ing allowing barotropic instability). Previous studies on reduced models of the Kuramoto-
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Sivashinsky equation and of Kolmogorov flow have made clear that EOF-based models can

have difficulties to reproduce behaviour involving quick transitions between different dy-

namical states. These problems were also encountered in this study: EOF-based reduced

models were not able to reproduce the chaotic regime behaviour of the original CDV model,

although the EOFs represented up to 99.8% of the CDV model variance. OPPs did not

turn out to be a good alternative for EOFs in this case, as the OPP-based models per-

formed worse than the EOF-based models. One model, based on 5 OPPs, produced an

attracting periodic solution resembling the structure of the CDV model attractor, but it

also had a steady state with a large basin of attraction. None of the other models based on

3, 4 or 5 OPPs was able to produce regime transitions, periodic nor chaotic; many of them

even gave unbounded solutions. The OPP technique works well, however, for identifying

patterns with long timescale correlations.

Models based on PIPs performed best in our test case. It was possible to find 5-, 4-

and even 3-PIP models able to generate the chaotic regime behaviour seen in the CDV

model. These models reproduced the main features of the power spectral density of the

CDV model data projected onto the leading PIP. Nevertheless, the PIP technique involves

some sensitivities that are difficult to understand. The best choice for the time integration

upper limit τmax is hard to make a priori, something also noted by Kwasniok (2003). Fur-

thermore, the data sampling involved in the PIP calculation is a bit troublesome, as the

usual rule “more is better” does not apply here. Rather, a risk of overdetermination seems

to enter the stage if too much data is used. Also, the extent to which the data-segments

used in the PIP calculation are (in)dependent influences the outcome, again with a some-

what counterintuitive result: dependent samples work better. This sampling sensitivity
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may be related to the inhomogeneity of the CDV model attractor.
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Cumul. variance, Cumul. variance,

No. of EOF norm M0 norm M1

1 0.67954 0.65968

2 0.93427 0.94665

3 0.97576 0.98780

4 0.98849 0.99422

5 0.99611 0.99844

6 1.00000 1.00000

Table 1: EOF variance spectra, using L2 norm M0 and kinetic energy norm M1. Shown

are the cumulative variances of the CDV model data.

Model Norm Dynamics

Original CDV – chaotic, regimes

5 EOFs M0 fixed point

5 EOFs M1 fixed point

4 EOFs M0 fixed point

4 EOFs M1 periodic, regimes

3 EOFs M0 fixed point

3 EOFs M1 periodic, no regimes

Table 2: Summary of dynamics of various EOF models



No. PIPs τmax Nint χ Variance Dynamics

5 20 40 0.014 0.997 chaotic, regimes

5 20 50 0.014 0.997 chaotic, regimes

5 20 60 0.015 0.997 chaotic, regimes

5 20 100 0.016 0.997 chaotic, regimes

5 20 1000 0.016 0.996 periodic, regimes

5 15 50 0.01 0.996 chaotic, regimes

5 25 50 0.02 0.996 chaotic, regimes

5 40 50 0.11 0.996 periodic, regimes

5 100 10 0.46 0.998 chaotic, regimes

4 10 90 0.18 0.987 periodic, regimes

4 10 100 0.19 0.985 chaotic, regimes

4 10 110 0.07 0.968 periodic, no regimes

4 10 1000 0.07 0.967 periodic, no regimes

4 7 100 0.05 0.966 periodic, no regimes

4 15 100 0.11 0.965 fixed point

4 20 100 0.13 0.969 periodic, no regimes

4 100 10 0.85 0.929 fixed point

3 25 30 0.35 0.939 chaotic, regimes

3 25 40 0.37 0.933 chaotic, regimes

3 25 50 0.36 0.937 chaotic, regimes

3 25 100 0.50 0.911 periodic, no regimes

3 25 1000 0.58 0.950 periodic, no regimes

3 30 40 0.53 0.939 periodic, no regimes

3 20 40 0.28 0.958 chaotic, no regimes

3 100 10 0.87 0.748 fixed point

Table 3: Results of various PIP models
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Figure 1: Top: one integration of 6-dim. barotropic model, 4000 days long. Bottom:

endpoints of 40 000 integrations of the same model, each 2000 days long, starting from

randomly chosen initial conditions. Shown are projections onto the (x1, x4) plane.
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Figure 2: Results from 2000 day integrations using 4 EOF model and CDV model. Upper

left: 4 EOF model, M1 norm, projection onto EOF 1,2 plane. Upper right: CDV model,

same projection. Middle: 4 EOF model, EOF 1 versus time. Bottom: CDV model, EOF

1 versus time.
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Figure 3: Autocorrelation functions for the CDV model dataset xCDV(t) (top), for the

timeseries obtained by projection of xCDV(t) onto the EOFs (middle) and for the timeseries

vi obtained by expanding xCDV(t) on the OPP basis (bottom). On the abscissa the time

lag in days.
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Figure 4: Endpoints of 40000 integrations of the 5-OPP model using OPPs 1,2,3,5,6, start-

ing from random initial states. The datapoints are projected back onto the variables of

the CDV model in order to make comparison with figure 1 easy. Shown here is the projec-

tion onto the plane (x1, x4). A fixed point attracting more than half of the integrations is

located at (x1, x4) ≈ (0.725,−0.320).
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Figure 5: Timeseries z(t) from the reduced model using 5 PIPs, calculated with τmax =

20, Nint = 50. For comparison, the timeseries zref(t) of the full 6-dim. model, projected

onto the same 5 PIPs, are added. Top, left: z1 versus z2. Top, right: zref
1 versus zref

2 .

Middle: z1 versus time. Bottom: zref
1 versus time.
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Figure 6: Timeseries z(t) from the reduced model using 4 PIPs, calculated with τmax =

10, Nint = 100. For comparison, the timeseries zref(t) of the full 6-dim. model, projected

onto the same 4 PIPs, are added. Top, left: z1 versus z2. Top, right: zref
1 versus zref

2 .

Middle: z1 versus time. Bottom: zref
1 versus time.
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Figure 7: Timeseries z(t) from the reduced model using 3 PIPs, calculated with τmax =

25, Nint = 40. For comparison, the timeseries zref(t) of the full 6-dim. model, projected

onto the same 3 PIPs, are added. Top, left: z1 versus z2. Top, right: zref
1 versus zref

2 .

Middle: z1 versus time. Bottom: zref
1 versus time.
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Figure 8: Power spectral densities (PSDs) of various PIP models. Depicted are PSDs

made from the amplitude timeseries of the first PIP, as generated by the PIP models.

The first PIP is almost identical for all 3 PIP models. Upper left: 5-PIP model (τmax =

50, Nint = 20). Lower left: 4-PIP model (τmax = 10, Nint = 100). Lower right: 3-PIP model

(τmax = 25, Nint = 40). Also shown (upper right) is the PSD resulting from projecting the

data generated by the original CDV model onto the first PIP of the 5 PIP model.


