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Abstract

By interpreting transitions between atmospheric flow regimes as a deterministic
rather than a stochastic phenomenon, new insight is gained into the phase-space
characteristics of these transitions. The identification of regimes with steady states
should be extended with the association of transitions with nearby heteroclinic con-
nections between steady states, as known from the theory of dynamical systems.
In the context of a T21 barotropic model of the northern hemisphere, which pos-
sesses regime behaviour, steady states are found that correspond with regimes, and
heteroclinic connections are approximated using a new algorithm based on adjoint
modelling techniques. A 200 year dataset generated by the model is shown to posses
spatial preferences in its transitional behaviour that match well with the approxi-
mated heteroclinic connections.



1 Introduction

The concept of atmospheric circulation regimes is an old idea that is still much studied in
meteorology and climate science. The interest in the notion that the atmosphere can be
caught, for some time, in particular flow configurations has far from subsided. Apart from
the relevance for meteorological studies, the concept of regime behaviour now also draws
attention from studies of climate variability and predictability. This is due to the belief
that climate variability is related to changes in the probabilities of regime visits (Corti et
al. 1998, Palmer 1999). Many studies have been devoted to the question if and where
regimes exist in observations and in complex atmosphere/climate model data. Also, the
connection of regimes to known (but still ill-understood) climate variability patterns, such
as the North-Atlantic Oscillation (NAO), the Arctic Oscillation (AO) and the Pacific/North
American (PNA) pattern, is a much debated issue. Surprisingly, the investigation of the
dynamical origin of regime behaviour seems to have slowly moved out of sight.

The concept of global bifurcations is an instrument that may enable us to get a bet-
ter grip on the phenomena of regime behaviour and low-frequency variability and their
underlying dynamical nature. The notion that individual regimes can be associated with
separate (simple) attracting structures in the phase space of atmospheric flow exists since
Charney and Devore (1979). They identified stable equilibria (steady states, fixed points)
with regimes, a hypothesis that was followed and expanded on by e.g. Reinhold and Pier-
rehumbert (1982), Legras and Ghil (1985), De Swart (1988a,b, 1989) and Itoh and Kimoto
(1996). Even though some of these studies speculate on periodic solutions or tori to be the
underlying mathematical structures of regimes, the basic idea remains the same: regime
behaviour can be identified with temporary stays on or near simple attractors, followed by
irregular transitions between these attracting sets.

The multiple attractors have been shown to be amenable to bifurcation analysis by e.g.
Legras and Ghil (1985), De Swart (1988a,b, 1989) and Itoh and Kimoto (1996). Continu-
ation and bifurcation software packages such as AUTO (Doedel, 1986) are able to follow
steady states and periodic solutions through parameter space. They were used to shed light
upon the creation and structure of the simple solutions identified with regimes in low-order
atmosphere models. Much more difficult however are the mechanisms of transitions be-
tween these solutions. That may be the reason that the, from a dynamical systems point of
view most natural possibility of global bifurcations, i.e. of deterministic connections being
created between different solutions (or from a solution to itself), hasn’t gotten much at-
tention yet. The most common transition mechanism invoked is stochasticity: transitions
induced by stochastic perturbations in the model equations. Introducing such perturba-
tions is usually motivated by referring to physics and dynamics (e.g. small-scale, high
frequency motions or convection) that are not explicitly resolved in the relatively simple
models used for bifurcation studies in relation to regime transitions. However, introducing
stochastic terms or interpreting small-scale, high-frequency behaviour in complex, deter-
ministic atmosphere models as noise is not entirely satisfying. Ignoring the deterministic
origin of such stochasticity may obscure relevant information about regime behaviour. In
this paper we will hold on to this deterministic nature, and use the notion of heteroclinic



connections to get a better understanding of regime transitions.

Heteroclinic orbits are solutions of (deterministic) model equations that connect one
invariant set, e.g. a steady state solution, with another. Homoclinic orbits connect an
invariant set with itself. Hetero- resp. homoclinic bifurcations are bifurcations in which
such orbits, or connections, are created. They are mentioned a few times in the literature
as a possible mechanism for transitions between regimes. Legras and Ghil (1985) use a
25-dimensional equivalent-barotropic model, perform a bifurcation analysis of its steady
states and find, by numerical integration, transitions between regimes. Heteroclinic orbits
as a possible explanation are mentioned, but not expanded on. In De Swart (1988a,b,
1989) a 6-component spectral model was found to possess multiple attractors, some of
them with chaotic windows (parameter intervals with chaotic behaviour), that could be
identified with regimes. However, transitions between these attractors (vacillation) were
not observed. By adding stochastic perturbations, a transition mechanism was created
(De Swart and Grasman, 1987). Also, by increasing the number of spectral components to
10, the model could be brought to vacillatory behaviour, without stochastic perturbations.
But no attempt was made to find heteroclinic orbits. Itoh and Kimoto (1996,1997,1999)
perform bifurcation analyses of a two-layer T15 model and of a five-layer T21 model. They
find multiple attractors and transitions between them, and call this wandering between
different attractor ruins an example of “chaotic itinerancy”. It is not made clear if and
how this chaotic itinerancy is related to the concept of homo- and heteroclinic connections.

The notion that regime transitions are not entirely random is recognised in, amongst
others, Mo and Ghil (1988), Kimoto and Ghil (1993b) and Itoh and Kimoto (1996,1997,1999).
These studies identify more than two regimes and point out that some transitions between
regimes are more probable than others. Using this statistical approach, cycles of most prob-
able transitions are identified; these are called “preferred transitions”. Itoh and Kimoto
(1997) refer to the notion of “explosive bifurcations”, but they don’t try to locate hetero-
clinic connections, nor do they mention them. In the present study, something different is
meant with the notion “preferred transitions”: it refers to the idea that transitions between
regimes tend to follow certain routes through phase space; routes that can be associated
with approximate heteroclinic connections. The focus is on preferences of the behaviour
during the transitional episodes, not on the most probable order of regime visits without
looking at characteristics of the transition phases, as in Mo and Ghil (1988), Kimoto and
Ghil (1993b) and Itoh and Kimoto (1997).

The study by Plaut and Vautard (1994) shows, performing Multichannel Singular Spec-
trum Analysis (MSSA) on observational data, that regime behaviour is connected to the
existence of low-frequency oscillations (LFOs) in the atmosphere. LFOs influence regime
behaviour but not in a systematic way; rather, the interaction between two Atlantic sector
LFOs (one of 70 days and one of 30-35 days) seems to be one mechanism, among others,
that can produce high-amplitude anomalies (regimes). It remains unclear, though, whether
these anomalies correspond to (quasi-) stationary states (thus, if the system evolution slows
down). The authors hypothesize that LFOs should be associated with the presence of un-
stable periodic orbits in phase-space. An important conclusion is that regime transitions,
at least in the Atlantic sector, are not produced randomly by synoptic transients. This
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supports the choice for the deterministic (instead of stochastic) point of view taken in the
current paper.

In Crommelin (2002), the appearance of homoclinic dynamics in an atmosphere model
gets more detailed attention. In this paper, a two-layer model is analysed which uses Em-
pirical Orthogonal Functions (EOFs) instead of spherical harmonics as its basis functions
(see Achatz and Branstator (1999) for the derivation and formulation of the model). With
10 EOFs, some realism was still retained and at the same time it was possible to find evi-
dence for the occurrence of homoclinic dynamics. The dynamics on long timescales turned
out to be dominated by a homoclinic orbit of the bifocal type: an orbit attached to a
steady state with two complex pairs as its leading eigenvalues. A glimpse of a heteroclinic
connection between two equilibria was also found, but the role of one of the equilibria could
only be made visible for small parameter regions. The other equilibrium, very close to the
climatic mean state, is prominent in the model behaviour over large parameter ranges. The
behaviour was therefore identified as driven by a homoclinic, not a heteroclinic connection.

In the fluid dynamics community, the possibility of heteroclinic connections as an ex-
planation for transitions between steady states has been recognised before. Examples were
found in e.g. Rayleigh-Benard convection (Proctor and Jones, 1988) and the turbulent
boundary layer (Aubry et al. (1988), Armbruster et al. (1988), Holmes et al. (1996,1997)).
Knobloch and Moehlis (2000) provide an overview of mechanisms that produce bursting
in hydrodynamical systems (sudden transitions from and to regular, repeatedly realized
states); again, heteroclinic connections play an important role. They interpret transitions
between different types of behaviour as a form of bursting. Although no examples are men-
tioned from geophysical fluid dynamics, such a concept of bursting could equally well apply
to the case of regime-transitions in atmospheric dynamics. The methods and concepts used
in the study of these fluid-dynamical examples could be very useful in the investigation
of regime behaviour and low-frequency variability of the atmosphere. This paper is partly
inspired by these examples.

The order of things to come in this paper is as follows. In section 2 the barotropic model
that was used will be described. The model shows bimodality and regime behaviour, treated
in section 3. The regimes can be associated with steady states; this is described in section
4. In section 5 the role of heteroclinic connections will be explained. A new algorithm,
based on adjoint modelling techniques, to calculate approximations of such connections will
also be presented in this section, together with its results. Section 6 contains a discussion
and summary.

2 A barotropic model

For this study a barotropic spectral model was used. It is the same model that was used in
Selten (1995), a standard model with realistic orography and a forcing that was calculated
from observations in order to get a realistic climate mean state and realistic low-frequency
variability.



The model is based on the barotropic vorticity equation, and reads:

0
57 6= ~TWE+ f+h) + hE+ kA + ¢ (2.1)
This partial differential equation describes the temporal evolution of the relative vorticity
field £(t, A, @), a scalar field, on the sphere. The spatial coordinates are the longitude A and
latitude ¢. The streamfunction (¢, \, ¢) is related to the vorticity via & = Ay (= V2v).
The terms multiplied by &, and k, are damping terms (Ekman friction resp. scale-selective

damping); f denotes the Coriolis parameter and h is the (nondimensional) orographic
height. J denotes the Jacobi operator, which reads J (A4, B) = - (% 9B _ 94 3—3).

cos¢p \ OX 9¢ O¢p OA
The (time-independent) vorticity forcing £* is based on observations:

5* = j(wcla gcl + f + h) - klgcl - k'ZASgcl + J(W, gl) (2'2)

This procedure was proposed by Roads (1987). It involves the use of the observed climate
mean states at 500 hPa of the winter season &, and . The last contribution to the
forcing, due to the transient eddy forcing, is calculated using (winter) anomalies of the
10-day running mean at 500 hPa, £ and ¢'. The overbar denotes, as usual, time average.

Equation (2.1) is projected onto spherical harmonics and triangularly truncated at
wavenumber 21 (i.e. T21), yielding a coupled set of nonlinear ordinary differential equa-
tions for the time-dependent spectral coefficients. By discarding all modes with zonal
wavenumber plus total wavenumber being even, a model of hemispheric flow is obtained
with a total number of 231 variables. It will serve to describe the (barotropic) atmosphere
of the northern hemisphere. For more detailed information on the formulation of the model
the reader is referred to Selten (1995).

The model has been integrated for 73 000 days (200 years), using a Runge-Kutta fourth-
order routine with a 30 minutes timestep and daily output. The initial state was a realistic
flow field, so no spin-up time was needed. The timescale of the Ekman damping was set to
15 days; the scale-selective damping was tuned such that the damping timescale is 3 days
for wavenumber 21. Figure 1 contains the time-mean and variability (root mean square,
or rms) of the thus obtained 200 year dataset. Shown are the mean and rms of the 500
hPa geopotential height Zsq9, which is calculated from the streamfunction (at 500 hPa)
using the so-called linear balance equation gy V2 Zs500 = V- (f V), go = 9.80665ms~2 (see
Holton, 1992). The mean resembles the mean field of the real atmosphere quite closely.
The rms is not as close to the observations, but still quite realistic considering the model
resolution. Most notable are the unrealisticly high variability above the north pole and the
location of the rms-maximum over Europe, which should be over the north-east Atlantic.
For a more detailed comparison with observations, see Selten (1995). The 200 year dataset
will be analysed in order to get a better understanding of its low-frequency aspects.

3 Bimodality

EOFs of the streamfunction data are calculated; in figure 2 the streamfunction patterns
corresponding to the leading four EOFs are shown. For the calculation, the time mean
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state was subtracted from the data; the norm chosen was the kinetic energy norm (see
appendix A). The amount of kinetic energy variance represented by EOFs 1-4 is 18.3,
9.8, 6.8 and 6.0 percent, respectively; together these four represent 40.9 %. The principal
components (PCs) were calculated by projecting the (spectral) data onto the EOFs.

The shape of the two-dimensional Probability Density Function (PDF), made from
the projection of the full 73000 days dataset onto the PC1,PC2—plane, reveals a bimodal
structure with a main maximum at PC1 & 0.0055 (MAX1) and a second maximum at PC1
~ —0.0089 (MAX2). The PDFs made from projections onto the PC2,PC3-, the PC2,PC4-
and the PC3,PC4-plane (not shown) yielded unimodal distributions; the bimodal structure
mainly projects onto EOF1. Figure 3 (dashed lines) shows the PDF in the PC1,PC2-plane;
the various symbols in the figure will be explained later. The PDFs were calculated by
collecting the projected datapoints in 15 x 15 bins and calculating the corresponding
histogram.

The locations of the two maxima of the two-dimensional PDF were estimated in all 231
PCs by first identifying the PC1 values of the two maxima. Then, two sets of datapoints
were created by selecting all datapoints with their PC1 value in a small band around
the two maxima. For all higher PCs two one-dimensional PDFs and their maxima were
calculated, thus giving estimates for the location of the two maxima in all PCs. The Zsq
patterns corresponding to the maxima are shown in figure 4 (note that these patterns
consist of contributions of all 231 PCs). The distances to these two maxima during the
model run were calculated, using again the kinetic energy norm. For a segment of the data,
the timeseries of these distances are shown in figure 5. They show persistent periods close
to the maxima as well as rapid transitions between them.

The PDF-maxima MAX1 and MAX2 can be interpreted as flow regimes, the transitions
between them as vacillatory behaviour. The flow-pattern (figure 4) of MAX1 represents a
situation of intensified zonal flow, the pattern of MAX2 shows a blocked flow over Europe
(a split jetstream and a positive anomaly, or “high”, over Europe). Both regimes have
previously been found to correspond with steady states in low-order models (Charney
and DeVore (1979), Legras and Ghil (1985)). With this correspondence in mind, one
might expect the presence of (saddle) equilibria at or near MAX1 and MAX2 in our
T21 model as well. In the next section, the presence of equilibria in the model will be
investigated. The clear transitions between MAX1 and MAX2 suggest the influence of
two heteroclinic connections between these assumed equilibria. After all, the model is
completely deterministic; it does not contain any stochastic process that could have induced
the transitions. Moreover, from the swiftness of the transitions and the persistence of the
regimes it can be seen that the system evolution slows down near MAX1 and MAX2. The
possibility of unstable periodic orbits being present in phase space that pass both MAX1
and MAX2 still leaves the question why the motion slows down near these maxima. The
influence of heteroclinic connections can provide an explanantion, since such connections
always end with a slowing down of the system evolution, due to the approach of a fixed
point at the end of each connection.

The difference between MAX1 and MAX2 is largely spanned by EOF1, which resembles
the AO pattern (Thompson and Wallace, 1998). From a phase space point of view, the AO
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pattern in this model seems to be the direction, or phase space vector, connecting the two
regimes. The blocking-character of the MAX2-regime is a regional aspect of a hemispheric
pattern that resembles one of the phases of the AO. Long timescale variability of the AO
should be related to the dynamics created by, or associated with, the near-presence (in
parameter space) of a heteroclinic cycle (connection back and forth). In this perspective,
variability of the AO has its dynamical origin in the (ultra-)low-frequency aspects of the
dynamics of regime transitions. A better understanding of the dynamical mechanism(s) of
regime transitions will help to better understand climate variability patterns such as the

AO.

4 Equilibria

For models like the one under investigation there are two different (numerical) techniques
available to find equilibrium solutions (fixed points). One is continuation: starting from a
known steady state at specific (often unrealistic) parameter values, it is in principle possible
to follow this steady state as parameter values are changed, toward realistic values. For an
atmosphere model, one may think of starting at zero flow in the absence of forcing, and
gradually turning on the forcing to a realistic intensity. A drawback of the continuation
method is that it is hard, sometimes impossible, to find different (disconnected) branches
of fixed points. Using continuation one easily (if not: generally) misses equilibria.

The other, less elegant method, used in the current study, is a way of “brute force
calculation”: bluntly calculating zeroes of the set of model-ODEs. For low-order mod-
els one can think of a Newton-like rootfinding algorithm; for larger models some sort of
minimization-technique can be used (direct rootfinding in large models often doesn’t work
because of the presence of many local minima in phase space that are not solutions). For
this study, a method was chosen that minimizes a scalar function, given its gradient. It
was used before by Branstator and Opsteegh (1989). The squared norm of the vorticity-
tendency 0&/0t served as the scalar function (denoted F'); it is clear that a zero of this
function is both a necessary and sufficient condition for the existence of a fixed point. The
precise definition of F' and the derivation of the gradient of F' with respect to the model
variables can be found in appendix B. The algorithm used comes from the NAG software
library (routine E04UCF); it is a quasi-Newton method.

Many different states, sampled from all over the model attractor, need to be used
as initial guesses for the minimization routine, in order to find as many different steady
states as possible. This was done by starting the minimization from 5000 datapoints
taken from the 200 year model integration, each 10 days apart. This set of 5000 points
is assumed to give a reasonable coverage of all regions of the attractor. Not all 5000
minimizations converged to points with acceptably small F: about 1000 converged to
points with F' < 107!, giving 68 different fixed points in total. For comparison: the values
of F before minimization were of order 107%.

It must be stressed that we do not claim to have found all the equilibrium solutions of



the model. However, it appears we have found the most relevant equilibria, namely those
fixed points located in or near the two maxima of the PDF. We will apply two (dependent)
criteria to assess the importance of the various fixed points for the large-scale, low-frequency
dynamics of the barotropic model. One is the number n, of unstable eigenvalues of the
fixed points: fewer unstable eigenvalues suggests that the equilibrium is “more attracting”
and therefore more likely to attract and influence the system as it evolves in time. We have
calculated the eigenvalue-spectrum of each fixed point by evaluating the Jacobian matrix
(see Appendix B) and calculating its eigenvalues. The result is shown in figures 6 and 3,
which will be discussed later.

If the fixed points with the least unstable eigenvalues are indeed most likely to influence
the dynamics, they can be expected to project strongly onto the leading EOFs. This
should be visible using the second criterion: the extent to which each equilibrium state
projects onto the leading EOFs. The behaviour of the dominant EOFs is most likely
to be influenced by equilibria that strongly project onto them. Fixed points that lie far
outside the subspace of the leading EOF's, and hence project relatively strongly onto the
trailing EOFs, are less likely to be very relevant for the large scale dynamics of the model.
Projecting each equilibrium onto the EOFs gives a vector (a1, as,...,ayx)T of coefficients
a;. The total number of EOFs, N, equals 231. By calculating the ratio

M N
RM=Zaf/Zaf (4.1)
i=1 i=1

for low values of M, one gets an impression of the contribution of the dominant EOFs
to the equilibrium flow patterns. In fact, since the kinetic energy norm was used in the
calculation of the EOFs, R, equals the fraction of the turbulent energy contained in the
first M EOFs.

Figures 6 and 3 contain the results of the calculations. Figure 6 shows a scatter plot
of Ry versus n,, the number of unstable eigenvalues. There is a clear correlation between
the two, which confirms the intuitive picture described earlier: the lower n,, the more the
equilibrium influences the dynamics of the system and hence the stronger it projects onto
the leading EOF's (as was pointed out by one of the reviewers, figure 6 is in fact a test
of the validity of applying the first criterion). Figure 3 shows the location of all the fixed
points when projected onto the PC1,PC2 plane. Different symbols have been used in order
to show the locations of the equilibria with low n,, (top) and high Ry (bottom). Also shown
are the contour lines (dashed) of the PDF. Applying the two criteria, low n, and high Ry,
gives a selection of five steady states: the ones with n, < 6 (they all belong to the group
with highest R, as well). One of the equilibria is located near MAX2, the second PDF-
maximum; three are near the first maximum MAX1. The hypothesis that these maxima
are related to the near-presence of relatively stable fixed points is thus supported. Note
that the instability of the fixed points, although weak, makes it unlikely for them to be
located exactly in the maxima of the PDF of the entire 231-dimensional phase space (after
all, the system can never be exactly at an unstable fixed point). The fifth steady state lies
rather eccentric to the PDF. We do not know why this is so.



5 Heteroclinic connections

The transitions between atmospheric flow regimes are usually thought of as stochastically
induced phenomena. However, taking into consideration that in our model flow regimes
can indeed be associated with steady states and that the model doesn’t contain stochastic
terms, it is, from a dynamical systems point of view, more natural to think of regime
transitions as manifestations of heteroclinic behaviour. We hypothesize that the model
is not very far (in parameter-space) from a situation in which there is one (or several)
phase-space orbit(s) going exactly from a steady state associated with one regime to a
steady state associated with another regime, and another orbit going back. Although such
a situation requires the tuning of several parameters, and is thus unlikely to be exactly
realised with the parameter setting that was chosen for the model, we expect that the
influence of the connections is still felt by the system and manifests itself as transitions
between regimes. In this section we will first describe in more mathematical detail what
a heteroclinic connection is, and what the bifurcation scenario could be in which these
connections are broken but still play a role. Then we both present evidence to support the
hypothesis and show that the regime transitions in the model have a tendency to follow
paths that are approximations of heteroclinic connections.

5.1 A bifurcation scenario

A heteroclinic connection, or heteroclinic orbit, is a solution of the model equations that
connects one invariant set with another. The invariant sets can be steady states, periodic
solutions, tori, etc. In what follows we will only consider heteroclinic connections between
steady states.

Let us put these notions in more formal terms. Let § = G(y,«) be a set of ordinary
differential equations with parameter-set . A heteroclinic connection g(t¢) is a solution
which asymptotically approaches in forward and backward time two different steady states
y— and y,:

o g(t) =y, lim g(t) = y- (5.1)

A set of heteroclinic connections forming a closed loop is called a heteroclinic cycle; a
heteroclinic connection going from a steady state back to itself (i.e. y_ = y,) is called a
homoclinic orbit. For general background information on heteroclinic orbits, see Kuznetsov
(1995). A detailed review of the theory of heteroclinic cycles is provided in Krupa (1997).

Our hypothesis is that regime behaviour, or vacillation, is eventually generated by
heteroclinic connections going back and forth between invariant sets which are associated
with regimes (i.e. a simple heteroclinic cycle). As previously mentioned, in this study we
will assume the invariant sets to be steady states. The presence of this structure of two
connections is not generic; in general, one or more parameters must be tuned in order to
create the two connections. It is difficult to estimate a priori the number of parameters
that must be tuned (the codimension). However, looking at the dimensions of the involved
stable and unstable manifolds can give us some information. We choose the steady state
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near MAX1 with 4 unstable eigenvalues as the first fixed point y; and the steady state near
MAX2, which has 6 unstable eigenvalues, as the second fixed point y,. Both fixed points
are hyperbolic. W*(y;) denotes the unstable manifold of y;, W*(y;) the stable manifold. A
single heteroclinic connection from y; to y must lie entirely in both W*(y;) and W*(y,).
Since dim(W"(y,))= 4 and dim(WW*(y,))= 225, and since in general 3 parameters must
be tuned in order for a 4-dimensional (4-d) manifold and a 225-d manifold to have a 1-d
intersection in a 231-d space , the creation of the 1-d intersection of W*(y;) and W*(ys)
in the 231-d phase-space has codimension 3.

To formulate the argument in more precise terms, we need some definitions, taken
mainly from the book by Guckenheimer and Holmes (1983). First of all, the transversality
theorem tells us that the intersection of two manifolds of dimensions m; and ms in an n-
dimensional space has, generically, dimension m;+ms—n. If m;+mso < n there is in general
no intersection. Second, a transversal intersection of two manifolds in an n-dimensional
space is an intersection in which the tangent spaces of the two manifolds in the intersection
point(s) span the total n-dimensional space. A transversal intersection is persistent under
small perturbations of the two manifolds. Finally, the codimension of a bifurcation can
be defined as the smallest dimension of a parameter space which contains the bifurcation
in a persistent (structurally stable) way. From these definitions follows that the creation
of a 1-dimensional intersection of two manifolds M; and M, of dimensions m; and ms, in
an n-dimensional space with m; + my < n (which is a nontransversal intersection) has
codimension p = n 4+ 1 — m; — me, since in the space R x RP (variables plus parameters)
the two manifolds M; and M, (now of dimensions m; + p and mgy + p) have in general a
transversal intersection of dimension (m;+p)+ (mao+p)— (n+p) = 1. Applying this to the
situation at hand shows that the 1-d intersection of a 4-d manifold with a 225-d manifold
in a 231-d space happens in a persistent way in a parameter space of (at minimum) 3
dimensions. Thus, the codimension of the bifurcation in which this intersection is created
is 3. For a more detailed treatment of these issues the reader is referred to Guckenheimer
and Holmes (1983) and Kuznetsov (1995).

Unfortunately, a 1-d intersection of W*(y;) and W?*(y2) doesn’t necessarily take the
shape of a heteroclinic connection from y; to ys, as other singularities than the two fixed
points may also play a role. For instance, the 1-d intersection could be a periodic orbit in
phase-space, not connected to any of the two fixed points. As for the reverse connection,
from y, to y1: W*(y,) and W*(y;) generically have a 2-d (transversal) intersection, so this
reverse heteroclinic connection at least seems to be more generic than the y; to y, con-
nection. The dimensionality of W*(y,) and W*(y;) would even allow for a 2-d connecting
surface rather than a single, 1-d heteroclinic connection. But again, other singularities can
make the situation more complicated.

In other physical systems in which heteroclinic cycles play an important role in the
dynamics, the existence of such cycles is usually connected to the presence of symmetries
in the system. Symmetries induce the presence of invariant subspaces in phase-space,
which can make the existence of a heteroclinic cycle generic, without needing to tune pa-
rameters (as is needed to create a heteroclinic cycle in a nonsymmetric system). Such a
cycle will be robust for perturbations that preserve the symmetry, as these perturbations
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leave the invariant subspace structure intact. See Krupa (1997) for a detailed account.
Fluid-dynamical examples of heteroclinic cycles have been found in e.g. Rayleigh-Benard
convection (Proctor and Jones, 1988) and the turbulent boundary layer (Holmes et. al.
(1996, 1997) and references therein). At this stage we can only speculate about the (near-)
presence of symmetries in the barotropic model, and their possible role in the formation
of a heteroclinic cycle. In this context, it is interesting to note that the two PDF-maxima
(and their corresponding steady states) are located roughly symmetric around the time
mean state (where all PCs are zero). This can also be seen in the right panels of figure
4: the anomalies corresponding to MAX1 and MAX2 have roughly the same structure,
but opposite sign. Another source of symmetry could be the dominant wavenumber 2
contribution to the orography. The question of symmetry, although impossible to answer
at this moment, is of interest because a symmetry could be the common source of regime
behaviour in different atmosphere models (e.g., if a certain (idealised) orography implies
a symmetry that favors the creation of a heteroclinic cycle corresponding to regime tran-
sitions, it could explain the occurrence of regime behaviour in various atmosphere models
with similar orography).

As mentioned previously, we hypothesize a point to be present in parameter space where
a heteroclinic cycle exists between two fixed points corresponding to different regimes.
Moving away from this bifurcation point (to more realistic physical conditions) one, or
both, of the heteroclinic connections is almost certainly broken. If indeed a symmetry is
related to the existence of the cycle, leaving the bifurcation point will probably perturb the
symmetry (forced symmetry breaking). The phase-space structure that is left is expected
to still bear traces of the former cycle, since it generates regime behaviour in the system.
The structure should somehow account for the asymmetry of the regime behaviour, the
fact that the zonal regime is visited more often than the blocked regime — the PDF is
bimodal but not symmetric (in other studies, e.g. Itoh and Kimoto (1999), asymmetric
PDF's have also been found). A possible explanation is that a homoclinic orbit connected
to the zonal fixed point could be created when the cycle is broken. This would explain
the findings in Crommelin (2002) where such a homoclinic orbit was detected. In that
study, the possibility of heteroclinic behaviour was also mentioned. The behaviour of the
current T21 model was very briefly studied there, and related to homoclinic dynamics; the
heteroclinic influence was not detected due to the briefness of the inspection of the T21
model there.

It is known that the multiple equilibria associated with regime behaviour are the result
of orographically induced saddle-node bifurcations that make the sheet of fixed points
“fold” in parameter space, see Charney and DeVore (1979). Furthermore, Hopf-bifurcations
due to barotropic instability occur naturally in barotropic models, see e.g. Legras and
Ghil (1985) and De Swart (1988a, 1988b, 1989). Among the phenomena involved in the
simultaneous occurrence of a Hopf- and a saddle-node bifurcation, a so-called fold-Hopf (or
zero-Hopf) bifurcation, are heteroclinic connections, and homoclinic orbits resulting from
perturbations, see Kuznetsov (1995). Thus, a scenario is possible in which orography and
barotropic instability result in regime behaviour which originates from a heteroclinic cycle
and which is deformed into more homoclinic-type behaviour, favoring the zonal regime, due
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to forced symmetry breaking. We hope to report on this bifurcation scenario in a future
paper. Let us furthermore mention that homoclinic bifurcations produce periodic orbits; in
the cases of a Shilnikov-type or a bifocal-type homoclinic bifurcation an infinite number of
(unstable) periodic orbits are generated. This could be related to low-frequency oscillations
found by Plaut and Vautard (1994). However, much more study will be required to sort
this out.

The regime behaviour in the barotropic model is clearly visible. Moreover, the regimes
were found to correspond with nearby steady states. Having the above bifurcation scenario
in mind, this means that the model cannot be too far from the point in parameter space
where the heteroclinic cycle exists. The heteroclinic connections are most likely broken,
but there will still be orbits that approximate the former connections and thus go from
the vicinity of one steady state to the vicinity of the other. These approximations are
what we will focus at in the next section. We will not attempt to prove the validity of the
bifurcation scenario just sketched in the context of the barotropic model; such an attempt
must start with the investigation of low-order models and of possible symmetries.

5.2 Numerical approximation

It is known that a heteroclinic connection from one steady state A to another B should start
in the unstable manifold W*(A) of state A and end in the stable manifold W*(B) of state
B. Furthermore, it takes infinitely long to follow the entire connection, from its starting
point A to its end point B. In practice a heteroclinic connection is therefore approximated
as a (finite time) connection starting in the linear approximation E*(A) of W*(A) at small
but finite distance €, from point A and ending at distance g from point B in the linear
approximation E*(B) of W#(B) (with 0 < e4p < 1). A more detailed account is given in
e.g. Doedel and Friedman (1989).

As said, it is unlikely that we are exactly in the bifurcation point and hence unlikely that
exact heteroclinic connections exist; however, we can expect that there are still phase space
orbits running from the immediate vicinity of one fixed point to the immediate vicinity of
the other. To verify this, we took the most stable fixed point (n, = 4) near the main PDF
maximum (MAX1) as point A and the (only) fixed point near the submaximum (MAX2)
as point B, and performed 2 series of 500 integrations of 100 days each. The integrations
of the first series all started in E%(A); the initial states were arbitrarily chosen using a
random number generator, with the restriction that the distance of each initial state to
A was fixed: if 1" denotes an initial state, the restriction was ||y — A|| = c||A — B|],
with [l.]] =< .,. >1/2, the square root of the kinetic energy inner product, and ¢ = 0.15.
This moderately small choice for ¢ ensures that the model doesn’t stay in the linear regime
of A for too long, thereby keeping the total computation time within reasonable limits.
During each integration the distance to B was monitored and the minimum distance to B
was noted. These minimum distances showed large variances: using again the square root
of the kinetic energy distance between A and B as unit, the minimum distances varied
between 1 and 0.59. In the panels on the left of figure 7 the eight orbits that came closest
to B (minimum distances between 0.59 and 0.67) are plotted in several projections onto
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the leading EOF's. They clearly show a preference for a specific region of phase space.

The 500 integrations of the second series were started from arbitrarily chosen initial
states in E*(B) at fixed distance to steady state B. The distances to A were monitored and
the minimum distances to A varied between 1 and 0.43. The eight orbits coming closest
to A (minimum distances between 0.43 and 0.5) are plotted in the right panels of figure
7. Again, they follow roughly similar trajectories. Comparing the left and right panels of
figure 7 shows marked differences between orbits going from A to B on the one hand and
those from B to A on the other hand. In particular PC3 shows a separation: it is mainly
negative during the transition from A to B and positive when switching back from B to A.

Although the projections of figure 7 suggest that the plotted orbits end up quite close
to one fixed point or the other, the numbers show otherwise: the end distances are still of
the order of half the distance between A and B. In order to find orbits that end up close
to the desired fixed point, we have developed a new algorithm which makes uses of adjoint
techniques, stemming from 4D-VAR data assimilation in weather forecasting.

The algorithm is an iterative method. From a given orbit a correction step for the
starting point of the orbit is calculated. Applying this correction to the initial state should
result in a new orbit ending up closer to the fixed point than the previous one. Suppose
we want to find an orbit starting close to A and ending up close to B, and suppose we have
a “first guess” orbit t(t) with ¢ € [0,T]. Let

¥ = B — (1) (5.2)

and

G =<, Y; >1, (5.3)
with < .. >; the kinetic energy inner product. The smaller G is, the closer the orbit
ends near B, so we want to minimize G. Writing the model equation (2.1) in terms of

streamfunction 1 and linearising it around states from the orbit ) (#) yields the tangent
linear model, which describes the linear evolution of perturbations 1? of ¢ (t):

e = L(y(t)) P (5.4)

A second orbit ¢(t) of the full nonlinear system (2.1), starting in 1(0) = (0) + 1'(0), will
end in (T) = (T) + ¢'(T). If 4'(0) is small enough, ¢'(T) will approximately be the
result of the tangent linear model (5.4) integrated over time 7" with initial state ¢’(0).

The formal solution of the tangent linear model can be written using the resolvent
R(t1,t7) and reads

YP(t2) = R(t1,12) Y7 (t1) (5.5)

If we consider 9 to be a perturbation of the orbit 1(t) at its end-point we can relate it to
a perturbation ¢; at its starting point by substituting ¢*(t,) = ¥ and ¢?(tz) = ¢} in the
above equation, giving ¢} = R(0,T)¢;. Writing shortly R for R(0,T’) and substituting in
equation (5.3) yields

G =<y}, Ry >1 =< R™Y}, ¢ >1= — < AR Y}, ) >0 (5.6)
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in which R* is the adjoint of R with respect to < .,. >; (note that the adjoint depends
on the inner product) and < .,. > is the squared norm inner product (see appendix A).
For more information on the adjoint, in particular on the adjoint of the tangent linear
barotropic model with respect to the kinetic energy inner product, see Talagrand and
Courtier (1987) and Barkmeijer (1992).

We can now relate a change in the initial state of the orbit ¢ to a change in the distance
between the end point of 1 and the fixed point B:

0G

— = —-AR" ¢/ 5.7

o v, (57)
This gives us the recipe to improve on the orbit 1: calculate the difference vector e
integrate this vector using the adjoint of the tangent linear model and let the Laplace
operator A act on the resulting vector R*¢}. Shift the initial state (0) in the direction

of —AR"1%. The orbit 1, that results from integrating the nonlinear system (2.1) with
this new initial condition, should end up closer to the desired fixed point. See figure 8 for
a schematic representation of the procedure. The method is applied iteratively under the
constraint that the initial point of the orbit at each iteration step stays both in the linear
approximation of the unstable manifold and at a fixed, small distance to the steady state.

The time-length T of the orbit 1/ hasn’t been considered yet. As was mentioned pre-
viously, a genuine heteroclinic orbit stretches over an infinite amount of time; however,
the approximation of the connection, from E"(A) to E*(B), takes a finite amount of time.
This time-length is not known a priori, so the algorithm just described, which tries to find
the approximation, must allow for the possibility to adapt the interval 7". This is taken
care of by starting with a relatively small T and extending the length if at the previous
iteration step the algorithm could only marginally improve on the orbit (that is, when the
relative decrease of G'/? drops below, say, 1%).

To initialize the algorithm the 2 sets of eight “optimal” initial states, described previ-
ously, were taken from the 2 sets of 500 integrations. The “initial guess orbits” were set
to a length of 25 days, starting from the two times eight initial states. The magnitude
of the correction steps made to the initial states was initially set to a length of 0.1 times
the distance between the initial point and the nearby steady state; this magnitude was
decreased when lengthening the time interval 7.

From both sets we present the orbits showing the best results (that is, the orbits coming
closest to the fixed points while the algorithm couldn’t improve on them anymore): 2 of the
A to B (zonal to blocked regime) orbits have end distances to fixed point B of 0.35 (length:
167 days) and 0.37 (183 days). Compared to the earlier results with minimum distances to
B between 0.59 and 0.67, this is a considerable improvement. It must be mentioned here
that in the 200 year dataset there are only 9 events in which the distance to B is less than
or equal to 0.37; the absolute minimum in the whole dataset is 0.30. For the reverse case
(B to A) we have 3 orbits, with end distances to A of 0.15 (173 days), 0.13 (121 days) and
0.11 (217 days). The 200 year dataset has an absolute minimum of 0.11 and 2 events below
0.15. It must be stressed that all 5 orbits are solutions of the full nonlinear model (2.1),
integrated with the same integration routine as was used to create the 200 year dataset.
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The projections of the 5 orbits onto the PC1,PC3 plane are shown in figure 9. The
characteristics already apparent in figure 7 show up again for these 5 orbits. The numbers
show that the B to A orbits come much closer to fixed point A than the A to B orbits come
to B. Moreover, the latter two are very similar to each other whereas the former three have
clearly distinct trajectories (see figure 9). This supports the argument, given earlier on in
this section, that the B to A connection is probably more generic (and could even be a
2-dim surface rather than a single curve) than the reverse connection.

5.3 Data interpretation

The dynamical structure that emerges by accepting the hypothesis that regime behaviour
is linked to heteroclinic dynamics has its consequences for the behaviour of the barotropic
model. We have seen that the approximations of the (nearby) heteroclinic connections
travel through certain regions of phase space during transitions from one regime to the
other. If the full barotropic system, as described by equation (2.1), really is influenced by
these heteroclinic connections, this should be visible in the data as well. More specifically,
the system should show in its data a tendency to have a negative PC3 anomaly when going
from the zonal regime MAX1 to the blocked regime MAX2, and a positive PC3 anomaly
when returning from the blocked to the zonal regime, since this is how the heteroclinic
connections travel. Furthermore, during transitions from MAX1 to MAX2 the found orbits
stay closer together than during transitions in the other direction. One would therefore
expect the data of the MAX2 to MAXI transitions to be more scattered than the data for
the reverse transitions. Finally, the region with strongly positive PC2 and weakly negative
PC1 anomalies is visited during MAX1 to MAX2 transitions but not during MAX2 to
MAX1 transitions.

These assumptions can be checked using the 200 year dataset discussed earlier. Let us
define the two regimes in a very coarse way, thereby including probably too many states
in these regimes: all states with PC1 > 0.004 count as states in the zonal regime, all
states with PC1 < -0.008 are said to be in the blocked regime. All transitions, i.e. all
the segments of the data for which -0.008 < PC1 < 0.004, are divided in four categories:
transitions from the zonal to the blocked regime (z — b), from blocked to zonal (b — z),
from zonal back to itself (z — z) and from blocked back to itself (b — b). The beginning
and ends of the transition segments are determined by PC1 crossing the value of 0.004
or -0.008. The duration of the transitions is not taken into account here. From the four
different datasets that result PDFs are made. The number of datapoints ending up in
each dataset is as follows: z — b: 10548; b — z: 6648; z — z: 26398; b — b: 2894. The
projections of the PDF's of the b — z and z — b segments onto the planes of the leading
three EOFs is shown in figure 10. The EOFs that are used are those of the full 200yr
dataset. The PDFs show that the data indeed possesses the transition-characteristics that
could be predicted from the trajectories of the near-heteroclinic orbits in figures 7 and 9.
PC3 is negative during z — b and positive during b — z transitions. The region with
weakly negative PC1, strongly postive PC2 is often visited during z — b but hardly during
b — z transitions. The PDFs of the z — b transitions are more confined than those of
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the b — z transitions (more specifically: the maxima of the z — b PDFs are much more
pronounced, showing that these transitions are more confined than the b — z ones).

The b — b and z — z transitions have not been discussed yet. The former has not
enough realisations to be really interesting, but the latter does have many realisations.
Although these transitions don’t involve transitions from one regime to another but rather
from the zonal regime back to itself, the concept of global bifurcations can still shed some
light on these transitions. If the hypothesis is correct that the z — b — z heteroclinic
cycle gets broken and results in a homoclinic z — z connection, one would still expect
this homoclinic connection, and hence the data from the z — z transitions, to show traces
of the original cycle. The preference for certain phase space regions during the first half
(leaving the zonal regime) and second half (returning to the zonal regime) of the z — z
transition may still be somewhat similar to the preferences of the z — b resp. the b — z
transition. In order to check this, all segments of the z — z transitions were cut in two.
All datapoints of the first half of each z — z segment were collected in one dataset, the
points of the second halves in another. The PDFs of these two datasets are shown in figure
11. The projection on the PC1,PC2-plane doesn’t show the characteristics anymore, but
the other two projections do: the PC3 anomalies still show the characteristics described
earlier: negative when leaving the zonal regime, positive when returning.

The very coarse way in which the two regimes were defined above, and in which the
transitions were counted, has the consequence that the “heteroclinic characteristics” that
are found back in the data are not very detailed. We could improve on this by selecting the
data more precisely, e.g. by defining the regimes more strictly and by imposing a maximum
time limit in which the transition from one regime to the other should be completed.
However, such stricter selection would obscure the very general influence of the heteroclinic
behaviour. The coarse definition and selection of regime- and transition states shows that
the heteroclinic characteristics are visible not only for those transitions that run precisely
between narrowly defined regimes, but also for a much broader category of states, namely
the large majority of transitions between only crudely defined regimes. From the 46488
states that were counted as transitional states, 43549 (93.7%) fell in either the z — b, b —
z or z — 7 cases, which were shown to possess on average the characteristics of heteroclinic
transitions.

6 Discussion

Looking at the regime behaviour, displayed by the barotropic model, from a dynamical
systems point of view gave a new perspective on the dynamics of regime transitions. The
thought that these transitions should be related to heteroclinic connections, since the model
is entirely deterministic, guided us to the notion that the transitions must be structured
in phase space. The transitions from the zonal to the blocked regime will, on average,
follow paths through different regions of phase space than the transitions from the blocked
to the zonal regime. The 200 yr model dataset indeed shows clear differences between
the two transitions, even with a coarse filtering; these differences match well with the
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approximations of (the ruins of) the hypothesized heteroclinic connections. A few remarks
must be made to conclude this paper:

e The new algorithm, presented in this study, to approximate the ruins of the heteroclinic
connections was able to improve on the optimal transition orbits that resulted from choos-
ing many arbitrary initial states in (the linear approximation of) the unstable manifolds
of the two steady states. Nevertheless, the algorithm still needs improvement in order to
make it work more easily and probably with better results, in different model contexts. In
particular, the handling of the time-interval and the choice of the length of the correction
step can be more sophisticated. However, such improvement is beyond the scope of this
paper.

e The difference between the two regimes mainly projects onto EOF1, which resembles the
Arctic Oscillation pattern. The difference between the z—b and b—z transitions is most
clearly visible in EOF3, which projects strongly onto the North Atlantic Oscillation pattern
(with positive PC3 corresponding to the negative NAO-phase and vice versa). Combining
these findings in one picture results in figure 12, a highly simplified, schematic picture of
the dynamics of regime behaviour, NAO and AO in the barotropic model. Starting in the
zonal regime, which shows a polar vortex that is weaker than average, the model evolves
via a positive NAO phase to the blocked regime. The blocked regime is characterised by
a blocking over Europe and, on a larger scale, a strong polar vortex. Leaving the blocked
regime, the block persists for a while but shifts to the west, to the North-Atlantic. This
transition phase thereby gets the features of a negative NAO phase. Finally, the model
atmosphere is back in the zonal regime.

e The great (phase space) variety of the b — z transition orbits compared to their z
— b counterparts (which showed up both in the data and in the approximations to the
heteroclinic connections, and which can be explained partly by looking at the dimensions of
the stable and unstable manifolds of the involved fixed points) raises interesting questions
about the formation and destruction of blockings in our model. There seems to be less
freedom in the ways blockings can be created than there is in the ways blockings are
destroyed. The breaking up of the zonal regime should follow a rather specific scenario
for the system to evolve to a blocking situation within a certain amount of time (say two
months).

e This conclusion cannot end without pointing out that the model used in this study, a
T21 barotropic model with realistic forcing, obviously has its limits: the spatial resolu-
tion is rather coarse, it is limited to northern hemisphere flow, and baroclinic dynamics
is absent (but note the implicit presence of the time-averaged impact of neglected (e.g.
baroclinic) processes in the forcing). Nevertheless, the bimodality and regimes observed in
this model have several realistic aspects. Blocked flows, variations of the polar vortex and
the NAO are all known features of the atmospheric flow. The details may be inaccurate
but in essence these phenomena of the barotropic model are realistic. The regimes MAX1
and MAX2 resemble the AO in its negative and positive phase, respectively (Thompson
and Wallace, 1998). They combine a weakening resp. strengthening of the wintertime
polar vortex with anomalies of the same sign (but opposite to the polar anomaly) over
Europe and the North-Pacific (see figure 4). In the real atmosphere, the anomaly over
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Europe stretches towards North-America. This stretching is absent in the regimes of the
barotropic model, but somewhat present in our EOF1. Our regimes can also be compared
to the clusters found by Corti et. al. (1999). Their clusters D and B resemble our MAX1
and MAX2. Furthermore, the pattern of their cluster A is comparable to a negative PC3
anomaly of our model: positive NAO-phase, negative anomaly over the North-Pacific, pos-
itive anomaly over North-America. These similarities beg the question whether transitions
from cluster D to B have a tendency to go via cluster A, which would be the same order as
we found in the barotropic model. In our model data no regime was found that corresponds
to cluster A. However, the preferred transition routes have a small “loop” at the midpoint
of the MAX1 to MAX2 transition (figure 9). This extra curvature may result in a local
PDF maximum in time-averaged data (note that Corti et. al. use monthly mean data,
whereas we have used daily data). The PDFs for the z — b transitional states (figure
10) have indeed a maximum at the location of the small loop. This observation suggests
that there may be two types of regimes: one type associated with (marginally unstable)
equilibria of the large-scale flow, the other type induced by local curvatures of the preferred
transition orbits. Finally, the resemblance of cluster C and our positive PC3 anomaly is
less strong (although not completely absent), so the return transition from B to D via C
may be less clear. This could be related to our findings that in the barotropic model the
MAX2 to MAX1 transitions are less confined than the reverse ones.

We have argued that the regime behaviour of the barotropic model is quite realistic in
its qualitative aspects. The concept of heteroclinic connections gave a new perspective on
the regime behaviour in the model. It was shown that these connections have important
implications for the details of the regime transitions, an aspect which has been largely
ignored in the literature. This perspective can very well be used for further, more detailed
studies of transitions in both models and observations.
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A Appendix: The inner product

The inner product used throughout this paper is the kinetic energy inner product, defined
by

<unte>i= 5 [ (V) (Vum)do (A1)
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The integral is taken over the entire sphere; df) denotes a volume element on the sphere.
11 and vy are streamfunction fields on the sphere. For the barotropic model, the kinetic
energy of a state with streamfunction v is given by < 1,1 >;. The kinetic energy inner
product belongs to a class of inner products

1
<untasi=y [ (V) (Va)d, ke N (A2)
It is easy to show that < 91,1y >1 = — < &, 19 >, where & = Ay, the vorticity field
associated with ;.
B Appendix: Gradient and Jacobian

The scalar function F' to be minimized in section 4 is the discretized version of the functional
F, which is defined as the squared norm of the vorticity tendency integrated over the sphere:

}":/(é)?dQ. (B.1)

All integrals in this appendix are assumed to be taken over the sphere; d{2 denotes again
a volume element on the sphere. Using the definition 6F(§) = F(§ + 0§) — F(§) and
substituting equation (2.1) gives:

§F = / £(68)d
= 9 / E(J(O, ) — J (0, € + f + h) + k1 A6 + ko Asyh) A

= 9 / S (J(E, 6+ f+h)+ AT, E) + ki AE + kyA*E) dQ (B.2)
The above derivation uses 66 = Ady), as well as the following identities:

[ o= [¢@ana (B.3)

/ 0 J(C,v)dQ = — / v J(C,m) O (BA)

These identities stem from the identity [V - AdQ = 0, which is valid for any smooth
vector field A since the integration runs over the sphere.
From equation (B.2) follows

OF
oY
Discretizing the equations, i.e. expressing all fields in terms of a finite number of spherical

harmonics, yields the approximation F' of F; v is replaced by (¢1,...,%y)T. The func-
tional derivative (B.5) becomes the vector 0F/0;, i = 1,..., N: the gradient of F' with

=2 (J(EE+ F+ 1)+ AJ(,€) + B AE + oA (B.5)
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respect to (11,...,%y)T. This is the gradient needed for the minimization algorithm.

An expression for the Jacobian, the matrix that describes the model linearised around
some state, can be derived in a similar way as the expression of the gradient above. The
Jacobian (denoted by L) is defined as

20
which may be thought of as a series of gradients of scalars w, Define
D; =1 = / Y7 4pdQ (B.7)

in which Y;* is the complex conjugate of the spherical harmonic with (multi-)index i; the

gradient can be shown to be
0D;
Sy
Discretizing in spherical harmonics gives the Jacobian:

Lij = (55% )j (B.9)

JATY 64+ F+h)+ AT, A7) + ki Y+ ko APY (B.8)
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Figure 1: Top: time mean of the 500 hPa geopotential height 75, as produced by the T21
barotropic model. Contours are drawn every 100 meter. Bottom: Z5oq rms of the T21
model. Contour interval is 10 meter.
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1C

EOFs 1-4 calculated from the 200 year dataset produced by the T21 barotrop
model. The kinetic energy norm was used for the calculation.

Figure 2
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Figure 3: PDF and steady states in PC1,PC2-plane. The dashed lines are the contours
of the PDF (contour distance: 200 datapoints per bin, number of bins: 15 x 15). Top:
steady states with number of unstable eigenvalues n, < 6 (o); 7 < n, < 10 (&); n, >
10(x). Bottom: steady states with ratio of projection onto the leading 2 EOFs R, >
0.5 (e); 0.35 < Ry < 0.5 (); Ry < 0.35(x).
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Figure 4: Patterns corresponding to the maxima of the PDF. Top: MAX1, bottom: MAX2
(see text). Shown left are patterns of the 500 hPa geopotential height field Zsqo (contour
interval 100 m). On the right are the corresponding Z5oo anomalies (contour interval 30
m).
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Figure 5: Phase space distances to two maxima MAX1 (solid) and MAX2 (dotted) during
a data segment of 2500 days. Distances are given as differences in turbulent kinetic energy;

horizontal axis denotes time in days.
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Figure 6: Number of unstable eigenvalues n,, versus ratio Ry of projection onto the leading
2 EOFs (see text) for each steady state of the barotropic model.
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Figure 7: Projection of transition orbits onto planes of PC1,PC2 (top), PC1,PC3 (mid-
dle) and PC2,PC3 (bottom). Left: orbits starting close to steady state A near MAXI.
Right: orbits starting close to steady state B near MAX2. Also shown are the contourlines
(dashed) of the PDF of the 200 year dataset and the locations of the 5 selected steady
states (see text). The locations of A and B are indicated in the left panels.
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Figure 8: Schematic representation of the adjoint method to find approximate heteroclinic
connections. The vector ¢ pointing from the end point of the orbit ¥(t) to the fixed point
B is integrated with the adjoint of the tangent linear model, resulting in v}. By moving
the initial state in the direction of At} a new orbit (of the full nonlinear system) t)(t) is
obtained ending closer to B.
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Figure 9: Approximations of nearby heteroclinic connections between regimes. Left: zonal
to blocked, right: blocked to zonal. Shown is the projection of the orbits onto the PC1,PC3-
plane.
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Figure 10: PDFs of transitional states in 200yr dataset. Dashed lines: zonal — blocked;

solid thick lines: blocked — zonal. Contour interval is 25. Projections shown are PC1 vs.
PC2 (A), PC1 vs. PC3 (B) and PC2 vs. PC3 (C)
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Figure 11: PDF's of zonal — zonal transitional states in 200yr dataset. Dashed lines: first

half of each segment; solid thick lines: second half of each segment. Contour interval is 50.
Projections shown are PC1 vs. PC2 (A), PC1 vs. PC3 (B) and PC2 vs. PC3 (C)
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Figure 12: Schematic representation of the interrelationships of regime behaviour, NAO
and AO, as emerging from the barotropic model. B denotes the blocked regime, Z the
zonal regime. Negative PC1 corresponds to a stronger polar vortex (positive AO phase),
negative PC3 corresponds to the positive NAO phase.
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