
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS

J. Phys. D: Appl. Phys. 39 (2006) 2979–2992 doi:10.1088/0022-3727/39/14/017

Diffusion correction to the Raether–Meek
criterion for the avalanche-to-streamer
transition
Carolynne Montijn1 and Ute Ebert1,2

1 CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands
2 Department of Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

Received 22 December 2005, in final form 26 April 2006
Published 30 June 2006
Online at stacks.iop.org/JPhysD/39/2979

Abstract
Space-charge dominated streamer discharges can emerge in free space from
single electrons. We reinvestigate the Raether–Meek criterion and show that
streamer emergence depends not only on ionization and attachment rates
and gap length, but also on electron diffusion. Motivated by simulation
results, we derive an explicit quantitative criterion for the
avalanche-to-streamer transition both for pure non-attaching gases and for
air, under the assumption that the avalanche emerges from a single free
electron and evolves in a homogeneous field.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. Problem setting and review

Emergence and propagation of streamer-like discharges are
topics of current interest. Streamers play a role in creating
paths for sparks and lightning [1,2] and in sprite discharges at
high altitude above thunderclouds [3–5]. They are also used
in various industrial applications [6], e.g. in corona reactors
for water and gas treatment [7–10] and as sources of excimer
radiation for material processing [11–13], for a recent overview
see [14].

In the present paper, we investigate the conditions under
which a tiny ionization seed like a single electron grows out
into a streamer with self-induced space charge effects and
consecutive rapid growth; we assume that the electric field
is homogeneous and that electrodes are so far away that they
play no role. The critical length or time for this transition
as a function of the electric field is usually described by the
Raether–Meek criterion. We will confront recent simulation
results with the underlying assumptions of the Raether–Meek
criterion and then derive a diffusion correction to it. This
correction can amount to a factor of 2 or more for transition
time and length for certain parameters as we will elaborate
below and summarize in figures 5 and 6. In non-attaching
gases the consequences are particularly severe since in low
fields the diffusion can suppress streamer formation almost
completely while the Raether–Meek criterion would predict

streamer formation after a finite travel distance and time.
An example of such an avalanche in extremely low fields is
discussed in [15].

In many applications, discharges are enclosed by
containers and electrodes; streamers then frequently emerge
from point or rod electrodes that create strong local fields in
their neighbourhood [16] and also influence the discharge by
surface effects. On the other hand, in many natural discharges
and, in particular, for sprites above thunderclouds [5], it is
appropriate to assume that the electric field is homogeneous
and metal electrodes are absent. In this case, single electrons
can create ionization avalanches that move into the electron
drift direction. From those avalanches, single or double
ended streamers can emerge [17, 18], and we are interested
in the prediction of this transition. For clarity, we call a
spatial distribution of charged particles an avalanche, if the
electric field generated by their space charges is negligible in
comparison with the background external field; on the other
hand, if the space charges of the distribution substantially
contribute to the total field, we speak of a streamer.

The critical field required for lightning generation is
presently a topic of debate, in particular, whether thundercloud
fields are sufficient for classical breakdown or whether
relativistic particles from cosmic air showers are required
[19, 20]. Different critical fields can be defined for different
processes; for example, in [16] a critical field for positive
streamer propagation is suggested that is valid after the
streamers have emerged from a needle electrode. This field
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is certainly lower than the critical field for streamer emergence
from an avalanche to be discussed here.

Of course, dust particles or other nucleation centres
can play an additional role in discharge generation in
thunderclouds, but in the present paper we will focus on the
effect of a homogeneous field in a homogeneous gas. This
situation corresponds to the classical experiments of Raether
in the thirties of the last century [21].

In this introductory and motivating section, we first recall
the common discharge model and present simulation results
for avalanches and consecutive streamers that emerge from a
single electron in a homogeneous field far from any surfaces.
Then we recall the Raether–Meek criterion; it suggests that the
avalanche to streamer transition depends on the ionization rate
α and gap length d through the dimensionless combination αd.
We confront this criterion with our simulations and argue that
the transition depends not only on the product of ionization
coefficient and gap length but also on electron diffusion. Now
numerical evaluations of the initial value problem for a large
range of parameters, namely fields, gas types and densities,
would be very tedious. However, we have succeeded in
making analytical progress on the transition criterion. This has
two major advantages: first, general expressions for arbitrary
fields, gases and densities can be derived. Second, the result
can be given in the form of a closed mathematical expression.
These calculations and results form the body of the paper.

1.2. Discharge model and simulation results

To be specific, we consider a continuous discharge model with
attachment and local field-dependent impact ionization rate
and space charge effects. It is defined through

∂t ne = ∇R · (De∇Rne + µe E ne) + (µe |E| αi(|E|) − νa) ne,

(1)

∂t n+ = µe |E| αi(|E|) ne, (2)

∂t n− = νa ne, (3)

∇2
R� = e

ε0
(ne + n− − n+), E = −∇R�, (4)

where charged particles are present only in a bounded region,
and the electric field far away from the ionized region is
homogeneous. Here ne, n+ and n− are the particle densities
of electrons, positive and negative ions, and E and � are
the electric field and potential, respectively. The total field
E is the sum of the background (Laplacian) field Eb in the
absence of space charges and the field generated by the charged
particles E′. µe, De and νa are the electron mobility and
diffusion and the electron attachment rate, respectively. e is
the electron charge and ε0 is the dielectricity constant. The
impact ionization coefficient αi is a function of the electric
field, as established in various books, and for our numerical
calculations, we use the Townsend approximation

αi(|E|) = α0 exp (−E0/|E|), (5)

in which α0 and E0 are parameters for the effective cross
section. They depend on the ratio of background and normal
gas density (N and N0, respectively) as α0 ∝ (N/N0) and
E0 ∝ (N/N0) [22]. This scaling is equivalent to stating that
the reduced electric field E/N is the relevant physical variable

for impact ionization processes. The positive and negative ions
are considered to be immobile on the timescales investigated
in this paper because avalanches and streamers evolve on the
time scale of the electrons that are much more mobile due to
their much lower mass.

We consider the situation where a tiny ionization seed of
the size of one or a few free electrons is placed in free space, i.e.
within a gas far from walls, electrodes or other boundaries. If
the externally applied field is sufficiently high, it will develop
into an electron avalanche that will drift toward the anode.
Eventually, the charged particle density in the avalanche will
become so large that space charge effects set in and change the
externally applied field. As a consequence, the interior of the
formed very weak plasma will be weakly screened from the
external field while the field at the outer edges is enhanced.
Depending on photo-ionization processes, an anode-directed
or a double ended streamer then emerges from the avalanche.
This evolution from an electron avalanche to a streamer is
illustrated in figure 1. Details of our simulations can be found
in [23–25]; here we only use them for purposes of illustration.

Figure 1 shows essential features of the solutions that
will be substantiated by quantitative analysis in the body of
the paper. In the left column, an avalanche can be seen: the
electron distribution (upper row) is Gaussian and spherically
symmetric. The position of the Gaussian is determined by
electron drift in the homogeneous background field, its width
by electron diffusion. The ions (second row) are left behind
(i.e. further down) and stretched along the temporal trace of the
avalanche. The resulting space charge distribution (third row)
is essentially a smooth dipole without much structure. This
particular picture is actually quite similar to the old drawings
of Raether [21]. The electric field (fourth row) is essentially
unchanged up to corrections below 1%. The current (lowest
row) shows the same Gaussian structure as the electrons; it is
dominated by electron drift µene(R, t)Eb in the homogeneous
background field Eb with a small diffusional correction. In the
right column, a conducting filament is formed, and the streamer
stage is reached. Electron and ion distribution show a similar
long stretched shape. The space charges approach a layered
structure, and the field ahead of the streamer is changed by
these space charges by up to 40%.

There is some freedom in defining the transition point
from avalanche to streamer. In the body of the paper, we will
argue that a maximal field enhancement of 3% ahead of the
streamer, i.e.,

k = maxR |E(R, t)| − |Eb|
|Eb| , k = 0.03 (6)

is a reasonable measure for the transition. We will see that
essentially up to this moment of time the total number of
electrons in the avalanche grows exponentially in time, while
in the streamer phase, the growth is slower.

1.3. Review of critical field and Raether–Meek criterion

Essentially two criteria have been given in the literature for the
emergence of a streamer from a tiny ionization seed, one for
the required background field and one for the required space
and time of evolution. The first criterion is a necessary lower
bound for the background field: the electric field has to be
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Figure 1. The avalanche to streamer transition: numerical solution of the discharge model (1)–(4) for pure N2 in a uniform background field.
As N2 is a non-attaching gas, negative ions do not form. The background electric field is directed in the negative z-direction and has a
strength Eb/(N/N0) = 100 kV cm−1, when the parameters from equation (12) are used. Here N is the actual particle density and N0 the
particle density under normal conditions. Initially, a single electron was placed at z = 115 µm. Shown are the electron avalanche phase (left
column), the transition to streamer (middle column) and the space charge dominated streamer phase (right column). The respective times
are t = 0.225, 0.375 and 0.525 ns (N/N0)

−1 for N2. From top to bottom (continued on next page): electron number density distribution; ion
number density distribution; net charge density distribution (positive: blue thin lines, negative: red thick lines) and equipotential lines
(- - - -); electric field strength (smaller than the background field: blue thin lines, larger: red thick lines); current density
je = −µeEne − De∇ne (arrows) and level lines of |je| .

higher than the threshold field Ek where the impact ionization
rate overcomes the attachment rate. The ionization level can
only grow if the rightmost term in equation (1) is positive,
hence if the effective ionization coefficient is positive

α(|E|) = αi(E|) − νa/(µe|E|) > 0. (7)

This determines the threshold field Ek as

µe Ekαi(Ek) = νa. (8)

The second criterion is known as the Raether–Meek
criterion. It states that the total electron number must have
reached the order of 108–109 for space charge effects to set in.
If this number is reached by exponential multiplication of one
initial electron within a constant field Eb, this means that

exp (α(|E|)d) ≈ 108 to 109, (9)

where d is the avalanche length. In brief as a rule of thumb the
criterion reads

α(|E|)d ≈ 18 to 21 according to Raether and Meek. (10)

Let us first note that the same criterion has been suggested
for quite different situations in the literature. In his original
article, Meek [26] studies the emergence of a cathode directed
(i.e. positive) streamer from an anode directed avalanche that
has bridged a short gap. On the other hand, Bazelyan and
Raizer [27] study the emergence of streamers in free space,
i.e. far away from the electrodes. To estimate the field of the
ions, Meek used the diffusion radius of the electron avalanche,
and the ionization rate in the background field; however, the
diffusion does not show up in his transition criterion. Bazelyan
and Raizer on the other hand, neglect diffusion and base their
criterion on the radius of the avalanche due to electrostatic

2981



C Montijn and U Ebert

Figure 1. Continued.

repulsion. All authors [26–29] assume the electron distribution
to be spherically symmetric; on the other hand, they base their
transition criterion on a total field screening, i.e. on k = 1 in
equation (6). In view of available simulation results like our
figure 1, these assumptions are clearly inconsistent.

Apart from these considerations of the history of the
derivation, there are actually two major reasons to revise the
Raether–Meek-criterion which are the following.

(1) The prediction that a parameter should be in the range
of 18–21 (where authors seem to be willing to assume
an even larger range of values to get consistency with
the experiment) is not very satisfactory and invites
improvement.

(2) Diffusion has to be included into the model for physical as
well as for mathematical reasons. Without diffusion, an
initially concentrated electron package would not spread
and it would create enormous fields within a very short
time as they are well known in the neighbourhood of point
sources. Indeed, diffusion decreases the electron density
and the maximal fields while impact ionization increases
it. In low fields, diffusion stays dominant for a long time
and delays space charge effects and consecutive streamer
emergence. It is therefore clear that the avalanche to
streamer transition does not only depend on multiplication
rates, but also on the relative importance of diffusional
spreading. This should provide a more quantitative
transition criterion than the pure Raether–Meek criterion.

1.4. Organization of the paper

We will derive a diffusion correction to the Raether–Meek
criterion through the following steps: in section 2, the intrinsic
scales of the problem with their explicit density dependence
are identified through dimensional analysis. In section 3, we

analyse the spatial distribution of the electrons during the
avalanche phase and their contribution to the electric field;
this gives a first approximate correction to the Raether–Meek-
criterion. In section 4, we approximate the spatial distribution
of the ions and their contribution to the electric field. Electron
and ion field are then combined to give the total change of the
electric field during the avalanche phase. If this field becomes
‘substantial’ (cf figure 1 and equation (6)), we have found
the avalanche-to-streamer transition. Finally, the analytical
non-dimensional results are translated back to dimensional
quantities, and we refer the reader interested in the final
prediction only to figures 5 and 6 for the transition criterion
in non-attaching gases and in air. These figures visualize
the analytical criterion (53) or (54). Section 5 contains the
conclusions. Appendix A summarizes the parameter values
used for air, and appendix B contains an approximation for the
electric field generated by the ion cloud that differs from the
one presented in section 4.

2. Dimensional analysis

The Raether–Meek criterion can be understood as a simple
example of dimensional analysis. Dimensional analysis
identifies general physical properties in terms of dimensionless
numbers that are independent of a particular gas type or density.
The physical importance of dimensionless numbers like the
Reynolds number is well known in hydrodynamics; we follow
the same approach here.

In the light of dimensional analysis, the Raether–Meek
criterion states that the effective cross-section α(|E|) has
the dimension of inverse length, hence the dimensionless
number α(|E|)d characterizes the gap length in multiples of the
ionization length and therefore the exponential multiplication
rate eαd . This number directly gives the total number of
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electrons in an avalanche after a travel distance d if the
avalanche started with a single free electron. However, this
is not the only dimensionless number in the problem, a second
one is the dimensionless diffusion constant

D = Deα0

µeE0
, (11)

that plays a distinctive role in the avalanche to streamer
transition as it determines the width of the electron cloud.
Note that this dimensionless diffusion constant is related to
the electron temperature as De/µe = kBTe where kB is the
Boltzmann constant. The electron temperature Te actually
can be defined through this relation, even if the electron
energy distribution is not Maxwellian in the presence of strong
electric fields. Furthermore, D depends on α0/E0, where
the parameters α0 and E0 characterize the impact ionization
reaction (5) for a specific gas type and density. We remark that
the impact ionization reaction need not have the Townsend
form for this analysis.

For the setup of dimensional analysis, we refer to earlier
papers [30, 31] and only state the results here: lengths are
measured in units of �0 = 1/α0, electric fields in units of E0,
velocities in units of v0 = µeE0 and time consistently in units
of t0 = 1/(α0µeE0)—hence diffusion should be measured in
units of v0�0 = µeE0/α0 as done in (11). The natural scale
for the particle densities follows from the Poisson equation,
n0 = ε0α0E0/e.

The parameters α0, µe, De and E0 depend on the ratio of
the background gas density N and the gas density under normal
conditions N0. For instance, using parameters as in [22,32–
34], the characteristic scales for N2 are

�0 = 1

α0
= 2.3 µm

1

N/N0
, E0 = 200kV cm−1 N

N0
,

µe =380 cm2 (V s)−1 1

N/N0
, De =1800 cm2 s−1 1

N/N0
,

v0 = µeE0 = 7 · 107 cm s−1, t0 = �0

v0
= 3 ps

1

N/N0
,

n0 = ε0α0E0

e
= 4.8 · 1014

cm3

(
N

N0

)2

, D = De

v0�0
= 0.1.

(12)

Note that the characteristic velocity scale is independent of gas
density, in rough agreement with measurements of streamer
velocities at different pressures. Note furthermore, that this
analysis directly shows that the relevant physical parameter is
the reduced electric field E/N .

Dimensionless parameters and fields are introduced as

r = R
�0

, τ = t

t0
, ν = νat0,

σ = ne

n0
, ρ = n+ − n−

n0
, E = E

E0
, (13)

which brings the system of equations (1)–(4) into the
dimensionless form

∂τ σ = D∇2σ + ∇(Eσ) + f (|E|, ν)σ , (14)

∂τρ = f (|E|, ν)σ, (15)

− ∇2φ = ρ − σ E = −∇φ, (16)

where the operator ∇ is taken with respect to r and where
f (|E|, ν) is the dimensionless effective ionization rate,

f (|E|, ν) = µe|E|αi(|E|) − νa

µeE0α0
= |E|e−1/|E| − ν. (17)

It is remarkable that the density of positive and negative
ions n± enters the equations only in the form of the single
dimensionless field ρ ∝ n+ − n−. This is clear in the case of
the Poisson equation, but holds also for the generation term
proportional to f (|E|, ν). This coefficient accounts for the
production of free electrons and positive ions through impact
ionization and for the loss of free electrons and generation of
negative ions due to attachment.

We neglect the effect of photoionization as its rates are
typically much lower than impact ionization rates; it does not
contribute significantly to the build-up of a compact ionized
cloud where eventually space charge effects will set in (quite
in contrast to its distinct role in positive streamer propagation).

3. Electron distribution and field

We derive the transition as follows: we assume that an
avalanche starts from a single electron and follows a transition
as shown in figure 1. In the calculation we neglect space charge
effects on the evolution of densities, but we do calculate the
additional electric field generated by the space charges. If
this field reaches a relative value of k = 0.03—this value
will be motivated in section 4.4—space charge effects are not
negligible anymore, and the transition to the streamer is found.

The electric field generated by space charges has one
contribution from the electrons σ and another one from the
positive and negative ions ρ. In the present section, we
calculate the field of the electrons; in the next section, we
will include the field of the ions.

3.1. The electron distribution: a Gaussian

We write the single electron that generates the avalanche as a
localized initial density

σ(r, τ = 0) = ρ(r, τ = 0) = σ0δ(r − r0) (18)

and consider its evolution under the influence of a uniform
field Eb = −Ebêz, where êz is the unit vector in the z direction
and Eb = |Eb| is constant. A single electron is written as a
δ-function ne(R) ∝ δ3(R − R0) in physical units where the
spatial integral over the electron number density

Ne(τ) =
∫

d3R ne(R), (19)

of course, should be unity at time τ = 0: Ne(0) = 1.
According to the last section, this corresponds in dimensionless
units to

σ0 = 1

n0�
3
0

, (20)

which is 1.7 · 10−4 N/N0 for nitrogen. We will use σ0 = 10−4

in what follows. We emphasize, however, that the theory will
be developed for an arbitrary value of σ0.

During the avalanche phase the electric field remains
unaffected by space charges, so that the continuity equations
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for the charged particles (14)–(15) can be linearized around
the background field,

∂τσ = D∇2σ + Eb · ∇σ + σf, (21)

∂τρ = σf, (22)

where f = f (Eb, ν).
For the initial condition (18), the electron evolution

according to equation (21) can be given explicitly as [22]

σ(r, τ ) = σ0 ef (Eb,ν)τ exp[−(r − r0 + Ebτ )2/(4Dτ)]

(4πDτ)3/2
; (23)

it has the form of a Gaussian package that drifts with velocity
−Eb, widens diffusively with half width proportional to

√
4Dτ

and carries a total number of electrons σ0ef (Eb,ν)τ . (If the initial
ionization seed consists of several electrons in some close
neighbourhood, the Gaussian shape is approached nevertheless
for large times due to the central limit theorem.)

Integrating equation (23) over the entire space shows that
the total number of electrons at time τ is Ne(τ) = σ0n0�

3
0ef τ .

On the other hand, the maximum of the electron density is
reached at the centre of the Gaussian r = r0 − Ebτ and has the
value

σmax(τ ) = max
r

σ(r, τ ) = σ0 ef τ

(4πDτ)3/2
, (24)

hence it first decreases until τ = 3/(2f ) due to diffusion and
then increases due to electron multiplication. At this moment
of evolution, generation overcomes diffusion.

The axial electron density distribution for a background
field of Eb = 0.25 at τ = 2000 (for N2 this corresponds to a
reduced electric field Eb(N0/N) = 50 kV cm−1 and t = 6 ns)
is illustrated in the upper panel of figure 2. Here the analytical
solution (23) of the linearized continuity equation (21) is
compared with a numerical evaluation of the full nonlinear
problem (14)–(16). The excellent correspondence between
the solution of both the linearized and the nonlinear problem
shows that, at this time, space charge effects are negligible, so
that the discharge is still in the avalanche phase.

3.2. Exact result for the electron generated field Eσ

While the density and field of the ions can only be calculated
approximately and will be treated in the next section, the
electric field Eσ generated by the Gaussian electron package
can be calculated exactly.

The main point is that the electron density distribution (23)
is spherically symmetric about the point r0 −Ebτ . The electric
field Eσ (s, τ ) at the point

s = r − r0 + Ebτ (25)

can therefore be written as Eσ (s, τ ) = −Eσ (s, τ )ês , where ês

is the unit vector in the radial s direction. Its magnitude can
be computed with Gauss’ law of electrostatics (in the same
way as the gravitational force field of a spherically symmetric
mass distribution). It uses the fact that the field at radius s is
determined by the total charge inside the sphere of radius s,
and it is independent of charges outside this radius, as long

as the distribution is spherically symmetric. The calculation
yields

Eσ (s, τ ) = 1

s2

∫ s

0
σ0ef τ e−r2/(4Dτ)

(4πDτ)3/2
r2dr

= σ0ef τ

16πDτ
F

(
s√

4Dτ

)
, (26)

with

F(x) = 1

x2

4√
π

∫ x

0
y2e−y2

dy = erfx

x2
− 2√

π

e−x2

x

=




4

3
√

π
x for x � 1

1

x2
for x � 1,

(27)

where erf is the error function. Far outside the electron cloud
at x � 1, this expression reproduces the 1/x2 decay of the
electric field, while inside the cloud for x � 1, the field
increases like x.

The spatial maximum of the field strength Eσ is determined
by the maximum of F(x); evaluating dxF (x) = 0 shows that
it is located at an x such that

2√
π

(x + x3)e−x2 = erf x. (28)

Solving this equation numerically leads to a position of the
maximum of x � 1 (which is the radius at which the Gaussian
electron distribution has dropped to 1/e of its maximal value)
and to the value F(1) � 0.4276. Hence, the spatial maximum
of the electron generated electric field strength becomes

Emax
σ (τ ) � σ0ef τ

16πDτ
F(1), (29)

it is located on the sphere parameterized through

|r − r0 − Ebτ | �
√

4Dτ. (30)

In the original cylindrically symmetric coordinate system
(r, z), the axial field component is directed in the negative
z-direction, i.e. in the same direction as the background field,
‘ahead’ of the electron cloud (z > z0 + Ebτ ) as illustrated by
the solid line in the lower panel of figure 2. Together with
equation (30), we find that the maximal field strength |Eb +Eσ |
and its location are

max
r

|Eb + Eσ | = |Eb + Eσ |(rm, τ) = Eb + Emax
σ (τ ), (31)

rm(τ) � (z0 + Ebτ +
√

4Dτ)êz. (32)

3.3. A lower bound for the transition

Since the avalanche to streamer transition takes place when
space charge effects start to affect the electric field, we choose
to base the criterion for the transition on the maximal relative
field enhancement k(τ ) defined in equation (6), which for the
dimensionless field simply reads

k(τ ) = maxr |E(r, τ )| − |Eb|
|Eb| . (33)

Here E = Eb + Eσ + Eρ is the total electric field, and Eσ

and Eρ are the fields generated by the electrons and the ions,
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Figure 2. Particle densities (upper panel) and electric fields (lower panel) on the axis (r = 0) of the discharge in a background field of
Eb = −0.25 êz, with parameter values for pure N2: D = 0.1, ν = 0 and σ0 = 10−4. The initial condition is located at r0 = 50 êz. The time
of the snapshot is τ = 2000. This stage corresponds qualitatively to the leftmost column of figure 1. Upper panel: electron (x) and ion (+)
density distributions computed numerically for the full nonlinear model (14)–(16); the solid line is the analytical solution (23) for the
electron density distribution neglecting space charge effects. Numerical solution and analytical approximation coincide perfectly. Lower
panel: numerical solution of the electric field generated by the full space charge distribution of electrons and ions E ′ = Eσ + Eρ = E − Eb

(∗) and the analytical result (27) for the field Eσ generated by the electrons only (——). Analytical approximations for the field generated by
the ions Eρ will be discussed in the next section.

respectively. We will show in the next section that kt =
0.03 is an appropriate estimate for the maximal relative field
enhancement at the mid gap avalanche to streamer transition.
At lower values of k, space charge effects can be neglected,
whereas at higher values the dynamics of the electrons are
nonlinear and the full streamer equations (14)–(16) have to be
solved.

As a first estimate for the space charge field, and thereby
for the avalanche to streamer transition, we compute the field
generated by the electrons only and neglect the ion field. This
is a reasonable approximation, as the lower panel in figure 2
shows. Actually, the magnitude of the monopole field Eσ ahead
of the electron cloud is an upper bound for the magnitude of the
field created by the dipole of electrons on the one hand and the
positive charges left behind by the electron cloud on the other.
Therefore, the maximal relative field enhancement due to the
electrons, kσ (τ ) = Emax

σ (τ )/Eb, exceeds the transition value
after a shorter travel time τσ and distance than the genuine
relative field enhancement k(τ ) of equation (33). Hence, τσ

is a lower bound for the time of the avalanche-to-streamer
transition.

This lower bound τσ for the transition can be expressed
through equation (29) as

f τσ − ln(Ebτσ ) � ln
16πktD

F(1)σ0
. (34)

As travel time and travel distance are related through the drift
velocity Eb, the value f (|Eb|, ν)τσ is found to be identical to
(α(Eb) − νa/µeEb)dσ in dimensional units where

dσ = v0tσ = µeEbtσ (35)

is the avalanche travel distance. In dimensional quantities,
using the Townsend scales α0 and E0 and the initial condition
σ0 = 10−4 N/N0, equation (34) takes the form(

αi(Eb) − νa

µeEb

)
dσ − ln(dσα0)

= ln
16πkt

F (1)10−4
+ ln

Deα0

µeE0
− ln

N

N0
. (36)

For a non-attaching gas (νa = 0) at atmospheric pressure under
normal conditions with dimensionless diffusion comparable to
nitrogen, inserting the numerical values for the parameters, we
obtain

α(Eb)dσ − ln(α0dσ ) ≈ 9.4. (37)

f being a growing function of |Eb|, equation (34) shows that
the larger the field, the earlier the transition takes place, which
is in accordance with Meek’s criterion. On the other hand, the
second term on the right-hand side of equation (36) depends
on the diffusion coefficient in such a way that diffusion delays
the transition to streamer, as expected.

The solution α(Eb)dσ for N2 at atmospheric pressure is
shown in the dash–dotted line of figure 3, where it is compared
with a numerical evaluation of the transition time (circles). The
latter data have been obtained through a full simulation of the
continuity equations (14) and (15) together with the Poisson
equation (16) [31, 23] that was also used to generate figure 1.
Though the qualitative features of the transition time are well
reproduced, this figure shows that the underestimation of the
transition time is significant and that it is necessary to include
the field of the ion trail left behind by the electrons.
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Figure 3. The dimensionless transition time f τ (equivalent to the
dimensional travel distance αd) as a function of the background
electric field for σ0 = 10−4, ν = 0 and different values of D. Solid
lines are computed with equation (53) for D = 0.1 (——), 0.3
(medium thin line) and 1 (thickest line); dash-dotted lines are
computed with equation (34) for D = 0.1; symbols denote full
numerical evaluation for D = 0.1. Obviously, the approximation
(53) fits the full numerical results very well.

4. Ion distribution and field

4.1. Exact results on the spatial moments of the distributions

To get a more accurate estimate for the avalanche-to-streamer
transition, the field generated by the positive and negative ions
has to be included. In the case of the ion distribution, closed
analytical results cannot be found, in contrast to the case of the
electron distribution (23). However, arbitrary spatial moments
of the distribution

〈O〉ρ =
∫

Oρd3r∫
ρd3r

, where O = zn or rn, (38)

can be derived analytically. Here z is the direction of the
homogeneous field Eb and r is the radial direction. First, the
evolution equation (15) for the ion density ρ is integrated in
time and the analytical form (23) for σ(r, τ ) is inserted. As
f = f (|Eb|, ν) is constant in space and time one finds

ρ(r, τ ) − ρ(r, 0)

= f σ0

∫ τ

0
dτ ′ef τ ′ exp [−(z − z0 − Ebτ

′)2/(4Dτ ′)]√
4πDτ ′

×exp [−r2/(4Dτ ′)]
4πDτ ′ . (39)

Here the initial perturbation is located at z0 on the axis r = 0.
The moments (38) can now be derived from (39) by exchanging
the order of spatial and temporal integration. In particular, one
finds ∫

ρd3r = σ0e
f τ ,∫

zρd3r = σ0e
f τ

(
z0 + Ebτ − 1 − e−f τ

f/Eb

)
, (40)

and higher moments can be calculated in the same way. For
the moments of ρ in the axial direction, this gives

〈z〉ρ = z0 + Eb

(
τ − 1

f

)
+ O(e−f τ ), (41)

〈z2〉ρ − 〈z〉2
ρ =

(
Eb

f

)2

+ 2D

(
τ − 1

f

)
+ O(e−f τ ). (42)

The second moment of ρ in the radial direction is

〈r2〉ρ = 2D

(
τ − 1

f

)
+ O(e−f τ ). (43)

For comparison, the moments of the Gaussian electron
distribution (23) are easily found to be

〈z〉σ = z0 + Ebτ, (44)

〈z2〉σ − 〈z〉2
σ = 2Dτ, (45)

〈r2〉σ = 2Dτ. (46)

4.2. Discussion of the moments

Let us now interpret these moments. A first moment of a
spatial distribution gives the position of its centre of mass. For
the second moment, the cumulant

〈z2〉cx := 〈(z − 〈z〉x
)2〉x = 〈z2〉x − 〈z〉2

x, x = σ, ρ.

(47)

measures the quadratic extension from the centre of mass. As
the centre of mass lies on the axis, for the radial extension the
distinction between second moment and its cumulant need not
be made.

The moments for the electrons (44)–(46) have a simple
structure: the centre of mass of the electron package is located
at z = z0 + Ebτ , and the package has a diffusive width

√
2Dτ

around it, both in the forward z direction and in the radial r

direction.
The ion cloud shows a more complex behaviour; it is

evaluated close to the avalanche-to-streamer transition where
f τ = αd = O(10), therefore the terms of order e−f τ are
neglected.

First it is remarkable that the centre of mass of the ion
cloud (41) moves with precisely the same velocity as the
electron cloud though the ion motion is neglected while the
electrons drift. Therefore the ion cloud “motion” is purely
due to the generation of additional ions at the front part of the
cloud. As a consequence, the centre of mass of the ion cloud is
at an approximately constant distance Eb/f behind the electron
centre of mass. This dimensionless distance

�α = Eb

f (Eb)
= α0

α(Eb)
(48)

corresponds to the dimensional ionization length 1/α(Eb).
The quadratic radial width of the ion cloud 2D(τ − 1/f )

is 2D/f smaller than that of the electron cloud. This is related
to the fact that the electron cloud also was more narrow at the
earlier time when it left the ions behind. The ion cloud is more
extended in the z direction. More precisely, its length is �α

larger than its width. This is because the ions are immobile,
therefore a trace of ions is left behind by the electron cloud.
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Moreover, it can be remarked that the difference between
quadratic width and length of the ion cloud is given by the same
ionization length �α as the distance between the centres of mass
of the ion and the electron cloud. We refer to the left column
of figure 1 for the illustration of these density distributions.

4.3. An estimate for the transition

One can assume as in [27] that the ions have a spatial
distribution similar to the electrons, thus a Gaussian with the
same width as the electron cloud, but centred around r = 0
and z = 〈z〉ρ :

ρ1(r, z, τ ) = σ0 ef τ exp [−[(z − 〈z〉ρ)2 + r2]/(4Dτ)]

(4πDτ)3/2
. (49)

In this approximation, the total electric field becomes

E1(r, z, τ ) = Eb − σ0ef t

16π Dτ

[
F

( |sσ |√
4Dτ

)
sσ

|sσ |
+ F

( |sρ |√
4Dτ

)
sρ

|sρ |
]
, (50)

where
sx = r − 〈z〉x êz for x = ρ, σ (51)

are the distances to the electron and ion centres of mass and
F(x) was defined in equation (27).

The maximum of the field E1 cannot be computed
analytically. However, in figure 1 and in the lower panel of
figure 2, it can be seen that this maximum is located on the
axis ahead of the electron cloud and that the location of the
maximum of the total field and that of the electron field nearly
coincide. This can easily be explained physically: the total
field is the sum of the fields induced by the electrons and by the
ions. Its maximum is located just ahead of the electron cloud,
where the electron field is large and varies rapidly, while the
field contribution of the ions is smoother and smaller since the
observation point is further away from the ion cloud. Therefore
the maximum position of the total field is essentially identical
to the maximum position of the electron field. This justifies our
approximation to evaluate the field E1 at the maximum position
rm of |Eb + Eσ | as defined in equation (32). The maximum of
the electric field can thus be approximated as

Emax
1 (τ ) � E1(r = 0, z = z0 + Ebτ +

√
4Dτ, τ)

= Eb +
σ0ef τ

16πDτ

[
F(1) − F

(
1 +

√
�2

α

4Dτ

)]
, (52)

where we recall that the maximum of F(x) lies at x ≈ 1. Then
Emax

1 − Eb = kEb implies for the transition time τ1,

f τ1 − ln(Ebτ1) + ln
F(1) − F

(
1 +

√
�2
α

4Dτ1

)
F(1)

= ln
16πkD

F(1)σ0
. (53)

The additional term compared with (34) is the third term on the
left-hand side of equation (53); the argument of this logarithm
is smaller than 1, therefore criterion (53) gives a later transition
time and therefore larger travel distance than equation (34) that
was based on the field of the electrons only. This is what we
expect since the ions tend to reduce the field generated by the

electrons ahead of the avalanche and thus the effect of space
charge, cf the lower panel in figure 2. The correction given by
the ion field is a function of the ratio of the ionization length
�α and the diffusion length

√
2Dτ . At early times, this ratio

diverges and F(∞) = 0; at this stage the correction due to the
ion cloud is negligible. However, at later times, the correction
becomes significant. All these statements are an interpretation
of equation (53).

Finally, we translate the criterion back to dimensional
units. In section 4, we did so assuming the Townsend form
(5) for the ionization coefficient and scaling with gas density;
here we assume for a change a more general dependence, where
the mobility and diffusion constant can depend on the electric
field. Then we find

αd − ln(αd) + ln

(
F(1) − F

(
1 +

√
µe(Eb)

De(Eb)

Eb

α

1

4αd

))

= 0.41 − ln

(
µe(Eb)

De(Eb)

e

ε0

)
,

where

α = α(Eb) = αi(Eb) − νa

µe(Eb) Eb

, (54)

and where the transition number k = 0.03 was inserted. We
recall that F(x) was defined in equation (27) and has its
maximum at x ≈ 1. Equation (54) determines the travel
distance d for the avalanche-to-streamer transition when the
discharge starts from a single electron.

4.4. The analytically approximated transition criterion
compared with numerical results

We now compare again our analytical results for the linearized
problem to the outcome of numerical simulations of the full
nonlinear model (14)–(16).

In the upper panel of figure 4 the evolution of the maximal
electron density as a function of f (|Eb|)τ is shown. Numerical
and analytical solutions coincide during the avalanche phase,
but deviate eventually. This enables us to estimate the moment
at which the space charge effects set in, and thus, when the
streamer regime is reached. In the lower panel of figure 4
the evolution of the maximal relative field enhancement is
considered. Looking at the simulation results (the solid lines),
we see that k = 0.03 gives a good estimate of the transition
time.

The approximation (52) for the maximal field is much
better than the previous approximation (29) based on the
electron cloud only. Indeed, for example in the case of
Eb = 0.5 (corresponding to the medium thick lines), the
numerically computed field (solid line) reaches the transition
value |Enum − Eb| = 0.03|Eb| at f τ ≈ 14. When only the
field of the electrons is taken into account, this value would
already be reached at f τ ≈ 12.6, while the correction based
on the approximation of the ion cloud leads to a transition time
of f τ ≈ 13.9. The correction becomes especially important
at higher fields. In low fields, the approximation of the
ion distribution and field shows somewhat larger deviations.
We note that the analytical approximation ρ1 is narrower
and higher than the genuine one, and therefore leads to an
overestimation of the field generated by the ions inside the
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Figure 4. Comparison of analytical approximations and simulation results of the full nonlinear streamer equations (14)–(16) for various
background electric field strengths Eb. Thin lines: Eb = 1, medium thick lines: Eb = 0.5 and thick lines: Eb = 0.25. Upper panel: the
evolution of the maximal electron density as a function of f (Eb)τ computed with the full nonlinear model (——) and by analytical
solution (24) of the linearized problem (— · · —). Lower panel: the evolution of the maximal electric field enhancement k = (Emax − Eb)/Eb

as a function of f (Eb)). Solid lines: numerical solution of the full nonlinear model; dashed dotted lines: analytical approximation (29) where
only the field of the electrons is accounted for and dashed lines: analytical approximation (52) of the total field.

ion cloud. For a more accurate estimate of the total field
configuration, we refer to appendix B; there it is also shown
that this will not significantly improve the estimate for the
maximal field.

In figure 3 we compare the transition times given by
equations (34) and (53) with numerically evaluated transition
times. It shows that the approximation of similar electron and
ion distributions leads to a very good approximation of the
transition time. This figure also illustrates that the transition
time f τ depends strongly on the electric field and increases
for smaller fields. Moreover, looking at the transition time
for higher diffusion coefficients, it is seen that diffusion tends
to delay the transition to the streamer regime. This can be
expected, since diffusion will tend to broaden the electron
cloud, thereby suppressing space charge effects. Depending on
the external parameters, the value of αd = f τ at the transition
can vary by a factor of two or more.

4.5. The final results on the transition criterion

The transition time approximated by equation (53) as a function
of both background electric field and diffusion coefficient is
visualized as a 3-dimensional plot in figure 5. This figure
shows that the Raether–Meek transition criterion, that stated
that f τ = αd takes an approximately constant value of 18
to 21, corresponds to the case of relatively high diffusion
and background field. However, realistic values of D are
smaller than unity, and a background electric field higher than
2 also seems unrealistic. So in the parameter range of real
experiments, the correction given by equation (53) on the
Raether–Meek criterion cannot be neglected.

We now discuss the particular example of an electron
avalanche in (dry) air, for which coefficients different than

Figure 5. The transition distance αd of an electron avalanche in a
non-attaching gas (ν = 0) like N2 or Ar in Townsend approximation
(5) according to equation (53). It is shown as a function of
background electric field Eb and diffusion coefficient D for initial
parameter σ0 = 10−4 (accounting for one initial electron at normal
pressure). The axes show dimensionless parameters, for
dimensional parameters, see section 2. The values for αd = f τ
largely deviate from the Raether–Meek criterion (10).

in N2 have to be used. In particular, the ionization length
and field in air are given by [22] α0 = 0.87 µm(N/N0)

and E0 = 277 kV cm−1 · N/N0. For the values of the
mobility and the diffusion coefficient of the electrons as a
function of the electric field we use experimental values as
well as numerical solutions of the Boltzmann equation (see
appendix A). Inserting these in equation (53), we can compute
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Figure 6. The transition value of αd in air as a function of the
reduced electric field Eb/N . The vertical line indicates the field
below which attachment overcomes ionization, and avalanches
cannot grow anymore. (◦): evaluated with experimental parameters
for α(E) [35] and De/µe [36]; (��): evaluated with parameters from
a Boltzmann solver [5].

the value of α(|E|)d at the transition for different background
fields as shown in figure 6. For large fields, the value of
αd at transition saturates towards 16; the value grows with
decreasing reduced field as long as E > 27.7 kV cm−1. At
lower fields, attachment overcomes electron impact ionization,
and a single electron cannot generate a streamer. Therefore,
very large values of αd as in figure 5 are suppressed by electron
attachment, see equation (8), and in air, αd increases from 15
to above 21 with decreasing field.

5. Summary and conclusions

In this paper, first the theory behind the Raether–Meek criterion
for the avalanche-to-streamer transition was reviewed. Based
on discharge simulations as shown in figure 1 and on physical
and analytical considerations, it was argued that quantitative
predictions require a diffusive correction to this criterion.

A dimensional analysis identified the characteristic length
scales, which are a function of the neutral gas type and
density. In particular, the dimensionless quantities α(Eb)d and
D = Deα0/(µeE0) have been extracted from the problem.
The first expresses the distance d in multiples of the effective
ionization length in the background field, while the latter gives
the ratio between diffusive and advective transport of electrons.
The two continuity equations (2) and (3) for the positive and
negative ions can be reduced to one single equation (15),
therefore further analysis is valid both for attaching gases like
air or for non-attaching gases like N2 or Ar.

During the avalanche phase, space charge effects are
negligible. This implies that the problem can be linearized
around the background field, making it well-suited for
analytical treatment. Indeed, for an electron avalanche
evolving in a homogeneous background electric field, a

closed analytical expression for the density distribution of the
electrons exists. Furthermore, we have shown that the electric
field of the electron cloud during the avalanche phase can also
be described by a closed analytical expression. This led to
the derivation of a lower bound for the avalanche to streamer
transition (34).

The estimate of the transition time was improved by taking
the field generated by the ions into account. For the ion
distribution and field, no closed analytical expression exists.
However, we found that spatial moments of the distribution
can be calculated to arbitrary order. A surprising result of this
analysis is that the centre of mass of the ion cloud moves with
the same velocity as that of the electron cloud, though the ions
are immobile; the motion is therefore purely due to generation
of additional ions. As could be expected, the ion cloud is more
extended along the propagation direction and somewhat more
compact in the lateral direction than the spherically symmetric
electron cloud, cf sections 4.1 and 4.2 for more results and
discussion.

For the field generated by the ions, a good approximation
was developed. Then the sum of the electron and ion generated
field compared with the background field lead to an analytical
estimate for the avalanche-to-streamer transition (53) and (54).
Our criterion for the transition is that the maximal relative field
enhancement k has reached a value of approximately 3%. This
value is based on comparing the analytical solution without
space charge effects to the results of a numerical simulation
of the full nonlinear problem and determining the moment of
substantial deviations.

The transition distance αd strongly depends on diffusion
D and on the background electric field. For high fields, the
transition time saturates towards αd � 15. (We recall that
the Raether–Meek-criterion stated that αd � 18–21.) On the
other hand, for low fields, when the processes are diffusion
dominated, the avalanche lasts longer. In particular, in non-
attaching gases like N2 or Ar at low fields the relatively strong
diffusion delays the transition considerably, even in terms
of fixed αd (where even for fixed αd, the length d ∝ 1/α

can become very large for weak impact ionization α). Our
dimensionless quantities enable us to translate the criterion
given in (53) to any given gas type and density (54). For non-
attaching gases in Townsend aproximation (5), the value of
αd can be read off from figure 5. In air, attachment limits
the emergence of a streamer in low fields, see equation (8).
In this case, αd at the transition is in the range of 16 (for
high background fields) to above 21 (for fields approaching
Ek), cf figure 6. It is remarkable that in the end, the Raether–
Meek criterion performs quite well for air, mainly because
the attachment prevents streamer formation with large values
of αd at very low fields. (We remark that the striations
observed in [15] for very low fields are generic for atomic and
non-attaching gases with essentially only elastic and ionizing
collisions and only very few inelastic processes [37].)

The analytical models presented in this paper provide a
useful tool to determine streamer formation. We stress that
our transition criterion is based on the space charge effects to
become significant. Our analysis relied on the linearization of
the discharge equations on the background field. The nonlinear
streamer propagation is the subject of other studies. In that
phase the space charges and electric field strongly interact, and
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Figure A1. The ionization coefficient (left) and ratio of electron diffusion over mobility (right) in air, as a function of the reduced electric
field. (◦): experimental measurements (the values for α are taken from [35], the values for D/µe from [36]. (��): solution of the Boltzmann
equation [5]. The solid line shows the ionization coefficient following the empirical formula (5) given in [22], with α0 = 0.87 µm(N/N0)
and E0 = 277 kV cm−1 · N/N0.

the analytical study of such streamers [38] is far more difficult
than the analysis of the linear avalanche phase.

Acknowledgments

CM acknowledges a PhD grant of the Netherlands
NWO/FOM-program on Computational Science.

Appendix A. Mobility and diffusion coefficients of
electrons in air

To compute the transition criterion in air, we use the values for
electron mobility and diffusion coefficient shown in figure A1.
The left panel shows measured and calculated values of
α(|E|), together with the fit α(|E|) = α0 exp(−E0/|E|). The
experimental values are taken from the survey of electron
swarm data by Dutton [35]. The computed values are the
solution of the Boltzmann equation from [5]. Also, the
empirical approximation of the ionization coefficient as a
function of the background field as given by [22] is shown,
α(|E|) = α0 exp(−E0/|E|) with α0 = 0.87 µm(N/N0) and
E0 = 277kV cm−1 · N/N0.

The values of De/µe as a function of the reduced electric
field are given in the right plot of figure A1. Again, computed
values from [5] are shown, as well as measured values
from [36]. The value of the dimensionless diffusion coefficient
D as a function of the electric field is easily derived from these
figures.

Appendix B. A more accurate approximation for the
ion density distribution

The simple approximation for the ion distribution ρ1 in
equation (49) leads to a relatively good approximation for the
transition time in the case of a mid-gap transition. However,
the real spatial distribution of ions is more narrow in the

r-direction and wider and asymmetrical in the z-direction. In
this appendix we present another approximation for the ion
distribution, which will lead to a better overall approximation
of the electric field induced by the ion trail and therefore of the
total field distribution. However the price to pay for this is a
much more complicated analytical expression for the density
and the field.

A better approximation for ρ would be an ellipsoidal
Gaussian distribution centred around (r = 0, z = 〈z〉ρ) with
width 〈z2〉cρ = 〈z2〉ρ − 〈z〉2

ρ and 〈r2〉cρ = 〈r2〉ρ in the z- and
r-direction, respectively. The height of this Gaussian should
be such that the total amount of ions at time t is still equal to
σ0e

f t . The appropriate expression for the ion distribution is

ρ(r, z, t)

= σ0ef t

(2π)3/2S2
r Sz

exp [−r2/(2S2
r ) − (z − 〈z〉ρ)2/(2S2

z )].

(B.1)

However, as far as we know, no closed analytical expression
is known for the field of such an ellipsoidal Gaussian charge
distribution. So instead, we take a spherical Gaussian
distribution with the same height as the one defined in
equation (B.1):

ρ2(r, z, τ ) = σ0ef τ

(2π)3/2S3
ρ

exp [−(r2 + (z − 〈z〉ρ)2)/(2S2
ρ)],

(B.2)

where

S3
ρ = 〈r2〉cρ

√
〈z2〉cρ =

(
2D

(
τ − 1

f

) √
2D

(
τ − 1

f

)
+ �2

α

)
.

(B.3)

The electric field induced by this ion distribution is

Eρ2(r, z, τ ) = σ0ef τ

8πS2
ρ

F

(√
|sρ |2
2S2

ρ

)
, (B.4)

where sρ is defined in equation (51).
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Figure B1. The ion density (upper figure), total charge density (middle figure) and electric field (lower figure) on the axis, computed with
E0 = 0.25, at τ = 2000. The solid lines give the numerical solution, the dash-dotted lines the solution corresponding to ρ1 and the dotted
lines to ρ2.

In figure B1 we compare the densities and fields given
by the numerical solution and by the approximations ρ1 and
ρ2. It is shown clearly that the approximation ρ2 does not
significantly improve the approximation ρ1 for the field ahead
of the electron cloud. This can be explained by the fact that
the region ahead of the electron cloud contains very few ions,
so that the ion generated field in this region is dominated by
the distance to the ion cloud and by the total number of ions
in the cloud, which are identical for ρ1 and ρ2. On the other
hand, inside the ion cloud, the present approximation is much
better. Therefore, while the results from section 4 approximate
the maximal electric field and the transition time very well,
the complete density distributions and fields up to this instant
are better approximated by equations (23) and (B.2) for the
electron and ion densities and by equations (26) and (B.4) for
the respective electric fields.
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