
Journal of Computational Physics 229 (2010) 200–220
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Spatially hybrid computations for streamer discharges with generic
features of pulled fronts: I. Planar fronts

Chao Li a,*, Ute Ebert a,b, Willem Hundsdorfer a,c

a Centre for Mathematics and Informatics (CWI), P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
b Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c Department of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
a r t i c l e i n f o

Article history:
Received 17 April 2009
Received in revised form 27 August 2009
Accepted 22 September 2009
Available online 29 September 2009

PACS:
52.80.Pi
52.65.Kj

Keywords:
Streamer discharge
Hybrid model
Pulled fronts
Large deviations
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.09.027

* Corresponding author. Tel.: +31 20 5924208; fa
E-mail addresses: Li@cwi.nl (C. Li), Ebert@cwi.nl
a b s t r a c t

Streamers are the first stage of sparks and lightning; they grow due to a strongly enhanced
electric field at their tips; this field is created by a thin curved space charge layer. These
multiple scales are already challenging when the electrons are approximated by densities.
However, electron density fluctuations in the leading edge of the front and non-thermal
stretched tails of the electron energy distribution (as a cause of X-ray emissions) require
a particle model to follow the electron motion. But present computers cannot deal with all
electrons in a fully developed streamer. Therefore, super-particle have to be introduced, which
leads to wrong statistics and numerical artifacts.

The method of choice is a hybrid computation in space where individual electrons are
followed in the region of high electric field and low density while the bulk of the electrons
is approximated by densities (or fluids). We here develop the hybrid coupling for planar
fronts. First, to obtain a consistent flux at the interface between particle and fluid model
in the hybrid computation, the widely used classical fluid model is replaced by an extended
fluid model. Then the coupling algorithm and the numerical implementation of the spa-
tially hybrid model are presented in detail, in particular, the position of the model interface
and the construction of the buffer region. The method carries generic features of pulled
fronts that can be applied to similar problems like large deviations in the leading edge of
population fronts, etc.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

1.1. X-ray bursts and terrestrial gamma-ray flashes

Terrestrial gamma-ray flashes were first observed accidentally in 1994 [1]; later they were found to be correlated with
thunderstorm activity. In 2001, energetic radiation was also observed from normal cloud-to-ground lightning [2] and later
from rocket triggered lightning [3]. Meanwhile X-ray bursts were also found in the laboratory near long sparks [4–7]. Such
flashes and bursts are likely to be produced by Bremsstrahlung of very energetic electrons (so-called run-away electrons).

One possible source of highly energetic electrons are the streamer discharges that pave the way of sparks and lightning.
Streamers are ionized plasma channels that grow into a non-ionized medium due to the self-enhancement of the electric
field at their tips. In this high field region, the electron energy distribution is very non-thermal and can have a long tail at
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high energies; it could act so much as a self-organized local electron accelerator that it is a possible source of X-rays as pre-
dicted in [8–10] and in our recent 3D hybrid simulations [11].

The single electron dynamics in streamers can be studied by a particle model, which models the streamer dynamics at the
lowest molecular level. It follows the free flight of single electrons in the local field between abundant neutral molecules and
includes the elastic, exciting and ionizing collisions of electrons with the molecules in a stochastic Monte Carlo procedure.
However, the increasing number of electrons in a growing streamer channel leads to an increasing demand of computational
power and storage and excludes the simulation of all electrons in a full long streamer on present day’s workstations.

The generation of highly energetic run-away electrons from streamers therefore has only been modeled in particle mod-
els with simplifying assumptions or tricks. In [8] a Monte Carlo simulation treated planar fronts, and 3D aspects were mod-
eled by a simplified electric field profile in the forward direction; in [10] a 3D axis-symmetrical streamer was simulated with
super-particles of high weight where many real electrons are replaced by one super-particle. Both simulations indicate that
electrons can be accelerated to very high energies in the high field zone at the tip of streamers. However, the 1D simulation
[8] does not include the intricate 3D multiscale spatial structure of the streamer head properly [12–14], while the super-par-
ticle approach with present computer power [10] has been shown [15] to lead rapidly to numerical artifacts already shortly
after a streamer emerges from an ionization avalanche; it will not represent the physically important tail of the electron en-
ergy distribution correctly.
1.2. Need and concept of spatially hybrid computations for streamers

Realizing that the number of electrons in the high field zone at the streamer tip is limited, and that only these electrons
have a chance to gain high energies, a natural idea is to include only those electrons into a particle model while all others are
treated in density or fluid approximation, as the fluid approximation is computationally much more efficient and has been
widely used in streamer modeling, see e.g. [12,13,16–28]. Such a spatially hybrid approach should allow us to follow single
electrons in the relevant region while avoiding the introduction of super-particles. We here present essential steps of its
implementation.

The concept of a spatial coupling of density and fluid model is shown in Fig. 1. The natural structure of the streamer con-
sists of an ionized channel and an ionization front. In the channel, the electrons are dense enough to be approximated as
continuous densities, and the field is too low to accelerate them to high energy. In the ionization front the electron density
decreases rapidly while the field increases, and the electrons gain high energies far from equilibrium. The hybrid model
should apply the particle model in the most dynamic and exotic region with relatively few electrons and the fluid model
in the remaining region that contains the vast majority of the electrons. The hybrid model is not only suitable for studying
possible run-away electrons from streamer heads, but also for studying the role of electron density fluctuations on streamer
branching, and for studying the gas chemistry inside the streamer and the electron energy distribution at the streamer tip in
general.

To implement such a hybrid computation, we have set first steps in [9,29]. In [9] we studied the Monte Carlo discharge
model in detail and compared it with its fluid approximation; we did that for electron avalanches in a constant electric field
and for planar ionization fronts; the study was for negative streamers in nitrogen. We derived reaction and transport coef-
ficients for the fluid model from Monte Carlo electron avalanches, and we found that the mean electron energy increases at
the front of an electron swarm, even if the electric field is constant. As the local field approximation cannot breakdown in a
constant field, we attributed this effect to a breakdown of the local density approximation of the fluid model in the steep
density gradients of the advancing front. In the fast track communication [29], we presented a first realization of a spatial
coupling of particle and fluid model for planar ionization fronts. However, a closer investigation of these results indicates
that further improvements are desirable, and the paper did not include details of our work. Therefore, we here present de-
tails and further investigations on how to couple particle and fluid model in a setting of planar fronts. This lays the basis for
Fig. 1. The spatially hybrid scheme is shown in a one dimensional section of the streamer. The solid line shows the electron density ne as a function of the
spatial coordinate z. The particle model follows the leading part of the ionization front and the fluid model is applied to the rest. The questions treated in the
present paper are: Which fluid model approximates the particle model in the best manner? Where should the model interface be placed and how should it
be structured? The figure is reproduced from [29].



202 C. Li et al. / Journal of Computational Physics 229 (2010) 200–220
full three dimensional streamer computations in the near future where the dynamics of single electrons in the relevant re-
gion can then be fully followed.
1.3. Particle fluctuations and large deviations in pulled fronts

The hybrid coupling in space that we present here, is designed for the simulation of streamer discharges. However, the
method carries generic features of so-called ‘‘pulled fronts”. The pulling terminology was probably first used in 1976 in the
biomathematical literature [30] for a phenomenon found in 1937 independently by Kolmogoroff, Petrovsky and Picounoff
and by R.A. Fisher, examples include chemical [31], bacterial [32], and virus invasion fronts [33]. ‘‘Pulling” means that the
penetration of one phase or species into another is dominated by the instability of the penetrated state; front shape and
velocity are completely determined by the linear instability of the penetrated state, and not by a balance of forces of two
competing states (for reviews see [34,35]). Therefore, if the penetrating species is organized in particles (be it plants, bacte-
ria, molecules or electrons), the penetration of one particle into the unstable state can create a local avalanche, and it can
largely influence the dynamics. Large deviations from the mean in the leading edge of a front can therefore grow out into
macroscopic structures. Examples are the first electron that reaches a completely non-ionized region with a local field above
the ionization threshold, or the first species that reaches a new habitat [36–38]. In that sense, it is surprising how well fluid
approximations work for many pulled fronts.

Spatially hybrid models therefore are of general interest and a viable method for pulled front problems as they treat the
dynamically relevant leading edge with low particle densities in a particle model and the bulk of particles behind the front in
density approximation. In particular, for off-lattice models it poses a challenge. Questions include: Which fluid model
approximates the particle model in the best manner? Where should the model interface be placed and how should it be
structured?

Adapting the buffer zone method [40–44] to connect the particle with the fluid zone, we encounter two more features
that are generic for pulled fronts. 1. In the frame moving with the velocity of the ionization front, electrons on average move back-
ward; therefore if the model interface moves with the front velocity, electrons mostly move from the particle to the fluid region.
This is because the front is pulled by the joint action of motion and multiplication of particles in the leading edge where
the electric field and the electron drift velocity are the highest, therefore throughout the front, individual electrons on aver-
age move backward, even in the leading edge. As we will show in Section 3.4, this leads to a large technical advantage for the
construction of the buffer region, as particles do not need to be created out of the fluid region, but they only have to be ab-
sorbed there. 2. Avalanches in the unstable region have essentially the same front shape and velocity as full fronts [34,9].
When particle avalanches are used to derive transport and reaction functions for the fluid approximation, a pulled front
is therefore well matched by this model.
1.4. Content of the paper

Section 2 discusses why our first hybrid coupling approach [29] still showed discontinuities at the model interface. The
answer is found in inconsistent fluxes, and the problem is resolved by improving the fluid model through a gradient expan-
sion in the density. Then transport and reaction coefficients are derived for this extended fluid model, and the extended fluid
model is compared to the full particle model, both for avalanches and for planar fronts. The extended fluid model now de-
scribes the dynamics well, except for particle fluctuations in the leading edge of the front. The coupling of the extended fluid
model with the particle model is described in Section 3, where the coupling concept and implementation are given in detail;
discussed are the hybrid algorithm, the numerical implementation, the position of the model interface and the structure of
the buffer region at the interface. While this whole study is done in a fixed background field for negative streamer fronts in
nitrogen, Section 4 investigates how these results are generalized to other fields. Section 5 contains the conclusions. Appen-
dix A discusses an alternative to the extension of the fluid model by a gradient expansion, namely the extension with an
electron energy equation.
2. Extending the fluid approximation

The particle model follows the individual electrons on their deterministic flight in the local field until the next collision
with a neutral particle. Time and kind of collision and energy and momentum of the electron after the collision are calculated
in a Monte Carlo procedure, in accordance with the cross-section data base of [45]. Details of the procedure are explained in
[9].

The classical fluid model as used by many authors for negative streamers [12,13,16–22,26] can be derived from the par-
ticle dynamics through the Boltzmann equation assuming the local field and the local density approximation, where the
electron mean energies, transport coefficients and reaction rates are functions of the local reduced electric field and the local
electron density. (We remark that the local field approximation is typically emphasized in this derivation, while the local
density approximation is not.) However, we have shown that in electron avalanches, the local mean energies of the electrons
vary from the tail to the front of the swarm [9], even though the electric field is constant. It is impossible to improve the fluid
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model to the same level of description as the particle model, and we do not intend to do that. But the main features that
create inconsistencies and that influence the coupling of the two models, have to be investigated and understood.

Here we investigate why the electron fluxes are inconsistent when coupling the classical fluid model with the particle
model, and we extend the fluid model with a gradient expansion in the electron density to incorporate non-local effects.
The two fluid models are compared with each other for both the electron avalanche and the planar front.

2.1. A short recollection of the classical fluid model

To elucidate the essential structure of the problem, we here analyze discharges in pure nitrogen. The classical fluid model
then contains two continuity equations for the densities ne;np of electrons and positive ions
Fig. 2.
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je ¼ �llðEÞEne � DlðEÞ � rne; ð3Þ
where je is the electron flux and S is the source of electrons and ions, ll represents the mobility and Dl is the diffusion matrix,
E and E are the electric field and the electric field strength; the subscript ‘‘l” stands for ‘‘local” and denotes the classical fluid
model in contrast to the extended one to be introduced below. The densities of charged particles together with the boundary
conditions determine the electric field through the Poisson equation
r � E ¼ e ðnp � neÞ
�0

: ð4Þ
The source term accounts for the impact ionization in local field and local density approximation
Sl ¼ jne llðEÞEj alðEÞ: ð5Þ
2.2. Why the fluid model needs an extension

2.2.1. Discontinuities in the hybrid model for planar fronts
We have derived transport and reaction coefficients for the classical fluid model from the particle model in [9], and we

have shown first results of a hybrid computation which couples the classical fluid model with the particle model in [29].
However, to ensure a stable and correct interaction between the two models, we later investigated the electron flux den-

sities on the model interface, and the mean electron energies and velocities around the model interface, and we found a dis-
agreement of the local electron flux between the two models. When the particle and the classical fluid model are applied in
the same region of the ionization front, the mean electron flux density is lower in the particle simulation than in the classical
fluid simulation as we will demonstrate below. If one places the model interface near the maximum of the electron density, a
density jump can appear near the model interface. This is shown in Fig. 2 where the model interface is placed at the electric
field E ¼ �60 kV=cm with the field ahead of the front being Eþ ¼ �100 kV=cm; here the local fluxes are discontinuous across
the model interface, and this results in the visible discontinuity of the density. The numerical discretization and other details
of this experiment can be found in [29].
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The effect appears although the transport and reaction coefficients were generated in the particle swarm experiments and
then implemented into the fluid model; therefore the two models should be consistent. To understand the underlying prob-
lem, we review the conceptual differences between the two models and compare them in a electron avalanche experiment.

2.2.2. Electron avalanche simulations in particle and fluid model – a reinvestigation
Fig. 3 shows simulated electron swarms propagating in a uniform constant field of �100 kV/cm. The simulations have

been carried out both with the particle model (solid lines) and with the classical fluid model (dotted lines) in 1D starting
from the same initial conditions. For the particle model, 1D means that the simulations have been carried out in a volume
with a narrow transverse cross-section, with periodic boundary conditions at the lateral edges.

Here and in all later comparisons of particle or fluid results, the initial distribution of electrons and ions is generated in
the following manner. An electrically neutral group of 100 electrons and ions is inserted at one point in space. Their temporal
evolution is calculated with the particle model. After a short time that depends on the electric field, e.g. after t1 ¼ 20 ps in a
field of 100 kV/cm, a small swarm forms in which the electron density profile is well approximated by a Gaussian distribu-
tion. This distribution of electrons and ions is used as an initial condition for all simulations, including particle, fluid and
hybrid.

In the particle model, the standard Monte Carlo technique in a constant electric field is applied. For the fluid model, the
equations of the particle densities are discretized in space with a finite volume method. The particle densities are updated in
time using a third-order upwind-biased advection scheme combined with a two-stage Runge–Kutta method. The same time
step and cell size were used in the particle and the classical fluid calculation, i.e. Dt ¼ 0:3 ps and Dz ¼ 2:3 lm. More details of
the numerical implementation of particle and fluid model can be found in [9].

In the avalanche experiment, we let both the particle model and the classical fluid model follow the swarm from
t1 ¼ 20 ps to t3 ¼ 240 ps, and the electrons in the particle simulation are mapped to densities on the same grid as used in
the fluid simulation. During the simulation, we follow the growth of the total electron avalanche, and we pay specially atten-
tion to the group of electrons that are initially (at time t1) present as seed electrons. Fig. 3 shows the electron density profiles
of the swarm at time t1 and at the later stages t2 and t3, and also the density distributions of only those electrons that already
existed at time t1, at all three time steps t1; t2 and t3, neglecting all electrons generated later.

Fig. 3 shows that the profiles of the total swarm are nearly the same in the classical fluid model and in the particle model.
This was to be expected as we just derived the transport and reaction coefficients ll; Dl, and al for the fluid model through
this condition [9]. However, following only the swarm of electrons that already existed at time t1, the particle swarm stays
behind the fluid swarm. This observation has to be interpreted in the following manner. In the fluid simulation, the electron
swarm grows homogeneously, i.e. the center of mass of the initially present electrons moves with the same speed as the cen-
ter of the mass of total electron swarm. However, in the particle simulation the mean displacement of the whole swarm is
larger than that of the initially present particles. This effect can only be caused by a larger growth rate of the electron swarm
at the tip than at the back of the swarm. This shows that the classical fluid model is based on approximations that here be-
come inaccurate.

The electron flux rates in particle or fluid model can be derived by averaging the local electron flux je over the simulation
domain of volume V and over a short time interval s
Fig. 3.
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where Ne is the total number of electrons. Note that Eq. (6) is one particular definition that could be used for calculating the
mobility, and others are discussed below in Section 2.3.2. We find a higher mean flux density per electron in the fluid than
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in the particle swarm simulation. The mean flux density per electron equals the mean electron drift lE, as the diffusive flux
vanishes if all electrons are inside the integration volume, see Eq. (3). The higher electron mobility in the fluid model is con-
sistent with the larger displacement of the swarm of initially present electrons.

We conclude that the particle fluxes are inconsistent between particle model and classical fluid approximation both for
planar fronts and for electron avalanches. For the avalanches, this has been shown both by interpretation of Fig. 3 and by a
calculation of fluxes through Eq. (6).

2.2.3. Discussion: validity of the local density approximation
That both the mean flux density (6) and the avalanche growth characteristics (Fig. 3) differ between particle model and

classical fluid approximation, is actually due to the same reason: the local density approximation. As the electric field is con-
stant in the swarm experiment, it cannot be the local field approximation.

In [9], it was already shown that the local electron energy distribution depends on the local electron density gradients
both in planar fronts and in electron avalanche. It indicates that even in a uniform constant field, the ionization rates increase
from the tail to the head of the electron swarm. Therefore, there are two contributions to the speed of the swarm: (i) the
electron drift in the local field as a main contribution and (ii) the unequal growth of the swarm due to the unequal electron
energy distribution.

The classical fluid model assumes that the local mean energies and local mean reaction rates are functions of the reduced
electric field, and it ignores the fact that within the same electric field, the ionization rate can be different. At the front of the
swarm, this leads to a lower reaction rate in the fluid simulation than in the particle model. But by overestimating the ion-
ization rate at the tail, the swarm in the classical fluid model generates the same amount of electrons as in the particle
swarm. And by overestimating the mobility of electrons, the swarm nevertheless propagates with the same speed. Or in
other words, the classical fluid model approximates the swarm density profile rather well, but at the price of wrong local
fluxes and wrong local reaction rates. In simulations with non-uniform fields, such as streamers in which the density profiles
are determined only by the front while the tail doesn’t play a role in the propagation, the classical fluid model pays the price
by generating lower electron densities inside the streamer than the particle model [9].

Therefore, the fluid model has to be extended to include the dependence of the ionization rate on non-uniform electron
density conditions. And by introducing a non-local term, we expect the fluid model to supply the same electron flux as the
particle model within the same field.

2.3. Gradient expansion and extended fluid model

2.3.1. The introduction of the extended fluid model
The electron ionization rates for non-uniform fields and electron densities are discussed in [47,48]. There perturbation

theory is used to obtain the rate coefficients, and it is shown that they can be represented by a gradient expansion about
the local values
S ¼ Slð1þ k1ê � r ln ne þ k2N=Er � ðE=NÞ þ k3ê � r lnðE=NÞÞ; ð7Þ
where ne is the electron density, E and E are the field and the field strength and ê ¼ E=E is the unit vector in the direction of
the electric field, N is the molecule density of the background gas, and k0; k1; k2; k3 are parameters depending on E/N that
have to be determined.

In [9], we have shown that the local density approximation is insufficient while the local field approximation is not prob-
lematic. Therefore, we neglect the field gradient terms, focus on the density gradient in Eq. (7), and approximate the source
term in our non-local model for fixed density N as
Sn ¼ Slð1þ k1ðEÞê � r ln neÞ ¼ lnðEÞanðEÞðEne þ k1ðEÞE � rneÞ; ð8Þ
where the subscript n denotes the non-local or extended fluid model. Otherwise the model is identical to the classical fluid
model, except that all transport and reaction coefficients have to be determined a new, they are denoted as ln;Dn, and an. All
these functions as well as k1 are now determined.

It has been known for long that the consistency of the fluid model with particle swarm results is important. Robson et al.
[49] recently reviewed this issue and emphasized that the consistency requirement actually applies to transport coefficients
and reaction rates. In [9], we therefore have determined the mobility llðEÞ, diffusion tensor DlðEÞ, and ionization rate alðEÞ for
the classical fluid model from particle swarm experiments.

2.3.2. Electron mobility ln

When the classical fluid model is extended with a density gradient term, the transport and ionization coefficients may
also change and should be re-defined from the swarm experiments. As discussed above, the mobilities can be determined
either (i) from the mean displacement of electron swarm in a uniform constant field
llðEÞE ¼
z3 � z1

t3 � t1
;

(as was done in the classical fluid model) or (ii) from the mean displacement of the initially present particles
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lnðEÞE ¼
z03 � z1

t3 � t1
;

where z1 and z3 are the centers of mass of the swarms at times t1 and t3, and z03 is the center of mass of those electrons at time
t3 that were already present at time t1, cf. Fig. 3. The second definition represents the real electron motion and is used in the
extended fluid model; within numerical accuracy, this mobility coincides with the one derived from the average local flux
rate (6). On the contrary, the first definition is actually the sum of the local electron fluxes under the influence of the electric
field plus the non-local growth of the swarm.

The mobilities ll or ln are plotted in Fig. 4. Here ll is the electron mobility in the classical fluid model and ln is the one in
the extended fluid model. They are almost the same for fields E below 30 kV/cm when impact ionization is small or even
completely negligible, but the difference increases as the field strength increases. The definition of two mobilities ll and ln

are coincides with the definition of ‘‘bulk” and ‘‘flux” velocities for electron swarms in [50–53]. It can be noted that the curves
in Fig. 4 are not completely smooth. This is due to stochastic fluctuations within the Monte Carlo simulations. However,
it has been checked that these small fluctuations have a negligible influence on the final results.
2.3.3. Impact ionization rate an

The reaction rate a is derived from the growth rate of the total electron number NeðtÞ in a particle swarm simulation.
Within a time t, the swarm propagates a distance lðEÞEt, and the reaction rate is determined by
aðEÞ ¼ ln Neðt2Þ � ln Neðt1Þ
lðEÞEðt2 � t1Þ

: ð9Þ
When ll is replaced by ln, the ionization rate changes from al to
anðEÞ ¼ alðEÞ
llðEÞ
lnðEÞ

ð10Þ
as the simulation fixes the product llal ¼ lnan.
2.3.4. Diffusion tensor Dn

The diffusion rates can also be obtained according to two different definitions: the diffusion of the electron swarms Dl or
diffusion of the initially present electrons Dn. The results turn out to be the same
DlðEÞ ¼ DnðEÞ ð11Þ
as shown below.
2.3.5. The parameter function k1 of the gradient expansion
The extended fluid model needs the function k1 in Eq. (8). The rates k1; k2, and k3 in Eq. (7) were calculated by Aleksandrov

and Kochetov [47] by solving the Boltzmann equation in a two-term approximation. But to stay consistent with the approach
above, all parameter functions in the fluid model are here derived from particle swarm simulations. Since we neglect the
field gradient term in the source term, only k1 needs to be calculated.

In fact, k1 can be calculated by simply comparing the electron continuum equations in both the classical and the extended
fluid model. As both fluid models can properly describe the swarm when appropriate parameters are applied, we have
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@tne ¼ r � ðllðEÞEneÞ þ r � ðDlðEÞ � rneÞ þ nellðEÞEalðEÞ
¼ r � ðlnðEÞEneÞ þ r � ðDnðEÞ � rneÞ þ nelnðEÞEanðEÞ þ k1ðEÞlnðEÞanðEÞE � rne: ð12Þ
In a constant uniform electric field such as in the electron avalanche experiment, llðEÞ;lnðEÞ and E are constant and
r � ðllðEÞEneÞ ¼ llðEÞE � rne, etc. Removing identical terms on both sides of the equation, we retrieve Dl ¼ Dn (11) and we
get llðEÞ ¼ lnðEÞð1þ k1ðEÞanðEÞÞ or
k1ðEÞ ¼
llðEÞ � lnðEÞ
anðEÞlnðEÞ

; ð13Þ
where ll;ln and an were derived above from the particle swarm experiments. In Fig. 5, we followed the presentation in [47]
as the rate coefficient from Eq. (13) is conveniently presented in dimensionless form as ~k1 ¼ k1eE=�ion (proportional to
k1p � E=p), where �ion ¼ 15:6 eV is the ionization energy in N2. (An evaluation of the data presented in the pdf version of
[47] yields a rather constant value of ~k1 in the range of 5.2–130 kV/(cm bar) that coincides with the minimum of our curve.)

2.4. Comparison of the extended fluid model with the particle model

Now the stage is set to compare the extended fluid model with the particle model both in swarms and in planar ionization
fronts. The extended fluid equations are discretized in the same manner as the classical fluid model, and the particle densi-
ties are updated with the same scheme as before. The same time step and cell size are used in the extended fluid calculation
as in the particle and the classical fluid calculation (see Section 2.2).

2.4.1. Swarm simulations
In Fig. 6, we show electron swarms at times t1; t2, and t3 in a constant field of �100 kV/cm; the swarms were followed by

particle simulation (solid line), classical fluid simulation (dotted line) and extended fluid simulation (dashed line). For the
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Fig. 5. The result of Eq. (13) in dimensionless form ~k1 ¼ k1eE=�ion .
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whole swarm, all three models give similar results, but the extended fluid model follows the evolution of the initially present
electrons much better than the classical fluid model.

However, the figure also shows that in the leading edge of the swarm (marked with a large dashed circle) neither the
extended fluid model nor the classical fluid model describe the electron density distribution of the particle model precisely.
As described in [9], individual electrons with high energies largely deviate from the mean, and none of the two macroscopic
fluid models can reproduce this microscopic behavior. The densities in this region are 3–5 orders lower than the maximal
density. But as streamer ionization fronts are so-called ‘‘pulled” fronts, cf. Section 1.3, the behavior in the leading edge of
the front actually determines the front velocity. From this point of view, the hybrid model that uses the particle model in
the leading edge of the ionization front, is the method of choice.

2.4.2. Front simulations
Fig. 7 shows the temporal evolution of the planar front in a field of Eþ ¼ �100 kV=cm in the particle simulation (solid

line), classical fluid simulation (dotted line), and extended fluid simulation (dashed line). Compared to the classical fluid
model, where the maximal electron density in the front and the saturation level of the ionization behind the front are about
20% lower than in the particle model, the extended fluid model approximates the particle model much better. The particle
and fluid front move with approximately the same velocity, but the particle front moves slightly faster than the extended
fluid front, and the extended fluid front moves slightly faster than the classical fluid front, in agreement with Fig. 6. (We re-
call from [9] that the leading edge of a swarm and of a pulled front in the same field have the same spatial profile and create
the same velocity.)

Having analyzed planar fronts at �100 kV/cm, we now summarize the front results for fields ranging from �50 to
�200 kV/cm in Fig. 8. The figure shows the relative difference
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of the saturated electron density behind the front in the particle model ðn�e;partÞ and the extended fluid model ðn�e;e:fluidÞ. Com-
pared to the relative difference between the particle model and the classical fluid model discussed in [9], which increases
from 10% at 50 kV/cm to 40% at 200 kV/cm, we now find that the relative density difference in the extended fluid model
never exceeds 10% within this range of fields.
2.5. The drawbacks of the extended fluid model

By approximating the non-local ionization rate with a density gradient expansion, the extended fluid model reproduces
the ionization level behind the front much better than the classical fluid model. However, Fig. 8 shows that this ionization
level in the extended fluid model exceeds the one in the particle model when the field E is below 125 kV/cm. This will not
harm its coupling with the particle model, but the reason for this unexpected behavior is briefly discussed here, because it
could lead to further improvements of the fluid model.

Several possible reasons have been examined, for example, the quality of the parameters (l, D, a and k1) used in the ex-
tended fluid model, the discretization of the gradient expansion term, and the relative ionization rate in the very leading
edge where the electron density simply vanishes in the particle model, but remains non-zero in the fluid model due to elec-
tron diffusion. The answer was found by comparing the ionization rates within the front between both models.

The simulation is done as follows: we first let the particle model follow the evolution of an ionization front until it is fairly
smooth. This creates an initial condition that now is run further both with the extended fluid model and with the particle
model. The two models are followed for a time of 100 Dt where Dt ¼ 0:3 ps in a field of Eþ ¼ �100 kV=cm. The result is
shown in Fig. 9. In the first panel we plot the electron density profile in steps of 20 Dt in the particle model (dashed) and
in the extended fluid model (solid). Of course, the curves are identical initially, and a difference builds up in time in the high
density region of the front (marked with a dashed circle). In the second panel, we show the electric field which does not vary
much between the two models during 100 Dt. In the third panel, we show the relative growth of the ion density ð@tnpÞ=ne

integrated over a time of 20 Dt, which is identical to the local ionization rate S=ne within this time according to Eq. (2). The
figure shows that the ionization rate is slightly higher in the extended fluid model in the region of large ne (marked with
dashed circle), and lower in the region of small ne. Note that these differences appear while the electric fields are the same.

The analysis shows that the extended fluid model does not completely reproduce the particle model. This is understand-
able. The actual ionization rates S=ne depend on the energy distribution of the local electrons. The gradient expansion in the
ionization rate relates this energy distribution to the local field and to the electron density gradient. The single adjustable
function k1ðEÞ in this gradient expansion is chosen in such a way that an electron swarm in this field is well fitted. But an
electron swarm has a characteristic spatial profile in a given field. Regions inside the front might combine a given field with
a different density gradient for which the model has not been adjusted. A solution would be to allow for more adjustable
functions inside the fluid model by expanding in higher-order gradients. In the end, only a fluid model with infinitely many
adjustable functions would appropriately describe the averaged behavior of the particle model. We therefore conclude that
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the density gradient expansion is a substantial improvement of the fluid model, but that it does not contain the full physics
of the particle model.

An alternative improvement of the fluid model next to a gradient expansion was suggested to us recently (see acknowl-
edgement), namely the introduction of the energy equation. With the energy equation calculating the local mean electron
energies, the fluid model can describe how the electron dynamics depends on the mean local electron energies rather than
on the electric field [54,55,46,56–58]. In Appendix A, the fluid model with energy equation is used to follow the electron ava-
lanche in a constant electric field. Comparison of Figs. 6 and 15 shows that the extended fluid model follows the full particle
avalanche a bit better, but that the fluid model with energy equation fits the mean electron energies in the particle avalanche
quite well.

We now proceed to the hybrid model where the extended fluid model will be used only in the less critical inner region of
the streamer.
3. The hybrid model

Our goal is to build a fully 3D hybrid model for streamer channels, which couples the particle model with the extended
fluid model in space as shown in Fig. 1. With the experiments carried out for planar fronts, we would like to test our hybrid
concept, and find out how to apply the different models in suitable regions adaptively and how to realize a reasonable cou-
pling of those models. Since most of the electrons will be approximated as densities in the hybrid simulation, the problem of
the enormous number of electrons in a 3D particle streamer simulation can be reduced. Following the particles can still be a
heavy burden for a hybrid model. Therefore, the hybrid simulation will let the fluid model approximate most of the electrons
as densities and leave as few electrons as possible for the particle model, under the constraint of producing similar results as
the pure particle simulation.

In this section, we present the algorithm for the 1D hybrid calculation and discuss the numerical details. Two important
issues of the 1D coupling are discussed in detail: where particle and fluid model are to be applied, and how they should inter-
act with each other.
3.1. The hybrid algorithm

In our hybrid model, the particle model is used in the leading part of the ionization front and the fluid model in the rest of
the domain. Between them, we have a model interface. The position of the model interface can be chosen either according to
the electron densities or according to the electric field. This means that the model interface is either located at some electron
density level ne ¼ xne;max ahead of the electron density peak ne;max, or at some electric field level E ¼ yEþ where Eþ is the elec-
tric field ahead the front. In both cases, the real numbers x, y have to be chosen appropriately within the interval [0,1]. We
discuss this choice and the corresponding position of the model interface in detail in Section 3.3.

Suppose that the position of the model interface is located somewhere as shown in Fig. 1. As the streamer propagates
forward, because the electric field moves with the front, the model interface moves with the ionization front because we
keep it at ne ¼ xne;max or E ¼ yEþ. In this way, the particle model at any moment of the simulation follows only a limited num-
ber of electrons in the low density region of the ionization front. Because the computational costs of the fluid model are small
compared to the particle model, it is clear from Fig. 1 that we gain much efficiency in the hybrid model as compared to a pure
particle simulation.

The actual gain due to the hybrid method will be even more pronounced in the case of fully three dimensional simula-
tions. With this moving model interface algorithm, the hybrid model may simulate the full streamer dynamics in 3D without
using super-particles while remaining computationally efficient.

Once the position of the model interface is set, the interaction of the two models around the model interface needs to be
established. To simulate the electron flux crossing the interface between the two models, we introduced a so-called ‘‘buffer
region” which is created by extending the particle region one or a few cells into the fluid region. It has been used in [40–42]
for rarefied gases by coupling a Direct Simulation Monte Carlo (DSMC) scheme to the Navier–Stokes equation, and for other
applications [43,44] as well. The buffer region helps to build a pure particle description around the model interface, such that
the local particle flux in this region can be obtained as in a pure particle simulation. The particle flux across the model inter-
face influences the total number of particles in the particle model, and it will lead to a corresponding increase or decrease of
the density in the fluid model.

In this way, around the area where the two models are coupled, the electron flux in a pure particle simulation is main-
tained in the hybrid computation, while global mass conservation holds. However, to obtain an accurate flux at this interface,
the electrons in the buffer region near the interface should maintain a correct density profile and velocity distribution. In
many cases [40–42] the buffer region or a part of the buffer region at each time step have to be refilled or reconstructed with
a large number of electrons with artificial distributions in energy and space. Such a filling or reconstruction on the one hand
ensures a stable flux at the model interface, but on the other hand, it can create non-physical artifacts, which might cause
wrong results. In our approach, the generation of electrons from a kinetic prediction can be avoided. The details are pre-
sented in Section 3.4.
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Fig. 10 shows the flow chart of the hybrid computations. At the beginning of each time step, the particle density is known
in the fluid region and the individual particle information is known in the particle region and the buffer region. To update
them to the next time step, we first move the particles in the particle and buffer region one step further. The number of elec-
trons crossing the model interface is recorded during the updating. This counted flux is used as a boundary condition to up-
date the densities in the fluid region. To calculate the electric field, the particles in the particle region are mapped to the fluid
grid as densities. In the end, we check whether the model interface has to be moved. A more detailed explanation is given in
the following section.
3.2. Numerical implementation

In the particle model, the positions and the velocities of the electrons are updated with the leap-frog method. The electric
field is solved on a uniform grid G (the fluid equations are discretized on the same grid) with cells
Ci ¼ zi �
1
2

Dz; zi þ
1
2

Dz
� �

; i ¼ 1;2; . . . Mz; ð15Þ
where Mz are the number of grid points with cell centers at zi ¼ ði� 1=2ÞDz in the z direction, and Dz is the cell size.
The simulation begins with a few electron and ion pairs with a Gaussian density distribution. These initial particles are

followed only by the particle model in the beginning of the simulation. As new electrons are generated, the number of par-
ticles eventually reaches a given threshold, after which the simulation switches to the hybrid approach. The threshold in our
simulation is normally set to be several million electrons to ensure a satisfactory statistics. With proper transverse area A of
the system, the simulation with such number of electrons is already in the streamer stage, which means that a steady mov-
ing ionization front has developed and the charge layer at the streamer head totally screens the field inside the channel. In



Table 1
List of the transverse length lr (the transverse area is lr � lr), the longitudinal length of the system lz , the threshold number NT , and the time TT for the particle
simulation TO generatE NT electrons for a number of electric fields.

E (kV/cm) 50 75 100 125 150 175 200

lr ðlmÞ 55.2 41.4 27.6 23 18.4 13.8 9.2
lz (mm) 6.9 3.45 2.76 2.3 1.84 1.38 1.15

NT ð106Þ 3 3.2 3.5 3.8 4 5 7

TT (ns) �6.6 �1.2 �0.3 �0.18 �0.15 �0.12 �0.12
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Table 1, we summarize the transverse areas ðlr � lrÞ and the length of the system in front propagation direction lz for varying
fields, and we also list threshold numbers NT and the time ðTTÞ for the particle simulation generating NT electrons when
starting from 100 pairs of electrons and ions.

For the transfer from particle to hybrid simulation, we first determine the position of the model interface and the length
of the buffer region, which is chosen dependent on the field ahead of the ionization front as we will discuss later. Suppose the
model interface is chosen at zd ¼ d � Dz and the buffer region is on the interval ½zc; zd� as shown in Fig. 10, where
c; d 2 f1;2; . . . ;Mzg and c 6 d. The particles in the future fluid region in the interval ½z0; zd� are then averaged in this particular
time step to the densities on the grid G, while the particles outside the particle region and buffer region on the interval ½z0; zc�
are removed from the particle list. Note that in the buffer region ½zc; zd�, the electron and ion densities are calculated on the
underlying continuum grid while the spatial and kinetic information of the individual particles is also maintained.

Now a general time step in the further evolution is described. At the beginning of a time step lasting from tn to tnþ1, we
have the electric field En, the electron and ion densities ne;np in the fluid region and the positions of the particles in the par-
ticle and buffer region at time tn, and the velocities of these particles at time tnþ1=2 (since with the leap-frog algorithm of the
particle model, in the beginning of the time step, the positions x are known at tn and the velocities v at tnþ1=2). In step 1 (as
shown in Fig. 10), the particles in the particle region and the buffer region are first moved to tnþ1 taking the stochastic col-
lisions into account through the Monte Carlo algorithm. While updating the particle positions, the number of electrons cross-
ing the model interface is recorded.

Once all particle positions are updated to the next time step, in step 2 we also update the densities in the fluid model. The
continuum equations for the particle densities are discretized with a finite volume method, based on mass balances for all
cells in the fluid region on the grid G. Eq. (3) is used to compute the density fluxes on the face of each cell in the fluid region,
except the one at the model interface zd where the flux from the particle model is used. The ionization rate is calculated with
Eq. (8) in the extended fluid model. Given the fluxes on the cell faces and the ionization rate, particle densities at each cell in
the fluid region can be updated to the next step using Eqs. (1) and (2) with the non-local parameter functions ln, Dn and an.

The densities are calculated using the third-order upwind-biased advection scheme. The two-stage Runge–Kutta method
could be used with the given particle flux (which is an average flux over ½tn; tnþ1�). This will allow computations with larger
time step Dt, but it also requires two updates of the fluid densities and electric fields per time step. Since updating the fluid
densities needs the particle flux across the model interface as an input for the boundary condition, the two-stage Runge–Kut-
ta method is replaced by the simpler forward Euler method, as long as the chosen time step is small enough. The time step
and grid size in the hybrid simulation are chosen as the same as in the particle simulation and the fluid simulation, see Sec-
tion 2.2.2, i.e. as Dz ¼ 2:3 lm and Dt ¼ 0:3 ps, therefore the simulation results are compared with each other with the same
numerical discretization errors.

Now both the particle positions and the densities are known in the respective regions at time tnþ1. In step 3, the densities
in the particle region ½zd; zMz � are obtained by mapping particles to the grid G. How this is done, is discussed further below.
The particle densities are then known everywhere on the grid G and the electric field Ez at time tnþ1 can be calculated.

In step 4, the position of the model interface is determined either from the particle density or from the electric field cri-
terion. While the density profile and the electric field are updated from tn to tnþ1, the model interface may have to move one
cell forward or to stay still. With E+ = �50 to �200 kV/cm, the ionization front needs about 30 to 3 time steps to cross one
cell. That is, the model interface will on average stay at one cell face for 3–30 time steps before it moves to the next cell face.
If it stays still, the particles which fly out of the particle and buffer regions are removed from the particle list. If the model
interface moves one cell forward, the fluid region is extended one cell into the particle region. Meanwhile, the buffer region
also moves one cell forward and the region from zc to z0c becomes part of the fluid region, and particles there will be removed
from the particle list.

Finally we use Ez at tnþ1 to update the electron velocities inside the particle and buffer region to tnþ3=2. This finishes one
hybrid time step.

We would like to remark here that one should be careful about the technique of mapping the particles to the densities in
the particle region. One can use zero-order weighting by simply counting the number of particles within one cell, or first-
order weighting (also called Particle In Cell or PIC) [59], which linearly interpolates charges to the neighboring cells, or some
higher-order weighting techniques like quadratic or cubic splines. The particle model has been tested with various sizes of
time steps and cell sizes. The numerical discretization errors converge to zero as time step and cell size decrease when using
either the zero-order weighting or the first-order weighting, but the convergence was faster with first-order weighting. The
first-order mapping is the most used technique in particle simulations for plasmas because: ‘‘As a cloud moves through the
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grid, the first-order weighting contributes to density much more smoothly than zero-order weighting; hence, the resultant
plasma density and field will have much less noise and be more acceptable for most plasma simulation problems.” [59].
However, in the hybrid computation, the zero-order weighting guarantees total charge conservation in the system, while
the first-order weighting may cause charge loss or gain near the model interface when it is applied in a non-uniform density
region. Therefore, zero-order weighting is implemented in our hybrid model.
3.3. The position of the model interface

We have discussed the suitable position of the model interface in [29] where the particle model and the classical fluid
model were coupled in space. It was shown that in the front part of the ionization front, the mean electron energies in
the classical fluid model were lower than in the particle model, while behind the front the electron energies in both models
are in good agreement. Therefore, for a good agreement between hybrid and particle simulation, in the hybrid model the
fluid model can be used behind the front, and a sufficiently large part of the density decay region should be covered by
the particle model.

Now within the hybrid model, the classical fluid model is replaced by the extended fluid model. Since an extra non-local
term was introduced, such that the fluid simulation results are now closer to the particle results, we expect that a smaller
region needs to be covered by the particle model without changing the result of the hybrid model.

Fig. 11 shows the simulation results of an ionization front propagating into a field of Eþ ¼ �100 kV=cm; the left column
shows results of the old hybrid model and the right column those of the new hybrid model. The model interface is located at
three different positions: E ¼ yEþ where y = 0.6, 0.9, and 0.98, corresponding to the upper, middle and lower panel, respec-
tively. Both in the old and the new hybrid simulation, a long buffer region of 32 Dz has been used to ensure the stable inter-
action of the models at the model interface. On the left, the old hybrid model for y = 0.6 generates the same electron density
behind the front as the particle model, for y = 0.98 the same density as in the classical fluid model, and for y = 0.9 some inter-
mediate density; we recall that the density difference between particle and classical fluid model is 20% for this field. On the
right where the extended fluid model is used, the new hybrid model produces similar results as the particle model in all
three cases y = 0.6, y = 0.9 and y = 0.98.

The comparison shows that when the extended fluid model is used instead of the classical fluid model, the performance of
the hybrid model is largely improved. Using the extended fluid model in the hybrid computation, the particle model can fo-
cus on a smaller portion of the front where the electron density is much lower while the electron density behind the front is
still calculated with high accuracy. This greatly reduces the number of electrons that need to be followed in the particle re-
gion. It will give a substantial improvement of computational efficiency in a 3D simulation where millions of electrons will
be pushed into the fluid region when the fluid model can be applied further ahead within the front.
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Fig. 11. The hybrid model (dotted) coupled with the classical fluid model (left column) or the extended fluid model (right column) is compared with the
classical fluid model (dashed) and the particle model (solid) for a front propagating into a field of Eþ ¼ �100 kV=cm. The model interface is located at three
different levels of the field E ¼ yEþ with y = 0.6, 0.9, and 0.98 shown in the upper, middle and lower panel, respectively.
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To determine the proper position of the model interface, different positions have been tested in planar front simulations.
Fig. 12 shows the relative density differences defined in Eq. (14) between the hybrid simulation and the particle simulation
as a function of the position of the model interface; here the field ahead of the ionization front is Eþ ¼ �100 kV=cm. The
model interface is placed at an electron density level ne ¼ xne;max where x varies. For x = 1, the model interface is at the den-
sity peak ne;max of the ionization front. From x = 1.0–0.1, the model interface moves forward within the front, and x = 0 cor-
responds to a full fluid simulation. The full particle simulation is denoted as x = 1.1.

3.4. The buffer region

The particle model extends backward, beyond the model interface, into the buffer region where particle and fluid model
coexist; it supplies particle fluxes for the fluid model at the model interface, as illustrated in Fig 10. However, correct particle
fluxes require correct particle statistics within the buffer region whose length should be as small as possible to reduce com-
putation costs, but larger than the electron energy relaxation length [9].

3.4.1. Adding particles in the buffer region
As we have mentioned, to ensure a stable electron flux at the model interface, in general new particles need to be intro-

duced into the buffer region, that have to be drawn from appropriate distributions in configuration space. This would pose a
particular problem for the streamer simulation, since Maxwellian or even Druyvesteyn [60] distributions are inaccurate.
However, even for negative streamers, the electrons on average move somewhat slower than the whole ionization front,
which means that the electrons on average are moving from the particle region into the fluid region.

This is because in a pulled negative ionization front, the front velocity is determined in the leading edge of the front where
the electric field and therefore the electron drift velocity is highest. But the front velocity is determined by this maximal elec-
tron velocity plus an additional positive contribution of electron diffusion and impact ionization [19], therefore the front
everywhere is faster than the local mean electron velocity.

Suppose that when the computation is changing from the pure particle regime to the hybrid regime, we create a buffer
region which is long enough to relax most of the fast electrons. The particles in the buffer region are the heritage of the pure
particle simulation and will keep being followed by the particle model. Across one end of the buffer region, the model inter-
face at zd, particles move freely. But across the other end of the buffer region at zc , there are electrons flying out of the buffer
cells but no electrons enter, i.e. when the model interface stays still, the buffer cells are losing particles. If we add electrons in
the buffer region near zc to create a flux from the fluid cell zc�1 into the buffer region zc , although the particle loss is com-
pensated, these inflowing particles have hardly any influence on the flux across the model interface when zd � zc is sufficient
long. Once the model interface moves forward, those added particles near zc will fall into the fluid region and be removed
again.

This hypothesis has been tested in hybrid simulations with two kind of fluxes used at zc�1=2:

� No influx: electrons can only fly out over zc�1=2, but not fly back.
� Reflected influx: electrons that fly out over zc�1=2 fly back immediately with inverted velocity.

The hybrid simulation has been carried out for a planar front at �100 kV/cm with the model interface at
E ¼ 0:6;0:8;0:9Eþ. With a long buffer region of 10Dz, there is no influence of the inflowing particles. We even tested the arti-
ficial case of ‘‘double reflection influx”, where twice as many electrons fly back with doubled energies. Even then, there was
no notable influence.

So we conclude that if electrons move on average more slowly than the front, the electron loss at the end of a sufficiently
long buffer region does not affect the calculation of particle fluxes at the model interface. Therefore, the particles lost at the
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end of the buffer region can be ignored and new electrons do not need to be created artificially. This actually leads to a sim-
pler technique of model coupling in which the correct energy distribution of particles is not a concern any more. This tech-
nique is not only suitable for streamer simulations, but for all two phase problems where the front speed is higher than the
speed of the individual particles, as is generally the case in ‘‘pulled front” problems [34,35], cf. Section 1.3. For example, bac-
terial growth and transport, or wound healing as a front propagation problem can be treated in this way.
3.4.2. The length of the buffer region
A reasonable particle flux can be obtained without artificially adding new electrons in a sufficiently long buffer region. But

how long is enough long? Although electrons on average propagate slower than the model interface, the high energy elec-
trons at the tail of the energy distribution may move faster than the ionization front in a short time interval. The buffer re-
gion should be long enough that most of the fast electrons can relax to mean energies within this short time. The relaxation
length of the fast electrons at the ionization front has been discussed in [9]. It shows that three electron swarms with iden-
tical energies of 0.5, 5, or 50 eV, respectively, equilibrate within 2 ps through losing or gaining energy in collisions. If the
buffer region is very short, high energy electrons might enter from the fluid region and contribute to the flux on the model
interface, but since they are not be included in the buffer region, such short buffer region will result in a lower flux on the
model interface.

A stable flux can be obtained only when the buffer region is long enough to relax most high energy electrons to the local
energies within the buffer region. An upper bound for the mean forward velocity ðvzÞ of local electrons is the front velocity
v f 	 7� 105 m=s at �100 kV/cm. When an electron with 50 eV and with very small radial velocity components, i.e. with
vz 
 v r , relaxes to the local electron energy, its velocity in the forward direction v 0z decreases from� 4� 106 m=s to v f with-
in 2 ps, and it propagates 2� 10�12 � ðv 0z þ v f Þ=2 ¼ 4:7 lm, which is approximately 2 cells.

Experiments with different lengths of the buffer region are shown in Fig. 13. Here we plot average flux, density and mean
energy of the electrons at the model interface for buffer regions of different lengths. The field ahead the front is
Eþ ¼ �100 kV=cm and the position of the model interface is at E ¼ 0:9Eþ. It is clear that as the length of the buffer region
increases, not only the flux densities, but also the electron density and the mean electron energy converge to their limit val-
ues. Our computational cells are 2:3 lm long, and a buffer region with the length of 2 cells can already give a reasonable flux
at the model interface.
4. Simulation results in different fields

Having presented our hybrid simulations of the front propagating into a field of Eþ ¼ �100 kV=cm in detail, we now sum-
marize results for fields ranging from �50 to �200 kV/cm.

In Fig. 14, we present the relative density discrepancies ðn�e;part � n�e;hybrÞ=n�e;part of the saturated electron density n�e behind
the ionization front for different fields; here hybr denotes hybrid simulations and part particle simulations. For each field, the
model interface has been placed at electron density levels ne ¼ xne;max, with x = 1.0, 0.9, . . . ,0.1. A long buffer region with 32
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Table 2
The proper position of the model interfaces for different fields, where ne ¼ xne;max .

Eþ 50 75 100 125 150 175 200
x 0.5–0.9 0.55–1.0 0.6–1.0 0.65–1.0 0.7–1.0 0.8–1.0 0.9–1.0
Tested x 0.5 0.55 0.6 0.65 0.7 0.8 0.9
Buffer cells 1 1 2 2 2 3 3
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cells was used in the hybrid calculation to ensure a stable flux at the model interface. Two horizontal dashed lines have been
added at ±5% to assist the choice of the proper position of the model interface. For example for a field of Eþ ¼ �125 kV=cm,
the relative density difference is limited to ±2% even if only a very small part of the front x = 0.1 is covered by the particle
model. But due to the flux convergence problem discussed in Section 3.4, the model interface will be put slightly more back-
wards to have a stable flux in our actual hybrid computational model, as the computational costs are actually determined by
the position of the back end of the buffer region.

We summarize the proper positions of the model interfaces for different fields in Table 2. With the positions chosen from
this table, we have tested different lengths of buffer regions. For the buffer lengths given, the electron flux, density and mean
energy lie not more than 2% off the limit of a very long buffer region.
5. Conclusion

The particle model contains all essential microscopic physical mechanisms of a streamer ionization front, but the com-
putational effort increases with the growing number of particles and rapidly exceeds computer memory. Gathering many
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real particles into one super-particle is not an option, as it causes wrong statistics and causes numerical artifacts. The fluid
model is much more efficient than the particle model since the particles are approximated as continuous densities, but par-
ticle density fluctuations and large deviations of individual electron energies from the mean are not modeled. To combine
the computational efficiency of the fluid model and the full physics of the particle model, a spatially hybrid model has been
implemented for planar fronts. The hybrid model uses a particle model in the leading part of the ionization front where the
total electron number is low and the field is high, and an extended fluid model for the rest. Once the scheme is extended to
3D, it can represent particle number fluctuations in the leading edge that might play a role in accelerating the branching
process, or it can follow the run-away of individual electrons from the front as a possible cause of X-ray bursts and gam-
ma-ray flashes.

For constructing the hybrid model, the fluid model has been extended with a density gradient term in the impact ioni-
zation term. This extended fluid model has been introduced as an alternative to the classical fluid model, since it maintains
an electron flux that is consistent with the particle model. Both avalanche experiments and planar front experiments confirm
that the extended fluid model should be used in the hybrid calculation rather than the classical fluid model. (The fluid model
with energy equation is discussed in Appendix A as a possible alternative.)

The hybrid algorithms and our numerical implementation are discussed in detail, in particular, the position of the inter-
face between particle and fluid model, and the construction of the buffer region at the interface. After testing the hybrid
model at �100 kV/cm, we also present the hybrid simulation results for other fields, resulting in recommendations for
the position of the model interface and the length of the buffer region in future 3D simulations.

Although the spatially hybrid model is discussed in the context of streamer simulations, we would like to emphasize two
particular points that are generic for pulled front problems. 1. When particle avalanches are used to calculate the transport
and reaction coefficients for the fluid model, particle or fluid fronts agree particularly well, as they have the same front shape
as a particle avalanche; this property holds only for pulled fronts and not for pushed or bistable fronts. 2. As the electrons on
average move backward in a frame moving with the front velocity, the problem of creating particles with proper statistics in
the buffer region does not need to be solved. This problem here would be particular severe, as the distribution of electron
energies and velocities are far from thermal and not even in equilibrium with the local electric field. But in many other cases,
the distribution of inflowing particles is unavailable or difficult to obtain as well. The simplified coupling approach here of-
fers an alternative for those problems without having to consider the influx on the back end of the buffer region.
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Appendix A. The electron energy equation

A set of moment equations can be derived from the Boltzmann equation, in which the most significant quantities are the
density, momentum, and energy of the electrons. The Boltzmann equation is of the form
@f
@t
þ v � rrf þ

F
m
� rvf ¼ @f

@t

� �
c

; ð16Þ
where f(r,v, t) is the distribution function of the considered charged particle depending on time t, position r and velocity v, m
is the particle mass, F is the electrical force exerted on the particle, and the term in the right hand side of Eq. (16) is the time
rate of change of f due to collisions.

The evolution of electron density, electron average momentum and electron mean energy are defined by the zero-, first-,
and second-order moments of the distribution function [61,62]. For example, the density equations in the classical fluid
model, Eqs. (1) and (2), can be deduced from the Boltzmann equation by integrating Eq. (16) over dv. The momentum equa-
tion can be obtained by multiplying Eq. (16) by mv and integrating over dv; The energy equation can be obtained by mul-
tiplying Eq. (16) by m

2 v � v and integrating over dv.
Here we will mainly discuss the electron energy equation as a potential solution for the non-local effects reported in this

paper and in [9]. We have shown in [9] that in the particle simulation, the mean energies of local electrons at the front are
higher than in the classical fluid simulation, both in the electron avalanche and in the planar front, see Figs. 7 and 10 in [9]. In
Section 2.2.2, we concluded that the local field and the local density approximation are not sufficient to describe the non-
local spatial energy distribution appearing in the particle simulation, which causes the flux discrepancy between the particle
and fluid description in a hybrid calculation, see Section 2.2. This problem is addressed by an extended fluid model which
approximates the non-equilibrium ionization rate with a density gradient term, see Section 2.3. However, since the electron
behavior (drift, diffusion, and collision frequency) is determined by the electron energies, that are approximated by the local
electric field, the equation for the local mean electron energy is here explored as an alternative to the gradient expansion.
The energy equation can describe the non-equilibrium behavior of electrons in an electric field if (i) the transport and reac-
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tion coefficients can be approximated as functions of the mean electron energies, and (ii) the electron mean energies are cal-
culated with an electron energy equation.

We first review the transport coefficients and redefine the electron flux je and ionization source term S in the density Eqs.
(1) and (2)
je ¼ �lð��ÞEne � Dð��Þ � rne; ð17Þ
S ¼ jnelð��ÞEjað��Þ; ð18Þ
where the transport coefficients l and D, and the ionization rate a are now functions of the mean electron energy ��.
The electron energy equation has been used in various plasma simulations, for example, for rf (radio frequence) dis-

charges [56,63–65], for lamp breakdown processes [66], and also for streamers [67,46,57]. The equation has the general
form:
@ðne��Þ
@t

þr � j� ¼ �eje � Eþ
@ðne�Þ
@t

� �
c
; ð19Þ
where j� is the energy flux (not to be confused with je), and @ðne�Þ
@t

� �
c

represents the total energy loss due to collisions.

The energy flux can be written in drift–diffusion form similarly to the density flux as
j� ¼ �l�ð��ÞEne��� D�ð��Þrne��; ð20Þ
where the l� and D� are the energy mobility and the energy diffusion coefficients. Many fluid models in the literature
[67,56,63,64,66,65] use the energy transport coefficients given by
l� ¼
5
3
l and D� ¼

5
3

D: ð21Þ
These approximations can be derived by assuming a Maxwellian EEDF, a constant momentum-transfer frequency and con-
stant kinetic pressure [57,58].

Concerning the energy collision term, the rate coefficients can be directly obtained from electron swarm experiments. The
rate coefficients for excitational and ionization collisions are calculated in the form of Townsend coefficients akð�Þ, where k
stands for the kth inelastical collision type with the energy loss �k. If we have m electron-neutral inelastical collision pro-
cesses, the time rate of change of electron energy due to collisions is the following:
@ðne�Þ
@t

� �
c
¼
Xm

k¼1

jjejak�k: ð22Þ
A practical form of the energy equation is,
@ðne��Þ
@t

þ 5
3
r � ðje

��Þ ¼ �eje � E�
Xm

k¼1

jjejak�k: ð23Þ
The energy equation coupled with the density equation is then solved for an electron avalanche. The simulation results are
presented in Fig. 15. As in Section 2.2.2 and Fig. 6, a small electron swarm is first generated by the particle simulation at
t ¼ t1, then fluid model and particle model follow it to t ¼ t2. Plotted are the same quantities as in Fig. 6 plus fluid and par-
ticle results for the local mean electron energies at time t2, the particle results for the electron energy were first reported in
Fig. 10 in [9].

As shown in Fig. 15, the fluid model with energy equation generates a similar swarm as the particle model while small
differences remain in velocity and maximum electron density. The local energy description in particle simulation and fluid
simulation agrees surprisingly well. Note that this nice agreement is obtained when the energy flux coefficients adopt the
commonly used approximation as shown in Eq. (21), where the electron energy distribution function is assumed to be Max-
wellian, though previous studies have shown that the electron energy distribution function is not Maxwellian during an ava-
lanche in the high field, cf. Fig. 3 in [9].

The energy equation is an alternative for the gradient expansion or vice versa, since both methods can describe the devi-
ation of electrons from the local field approximation. The deviation has been addressed as the ‘non-local’ effect in the density
and field gradient approach [48], or as the ‘non-equilibrium’ effect in the multi-moment equation approach [55,46,57],
which shows the two different perspectives of these two approaches.

Which approach is better in the hybrid model? The accuracy of the coefficients plays an essential role. The electron ‘non-
local’ rate coefficients ki in Eq. (7), including all combinations of the density gradients and field gradients, have been calcu-
lated by solving the Boltzmann equation in a two-term approximation [47]. Some authors working with the energy equation
[68,69,58] also avoid the commonly used energy transport coefficients approximation in Eq. (21), and calculate them more
precisely using the two-term Boltzmann equation approximation. However, it is not clear, how consistent the calculated
coefficients from the two-term Boltzmann equation are with the particle description, while consistency is important for
the hybrid coupling. When the classical fluid model is extended with the first and most important term in Eq. (7), the density
gradient, the rate coefficient of this term can be easily calculated from the particle swarm experiment. Since this simple
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extension already brings a good agreement in electron flux and since it is sufficient for the hybrid coupling, more gradient
terms or the energy equation are not introduced in the fluid model in this paper.
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