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Segment Motion in the Reptation Model of Polymer
Dynamics. I. Analytical Investigation

I. INTRODUCTION

The reptation concept, introduced long ago by De Gennes,(1) has become
a basic scenario of polymer dynamics. It deals with the motion of a flexible
chain surrounded by a network of impenetrable obstacles. Originally it has
been proposed for understanding the diffusion of a polymer through a gel,
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We analyze the motion of individual beads of a polymer chain using a discrete
version of De Gennes' reptation model that describes the motion of a polymer
through an ordered lattice of obstacles. The motion within the tube can be
evaluated rigorously; tube renewal is taken into account in an approximation
motivated by random walk theory. We find microstructure effects to be present
for remarkably large times and long chains, affecting essentially all present-day
computer experiments. The various asymptotic power laws commonly con-
sidered as typical for reptation hold only for extremely long chains. Further-
more, for an arbitrary segment even in a very long chain, we find a rich variety
of fairly broad crossovers, which for practicably accessible chain lengths overlap
and smear out the asymptotic power laws. Our analysis suggests observables
specifically adapted to distinguish reptation from motions dominated by dis-
order of the environment.
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but it widely is used also to analyze the dynamics of polymers in a melt or
in a dense solution. A recent review may be found in ref. 2.

The basic idea is best explained for polymer diffusion through a gel
that is swollen by some solvent. The gel consists of polymer strands that
are chemically linked together to form a three dimensional network. In the
solvent filled space between the strands some free chain not chemically
linked to the gel may exert a Brownian motion. The hard core interaction
with the strands of the gel constrains this motion to a "tube" that is defined
by the strands surrounding the instantaneous chain configuration. Due to
crosslinking, these 'topological constraints' are essentially fixed. (The ther-
mal motion of the gel is neglected.) The array of topological constraints
forming a tube around the instantaneous chain configuration is one impor-
tant ingredient of reptation. The second important ingredient of De Gennes'
theory is the specific mechanism of microscopic chain motion within the
tube. Since the chain is highly flexible, it cannot move as a whole like a
rigid body, but it moves through thermal displacements of individual
segments. It also does not lie stretched in its tube, but as a consequence of
flexibility and entropy, there will be a finite density of small wiggles or side
loops of "spared length." These wiggles, called "defects" by De Gennes,
exert a diffusive motion along the chain and thus along the tube. This is
taken as the basic dynamical mechanism.

If a defect reaches a chain end, it can be destroyed, thus prolonging the
tube by its spared length in some random direction. A chain end can also
contract into the tube, thus creating a defect and destroying the end of the
previous tube over a distance of its spared length. This mechanism results in
a thermal motion of the chain ends, which gradually destroys the original
tube until finally the chain has found a completely new configuration.

Accordingly, the calculation of dynamical correlation functions in the
reptation model can be decomposed into two well separated steps. The first
step is the one-dimensional diffusion of conserved defects along the chain
as the basic thermal motion. This yields the curvilinear displacement of
some interior segment along the tube, and tube renewal at the chain ends.
The second step consists in embedding the segment displacement into real
space by taking the (equilibrium) random walk configuration of the chain
and thus of the tube into account.

Treating defect dynamics in a continuum approximation, De Gennes'"
showed the existence of several characteristic time scales and derived
asymptotic power laws. We here recall some of the results, using notation
adequate for a discrete chain composed of N segments.

There emerge three characteristic time scales. A microscopic time
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These predictions therefore concern long chains and times large on micro-
scopic (T0) or even mesoscopic (T2, T3) scales. Similar results for other
quantities like the motion of the center of mass have also been derived.

Much work has aimed at extracting these power laws from simulation
data or physical experiments on polymer diffusion mostly through melts,
dense solutions, gels or spatially fixed, but disordered configurations of
obstacles. On a superficial level, the expected behavior is seen, but closer
inspection proves the outcome to be inconclusive. For instance, for the
central bead of the chain one finds some slowing down of the motion that

Note the asymptotic nature of these results. In precise mathematical terms
the first line of Eq. (1.2), for instance, reads (we use the notation J=j/N):

The bar indicates the average over all defect motions along the chain, and
the pointed brackets denote the average over all tube configurations. The
reptation model predicts

is known as "reptation time." Time intervals of the order of T3 are needed
to completely destroy the original tube.

We now consider the average displacement in space of some internal
bead j of a chain of length N:

is of the order of the Rouse time, i.e., the longest relaxation time of a free
chain. In the present context it, however, has a quite different interpreta-
tion: It is the time a defect needs to diffuse over the whole length of the
chain. The third scale

is needed for the chain motion to feel the constraining environment. For
shorter time intervals the chain does not properly realize that it is confined
to a tube. A second time
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according to most simulations in some intermediate range seems to follow
an effective power law

This regime immediately is followed by a smooth crossover towards free
diffusion: g1~t, with no proper indication of a t1/2-regime. For the center
of mass motion the results likewise are unsatisfactory.

The interpretation of these results is quite ambiguous. In melts and
dense solutions a slow relaxation of the surrounding medium, known as
"constraint release," will play a role.(3) For gels, there exist hints that some
types of disorder may strongly modify the chain dynamics.(4-7) Also a quite
trivial effect should be noted: The bead motion of a simple Rouse chain in
a straight tube of finite diameter shows a crossover from three dimensional
motion at short times to one dimensional motion at larger times, that
closely resembles simulational results found in the literature, but that has
little to do with reptation. Nevertheless two results of the simulations
deserve special interest here: Following the change of chain configurations
with time, Kremer and Grest(8) convincingly demonstrated that the tube
concept is valid even in melts. Again in a simulation of melts, Shaffer(9) did
a controlled study of the influence of chain impenetrability, showing that it
strongly modifies the motion of a test chain.

This situation clearly longs for a detailed study of the pure reptation
scenario, suppressing all additional background effects. A first notable
attempt was undertaken by Evans and Edwards.(10) Their work, however,
suffered from short chains and poor statistics. In their model they con-
sidered the motion of a random walk chain on a cubic lattice with a second
(dual) cubic lattice (with lattice points on the centers of the cubes of the
original lattice) representing the obstacles. The two-dimensional version of
the model is shown in Fig. 1. We have carried through new extensive
simulations of this model, and our results are described in detail in a
second paper.(11) Here we only note that we indeed find a t1/4-regime, (as
well as indications of a t1/2-regime), but even under the most favourable
circumstances it is fully developed only for quite long chains and sur-
prisingly long times.(12) Most of the time regime is covered by broad cross-
over regions.

To understand these results, it needs a more detailed analytical evalua-
tion of the reptation model, giving quantitative results for functions like
g1( j , N, t) also outside the asymptotic limits. Particular attention should be
paid to the time regime t<T2, since present day simulations for long
chains hardly can reach the regime t>T2. Furthermore we should look
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Fig. 1. The Evans-Edwards model in 2 dimensions: A piece of a chain on a square lattice,
showing two hairpins. The crosses indicate the obstacles. The hairpins are the mobile units
corresponding to the "defects."

for quantities which allow for a clear distinction between reptation and
Rouse-type motion in a disordered environment. The present work is
devoted to that task.

In view of the (computer-) experimental situation we also should
account for short time effects. Though these effects to some extent will
depend on the microscopic model, it for the interpretation of the data is
most important to get some feeling for their typical character and range.
We thus use a fully discretized version of the original De Gennes model,
adequate for an ordered lattice of obstacles. Depending on the time regime
we calculate g 1 ( j , N , t ) and related quantities either rigorously or in a
seemingly quite good approximation. For large times some of our results
with small modifications also could be extracted from equations given in
ref. 1. As shown in the second paper(11) our analytical results perform very
well in explaining the Monte Carlo data. They thus provide a firm basis for
the study of polymer motion through more complicated environments like
melts or a disordered background. A short account of some of our analyti-
cal and numerical results has been published in ref. 12.

We should delimit our work from two related, but different lines of
approach. Rubinstein(13) proposed a similar lattice model, that nowadays
widely is used in the theory of electrophoresis. Compared to his model
our approach is simpler, since without external fields the defect motion
decouples from the chain configuration. As a result, we can calculate
dynamic correlation functions analytically. Doi and Edwards,(14) in their
work on melts, retained the tube concept but abstracted from the specific
dynamical mechanism of defect motion. They consider the diffusion of a so
called "primitive chain," which is a fictitious object fixing the tube con-
figuration. In the large time regime t» T2, this approach is equivalent to
De Gennes' model, but for shorter times the intrinsic dynamical mechanism
should not be ignored. Doi(15) extented this theory by adding internal
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Rouse dynamics, thus considering a (stretched) one dimensional Rouse
chain in a tube. If we ignore the discreteness of the defect motion, our
results reduce to those of this model, and for those aspects of the tube
renewal specifically considered in ref. 15, we then find similar results.

This paper is organized as follows. In Sect. II we define our model,
and we derive expressions for physical observables. We mainly will con-
sider the single-bead motion. Quantities like the center of mass, which
involve two-bead correlations, in principle are accessible also, but will not
be considered here. In Sect. III we derive the generating function of the
moments of the single bead motion. It yields rigorous expressions for quan-
tities like g1( j , N, t), as long as the bead j on average still sits in a part of
the original tube. The analytical and numerical evaluation of our results in
that time regime is contained in Sect. IV. Section V deals with end effects,
presenting a step towards the description of tube renewal. The calculation
of g1(0, N, t) amounts to determine the average maximal value within the
time interval [0, t] of a correlated stochastic process. For this problem no
rigorous solution is known. We use a "mean hopping rate" approximation,
that is rigorously valid for uncorrelated, i.e., Markovian processes. In the
same spirit, we then evaluate the effect of tube renewal on some arbitrary
bead j for times t <T3, and we estimate the reptation time T3. Finally
Sect. VI summarizes our findings. Some useful formulae and more com-
plicated calculations are presented in appendices.

II. MODEL AND OBSERVABLES

A. Construction

In constructing our model, we are guided by reptative motion of a lat-
tice chain. Assume for simplicity that the chain is represented by a random
walk of N steps (segments) on a square lattice of lattice constant *f0. The
configuration is fixed by the bead coordinates {r0(t),..., r N ( t ) } , which give
the positions of the N + 1 endpoints of all the segments. A lattice of
impenetrable obstacles occupies the centers of the cells of the first lattice,
see Fig. 1. The obstacles exclude any kink jumps or more complicated
modes of motion, and leave only tips of hairpins, i.e., beads j with
T J + 1 =rj_1, free to move. rj then can move between all sites neighboring
rj-1. If the hairpin happens to lie down on the chain, it can stand up on
a different bead, and so diffuse along the chain. If a hairpin (i.e., a "defect")
diffuses across a bead, it displaces it by the spared length 2f0 along the
chain configuration. Of course, also the endpoints are free to move, and at
the ends hairpins are created or destroyed. In our simulations we used the
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three-dimensional version of this model, that originally was proposed by
Evans and Edwards.(10)

Abstracting from this concrete realization, we consider the chain con-
figuration as a random walk of N segments of fixed length l0, that hence-
forth will be taken as the unit of length. The defects are modelled as par-
ticles sitting on the beads of the chain. Each particle represents a defect of
spared length ls. It can hop to each of the two neighbouring beads along
the chain with probability p. For a given particle, the other particles are
assumed to be just a part of the chain, so the particles do not interact, and
each particle diffuses not along a primitive chain, but along the whole ran-
dom walk configuration of the chain with length N, which corresponds to
a physical chain of length N + ls. This allows us to take independent
averages over the particle diffusion along the chain and over the random
walk configuration of the chain in embedding space. We introduce the
equilibrium density p0 of particles as the average density of particles per
bead. The assumptions of the model will be further discussed in Subsect.
II.B below.

As pointed out above, at the chain ends (beads 0 and N) defects can
be destroyed or created. We can turn this grandcanonical problem into an
easier treatable canonical one by coupling the chain ends to large virtual
particle reservoirs, located at bead 0 or N, respectively. A particle may hop
from bead 1 ( N — 1 ) into reservoir 0 (N) with probability p. It may hop out
of the reservoir onto the chain (from 0 to 1, or from N to N — 1 , resp.) with
probability pres. We put M particles into the system. Taking pres -»0 and
M-> oo, with pp0 = p r e sM/2 fixed, each reservoir becomes a source of par-
ticles hopping independently into the chain and also a sink absorbing
particles from the chain end, such that the proper particle dynamics at the
chain ends is achieved. This canonical formalism allows a very simple
calculation of the displacement of some bead through simple book keeping
of the change of particle number on one side of the bead.

The calculation of the displacement of a bead j thus decomposes into
three steps: (i) Calculate the motion of an individual particle on the one-
dimensional chain, (ii) Calculate the balance of particles, that have moved
over the bead j within the time of consideration, (iii) Determine from this
balance the displacement of the bead in three-dimensional embedding space.

Let us first characterize the motion of the individual particles on the
chain. P 1 ( j , t) is the probability, that a given particle at time / sits on bead
j, 0 <j< N. This probability develops in (discretized) time according to the
equation



where n±(j, t) is the number of particles that have passed over bead j
within time interval [0, t] from the "left" ( j ' < j ) or from the "right"

So far we have defined a standard and readily solved problem of hop-
ping dynamics. The special features of reptation emerge when we turn to
the physical observables, filling in steps (ii) and (iii). We first consider the
motion of a bead j within a time interval short enough that it stays in the
tube defined by the initial configuration {ri(0)}. (See Fig. 2.) At time t
the displacement of that bead along the tube is given by

and results in

This fixes pres

for 1 ̂  j<,N — 1. We have defined the equilibrium density of particles on
the chain (beads 1 to N- 1) to be p0, and we thus have for any one of the
M particles

The normalized stationary solution of Eq. (2.1) takes the form

with the hopping matrix for all 0 ^ j ^ N
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Fig. 2. Reptational motion. The full line gives the initial chain configuration. The broken
lines are the new parts found at time t. Arrows point to j< or j>, respectively. The motion
of a bead in the original tube is indicated, by its initial (heavy dot) and final (shaded circle)
positions.

j'> j), respectively. (Thus n(j, 0) = 0 by definition.) Since the tube con-
figuration itself is a random walk, bead j in real space is displaced by a
random walk of 4 \n(j, t)\ steps. We thus find

We here and in the sequel pay no special attention to the situation where
at time 0 or t a particle sits right on top of bead j. In comparison to
experiments such configurations will yield a small time independent con-
tribution to g1( j , N, t), (which we discuss further in ref. 11).

We now turn to the motion of the ends of the chain. This intrinsically
is the problem of tube renewal. We again consider the situation of Fig. 2,
where at time t a part of the original tube still exists that at time 0 was
formed by the beads j <<;}' ^j>- (Note that j is an index of the bead at
all times, and of the tube at time t = 0.) We concentrate on the motion of
chain end j = 0. The length j < on which the original tube is destroyed from
the left till time t, is determined by the minimal particle occupation of
reservoir j = 0 within time interval [0, t], or equivalently by the maximal
contraction of the chain into the tube
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The newly formed piece of the tube at time t has length j < — l s «(0, t). Thus
the end bead effectively has been displaced by a random walk of length
2j< —ls «(0, t), and we find

Since the particle motion obeys detailed balance, the stochastic process
n(j, s) is invariant under a change of sign, and the last contribution in
Eq. (2.11) averages to zero. Our final expression reads

An end bead is immediately subject to tube renewal. If we now con-
sider some internal bead j, 0 < j ^. N/2, it initially will move within the
original tube, but will feel the tube renewal for sufficiently large times. In
discussing this superposition of the two modes of motion we assume t<T3,
such that a part [ j < , . / > ] of the original tube still exists. Furthermore we
restrict ourselves to j<N/2, so that beady is affected by tube renewal from
the closer chain end 0 only. For a given realization of the stochastic process
we have to distinguish two situations, corresponding to the two cases
discussed above:

(a) j < < m a x { j , j + l s n ( j , t ) } , i.e., either the initial position or the
end position of bead j at time t is still in the original tube. Then
the bead is displaced by a random walk of ls \n(j, t}\ steps.

(b) j,. >max{j, j + l s n ( j , ?)}. The bead is displaced by a random
walk of (j,. -j) + (j< -j-tsn(j, t)) steps.

Combining these results and taking averages we find (recall Eq. (2.9))

where we introduced the discrete ©-function

It is easily checked that this expression generalizes the special cases dis-
cussed above. Equations (2.8), (2.12), (2.13) are exact expressions in our



Segment Motion in Reptation Model of Polymer Dynamics. I 1335

reptation model. They hold as long as a part of the initial tube survives,
i.e., for times t < T3.

B. Discussion

Our model is no one-to-one transcription of any model used in
simulations. Some modifications have been mentioned above: The particle
moves along an effective chain of length N, the physical chain being longer
by the spared length of the corresponding defect. If a particle sits right on
top of bead j, the spatial position of the corresponding bead of the physical
chain may differ from r, by a vector of length ls/2. Also end beads can
move around without forming a defect, a motion not taken into account.
All these effects, however, are relevant for the motion on microscopic
time scales only, and they can easily be corrected for in comparison with
experiments. Furthermore our model implicitly assumes a tube of micro-
scopic diameter ~/0, leading to pT 0 x1 . We will see, however, that the
discrete nature of the motion is felt for much longer times.

The assumption of noninteracting particles may be more serious. Even
in a random walk chain, realistic defects experience a kind of interaction,
if they meet on the chain. They may merge and form a larger defect, which
has to decay before the defects can travel on. This corresponds to a scattering
process in the particle picture. In our model the average effect of these
processes is absorbed into the effective hopping rate, which is a model
parameter that sets the elementary time scale. Only anomalously large fluc-
tuations in the local defect density could invalidate our results. Since we are
concerned with the dynamics under equilibrium conditions, we can estimate
the probability of such fluctuations from the equilibrium configuration of
a random walk on a hypercubic lattice. For a simple estimate note that the
density of defects is proportional to l/(2d) with 2d the coordination
number of a hypercubic lattice. The probability of larger defect structures
is found to decrease exponentially with the number of defects involved. We
therefore expect that the scattering processes do not seriously affect the
model.

We also would like to comment on two questions related to the basic
philosophy of the approach. Firstly, where in our model does the assump-
tion of a regular lattice of obstacles come into play? This happens in two
ways. If the obstacles are irregularly distributed in such a way that they
occupy some spatial volume otherwise accessible to the polymer, the polymer
or parts of it might be confined to entropic traps. As a consequence the
simple random walk type embedding of the tube into real space is invalid.
A second effect of disorder is present even for purely topological constraints,



where vw0.588 is the excluded volume (Flory) exponent. A more accurate
treatment should build upon the known internal correlation functions of
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which hinder the motion but exclude no finite space for the static polymer
configuration: In such an environment, the random walk configuration of
the chain is unchanged, but the mobility of the defects depends on their
spatial position. Both effects effectively couple the defect motion to the
chain configuration.

Secondly, we comment on our notion of the tube. In a lattice model
like that described at the beginning of this section and in Fig. 1, the tube
may be defined as the non-reversal random walk configuration of the chain
constructed by cutting off all hairpins, double hairpins, etc. Since, however,
defects have to move along the whole chain, not only along its backbone,
the thus constructed tube has no immediate relevance for the microscopic
motion. We thus here use the word "tube" as synonymous to the instan-
taneous full random walk configuration of the chain. This definition allows
us to proceed much further in our analytical approach.

We finally comment on the generalization of our model to self-repelling
(excluded volume) chains. First of all, if the reptation model is applied to
melts or dense solutions, it is typically argued, that the self-repulsion of the
individual chain is screened by the presence of the other chains, such that
each chain, though repelling, has a random walk configuration over longer
distances. In an regular array of fixed obstacles, however, self-repulsion has
nontrivial effects. Technically, we have to distinguish the effect of the
repulsion among beads spaced a small or a large distance along the chain.
On small distances, \j1\—j2\ = O(1) , the repulsion among beads j1, j2 will
change the precise physical realization of the defects as well as their
density, and it will lead to a readjustment of the effective hopping rate,
similar to the scattering processes addressed above. This consideration also
applies to models for melts etc. The nontrivial aspects of the excluded
volume problem, however, are due to interactions of beads spaced far along
the chain. Now it is known that the excluded volume interaction decreases
the probability of close encounter of such pairs of beads, to the extent that
the number of close encounters, appropriately corrected for the effects
of pairs close along the chain, vanishes for an infinitely long chain.(16)
The excluded volume therefore should have no nontrivial influence on the
defect dynamics. Only the static configuration of the chain must respect
excluded volume statistics. We thus conclude that Eq. (2.7), for instance,
for an excluded volume chain in a regular obstacle lattice to first approxi-
mation should be replaced by



where Q( • • •) is a single particle contribution.

This expression is valid for all j including j= 0 and N. j(m, s) is the bead
where the mth particle sits at time s. Equation (3.3) thus expresses n(j, t)
in terms of single-particle coordinates.

Since the M particles move independently, we now can rewrite Eq. (3.2)
as

To find a manageable expression for n(j, t), we now take advantage of
the fact that by construction of the model, the number of particles is
conserved. We thus can calculate n(j, t) as the change in the number of
particles found at positions j' ^j:

as well as the generating function

To calculate the thermal displacement g1 ( j , N, t) in space of a bead j
of the chain, we have to control the stochastic variables n(j, t) and n(0, s)
for 1 ̂  s < t of particle motion along the chain. We thus introduce the dis-
tribution function

III. GENERATING FUNCTION AND MOMENTS

the excluded volume problem. Our other expressions are subject to similar
modifications.
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where in the last line we used Eqs. (2.2), (2.5), (2.6). The factor of x
accounts for the fact that j0 = 0 < j, whereas j, - j' > j. Furthermore, after
the particle has left the reservoir, each time step s' contributes a factor xs'..

Aiming at the limit M->oo, we need to calculate Q ( • • • ) including
terms of order 1/M. Since both the hopping rate pres from a reservoir onto
the chain and the probability P(eq)(j0) with 1 ^ j 0 ^ N — 1 to find the par-
ticle on the chain initially, are of order 1/M (cf. Eqs. (2.4), (2.5)), we need
to consider two types of processes only:

(i) The particle sits on the chain at time t = 0. If during its walk it
is caught by a reservoir, it is not allowed to leave it again.

(ii) At t = 0 the particle sits in a reservoir. It may leave it, but if its
caught by a reservoir again, it may not jump on the chain a
second time.

The contributions of these processes are easily expressed in terms of the
Green's function for the particle walking on the chain.

Here W^ is the matrix W (Eq. (2.2)), restricted to the subspace 1 < j,
j' ^N~ 1. To give an example we consider a special process of type ii):
namely that the particle sits in reservoir 0 at time 0, and on some bead j'
with j<j'<N at time t, i.e., still on the chain, but on the other side of
bead j. The contribution of all such processes to Eq. (3.5) reads

(Note that from Eq. (2.14), 6>(0-js) = < 5 p / , j s ^ 0 ) . Here js is the position
on the chain where the particle considered sits at time s. Writing out the
average explicitly, we have to evaluate the expression

Ebert et al.1338
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All other possible processes can be evaluated in the same way. The calcula-
tion is straightforward. The expressions can be simplified by using the well
known explicit form of Gffi(s):

We here only summarize the final results for (3.5):



We here used Eqs. (A.7), (A.12) of Appendix A to evaluate summations
over A 2 ( S ) and A3(j,s). In the limit ,v-> oo and ps fixed, %•(.?) reduces to
the propagator of the bead motion in a one dimensional Rouse chain of
length N — 1 . For the moments which can be derived from Qv, we in this
limit recover the results of the model of a Rouse chain in a tube.

Returning to our full expressions we note that the simplest quantity of
interest to us in the sequel, is the distribution of n(j, t), irrespective of the
occupation of the reservoirs. Putting xs =1 for all 1 < s < t, we find

where

We have written this result in a form that factorizes into a contribu-
tion Q1 giving the statistics of n(j, t), a contribution Q2 giving the statistics
of the occupation {n(0, s)} of reservoir 0, and an interference term Q3.
Note that summation over some variable ns, or n in $({ns}, n; j, t), simply
amounts to setting the corresponding variable xs or x in &({xs},x; j, t)
to 1.

At this point we can formally establish the connection to the model of
a Rouse chain in a tube.(15) We write x = e"p, xs-=e"fs and we expand to
second order in <p, cps to find

Some useful properties of the coefficients Ab, b=1,2, 3, are collected in
appendix A. Substituting Eq. (3.10) into Eq. (3.4) and taking M-> oo we
find

Ebert et al.1340



With the substitution x = y/2 + 1 — 1/2/y( y + 4) it is a standard exercise to
reduce this expression to the form

The cumulants (n(j, t)}2f c are thus independent of ( for all integer l. Odd
moments, of course, vanish. We, however, are interested also in odd powers
of absolut values. Specifically we need to calculate

We observe that this limit is equivalent to the quadratic approximation
(3.18) discussed above.

With the explicit form (3.11) of Q1, we immediately can calculate all
the cumulants of our distribution

For large values of p 0 A 1 ( j , t), we find n2~ p0A^(j, t), and ^ tends to a
Gaussian

This expresses detailed balance to hold in our equilibrium problem. (Of
course, also invariance under the substitution j -» N — j holds, which
reflects the symmetry of the chain.) With the substitution x = e'v, we may
express ^(n; j, t) in terms of a modified Bessel function of first kind In(z):

Q1(x; j, t) (Eq. (3.11)) is invariant under the substitution x-* 1/x , which
leads to

Segment Motion in Reptation Model of Polymer Dynamics. I 1341
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Here F(o., z) denotes the incomplete /"-function. Similar expressions can be
derived for higher odd moments \n(j, t)|2l + 1.

Starting with F1(0) = l, the function F1(z) decreases monotonically,
and asymptotically it behaves as

Since for t-> oo, the function A1( j , t )~p0t -> oo, the contribution of F1 in
this limit can be neglected, and we find the asymptotic result

In the next section we will find that A 1 ( j , t ) in a large initial region
increases quite slowly with t, so that the simple relation (3.29) holds only
for rather large time. As we will see, this may be one reason for the failure
of previous simulations to exhibit the tl/4-behavior.

For a Gaussian distributed continuous variable Eq. (3.29) is rigorous.
The correction function F1(z) essentially reflects the fact that n(j, t) ranges
over a discrete set of integers. This easily is checked by calculating \n(F)\
for a process, Gaussian distributed with width F, but restricted to the
integers. Depending on F, we find corrections to the result (3.29) which
numerically are quite similar to the effect of F1(z).

For a discussion of the general motion of some segment and its inter-
ference with tube renewal, it is of interest to consider the correlation among
n(j, t) and n(0, t). Eq. (3.2) yields

We here introduced
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and we used Eq. (A.7) to evaluate Q2({1,..., 1,x1}, t). The distribution &2

changes its character for t&j2. At short times t«j2, A3(j, t) vanishes like
e - j 2 /4 P t (cf Eq A 16), and ^ factorizes.

As expected the two beads 0 and j move independently. In the opposite
limit of t» j2, A3( j , t) diverges proportional to t (cf. Eq. (A.12)), whereas
the combinations A^j', t) — A 3 ( j , t ) with j' =0 or j, saturate at some
j-dependent value. ^2 factorizes into a Gaussian distribution of n + =
(nt + n)/2 and a distribution of n_=nt — n:

&\ ) takes the form characteristic for a single bead process (cf. Eq. (3.22)).

The result (3.33)-(3.35) expresses the fact that most of the defects created
by chain end 0 and not destroyed again at this end by time t, for t»j2

have diffused over bead j without returning, so that the stochastic variable
n(j, t) then closely follows n(0, t). For t»N2 it in particular implies that
the total chain motion is dominated by the single stochastic process n(0, t).
This observation underlies all theories of the large time limit.(1,14)

IV. MOTION INSIDE THE TUBE

Within our model, we now can treat the thermal displacement of some
bead j exactly as long as t is so small that the tube renewal has not reached
that bead. Equations (2.8) and (3.26) yield
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In view of the symmetry of the chain we henceforth restrict the analysis to
0 ^ j ^ N / 2 . We now evaluate several limits of g 1 ( j , N , t) analytically.

(A) Introducing the variables

we take the limit of long chains N-* oo, and we consider intermediate
times 0 < t < o o , i.e., times of order T2. We thus focus on the regime
T0«t<T3, where the crossover from g1~t1 / 4 to g1~ t 1 / 2 occurs. (See
Eq. (1.2).) It will be shown in Sec. V.C, that for j>0 it needs a time
i= TR(J) -> oo, before the tube is destroyed up to bead j = jN-> oo. Thus
in the present limit tube renewal is irrelevant and our results are exact.

It now is useful to rewrite A1( j , t) as (cf. Appendix A.1)

Taking N-> oo, we find the limiting form of A1( j , i):

Eq. (4.7) results from a Poisson transformation and is easily expressed in
terms of error functions.

Clearly A 1 ( j , t) diverges for N-» oo, j, t fixed. Therefore the correction
function F1( • • •) in (4.1) vanishes, and we find



equivalent to the well known asymptotic results

For any j> 0, the limit t-> 0 is independent of N, since for t « T2 = 0(N2)
bead j — jN does not feel the presence of the chain ends. Its motion is
driven by the particles which initially sit in its neighbourhood on the chain.

Note that the limits t—>0, j — > 0 do not commute. Taking j — > 0 first, we
from Eq. (4.7) find 2 ^/T/n, i.e., twice the result of the first line in Eq. (4.11).
Below we will see that this induces additional structure in the t1/4-regime.
Equations (4.8), (4.11) yield

They also can be derived from a continuous model and agree with the
result of ref. 1, Appendix B, except that in that work g1 was identified with
(n2(j, t ) ) 1 / 2 , in our language. This introduces an additional factor ^/n/2.

Considering now extreme values of t we from Eqs. (4.6), (4.7) find the
power laws

Thus the present results are independent of the microstructure and can be
written in universal form as

For chains of length N finite, but so large that they can be described by
these limiting expressions, we obviously can absorb all microscopic model
parameters into a rescaling of N and t
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In contrast, for t» T2, the motion is dominated by particles diffusing over
the total length of the chain, which yields the factor N-1/2, again indepen-
dent of the position of bead j inside the chain.

The crossover among the limits of small or large time depends on /.
Naively we might expect it to be governed by the time needed for particle
diffusion from the nearest reservoir to bead j:

1346 Ebert et al.

For 0 < j«1/2 the situation, however, is even richer. The crossover
t1/4<-*t1/2 always occurs at

It is due to particles diffusing over the whole length of the chain with non-
negligible probability. For such times several terms nonnegligibly con-
tribute to the sums in Eqs. (4.6), (4.7). For/«|, T2(J) < t« T2(1/2),
however, the v = 0 contribution of the second term in Eq. (4.7) is of the
same order of magnitude as the v = 0 contribution of the first term, both
being much larger than all v^O terms. Thus the t1/4 regime splits according
to

The crossover at T2(J) is due to the particles diffusing in from the nearest
chain end, while the other chain end effectively is still infinitely far away.

The sums in Eqs. (4.6), (4.7) are rapidly converging in overlapping
domains of t. g1 (J , i) therefore is easily evaluated numerically. Figure 3
shows typical results, normalized to the asymptotic i -> 0 behavior. The
crossover from g1 ~ t1/4 to g1 ~ tl/2 occurs for 0.1 <,i<,\. For /= 0.01 the
splitting of the i 1/4-regime is clearly seen.

(B) We next consider the limit of long chains N-* oo, intermediate
beads 0</<l /2 and shorter times 0 < t < o o . In this limit for beads
j = JN » 1 both chain ends effectively are infinitely far away, and the result
becomes independent of/. We thus describe the behavior of some bead well
inside the chain for times t« T2 w O(N2) -» oo. The analysis, based on
Eq. (3.12), reveals that A 1 ( j , t) reduces to (cf. Eq. (A.5))
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Fig. 3. log10(g|(/, i)/gass(i)) as function of log,0 i for/= 1/100, 1/10, 1/2. g,,,,(i) = 2(s JJJ^
(i/n)]lt represents the first t1/4-regime. Short dashes: Height of the second {,/2-) rl/4-regime.
Long dashes: t1/2-behavior.

with the asymptotic limit

In this limit we recover the results found above for i« 1.
The dominant corrections to that behavior arise from the contribution

F\(*PoAi(j, 0) in Eq. (4.1). With Eqs. (4.17), (3.28) we find

With p0& 1/4 the leading order correction in (4.18) falls below the level of
1% only for pt>5'\03. Figure 4 (full line) shows our full result, nor-
malized to the asymptotic tl/4 behavior. We choose values 4 = 2, p = ^,
p0 = 1/4, but we should note that for given ls the result essentially depends
on the scaled variable p^pt~t, only. The residual p0-dependence is negli-
gible for p2

0pt> 1. This reflects the fact that A1 (Eq. 4.16) rapidly attains
its asymptotic behavior (4.17) the corrections dropping to the level of 1 %
for pt> 10. By virtue of Eq. (4.2) this implies that (n2(j, t))1/2 rapidly tends
to its asymptotic t1/4-behavior. The variation seen in Fig. 4 solely is due
to the correction function F1(z), that reflects the discreteness of n(j, t), cf.
discussion after Eq. (3.26).

This long initial transient, extending almost up to pt = O(104), at a
first glance is quite surprising. A second thought reveals that it is quite
natural. With the estimate |n(j, t)1 ~(Pt)1/4 we find that in the region of
interest typical values of n(j, t) are of the order 10 or smaller. It is clear
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Fig. 4. g1(AV2, N, t)/gass(t) as function of log10(pt), where g a s s ( t ) = 2/Jjt (r/7t)l/4, cf.
Eq. (4,13). Full line: N]-* oo, long dashes: N = 40, 100, 1000, short dashes: The t1/4-asymptote,
here normalized to height 1 by extracting gass(t).

that with such small values of n(j, t) the discreteness of the process may
induce large corrections.

We now also might discuss the limit N -> oo and j, t fixed, implying
that the bead considered has a finite distance from a chain end. Here,
however, tube renewal rapidly comes into play, and we therefore postpone
the analysis to the next section. We close this discussion by illustrating the
motion of the central bead j = N/2 for times t« T3 in a chain of finite
length. The results follow from numerical evaluation of Eqs. (4.1), (4.2),
with Eqs. (3.27), (4.4), (4.5) inserted. Figure 4 (broken lines) shows the
typical behavior of g1(N/2 , N, t), again normalized to the intermediate
asymptotic t1/4-behavior. For N= 103 this behavior is attained over almost
three decades, until for pt>105 the curve bends over towards the t1/2-
regime. With decreasing N the length of the t1/4-plateau decreases rapidly,
and is just about visible for N=102. For shorter chains it is washed out.
In a doubly logarithmic plot the result for N=40, for instance, for short
times would look like some effective power law close to g1 ~ t1/3.

As shown in Fig. 3 the crossover towards the t1/2-law starts for
pt&N2/\10 and takes more than one decade in t. The t1/2-behavior
reasonably well is approached for pt>2N2. In the next section we will find
an estimate for the reptation time: pT3w (ft/16) N3. Thus the condition for
the occurence of a true t 1/2-regime: T2« t«. T3 takes the more quan-
titative form 2N2 <pt«(n/\6) N3. Clearly for typical chain lengths used
in simulations (N< 103) this condition is not fulfilled in a sufficiently large
range of pt to allow for an intermediate t1/2-region.

Above we stressed that the initial slow transient in g 1 ( j , N, t) is due to
the correction F 1 ( • • • ) . (n2(j, t)1/2 accurately shows t1/4-behavior starting
as early as p2 pt = O(1). This quantity therefore shows standard reptation



We will base our analysis on this result. To get some feeling for the struc-
ture of the problem and the approximation involved we, however, first
derive a formally exact expression for nmax(0- We then approximately treat
the motion of a chain end, and with a further approximation we calculate

holds.
As is obvious from Eq. (3.13), n(0, s) executes a correlated random

walk with n(0,0) = 0, the correlation arising from the contribution
~A2(s2 — S1) : a particle, that jumped out of the reservoir at time s1, with
some probability depending on s2 — s1>0 will fall back again at time s2.
For correlated processes no manegeable exact expression for nmax(t) is
known. Only for uncorrelated walks a result known as Spitzer's identity(17)
yields a simple answer. (This identity is further discussed in Appendix B.)
For a reflection symmetric uncorrelated walk ns starting at n0 = 0, it yields
the relation

Tube renewal is just another word for the motion of the end beads
that for longer times also affects the inner beads and the chain as a whole.
As shown in Sect. II.A for chain end 0 and times t <T3 it leads us to
consider nmax(t), defined as the maximal value within time interval [0, t]
of the stochastic variable n(0, t), that gives the change in the occupation
number of reservoir 0 (cf. Eq. (2.10)). In particular the relation (2.12)

V. TUBE RENEWAL

This result holds in three dimensions. For other dimensions or other
microstructures (n2(j, t))1/2 always can be measured as an appropriate
combination of the fourth and the second moment of (rj(;) —r y (0)) .

behavior much clearer than gi(j, N, t), and it is of interest to ask whether
it can be related to some simple observable. Indeed it is not hard to show
that for the lattice model described in Sect. II, it is related to the cubic
invariant

1349Segment Motion in Reptation Model of Polymer Dynamics. I



with the discrete 0 function as defined in (2.14). B(n, t) obeys the relation

To derive an expression for nmax(0 we define the operator

where

Successive substitution yields

where all integrals can be taken to range over the unit circle. It is useful to
transform from variables xs conjugate to ns to variables y, conjugate to the
increments ns — ns_ 1.

A. Formal analysis of nmax(t)

From Eqs. (3.2), (3.17), (3.13) the distribution of {ns} = {n(Q, s)} is
found as

the motion of some bead j for times t > TR(j). Finally we discuss the repta-
tion time.
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where ,9^ is a cyclic shift operator:

Recall the definition yt + 1 = 1.
Equation (5.13) is an exact but essentially intractable expression. To

establish the connection to Eq. (5.1) we note the identity

We then in Eq. (5.11) can carry through all summations to find

In Eq. (5.4) for $ 2 ( { n
s } ; t ) we now order the integration contour @t as

Combining Eqs. (5.8), (5.9) we easily find

so that

We next introduce

We thus have
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This identity holds for any function F { - - - } analytic in all variables ys in
the domain
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We now note that

which yields

(cf. Eq. 3.25). We then subtract from C(t) (Eq. (5.13)) the identity (5.14)
multiplied by \/t, to find

We note that the contribution |«(0, t)\/2t takes into account the strongest
singularity of the integrand in Eq. (5.13), occuring if all variables yf coin-
cide.

For an uncorrelated random walk the exponential factorizes:
e*P Q.2({ys}> 0 -^FI^i /(Xs). and the second contribution in Eq. (5.17)
vanishes. In view of Eq. (5.10) the result therefore yields a formal
generalization of Spitzer's identity (5.1) to correlated walks. Transformed
back to the variables ns, the second term in Eq. (5.17) weights each walk
contributing to ^(t) (Eq. (5.11)) by the difference of its proper weight and
the average weight of all of its cyclic permutations. Depending on the walk
considered, the result can be of either sign, and we may hope that cancella-
tions keep the contribution of the second term in Eq. (5.17) small as com-
pared to the first term. We, however, have found no proper estimate.

More can be said only in the limit N-* oo, i= pt/N2 fixed (case A of
Sect. IV). For s = ps/N2» 1 the coupling term A2(s) in Q2 (Eq. (3.13))
vanishes exponentially, reflecting the fact that over time intervals of order
T2~N2 the particle distribution within the chain equilibrates. A process
with coarse grained time intervals T » T2 proceeds by steps of average
size (An)2~T» 1, with correlations of order 1 of a time step with its



follows. For large s, however, the first term in Eq. (3.12) dominates and we
find

Equation (3.12) yields ^(0, !) = />, so that the expected result

and identifying n^s) and n2(0, s) we find

(cf. Eq. (3.26)).
Since in Eq. (5.18) the contribution <&($) of a time step s is calculated as

the contribution of an uncorrelated walk giving the same (time dependent)
distribution of n(0, s) as the true correlated walk, we call this a "mean
hopping rate" approximation. For the interpretation of our results it is use-
ful to determine the effective hopping rate pe f f(s) of this uncorrelated walk
n e f f (s) . Writing

(cf. Eqs. (2.12), (5.1)), with

B. Motion of the End Bead in the "Mean Hopping Rate"
Approximation

We here evaluate g1(0, N, t) as

immediate precursor. Neglecting these small correlations we find that
Eq. (5.1) gives the leading contribution to nmax(t) for i-* oo. In this long
time regime chain motions can be modelled as an uncorrelated random
walk of a single degree of freedom.(1.14)
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Recall that due to tube renewal the effective random walk of an end bead
in the limit considered has twice the length of the walk of an interior bead,
cf. Eqs. (2.8) and (2.12) with nmax(t)-!«(;', 01- This is the origin of the
result (5.25).

a result which in the light of the discussion of the previous section is expected
to be exact. Comparing to the motion of an inner segment/>0, Eq. (4.12),
we find

where

Thus the effective hopping rate strongly decreases with increasing time,
reflecting the fact that particles emitted from the reservoir may have been
absorbed again.

We now first consider the motion of the end bead (5.18), (5.19) in
several limits, corresponding to those of Section IV for some internal bead.

(A) N>oo, t Fixed. Since |«(0, s)\ increases with s, the sum
(5.18) is dominated by large values of s. In the limit considered, we there-
fore can neglect the correction Ft( • • •), and we can replace the summation
by an integral. This yields

Ebert at al.1354

(Cf. Eq. (4.11) and the associated discussion.)
For i»\ we find
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Fig. 5. Ratio £,(0, i ) / g t ( { , i) as function of log,0 r.

For i« 1 Eqs. (5.22), (5.23) yield

or

This result is not trivial. Naively we would estimate the ratio (5.27) as
2 N/2, the factor 2 reflecting tube renewal and the factor ^/2 arising from
the enhanced mobility of the end bead. (Cf. the Poisson representation
(4.7) for /->0, /=0, as compared to />0.) The additional factor of 2
found in Eq. (5.27) is due to the integration over 5 (Eq. (5.22)), reflecting
the fact that nmax depends on the history of the walk. In our approximation
this enhancement of the ratio (5.27) can be seen as a direct consequence of
the slow decrease of the mean hopping rate discussed above.

Figure 5 shows the crossover behavior of the ratio gi(0, / ) /£,(=; , f).
The crossover from the asymptotics (5.27) to (5.25) sets in at /«0.1, i.e.,
t« lyiO. It is quite slow, taking about three decades of t. We should note
that at time txT3, formally infinite in the present limit, there must be
another crossover towards g,(0, N, t)/g}(N/2, N, t) = 1, since eventually the
chain is displaced as a whole.

(B) N-» oo, t Fixed. This limit shows the approach towards the
asymptotic law (5.26), now adequately written as
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Fig. 6. g1(0, N, t)/gass,(0, t) as function of log,0(pt). gass(0,t) is given by Eq. (5.28). Full line:
N-> oo. Long dashes: N = 40, 100, 1000. The short dashes give the t1/4-asymptote here found
at 1 by normalization.

In the general expressions no special simplifications occur, except that
A1(0, t) (Eq. (3.12)) takes the form

The result for g,(0, oo, t), normalized to the asymptotics (5.28), is shown
as full line in Fig. 6. As compared to the behavior of an interior segment
(Fig. 4) we find a drastic enhancement of the initial effects. (Note the
change in the scales.) The t1/4-regime is reached only for pt^108 . This
again is due to the discrete nature of the process, which here comes in at
two places: Firstly, |«(0, s)\ involves the correction F1(4p0A1(0, t)) (cf.
Eq. (5.19)), and secondly, nmax(t) involves the sum over all time steps. The
long initial transient is dominated by the latter feature and thus quite
insensitive to the value of p0, that only influences FI( • ••).

Evaluating g,(0, N, t) for finite N and normalizing by the intermediate
asymptotics we find results as shown by the broken curves in Fig. 6. For
the end bead it needs extremely long chains to see indications of
t1/4-behavior. For chain lengths N < 100, typically used in computer
experiments, the initial transient directly bends over towards free diffusion.
Clearly the observation of an intermediate t1/2-regime is beyond all reach.

C. Motion of an Arbitrary Bead

As shown by Eq. (2.13), the motion of some bead 0 < j< N for times
t < T3 is a superposition of motion within the tube and tube renewal. This



On the basis of Eq. (5.28) TR(j) is estimated as

This regime will end at a time T R ( j ) defined as the time needed for the tube
renewal to pass over bead j:

For t« T2(j), particles coming from the nearest chain end start to diffuse
over bead j, which raises the amplitude of the t1/4-law by a factor of ^/2,
cf. Eq. (4.15), thus

leads to a rich structure, which we first discuss on a qualitative level.
A schematic plot, summarizing our discussion for some bead 1 « j <K N/2,
is shown in Fig. 7.

Consider some bead 1 « j « N/2 in an extremely long chain. Initially
it does not feel the chain ends but shows the slow transient towards a
tl/4-behavior, as discussed in Sect. IV:

Fig. 7. Schematic plot of g1( j , N, t)/g,(N/2, N, t) for 1 «j«7V, showing the sequence of
crossover behavior discussed in the text. Division by g1(N/2, N, t) serves to transform power
law regimes to plateaus indicated by the thin lines.
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Again the formal expression resulting from Eqs. (3.11)-(3.17) is intractable.
To construct an approximate form we introduce nt= n(0, t) as intermediate
variable and write

The above analysis breaks down for TR(j) > T2(N). With T2(N) ~ N2,
TR(j)~j4 we find it to be valid only for 1 «j«j ,,O(N1/2). For larger
values of j the t1/4-regime (5.34), driven by the motion of the end bead,
vanishes. Then tube renewal under favourable conditions may introduce
some structure in the t1/2-regime. We, however, should note that this whole
discussion is more a matter of principle. It will need extremely long chains
(N> 104) to observe these different regions. In practice we expect that only
the initial tl/4 regime (5.30) properly can be observed, the other regimes
being covered by broad crossover regions.

For a more quantitative analysis of g}(j, N, t) as given by Eq. (2.13)
we have to construct the simultaneous distribution of nmax(t) and n(j, t).

T3 may be identified with TR(N/2), calculated from Eq. (5.32). For
j= 0(N/2) we, however, can not use Eq. (5.33). In evaluating Eq. (5.32) we
rather have to resort to Eq. (5.24) to find

and finally we end up with free diffusion

Gradually the t1/2-behavior sets in beyond the Rouse time T2(N):

For t > TR(j), tube renewal dominates. For extremely long chains it yields
another t1/4-regime.
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We then factorize according to

where $2(nt n'-> 0. j,t) is the simultaneous distribution of n(0, t), n(j, t) dis-
cussed in Sect. III, and &max^,o(nm\n,\t) is the conditional probability to
find nmax(t) =nm, given n(0, t) = n,. This approximation serves to isolate
the hard part of the problem in the analysis of the single stochastic variable
n(0, s). It is justified by the observation that for beads not too close to a
chain end (j>20, say), the relation TR(j)>>T2(j) holds, so that bead j
feels the tube renewal only for times where n(j, t) is bound to n(0, t) fairly
rigidly. (Recall the discussion after Eq. (3.35).)

To find an approximate expression for the conditional probability
^max,o(nm I ft,; t) we resort to the simple random walk, which is the only
model where this probability can be calculated in explicit closed form. We
thus ignore all the correlations of the stochastic process n(0, s), but we
keep the important inequalities 0<nmax(0, "(0,/Xnmax(t), and we can
adjust the hopping probability of the random walk so as to reach the
desired values of nmax(t). As a final purely technical point we take the
variables nm, n,, n to be of continuous range, which is a minor approxima-
tion since for beads not too close to a chain end we are interested only in
fairly large times (pt%pTR(j) > 103).

With these approximations the explicit construction of ^maXj7(nm, n; t)
is carried through in appendix C. The final result reads

where



where

%i(j, t) is defined in Eq. (3.31). The parameter a, 0<a< 1, measures the
strength of the correlation among n(0, t) and n(j, t). For a -> 0, which is
reached for t« T2(j), the two processes are independent. They are tightly
bound together for a-* 1, corresponding to t» T2(j).

To give an impression of the shape of the distribution we in Fig. 8
have plotted &(zm,z, t} = nm.M(t)(n2(j, /))1/24max.j(nm,n;t) for fixed zm =
1, 2, 3 as function of z, using values a = 0.9, 0.99. Specifically for t= TR(j),
i.e., for times where the tube renewal just reaches segment j, such values
a = a(j, TR(j)) correspond to j = 50 or 120, respectively. As is shown, with
increasing a the curves become strongly asymmetric. This reflects the dis-
tribution of n(0, t), which is cut off sharply at n(0, t) = nmax(t). We also
note that tube renewal will have a substantial effect even for t < T3(j). Both
conditions f s n m a x ( t ) > j, f s n m a x ( t ) >j + fsn(j, t) then are fulfilled for zm>1,
z<0, a region that carries a considerable fraction of the weight of the
distribution ^max>j.

We now evaluate g1(j, N, t), decomposing Eq. (2.13) as

and

Fig. 8. Simultaneous distribution of nmax(t), n(j, t) for values nmax(t)lnmax(f) = zm = 1,2, 3 as
function of z = n(j, t)/(n2(j, t ) ) 1 / 2 . Full lines: a(j, t) = 0.9; broken lines: a(j, t) = 0.99.
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is the contribution of the motion in the fixed initial tube, as discussed in
Sect. IV. The contribution of the tube renewal can be written as

With our appoximations it yields

Typical numerical results are shown in Fig. 9. Together with the full results
for N= 103, j = 20 or 100, we included g,( • • • ) and gr( • • •), and we show
g,(0, N, t), for comparison. In g,( • • • ) the first splitting of the t1/4-regime
can be seen both for j = 20 and j = 100, but g , ( • • • ) only for j = 20 shows
weak indications of the 11/4-behavior from the end bead motion. Fory'= 100
tube renewal is effective only for t > T2(N/2). In both cases we see that the
total motion g i ( j , N , t ) beyond the first fl/4-regime is dominated by the
crossover. We also note that tube renewal effects set in for t> TK(j)/\0, a
consequence of the fairly broad distribution Pmax, j(nm, n; t).

D. An Estimate of the Reptation Time

The reptation time T3 measures the time needed to destroy the
original tube. This process proceeds by the motion of both chain ends,



Fig. 9. Results for gt(j,N=l03,t) normalized to the initial ;l/4-behavior gas,(t) =
(2/y7r)(7/7r)1/4, cf. Eq. (4.13), for (a)7 = 20; (b)j= 100. Fat full lines give the full result. Thin
lines: g,(...). Dot-dashed: gr(...). Dotted: g{0, 103, 0- The arrows indicate T R ( j ) .
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and a simple definition consists in identifying T3 with TR(N/2), Eq. (5.31):

Other, more complicated definitions might be given, that take into account
the first-passage-time nature of the problem. The present definition closely
is related to the evaluation of the melt viscosity in the reptation
model.(4, l5-18) With Eq. (2.12) it implies

where R2
e is the mean squared end-to-end distance of the chain. We should

note, however, that strictly speaking for t — T3 Eq. (2.12) is invalid due to
the interference of chain renewal from both ends, so that the physical inter-
pretation of T3, as implied by Eq. (5.49), is only approximate.

For long chains we may invoke Eq. (5.37) to find the well known
asymptotic Af3-law:

To estimate the corrections we first may evaluate Eq. (5.48) with the form
(5.22) of 4«max(0 = W1/2g,(0, i)/2, valid for long chains. This is equivalent
to Doi's model(15) and yields the thin line in Fig. 10. As is seen this curve
bends downwards, yielding a strong increase in the effective exponent
t3 ~ Nx with decreasing N. In fact, naively extending this curve towards

Fig. 10. Reptation time as function of chain length. Fat line: Full model. Thin line: Con-
tinuous chain limit. Long dashes: T3 ~ N3. Short dashes: T3 ~ N3.4.
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N->0, we approach x = 4, reflecting the tl/4-law. Of course this extension
is meaningless since T3(N) by construction is far beyond the range where
the tl/4 law is valid. It is not surprising that the result is strongly modified
if we take the discreteness of the system into account. Our result using the
full expression 5.1 for nmax(?) is shown as the fat line in Fig. 10. For
N > 200 it merges with the continuum approximation, but for the full range
20<W< 1300 it is nicely approximated by pT 3 (N)=0 .059N 3 . 1 5 . We thus
see that the slowing down of the increase of nmax(t) with increasing t
implied by the correlations increases the effective exponent beyond x = 3,
but not as strongly as expected from a continuum approximation.

Evaluating the Doi-Edwards expression for the melt viscosity n we
find results for n ( N ) most similar in all respects to those shown for T3(N)
in Fig. 10. For 20<N< 103 the full theory yields an effective power law
r / ( N ) ~ N 3 . 2 , with the continuum approximation bending downwards as in
Fig. 10. Note that these results are quite similar to those of ref. 18, Fig. 3,
where Doi's "Rouse chain in a tube" model was simulated.

VI. CONCLUSIONS

In this work we evaluated a discrete version of the reptation model,
concentrating on the motion of the individual beads. Depending on the
bead position along the chain we found a very rich structure, characterized
by fairly broad successive crossover regimes. Initial effects due to the dis-
creteness of the model die out very slowly. For chains of length N< 100
they are visible for the central bead up to times of the order of the Rouse
time, and for the end beads they are even more pronounced.

Our model assumes the smallest possible tube diameter in the sense
that chain segments between two successive entanglement points show no
internal structure. Even in the nonuniversal initial range the results there-
fore should be relevant for the quantitative interpretation of simulations of
lattice chains in surroundings of high obstacle density. Indeed, as shown in
ref. 12 and in our subsequent paper,(11) they perform very well in explaining
data of the Evans-Edwards model. A glance to Fig. 8 of ref. 9 or Fig. 6
of ref. 19 reveals that also more complicated dense lattice or continuum
systems for the motion of the central bead of the chain yield results closely
resembling our findings. We therefore believe that even in the microstruc-
ture dependent range our results quite generally show the typical effects of
reptational motion.

There remains the question which features could be used to distinguish
reptation from motion dominated by disorder or affected by relaxation of
the environment. As we have seen, the unambiguous identification of the
power laws will be most difficult. For values N = (9(100), as typically



APPENDIX A. SOME PROPERTIES OF THE COEFFICIENTS AB

1. A,(J,t)

Equation (3.12) defines

reached in simulations, only the motion of the central bead shows a small
region described by the t1/4-law, and to unambigously identify this behavior
as a limiting law its stability with increasing chain length would have to be
checked. Beads not close to the center of the chain feel successive cross-
overs which essentially wash out all the t1/4-structure. However, as pointed
out at the end of Section IV and illustrated in refs. 11 and 12 appropriate
fourth moments of rj(t) —r , - (0) show the tl/4 behavior much more clearly,
even for very short chains. Such moments therefore seem to be the
appropriate objects in a search for the initial t1/4 behavior. At least, a com-
parison of the second and fourth moments will allow us to identify the
range and magnitude of the nonuniversal initial effects.

According to reptation theory the tl/4-regime for T2«t«T3 is
followed by tl/2-behavior. Our results show that for typical chain lengths
this interval is too small to identify such behavior, in particular if we take
into account the fairly strong fluctuations in the tube renewal ( n m a x ( t ) ) .
In practice we for t>T2 expect to see a smooth crossover towards free
diffusion. To find indications of the /t1/2-regime it will be preferable to
measure the motion of the central bead relative to the center of mass:
g2(N/2, N, t) = <(rn / 2(t) - Rcm(t) - rn /2(0) + R c m(0))2>. This quantity for
t« T3 shows the same behavior as gt(N/2, N, t), but an eventual increase
of the effective exponent from xxl/4 towards j c= l /2 cannot be inter-
preted as crossover towards x=1, since g2( • • • ) for t> T3 crosses over to
a constant g2(N/2, N, t) x R2

g.
As a further quite pronounced signature of reptation we note the dif-

ference in the behavior of the end bead as compared to the central bead of
the chain. For t < < T2 the ratio g1(0, N, t ) / g 1 ( N / 2 , N, t) in the Rouse model
tends to 2, and we do not expect this to be strongly modified by disorder,
which in leading approximation just renormalizes the over all time
scale.(7.20) In contrast, we in our mean hopping rate approximation find a
much larger asymptotic value 4 ^/2 of this ratio. This not only illustrates
the effectiveness of the tube in constraining the motion, but also it is a con-
sequence of the slow decay of the correlations of nm a x ( t ) in time implied by
the basic defect motion. We believe that this enhancement of g,(0, N, t)/
g1(N/2 , N, t) should be observable fairly easily.
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The last contribution for N -> oo oszillates to zero. The first term by partial
integration can be written as

(For comparable calculations in more detail, see the appendices of ref. 20.)
Besides yielding the asymptotic limits t->0, oo, these expressions allow for
an efficient numerical evaluation. Up to errors less than 10 ~15 we may use
the first form truncated at k = 3 for /^0.2, and the second form truncated
at |v |=2 for i^0.2.

In the limit N-* oo, t, /fixed, we go back to the form A.I written as

Defining A 1 ( J , t ) = A 1 ( j , t ) / N ; J=j/N, i = p t / N * we can take the con-
tinuous chain limit N -> oo, i, J fixed, to immediately arrive at the results

Evaluating the first contribution in the sum we find the equivalent form
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2. A2(S)

Equation (3.14) defines

It is straightforward to derive the relation

leading to

For sy>N2, A2(s) vanishes as exp(— n2(ps/N2)). In the limit N-+CC,
s fixed, A2(s) = A2(s)/N reduces to the integral

which for large s behaves as

This illustrates the long range of the correlations of the stochastic process
«(0, s).

3. A3(j,s)

Equation (3.16) defines

We mainly are interested in the sum



APPENDIX B. SPITZER'S IDENTITY AND END BEAD MOTION

For an uncorrelated discrete stochastic process ns, Spitzer<17) has
derived an expression for the generating function of the simultaneous dis-
tribution of n, and

For j > 0, t->0, A3, vanishes exponentially.

Thus

as it should. For N-> oo, t, J fixed, A3(J, t) = (1/N) A3(j, t) takes the form

to simplify the result. Comparing to Eq. (A.2) we find

where we used the relation

Straightforward summation yields
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Again replacing n(0, s) by an uncorrelated process ns, we use Eq. (B.2) to
evaluate this expression. We find

Following the argument of Sect. II.A we find the expression

In the same way we can construct an approximation for the fourth
moment

Inverting the discrete Laplace transformation we find the result (5.1):

Taking the derivative with respect to z and putting z = 1 = w, we
immediately find

(It is understood that n0 = 0, by definition.) For a process symmetric in its
hopping probabilities, the result reads
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This should be compared to the corresponding result for the central
segment

For the end segment the ratio g\/g\ in all the universal time region is much
closer to 1.

which in the same way leads to

For T0 «t« <<T2 we find (cf. Eq. (5.23))

and we can evaluate the summations in Eq. (B.8) as integrals. This yields

For times large compared to T2 we can use the approximation (cf. Eq.
(5-23))

Of particular interest is the universal region where all discreteness correc-
tions have died out. Equations (3.24), (3.26) yield

This results in the approximation
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We now may adjust p0 so as to reach the desired value of nmax(t):

where

A rigorous expression for ^(«,,«; 0, y', f) is given in Eq. (3.30). For the
conditional probability Pmax,0(nm In1; 0 to find nmax(t) = nm for given
n(0, t) = nt we take the result of a simple random walk, making steps + 1
with probability p0 and steps 0 with probability 1 — 2p0.

Let the walk start at n0 = 0, reach nmax(t) =nm at time s for the first
time, and end at n, ̂  nm. The contributions of the parts [0, s — 1 ] or [s, t]
of this process can be written in terms of powers of appropriately truncated
matrices of type W (Eq. (3.7)), and the evaluation is straightforward. We
find

APPENDIX C. APPROXIMATE FORM OF Pmax,J(nm, n; t)

To construct an approximation for the simultaneous distribution of
nmax(t and n ( J , t ) we start from the factorization (5.40) to write
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The neglected terms of relative order ^/l/p^t are due to boundary effects
(terms ^,,,0,^m«, in Eq. (C.2)).

We now evaluate ^(«M «; 0, j, t) in the corresponding approximation,
which implies expanding the argument of the exponential in Eq. (3.30) to
second order in q>, q>,. The resulting Gaussian integral yields

where we use the notation

This construction of ^max,/«„,,«; t) guarantees that

(i) the relations 0 < n m and nt<nm are obeyed,

(ii) n2(j, t) and n m a x ( t ) take their proper values, and

(iii) gi(j, N, t) (Eq. (2.13)) evaluated with this distribution for j>0,
t< TR(j) reduces to the results of Section IV, and for7 = 0 yields
g1(0, N, t} as evaluated in Sect. V.B.

Being interested mainly in beads j not extremely close to a chain end
j > 20, say), we note that pTR(j)» 1, so that we may simplify the result
by taking the limit of large time: <Xo(x)-»exp( — p0tx

2). Then the integrals
in Eq. (C.2) can be evaluated further to yield
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where

Inserting Eqs. (C.5), (C.9) into Eq. (C.1) and carrying through the summa-
tion over n, as integral over zt we find the result given in Eq. (5.46).
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