
Comment on ‘‘Mechanism of Branching in Negative
Ionization Fronts’’

When the fingers of discharge streamers emerge from a
planar ionization front due to a Laplacian instability, their
initial spacing is determined by the band of unstable trans-
versal Fourier perturbations and generically dominated by
the fastest growing modes. The Letter [1] therefore aims to
calculate the temporal growth rate sðkÞ of modes with wave
number k, when the electric field far ahead of the ionization
front is E1. In earlier work [2–4], sðkÞ was determined in a
pure reaction-drift model for the free electrons, i.e., in the
limit of vanishing electron diffusion De ¼ 0. For negative
streamers in pure gases like nitrogen or argon, electron
diffusion De > 0 should be included into the discharge
model. This is attempted in [1] in the limit of large field
jE1j ahead of the front. A different, extensive analysis with
different results can be found in [5]. Below we show that
the expansion and calculation in [1] are inconsistent, that
the result contradicts a known analytical asymptote, and
that it does not fit the cross-checked numerical results
presented in [5]. Furthermore, we find in [5] that the

most unstable wavelength does not scale as D1=3
e as

claimed in [1], but as D1=4
e .

In [1], ionization fronts are only considered in the limit
jE1j � 1 ahead of the front which amounts to a saturating
impact ionization cross section �ðEÞ ! 1. For jE1j � 1,
planar fronts obey [[1], Eq. (7)] after all fields are rescaled
with E1. For any finite E1, a diffusive layer of width

1=�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

De=½jE1j�ðE1Þ�
p

forms in the leading edge of
the front [6]. (We denote the diffusion constantD from [2–
6] by De to distinguish it from the D ¼ De=jE1j in [1].)
Following the calculation in [1], Eq. (8) reproduces the
diffusive layer for large jE1j, but the nonlinear term is
incomplete. Then the dispersion relation is calculated by
the expansion (11)–(13) about the planar ionization front.
Here the expansion of the electron density ne starts in or-
der �2 (where � is the small expansion parameter), while
the expansions of ion density np and field E start in order �.

The absence of order � in the expansion of ne is un-
expected, not explained, and in contradiction with the
calculation for De ¼ 0 in [4].

Jumping to the result of [1], the dispersion relation in
Eq. (21) is given as s ¼ jE1kj=½2ð1þ jkjÞ� �Dek

2 in the
present notation. The small k limit s ¼ jE1kj=2þOðk2Þ
of [[1], Eq. (21)] is consistent neither with the limit De ¼
0, where the asymptote sðkÞ ¼ jE1kj for jkj � �ðE1Þ=2
was derived in [4], nor with the case De > 0 where

the asymptote s ¼ c�jkj, c� ¼ EdEv
�jE1 , v

�ðEÞ ¼ jEj þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DejEj�ðEÞ
p

was proposed in [2] and analytically con-
firmed in [5].

Furthermore, in [5], dispersion curves sðkÞ for a range of
fields E1 and diffusion constants De are derived as an
eigenvalue problem for s; they are plotted in Fig. 1. In
one case, the curve is confirmed by numerical solutions of

an initial value problem; the curves are also consistent with
the analytical small k asymptote. The results for positive s
are conveniently fitted as sðkÞ ¼ c�jkjð1� 4jkj=��Þ=ð1þ
ajkjÞ with a � 3=�ðE1Þ [5]. Figure 1 also shows the
prediction from [1] for E1 ¼ �10 and De ¼ 0:1; here
the reduced diffusion constant De=jE1j is as small as
0.01, and the assumptions jE1j � 1 and De=jE1j � 1
from [1] hold. However, Fig. 1 shows that the data of [5]
and the prediction of [1] clearly differ. Therefore also the
scaling prediction [[1], Eq. (23)] for the spacing of emer-
gent streamers does not hold; rather our physical argu-
ments and the numerical data in [5] suggest that the

fastest growing mode is kmax ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a��=4
p � 1Þ=a /

D�1=4
e for �� � 1.
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FIG. 1 (color online). Symbols: scaled dispersion relation
sðkÞ=ðc���Þ [5] as function of scaled Fourier number k=�� for
E1 ¼ �1, �5, �10 and De ¼ 0:1 and for E1 ¼ �1 and De ¼
0:01. Line: rescaled prediction [[1], (21)] for E1 ¼ �10 and
De ¼ 0:1.
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