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We analyze the relaxation of fronts propagating into unstable states. While “pushed” fronts
exponentially like fronts propagating into a metastable state, “pulled” or “linear marginal stabi
fronts relax algebraically. As a result, for thin fronts of this type, the standard moving boun
approximation fails. The leading relaxation terms for velocity and shape are of order1yt and 1yt3y2.
These universal terms are calculated exactly with a new systematic analysis that unifies various he
approaches to front propagation. [S0031-9007(98)05413-1]
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Consider propagating fronts in systems with a contin
ous order parameter, where a stable state invades anun-
stablestate, and assume, that thermal perturbations can
neglected. Such fronts arise in many convective instab
ties in fluid dynamics such as in the wake of bluff bod
ies [1], in Taylor [2] and Rayleigh-Bénard [3] convection
they play a role in spinodal decomposition near a wall [4
the pearling instability of laser-tweezed membranes [5], t
formation of kinetic, transient microstructures in structur
phase transitions [6], dielectric breakdown fronts [7], th
propagation of a superconducting front into a normal me
[8], or in error propagation in extended chaotic system
[9]. For such front propagation problems, it is known [10
14] that if the initial profile is steep enough, arising, e.g
through a local initial perturbation, the propagating fron
in practice always relaxes to a unique shape and veloc
Depending on the nonlinearities, one can distinguish tw
regimes: As a rule, fronts whose propagation is drive
(pushed) by the nonlinearities very much resemble fron
propagating into metastable states. This regime is of
referred to as “pushed” [10,14] or “nonlinear marginal st
bility” [13]. If, on the other hand, nonlinearities mainly
cause saturation, fronts propagate with a velocity det
mined by linearization about the unstable state: it is as
they are pulled by the linear instability (“pulled” [10,14
or “linear marginal stability” [13] regime). Some heuris
tic arguments have been put forward [13] that for larg
times t the velocity and shape of a pulled front general
relax slowly, as1yt. The experimental relevance of such
slow relaxation is illustrated by propagating Taylor vorte
fronts. Here the measured front velocities [2] were abo
40% lower than predicted theoretically; only later it be
came clear [15] that this was due to slow transients.

In this paper, we identify the general mechanis
leading to slow relaxation of uniformly translating fronts
use it to introduce a systematic analysis which allows
to determineall universal asymptotic terms, and point out
the implication of the relaxation for the existence of
moving boundary approximation.

Our present investigation was, in fact, motivated by a
attempt to derive a moving boundary approximation for
0031-9007y98y80(8)y1650(4)$15.00
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thin front propagating into an unstable state [7]. Movin
boundary approximations have been applied quite succ
fully to patterns consisting of domains where the order p
rameter field varies slowly in space and time due to t
coupling to some external field (e.g., temperature in a
lidification or combustion front), separated by thin inte
facial zones where the order parameter field varies rap
[16]. Implicit in this method is the assumption that th
dynamics on the “inner” interfacial scale and the “oute
pattern scale is adiabatically decoupled in the thin int
face limit, so that the boundary conditions for the motio
of the interface on the outer scale arelocal in space and
time. However, we find that when the moving bounda
amounts to a “pulled” front propagating into an unstab
state, the standard moving boundary approximationbreaks
down. The physical reason is simply that due to the alg
braic relaxation on the inner scale, the time scales for
dynamics on the inner and outer scales are not adiabatic
decoupled. As we will discuss in detail elsewhere [17
technically the analysis breaks down due to the non
istence of solvability integrals associated with the sam
linear operatorL p below that plays a role in the relaxa
tion analysis of pulled fronts. “Pushed” fronts, on the oth
hand, relax exponentially to an asymptotic shape and
locity in much the same way as fronts propagating into
metastable state do. The important distinction for the v
lidity of a moving boundary approximation is thus betwee
pulled fronts on the one hand, and pushed fronts or fro
propagating into a metastable state on the other.

The new approach that we introduce here grew o
of studying the above question, and allows us to det
mine both the velocity and the shape relaxation of pull
fronts systematically. We are able to calculate all un
versal terms in an asymptotic long time expansion expl
itly and exactly, and confirm our predictions numericall
Besides being of interest in their own right, our resu
identify the general mechanism that leads to the slow
laxation of sufficiently steep initial conditions towards th
“pulled” or “marginally stable” front and the concomitan
breakdown of a the standard moving boundary appro
mation; in addition, the analysis welds various seeming
© 1998 The American Physical Society
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unrelated and often heuristic approaches [12–14,18–
together into a systematic calculational framework wi
new predictive power.

With “universal” we mean that not only the asymptoti
profile is unique, but also the relaxation towards i
provided we start with sufficiently steep initial conditions
This is analogous to the universal corrections to scali
in critical phenomena, if we think of the relaxation a
the approach to a unique fixed point in function spa
along a unique trajectory. The universal velocity an
shape relaxation terms which we calculate exactly are
order 1yt and 1yt3y2. The next term in the long time
expansion, which is ofOs1yt2d, is affected by a time
translationt ! t 1 t0 in the 1yt term. The1yt2 terms
therefore depend on the initial conditions.

Our analysis can be formulated quite generally fo
partial differential equations which are of first order i
time but of arbitrary order in space, as long as they adm
uniformly translating pulled solutions, as defined below
For ease of presentation we guide our discussion alo
two examples which we have investigated analytically
well as numerically. Our first example is the prototyp
nonlinear diffusion equation,

≠tfsx, td ­ ≠2
xf 1 fsfd, fsfd ­ f 2 f3, (1)

with f, x, t real. This equation is also known as KP
equation (after Kolmogorovet al.), Fisher equation, or
FK equation. In (1), the statef ­ 0 is unstable and the
statesf ­ 61 are stable. We consider a situation whe
initially fsx, 0d asymptotically decays quicker thane2x

for large x, or, in particular, one withfsx, 0d fi 0 in a
localized region only. The region withf fi 0 expands in
time, and a propagating front evolves. It has been prov
rigorously, that relaxation is always to a unique fron
profile fpsx 2 yptd with velocity yp ­ 2 [11], and that
the velocity relaxes asymptotically asystd ­ 2 2 3ys2td
[19]. Our second example is the “EFK” (extended FK
equation

≠tfsx, td ­ ≠2
xf 2 g≠4

xf 1 fsfd ,

fsfd ­ f 2 f3,
(2)

which serves as a model for equations with higher spat
derivatives. For0 # g , 1y12, sufficiently steep initial
conditions also evolve into a pulled front translating un
formly with velocityyp (3) [13,21], but the rigorous meth-
ods of [11,19] are not applicable here.

Since the basic statef ­ 0 into which the front
propagates is linearly unstable, even a small perturbat
aroundf ­ 0 grows and spreads by itself. According t
the linearizedequations any localized small perturbatio
will spread asymptotically for large times with the linea
marginal stability speedyp. This speed is determined
20]
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explicitly by the linear dispersion relationvskd of a
Fourier modee2ivt1ikx [12,13,18] through

≠ Im v

≠ Im k

Ç
kp

2yp ­ 0,
≠ Im v

≠ Rek

Ç
kp

­ 0 ,

Im vskpd
Im kp

­ yp.
(3)

The first two equations in (3) are saddle point equations
the complexk plane that govern the long time asymptotic
of the Green’s function in a frame moving with th
leading edge of the front. The third equation express
that for self-consistency, the linear part of the front shou
neither grow nor decay in the co-moving frame. If in th
full nonlinear equation a front with velocityyp is unstable
or nonexistent, the marginally stable front with velocit
yy . yp is called “nonlinearly marginally stable” or
pushed. If a front propagating with velocityyp is stable,
it is called “linearly marginally stable” orpulled [10].

Our relaxation analysis applies in general to equatio
in which a front solutionfp propagating with velocityyp

(3) is uniformly translatingfRekp ­ 0 ­ Revskpdg and
dynamically stable, and to all initial conditions that ar
sufficiently steep in the sense that limx!` fsx, 0deLx ­ 0,
whereL ­ Im kp . 0.

We now first summarize our predictions: If we trac
the velocityyhstd ­ Ùxhstd of a fixed amplitudeh, where
fsxhstd, td ­ h, we find yhstd ­ yp 1 ÙXstd 1 gshdyt2

with

ÙXstd ­
23
2Lt

µ
1 2

p
p

L
p

Dt

∂
, (4)

in fact independent ofh and of the precise initial condi-
tions. HereD ­ 1

2 ≠2 Im vys≠ Im kd2jkp plays the role of
a diffusion coefficient. The leading1yt term reproduces
Bramson’s exact result [19] for Eq. (1). Note that all term
in (4) depend on the linear dispersion relation only.

The velocity of the relaxing front is smaller than that o
the asymptotic uniformly translating front. The correctio
is ÙXstd ø 23ys2Ltd to dominant order. This means tha
the distance between the asymptotic and the relaxing fr
grows logarithmically in time asXstd ø 23ys2Ld ln t.
Since the front width isfinite in equations like (1) and
(2), while Xstd diverges, this immediately explains why
the leading velocity correction has to be the same forall
values of the amplitudeh.

If we want to write the shape of the transient front as
small perturbationh about the asymptotic shapefp at all
times, wehave tolinearize about the asymptotic profile
fpsx 2 ypt 2 Xstdd translated with the nonasymptotic
speedystd ­ yp 1 ÙX. This is a crucial ingredient of
our analysis. Indeed, when written in the framej ­
x 2 ypt 2 Xstd, we find through an expansion in the
“interior region” of the front, wherejhj ø fp:
fsj, td ­ fpsjd 1 hsj, td, with j ­ x 2 ypt 2 Xstd (5)

­ fpsjd 1 ÙXstdhshsjd 1 Ost22d, wherehsh ­ sdfyydydjyp

­ fystdsjd 1 Ost22d, for j ø 2
p

Dt . (6)
1651
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FIG. 1. (a) and (b): Velocity correctionDyhstd ­ yhstd 2 yp 2 ÙX as a function of1yt2 for various amplitudesfsxh, td ­ h,
yh ­ Ùxh and for t $ 20. (a): Equation (1), thusg ­ 0, L ­ 1 ­ D, and yp ­ 2. (b): Equation (2) withg ­ 0.08, thus
D ­ 0.2, L ­ 1.29, and yp ­ 1.89. (c): Data from (a) plotted asffsj, td 2 fpsjdgyf ÙXhshsjdg over j for various t. fpsjd
(dashed curve) for comparison.
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Here fy is the shape of a front propagating uniforml
with velocity y, so Eq. (6) expresses that for large time
the shape of the profile is to a good approximatio
given by the uniformly translating solutionfysjd with
the instantaneousvalue of the velocity ystd , yp.
Based on numerical observations, Powellet al. [20] have
conjectured such a form for the transient profile fo
equations of type (1). Here it comes out naturally fro
our general analysis, together with an explicit expressi
for Xstd. Moreover, we find nonvanishing corrections i
order1yt2.

In the far edge, wherej * Os
p

Dt d ¿ 1, a different
expansion is needed, as the transient profilef falls off
faster thanfp, so that h ø 2fp. Linearizing about
f ­ 0, matching to the interior (6) and imposing tha
the asymptotic shapefp is approached fort ! ` and
that the transients are steeper thane2Lj for j ! `,
uniquely determines the velocity correctionÙX (4) and the
intermediate asymptotics

fsj, td ø e2Lj2j2y4Dtfj 1 const1 Os1y
p

t dg . (7)

Both the leading1yt term in ÙXstd in (4) and the crossover
to a Gaussian type profile like in (7) can be understood
tuitively through a heuristic argument [13]: We work in th
asymptotic framejp ­ x 2 ypt. Generally, the asymp-
totic profile isfpsjpd ~ e2Ljp sjp 1 constd for jp ! `.
The term linear injp comes from the coincidence of two
roots of vskd 2 yk at a saddle point (3). If we start
from localized initial conditions,fsjp, td should approach
fpsjpd as t ! `, but for a fixed time,f should fall off
faster thanfp asjp ! `. To study this crossover, con-
sider for simplicity Eq. (1); if we linearize, and substi
tutefsjp, td ­ e2Ljp

csjp, td (with yp ­ 2, L ­ 1 ­ D in
this case), we get the simple diffusion equation≠tc ­
≠

2
jp c . Clearly, the similarity solution which matches to

fpsjpd , e2Ljpsjp 1 constd is c , sjpyt3y2de2jp2y4t, so
f , es2Ljp23y2 ln t1ln jp2jp2 y4td [22]. Hence, if we now
track the positionjp

h of the point wherefsjp
h, td ­ h ø 1,

we findj
p
hstd ­ 23ys2Ld ln t 1 . . . in the framejp. This
1652
y
s,
n

r
m
on
n

t

in-
e

-

is precisely the leading term ofXstd. We also find here
a Gaussian type profile in the far edge, but the system
analysis sketched below is needed to confirm that (7) is
proper asymptotics in the shifted framej.

We have tested our predictions by numerically integr
ing Eqs. (1) and (2) forward in time, starting from loca
ized initial conditions. In Figs. 1(a) and 1(b), we prese
velocitiesyhstd of various points wherefsxh, td ­ h, in
1(a) for Eq. (1), and in 1(b) for Eq. (2) withg ­ 0.08.
Note that the critical value ofg is gc ­ 1y12 ­ 0.083.
As according to our prediction in Eq. (4),yhstd ­ yp 1
ÙXstd 1 gshdyt2 [where gshd can be expressed in term
of hsh and≠jfp [17] ], we plot yhstd 2 yp 2 ÙXstd versus
1yt2 for varioush. All curves should then converge lin
early to zero as1yt2 ! 0. Clearly, the numerical simu-
lations fully confirm this for both equations.

For our prediction (6) of the shape relaxation, the mo
direct test is to plotffsj, td 2 fpsjdgyf ÙXstdhshsjdg as
a function of j for various times. This ratio should
converge to one for large times. As Fig. 1(c) show
this is fully borne out by our simulations of the nonlinea
diffusion equation (1). Moreover, the crossover for lar
positivej is fully in accord with our result that the prope
similarity variable in the far edge isj2yt —see Eq. (7).

We finally give a brief sketch of the systematic anal
sis, taking the nonlinear diffusion equation (1) as an e
ample. Full details will be published elsewhere [17].

We first consider the “front interior” region, where
the deviationhsj, td of f about fpsjd is small, i.e.,
jhj ø fp. As there is some freedom in choosingj due
to translation invariance, we choose quite arbitrarily t
condition thatfs0, td ­ 1

2 ­ fps0d, so thaths0, td ­ 0,
as was also done in Fig. 1(c). Substituting (5) into (1
we obtain

≠th ­ L ph 1 ÙX≠jsh 1 fpd 1
f 00sfpd

2
h2 1 Osh3d ,

(8)

L p ­ ≠2
j 1 yp≠j 1 f 0sfpsjdd . (9)
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The inhomogeneity ÙX≠jfp in (8) is due to the fact
that fpsjd is a solution of (1) only if ÙX ­ 0. Since
ÙXstd ­ Ost21d, and since in the front interiorjhj ø fp,
the inhomogeneity induces an ordering in powers of1yt,
which suggests an asymptotic expansion as

ÙX ­
c1

t
1

c3y2

t3y2
1

c2

t2
1 . . . , (10)

hsj, td ­
h1

t
1

h3y2

t3y2
1 . . . . (11)

The necessity for actually expanding in powers of1y
p

t
emerges from matching to the similarity solutions in th
far edge. Substitution of the above expansions in (
yields a hierarchy of ordinary differential equations o
second order

L ph1 ­ 2c1≠jfp, L ph3y2 ­ 2c3y2≠jfp,

L ph2 ­ 2c2≠jfp 2 c1≠jh1 2 h1 2 f 00sfpdh2
1y2 ,

(12)

etc. The hierarchy is such that the equations can be solv
order by order. Eachhi is uniquely determined by its
differential equation, the appropriate boundary condition
and the requirementhis0d ­ 0. The equations forh1yc1

and h3y2yc3y2 are precisely the differential equation for
the “shape mode”hsh ­ dfyydyjyp of (6).

By expanding thehi for largej, one finds that they all
behave likee2Lj ­ e2j times a polynomial inj, whose
degree grows withi. The hi expansion is therefore not
properly ordered for largej. This just reflects the fact that
on the far right,h andfp must almost cancel each other
This is required for fronts that emerge from localize
initial conditions, whose total profile thus decays faste
than fp. A detailed investigation of this region shows
that z ­ j2y4t is a proper similarity variable here, and
suggests that here the proper expansion is

fsj, td ­ e2j2z

"
p

t g 21

2
szd 1 g0szd 1

g 1
2
szd

p
t

1 . . .

#
.

(13)

Upon substitution of this expansion into the origina
partial differential equation, linearized aboutf ­ 0, we
now find a different hierarchy of ordinary differential
equations for the functionsgny2szd. In this case, the
conditions to be imposed on thegny2’s is that they do
not diverge asez as z ! `, and that they match, in the
language of matched asymptotic expansions, the largej

“outer” expansion of the “inner” solution based on thehi

[23]. These conditions fix the parametersc1 and c3y2 in
(10), and this yields the solution given in Eqs. (4)–(7
[17]. The structure of the analysis is essentially the sam
for higher order equations like (2).

In summary, our results show that the1yt relaxation of
pulled fronts is essentially due to the crossover to a Gau
ian shaped tip in the leading edge of the front. The no
linearities dictate the asymptotic tip shapefp ~ je2Lj

for t ! ` and j large. This asymptote determines th
e
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coefficients and the1yt3y2 term in the velocity correction
ÙX (4). We finally note that analytical arguments as well
as numerical simulations indicate that many of the abov
arguments can be generalized to pattern forming fronts
occurring, e.g., in Eq. (2) forg . 1y12 or in the Swift-
Hohenberg equation [13]. Work on this is in progress.
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