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Universal Algebraic Relaxation of Fronts Propagating into an Unstable State
and Implications for Moving Boundary Approximations
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We analyze the relaxation of fronts propagating into unstable states. While “pushed” fronts relax
exponentially like fronts propagating into a metastable state, “pulled” or “linear marginal stability”
fronts relax algebraically. As a result, for thin fronts of this type, the standard moving boundary
approximation fails. The leading relaxation terms for velocity and shape are of bfdemd 1/13/2.

These universal terms are calculated exactly with a new systematic analysis that unifies various heuristic
approaches to front propagation. [S0031-9007(98)05413-1]

PACS numbers: 47.20.Ky, 02.30.Jr, 03.40.Kf, 47.54.+r

Consider propagating fronts in systems with a continuthin front propagating into an unstable state [7]. Moving
ous order parameter, where a stable state invadesman boundary approximations have been applied quite success-
stablestate, and assume, that thermal perturbations can belly to patterns consisting of domains where the order pa-
neglected. Such fronts arise in many convective instabilirameter field varies slowly in space and time due to the
ties in fluid dynamics such as in the wake of bluff bod- coupling to some external field (e.g., temperature in a so-
ies [1], in Taylor [2] and Rayleigh-Bénard [3] convection, lidification or combustion front), separated by thin inter-
they play a role in spinodal decomposition near a wall [4],facial zones where the order parameter field varies rapidly
the pearling instability of laser-tweezed membranes [5], th¢16]. Implicit in this method is the assumption that the
formation of kinetic, transient microstructures in structuraldynamics on the “inner” interfacial scale and the “outer”
phase transitions [6], dielectric breakdown fronts [7], thepattern scale is adiabatically decoupled in the thin inter-
propagation of a superconducting front into a normal metaface limit, so that the boundary conditions for the motion
[8], or in error propagation in extended chaotic systemf the interface on the outer scale doeal in space and
[9]. For such front propagation problems, it is known [10—time. However, we find that when the moving boundary
14] that if the initial profile is steep enough, arising, e.g.,amounts to a “pulled” front propagating into an unstable
through a local initial perturbation, the propagating frontstate, the standard moving boundary approximati@aks
in practice always relaxes to a unique shape and velocityfdown The physical reason is simply that due to the alge-
Depending on the nonlinearities, one can distinguish twdraic relaxation on the inner scale, the time scales for the
regimes: As a rule, fronts whose propagation is driverdynamics on the inner and outer scales are not adiabatically
(pushed) by the nonlinearities very much resemble frontslecoupled. As we will discuss in detail elsewhere [17],
propagating into metastable states. This regime is oftetechnically the analysis breaks down due to the nonex-
referred to as “pushed” [10,14] or “nonlinear marginal sta-istence of solvability integrals associated with the same
bility” [13]. If, on the other hand, nonlinearities mainly linear operatorL * below that plays a role in the relaxa-
cause saturation, fronts propagate with a velocity detertion analysis of pulled fronts. “Pushed” fronts, on the other
mined by linearization about the unstable state: it is as ihand, relax exponentially to an asymptotic shape and ve-
they are pulled by the linear instability (“pulled” [10,14] locity in much the same way as fronts propagating into a
or “linear marginal stability” [13] regime). Some heuris- metastable state do. The important distinction for the va-
tic arguments have been put forward [13] that for largdidity of a moving boundary approximation is thus between
timest the velocity and shape of a pulled front generallypulled fronts on the one hand, and pushed fronts or fronts
relax slowly, asl /¢. The experimental relevance of such apropagating into a metastable state on the other.
slow relaxation is illustrated by propagating Taylor vortex The new approach that we introduce here grew out
fronts. Here the measured front velocities [2] were aboubf studying the above question, and allows us to deter-
40% lower than predicted theoretically; only later it be- mine both the velocity and the shape relaxation of pulled
came clear [15] that this was due to slow transients. fronts systematically. We are able to calculate all uni-

In this paper, we identify the general mechanismversal terms in an asymptotic long time expansion explic-
leading to slow relaxation of uniformly translating fronts, itly and exactly, and confirm our predictions numerically.
use it to introduce a systematic analysis which allows uBesides being of interest in their own right, our results
to determineall universal asymptotic termsnd point out identify the general mechanism that leads to the slow re-
the implication of the relaxation for the existence of alaxation of sufficiently steep initial conditions towards the
moving boundary approximation. “pulled” or “marginally stable” front and the concomitant

Our present investigation was, in fact, motivated by arbreakdown of a the standard moving boundary approxi-
attempt to derive a moving boundary approximation for amation; in addition, the analysis welds various seemingly
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unrelated and often heuristic approaches [12—14,18—-2@xplicitly by the linear dispersion relatiom (k) of a
together into a systematic calculational framework withFourier modee ~/®’*i** [12,13,18] through

new predictive power. d Ilmaw . dImo

With “universal” we mean that not only the asymptotic DImk e~ 0, 9 Rek | -
profile is unique, but also the relaxation towards it, Im w(k*) . 3)
provided we start with sufficiently steep initial conditions. Imee Y

This is analogous to the universal corrections to scalingl_ _ . _ _ _ _
in critical phenomena, if we think of the relaxation as ! he first two equations in (3) are saddle point equations in

the approach to a unique fixed point in function spaceéhe complexk plane that govern the long time asymptotics
along a unique trajectory. The universal velocity andof the Green’s function in a frame moving with the
shape relaxation terms which we calculate exactly are geading edge of the front. The third equation expresses
order 1/¢ and 1/73/2. The next term in the long time that for self-consistency, the linear part of the front should
expansion, which is of0(1/12), is affected by a time neither grow nor decay in the co-moving frame. If in the
translations — ¢ + ¢, in the 1/¢ term. Thel/s* terms full nonlinear equation a front with velocity™ is unstable
therefore depend on the initial conditions. or nonexistent, the marginally stable front with velocity
Our analysis can be formulated quite generally forv! > v* is called “nonlinearly marginally stable” or
partial differential equations which are of first order in Pushed If a front propagating with velocity” is stable,
time but of arbitrary order in space, as long as they admitt is called “linearly marginally stable” opulled[10].
uniformly translating pulled solutions, as defined below. Our relaxation analysis applies in general to equations,
For ease of presentation we guide our discussion alon Which a front solutions™ propagating with velocity”
two examples which we have investigated analytically ad3) is uniformly translatingRe«* = 0 = Rew (k)] and
well as numerically. Our first example is the prototypedynamlcally stable, and to all initial conditions that are

nonlinear diffusion equation, sufficiently steep in the sense that lim. ¢ (x,0)e* = 0,
_ 22 .43 whereA = Imk* > 0.
Uplx1) = o + f(¢), f¢)=¢—-¢ (1) We now first summarize our predictions: If we trace

with ¢, x, t real. This equation is also known as KPP the velocityv, (1) = x,(¢) of a fixed amplituder, where
equation (after Kolmogoroet al), Fisher equation, or ¢ (x,(r),r) = h, we find v,(r) = v* + X(¢t) + g(h)/r?
FK equation. In (1), the stat¢ = 0 is unstable and the with

states¢) = *1 are stable. We consider a situation where . -3 JT

initially ¢ (x,0) asymptotically decays quicker than* X(1) = —<1 - > (4)

¢ , . . ; 2At A\/Dt

or large x, or, in particular, one with(x,0) # 0 ina ) L )
localized region only. The region witlh # 0 expands in N fact mdependelnt of and of the precise initial condi-
time, and a propagating front evolves. It has been provelions. HereD = 39 Imw /(3 Imk)?|x- plays the role of
rigorously, that relaxation is always to a unique front@ diffusion coefficient. The leadint/t term reproduces
profile ¢*(x — v*#) with velocity v* = 2 [11], and that Bramson’s exact resu!t [19] fqr Eq. _(1). Notg that all terms
the velocity relaxes asymptotically ags) = 2 — 3/(2r)  in (4) depend on the linear dispersion relation only.

[19]. Our second example is the “EFK” (extended FK) The velocity of the relaxing front is smaller than that of

equation the asymptotic uniformly translating front. The correction
R is X(t) = —3/(2At) to dominant order. This means that
0plx,1) = 0xh — v + (), (2) the distance between the asymptotic and the relaxing front
f(d)=¢ — &>, grows logarithmically in time asX(¢) = —3/(2A)Inzt.

which serves as a model for equations with higher spatiap"c€ the front width idfinite in equations like (1) and

derivatives. Fo = y < 1/12, sufficiently steep initial ﬁ)’ l"Vh(‘]:.e X(f)ld“.’erges’ this "‘;}mediage'y pr'ai”Za"’ghy
conditions also evolve into a pulled front translating uni- € '€ading velocity correction has to be the samealor

formly with velocity v* (3) [13,21], but the rigorous meth- Values of the amplitudé. .
ods of [11,19] are not applicable here. If we want to write the shape of the transient front as a

Since the basic stateb = 0 into which the front small perturbatiom; about the asymptotic shagg at all

propagates is linearly unstable, even a small perturbatio n:es, We*have tolinearize about .the asymptotic profll'e
around¢ = 0 grows and spreads by itself. According to (x —v'r = i((t))_translgte_d with the nonasymptotic
the linearizedequations any localized small perturbationSP€€dv(7) = v* + X. This is a crucial ingredient of
will spread asymptotically for large times with the linear OU" @nalysis. Indeed, when written in the franfe=

marginal stability speed/*. This speed is determineﬁi icin;erlij;i r;g)ii)(rt]?”o\;vteh;i?r(cj)ntthr\/c\)/ﬁgréslnixggngon in the

d(&,1) = ¢™(&) + n(&,1), withé =x — vt — X(1) (5)
= $" (&) + X()naw(£) + 072, whereng = (8¢,/6v)l,-
= ¢()(&) + 0(7?), for & < 2Dt (6)
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FIG. 1. (a) and (b): Velocity correctiodv,(r) = v,(t) — v* — X as a function ofl/?> for various amplitudesp (x;,t) = h,
v, = x; and forz =20. (a): Equation (1), thusy =0, A =1 =D, andv* = 2. (b): Equation (2) withy = 0.08, thus
D =02, A =129, andv* = 1.89. (c): Data from (a) plotted abp(&,1) — d*(€)]/[X nsn(€)] over & for varioust. ¢*(€)
(dashed curve) for comparison.

Here ¢, is the shape of a front propagating uniformly is precisely the leading term d(z). We also find here
with velocity v, so Eq. (6) expresses that for large times,a Gaussian type profile in the far edge, but the systematic
the shape of the profile is to a good approximationanalysis sketched below is needed to confirm that (7) is the
given by the uniformly translating solutiog,(£) with  proper asymptotics in the shifted franfe
the instantaneousvalue of the velocityv(s) < v*. We have tested our predictions by numerically integrat-
Based on numerical observations, Povetlal. [20] have ing Egs. (1) and (2) forward in time, starting from local-
conjectured such a form for the transient profile forized initial conditions. In Figs. 1(a) and 1(b), we present
equations of type (1). Here it comes out naturally fromvelocitiesv,(¢) of various points whereb(x;,7) = 4, in
our general analysis, together with an explicit expressiori(a) for Eqg. (1), and in 1(b) for Eq. (2) witlk = 0.08.
for X(r). Moreover, we find nonvanishing corrections in Note that the critical value of is y. = 1/12 = 0.083.
order1/¢2. - As according to our prediction in Eq. (4),(1) = v* +

In the far edge, wher¢ = O(v/Dr) > 1, a different  X(r) + g(h)/#* [where g(h) can be expressed in terms
expansion is needed, as the transient prafildalls off  of gy, andag¢* [17]], we plotv,(r) — v* — X(¢) versus
faster than¢”, so thatn =~ —¢*. Linearizing about 1/¢2 for varioush. All curves should then converge lin-
¢ = 0, matching to the interior (6) and imposing that early to zero ad/r> — 0. Clearly, the numerical simu-
the asymptotic shape™ is approached for — < and Ilations fully confirm this for both equations.

that the transients are steeper than¢ for ¢ — o, For our prediction (6) of the shape relaxation, the most
uniquely determines the velocity correctian(4) and the  direct test is to plof¢(£,1) — ¢*(€)]/[X (1) nn(€)] as
intermediate asymptotics a function of ¢ for various times. This ratio should

 —AE—E2/4D converge to one for large times. As Fig. 1(c) shows,
$(&.1) ~ e [¢ + const+ 0(1/VD)]. (7) this is fully borne out by our simulations of the nonlinear

Both the leadingd /1 term inX () in (4) and the crossover diffusion equation (1). Moreover, the crossover for large
to a Gaussian type profile like in (7) can be understood inPOSitive < is fully in accord with our result that the proper
tuitively through a heuristic argument [13]: We work in the Similarity variable in the far edge i&°/:—see Eq. (7).
asymptotic frame* = x — v*r. Generally, the asymp- _ We finally give a brief sketch of the systematic analy-
totic profile is ¢*(£*) o« e 2¢°(¢* + cons) for &* — oo sis, taking the nonlinear diffusion equation (1) as an ex-
The term linear ing* comes from the coincidence of two @mple. Full details will be published elsewhere [17].
roots of w(k) — vk at a saddle point (3). If we start We first consider the “front interior” region, where
from localized initial conditions¢ (¢*, 1) should approach the deviationn(¢, ) of ¢ about ¢*(¢) is small, ie.,
$*(¢*) ast — o, but for a fixed time should fall off Inl < ¢*. As there is some freedom in choosiéglue
faster thang* asé&* — «. To study this crossover, con- O translation invarianC(le, we choose quite arbitrarily the
sider for simplicity Eq. (1); if we linearize, and substi- condition thate(0,7) = 7 = ¢%(0), so thaty(0,7) = 0,
tute p(£*, 1) = e Ay (&%, 1) With v* =2, A=1=Din aswas also done in Fig. 1(c). Substituting (5) into (1),
this case), we get the simple diffusion equatiogy =  We obtain
aéw. Clearly, the similarity solution which matches to

¢*(§*)~6—A§*(§* +C0nS) is lp — (f*/t3/2)e—§*2/4t, S0 am = -E*T’ + Xaf(’fi + d)*) + %7)2 + 0(7’3)»

b ~ eAE 32 E—£7/40 [22] Hence, if we now (8)
track the positior¥;, of the point wherep (&,,1) =h < 1,
we find &, (1) = —3/(2A)Int + ...in the frame&*. This L= a§ + v g + fl(P7(€)). 9)
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The inhomogeneityXa,¢* in (8) is due to the fact coefficients and the/r*/? term in the velocity correction

that ¢*(¢) is a solution of (1) only ifX = 0. Since X (4). We finally note that analytical arguments as well
X(t) = 0(+ "), and since in the front interidm| < ¢*,  as numerical simulations indicate that many of the above
the inhomogeneity induces an ordering in powerd &f, arguments can be generalized to pattern forming fronts,

which suggests an asymptotic expansion as occurring, e.g., in Eq. (2) foy > 1/12 or in the Swift-
) ol cp o Hohenberg equation [13]. Work on this is in progress.
X=—+ Sp Tt (10) This work was started in collaboration with C. Caroli
! ! ! and we thank her for helpful discussions. The work of
n(& 1) = mo % + (11) U. E. is supported by ttle Dutch Scie_nce Foundation” NWO
t t and EU-TMR network “Patterns, Noise and Chaos.
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