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Abstract

Fronts that start from a local perturbation and propagate into a linearly unstable state come in two classes: pulled fronts and
pushed fronts. The term “pulled front” expresses that these fronts are “pulled along” by the spreading of linear perturbations
about the unstable state. Accordingly, their asymptotic speedv∗ equals the spreading speed of perturbations whose dynamics is
governed by the equations linearized about the unstable state. The central result of this paper is the analysis of the convergence
of asymptotically uniformly traveling pulled fronts towardsv∗. We show that when such fronts evolve from “sufficiently steep”
initial conditions, which initially decay faster than e−λ∗x for x → ∞, they have auniversal relaxation behavioras timet → ∞:

the velocity of a pulled front always relaxes algebraically likev(t) = v∗ − 3/(2λ∗t) + 3
2

√
πDλ∗/(Dλ∗2

t)3/2 + O(1/t2).
The parametersv∗, λ∗, andD are determined through a saddle point analysis from the equation of motion linearized about
the unstable invaded state. This front velocity is independent of the precise value of the front amplitude, which one tracks
to measure the front position. The interior of the front is essentially slaved to the leading edge, and develops universally as
φ(x, t) = 8v(t)(x− ∫ t dt ′ v(t ′))+ O(1/t2), where8v(x− vt) is a uniformly translating front solution with velocityv < v∗.
Our result, which can be viewed as a general center manifold result for pulled front propagation is derived in detail for the
well-known nonlinear diffusion equation of type∂tφ = ∂2

xφ + φ − φ3, where the invaded unstable state isφ = 0. Even for
this simple case, the subdominantt−3/2 term extends an earlier result of Bramson. Our analysis is then generalized to more
general (sets of) partial differential equations with higher spatial or temporal derivatives, to PDEs with memory kernels, and
also to difference equations such as those that occur in numerical finite difference codes. Ouruniversalresult for pulled fronts
thus implies independence (i) of the level curve which is used to track the front position, (ii) of the precise nonlinearities, (iii)
of the precise form of the linear operators in the dynamical equation, and (iv) of the precise initial conditions, as long as they
are sufficiently steep. The only remainders of the explicit form of the dynamical equation are the nonlinear solutions8v and
the three saddle point parametersv∗, λ∗, andD. As our simulations confirm all our analytical predictions in every detail, it
can be concluded that we have a complete analytical understanding of the propagation mechanism and relaxation behavior
of pulled fronts, if they are uniformly translating fort → ∞. An immediate consequence of the slow algebraic relaxation
is that the standard moving boundary approximation breaks down for weakly curved pulled fronts in two or three dimen-
sions. In addition to our main result for pulled fronts, we also discuss the propagation and convergence of fronts emerging from
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initial conditions which are not steep, as well as of pushed fronts. The latter relax exponentially fast to their asymptotic speed.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Outline of the problem

In this paper (see Scheme 1), we address the rate of convergence or “relaxation” of the velocity and profile of
a front that propagates into anunstablestate. The particular fronts that we analyze separate two non-equilibrium
homogeneous states, one of which is stable and one of which is unstable, and are such that the asymptotic front
solution is a uniformly translating one. We assume that the unstable state is initially completely unperturbed in a
large part of space, and that thermal and other noise are negligible. Examples of such situations arise in one form
or another in physics [1–29,110–113,120], chemistry [29–35],1 and biology [30,32,36,114]. If the unstable state
domain is not perturbed by imperfect initial conditions or thermal noise, it can only disappear through invasion
by the stable state domain. We analyze the propagation of fronts formed in this process, in particular the temporal
convergence towards an asymptotic front shape and velocity, and show that it is characterized by a universal power
law behavior in the so-called pulled regime. We concentrate on planar fronts, which thus can be represented in one
spatial dimension. However, our results for these and for the dynamical mechanism also have important implications
[37] for the derivation of moving boundary approximations [38,39] for weakly curved fronts in higher dimensions,
as well as for the evaluation of the effects of noise on fronts [40–46], especially the effect of multiplicative noise
[47,48].

The problem of front propagation into an unstable state has a long history, which dates back2 to the pioneering
work by Kolmogoroff, Petrovsky and Piscounoff (KPP) [49] and by Fisher [50] on the nonlinear diffusion equation

∂tφ = ∂2
xφ + f (φ), (1.1)

wheref (φ) is such that it has a homogeneous stable stateφ = 1 and a homogeneous unstable stateφ = 0. The
early work on this equation [49,50] was motivated by the biological problem of gene spreading in a population.
Since this work, the nonlinear diffusion equation (1.1), in particular the one with a simple nonlinearity of the type

f = fKPP(φ) = φ − φk, k > 1, e.g., k = 2 or 3, (1.2)

has become a standard problem in the mathematical literature [30,32,36,51–53,114].3,4 For the F-KPP equation
defined by (1.1) and (1.2), there exist dynamically stable uniformly translating front solutionsφ(x, t) ≡ 8v(x−vt)
for every velocityv ≥ v∗ = 2f ′(0)1/2, and hence every one of these solutions is a possible attractor of the dynamics
for long timest . The resulting dynamical behavior or “velocity selection” depends on the initial conditions and
has been investigated by a variety of methods [49–51,53]; essentially all its relevant properties have been derived
rigorously [51]. For example, following the lines of KPP [49], Aronson and Weinberger [51] proved rigorously
that every initial condition, that decays spatially at least as fast as e−λ∗x (λ∗ = 1

2v
∗) into the unstable state for

1 See especially the article by Shaul and Showalter in Ref. [31].
2 As mentioned by Murray [[36], p. 277], the equation was apparently already considered in 1906 by Luther, who obtained the same analytical

form as Fisher for the wave front.
3For some recent more mathematical advances within the physics literature, see [54,115].
4For a recent extension to multidimensional cases, and for an entry into the mathematical literature, see, e.g., [55].
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Scheme 1.
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Scheme 1. (Continued)
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x → ∞, approaches for large times the front solution8v∗(x − v∗t) with the smallest possible velocityv∗. Most of
the rigorous mathematical methods, however, cannot be extended to higher order equations.5

In physics, the interest in front propagation into unstable states initially arose from a different angle. Since
the late 1950s, the growth and advection of linear perturbations about a homogeneous unstable state has been
analyzed through an asymptotic large time expansion of the Green’s function of the linear equations [56–58]. Only
10–15 years ago it become fully clear in the physics community [59–69,116] that there was actually an empirical
but deep connection between the rigorous results for the second order equations and some aspects of the more
general and exact but non-rigorous results for the growth of linear perturbations. This has given rise to a number of
reformulations and intuitive scenarios aimed at understanding the general front propagation problem into unstable
states [60,61,63,65–69,116].

Although our results bear on many of these approaches, our aim is not to introduce another intuitive or speculative
scenario. Rather, we will introduce what we believe to be the first systematic analysis of the rate of convergence
or “relaxation” of the front velocity and profile in the so-called “linear marginal stability” [63,65] or “pulled”
[59,68,69] regime. In this regime, the asymptotic front velocity is simply the linear spreading speed determined by
the Green’s function of the linearized equations. Quite surprisingly, our analysis even yields a number ofnewand
exactresults for the celebrated nonlinear diffusion equation (1.1), but it applies equally well to (sets of) higher order
partial differential equations that admit uniformly translating fronts, to difference equations or to integro-differential
equations. We will discuss such equations in general, and then illustrate our results on the example equations from
Table 1.

For all such equations, our results have a remarkable degree of simplicity and universality: pulled fronts always
converge in time withuniversal power laws and prefactorsthat are independent of the precise form of the equations
and independent of the precise initial conditions as long as they obey a certain steepness criterion. To be precise,
for equations such that the dynamically selected asymptotic front is a uniformly translating pulled front, and for the
so-calledsufficiently steepinitial conditions defined such that limx→∞φ(x,0)eλx = 0 for someλ > λ∗, we derive
that the asymptotic velocity convergence is given by the universal law

v(t) = v∗ + Ẋ, Ẋ = − 3

2λ∗t

(
1 −

(
π

(λ∗)2Dt

)1/2
)

+ O

(
1

t2

)
. (1.3)

The velocityv∗, the inverse lengthλ∗ and the diffusion constantD are in general obtained from a saddle point
expansion [58] for the equation of motion linearized about the unstable state. In a frame moving with velocityv∗ the
quickest growing modek∗ is identified by the complex saddle point equation∂k[ω(k)− v∗k]|k=k∗ = 0, whereω(k)
is the dispersion relation of a Fourier mode exp{−iωt + ikx}. In the more usual decomposition into real functions
this implies that [56,61,63,65]

∂Imω

∂Im k

∣∣∣∣
k∗

= v∗,
∂Imω

∂Rek

∣∣∣∣
k∗

= 0. (1.4)

The speed of the frame is asymptotically the same as the speed of the front if

Imω(k∗)
Im k∗ = v∗. (1.5)

For the uniformly translating fronts that we will analyze here, we have

Im k∗ ≡ λ∗ > 0, Rek∗ = 0, Reω(k∗) = 0, (1.6)

5For a discussion of the few mathematically precise results that are available for more complicated or higher order equations, we refer to the
book by Collet and Eckmann [52].
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Table 1
Summary of the equations studied in detail in Section 5.6 as examples of the general validity of our results for higher order equations, coupled
equations, difference equations, and equations with a kernel. All these equations have pulled front solutions whose asymptotic speed relaxes
according to (1.3)

and a real positive diffusion coefficientD

D = i∂2ω

2∂k2

∣∣∣∣
k∗

= ∂2Imω

2∂λ2

∣∣∣∣
k∗
. (1.7)

While the velocity of a front is converging to its asymptotic value, so is the profile shape. Note thatv(t) (1.3) does
not depend on the “height”φ = h, which is being tracked. In fact, if we define the velocityvφ of the fixed amplitude
φ = h throughφ(x + ∫ t dτ vφ(τ ), t) = h, then up to order 1/t2 the velocityvφ(t) = v∗ + Ẋ is independent of the
“height” φ = h. Moreover, it is determined solely by properties of the equation linearized about the unstable state,
as Eqs. (1.4)–(1.7) show. In this sense, we can indeed speak ofpulling of the front by the leading edge of the front.

The above expression forv(t) containsall the universal terms, since the next 1/t2 term in the long time expansion
does depend on initial conditions. The above analytic results for the universal velocity convergence as well as related
ones for the relaxation of the front profile which are summarized in Table 2 and discussed in more detail below,
are fully confirmed by extremely precise numerical simulations. Taken together, this study therefore yields the
understanding of the pulled front mechanism that so many authors [8,61,63–65,67–70] have sought.

In this paper, first the asymptotic long time behavior is worked out in detail and to high orders for the F-KPP
equation (1.1) and (1.2) in two matched asymptotic expansions in 1/

√
t . Once we have laid out the structure of

this expansion, it is clear that essentially the same matched expansions can be applied to other more complicated
types of equations, provided that they admit a family of uniformly translating front solutions in the neighborhood
of the asymptotic “pulled” velocityv∗. Moreover, the two lowest order equations in the 1/

√
t expansion in the
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so-called leading edge region together with a boundary condition suffice to calculate the universal convergence.
The structure of these equations is virtually independent of the precise form of the dynamical equation. For more
general equations, we hence limit the discussion to the motivation and analysis of these two equations. Although we
will give some discussion of the assumptions that underly the expansion (like the one that there is a nearby family
of moving front solutions), a full analysis of these as well as of the extension to non-uniformly translating fronts,
such as those arising in the EFK equation of Table 1 forγ > 1

12, in the Swift–Hohenberg equation [71], or in the
complex Ginzburg–Landau equation [66], will be left to future publications [72].6,7

For Eqs. (1.1) and (1.2), we simply havev∗ = 2, λ∗ = D = 1. The first term in (1.3) then reduces to a
well-known result of Bramson [74], who rigorously proved that the convergence to the asymptotic velocityv∗ is
v(t) = v∗ −3/(2λ∗t) uniformly, i.e., independent of the amplitudeφ whose position one tracks. The factor3

2 in this
expression has often been considered puzzling, since thelinear diffusion equation with localized initial conditions
yieldsv(t) = v∗ − 1/(2λ∗t)+ · · · . In [65], it was argued that the factor3

2 in this result applies more generally to
higher order equations as well, but a systematic analysis or an argument for why the convergence is uniform, was
missing. Apart from this and a recent rederivation [70] of Bramson’s result along lines similar in spirit to ours8

and a few papers similar in spirit to that of Bramson [53,76,77]9 , we are not aware of systematic calculations of
the velocity and profile relaxation. Even for the convergence of the velocity in the celebrated nonlinear diffusion
equation, our 1/t3/2 term appears to be new.

From a different perspective, Powell et al. [67] also considered the convergence properties of pulled fronts. These
authors studied the shapes of the front profiles in the nonlinear diffusion equation and argued that they relax along
the family of unstable uniformly translating front solutions. Although they realized that the velocity relaxation was
algebraic and from below, they did not seem to realize that the dominant−3/(2t) velocity correction was known
from earlier work [65,74]. As we shall see below when we will discuss the shape relaxation of fronts, our derivation
is the first analytic derivation and confirmation of the picture of Powell et al., and identifies the connection with the
velocity relaxation.

Our results are not only of interest in their own right, but they also have important implications. Since the
asymptotic convergence towards the attractor8∗ is algebraic in time, the attractor alone might not give sufficient
information about the front after long but finite times, since algebraic convergence has no characteristic timescale.
In particular, there is no time beyond which convergence can be neglected. Such slow convergence means that in
many cases, experimentally as well as theoretically, one observes transients and not the asymptotic behavior. In fact,
in the very first explicit experimental test of front propagation into unstable states in a pattern forming system [2],
viz. Taylor–Couette flow, the initial discrepancy between theory and experiment was later shown to be related to the
existence of slow transients [16]. The slow convergence is important for theoretical studies as well: it is a common
experience (see, e.g., [12,64,78])10 that when studying front propagation in the “pulled” regime numerically, the
measured transient front velocity is often belowv∗. This is so even though theasymptoticfront speed can never be be-
low v∗, because no slower attractor of the dynamics exists. This observation finds a natural explanation in our finding
that the rate of convergence is always power law slow, and that the front speed is always approachedfrom below.

6A new and simple proof that fronts in the Swift–Hohenberg equations are pulled, and a new mode expansion that leads to a generalization of
(1.3) for pattern forming fronts which asymptotically are periodic in the comoving frame, such as those arising in the Swift–Hohenberg equation,
will be given in a future publication by Spruijt et al. [99].

7The convergence towards fronts whose dynamics remains non-periodic in the comoving frame, such as those in the complex Ginzburg–Landau
equation for some values of the parameters [12,62,66,116] is discussed in [73].

8 The main focus of the work by Brunet and Derrida [70] is actually the correction to the asymptotic velocity if the functionf (φ) has a cutoff
h such thatfh(φ) = 0 forφ < h. The method the authors use to derive this, is actually closely related to the one they use to rederive Bramson’s
result, and to our approach. See in this connection also the recent paper by Kessler et al. [75].

9 We thank F.M. Hekking for bringing Ref. [76] to our attention.
10 See, e.g., Fig. 6 of [78] which is a full numerical study of the predictions of Ref. [9].
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A second important implication of the absence of an intrinsic timescale of the front convergence is the following.
When we consider the propagation of such fronts in more than one dimension in which there is a coupling to another
slow field (as, e.g., in the phase field models [39,79]),11 the front dynamics does not adiabatically decouple from the
dynamics of the other field and from the evolution of the curvature and shape of the front itself. This implies that the
standard moving boundary approximation [38,39,81] (which actually rests on the assumption that the convergence
on the “inner scale” is exponential) cannot be made. Though this is intuitively quite obvious from the power law
behavior of the front convergence process, the connection between the convergence and the breakdown of a moving
boundary approximation also emerges at a technical level: the divergence of the solvability integrals that emerge
when deriving a moving boundary approximation turns out to be related to the continuity of the stability spectrum
of pulled fronts [37]. The break down of the solvability analysis for perturbations of the asymptotic front in the
pulled regime also has consequences for the evaluation of multiplicative noise in such equations [37,48].

1.2. Pushed versus pulled fronts, selection and convergence

Let us return to the well understood nonlinear diffusion equation (1.1) and discuss to which nonlinearitiesf (φ)

our prediction of algebraic convergence applies and why. Iff ′(0) < 0, the invaded stateφ = 0 is linearly stable,
and the construction of a uniformly translating frontφ(x, t) = 8v(x − vt) posses a nonlinear eigenvalue problem.
The solution with the largest eigenvaluev is the unique stable and dynamically relevant solution (unique up to a
translation, of course). As is well known and discussed in Section 2, any initial front that separates the (meta)stable
stateφ = 0 atx → ∞ from another stable state atx → −∞ will converge exponentially in time to this unique
attractor8v. However, wheneverf ′(0) > 0, φ = 0 is unstable, there is not a unique asymptotic attractor8v, but
a continuous spectrum of nonlinear eigenvaluesv which constitute the velocities of possible attractors8v. The
existence of a continuum of attractors of the dynamics posses a so-calledselection problem: from which initial
conditions will the front dynamically approach which attractor? The attractor with the smallest velocity plays
a special role, as its basin of attraction are all “sufficiently steep” initial conditions, as defined in Section 2. It
therefore will be referred to asthe selectedfront solution.

When we concentrate on these “sufficiently steep” initial conditions and analyze the dependence on the nonlin-
earityf in (1.1), the transition from exponential to algebraic convergence doesnotcoincide with the transition from
stability to instability of the invaded stateφ = 0, but with the transition between two different mechanisms of front
propagation into unstable states. Indeed, it is known (see also Section 2), that forf ′(0) > 0, there are two different
mechanisms for how the selected front8sel and its speedvsel are determined. Either8sel is found by constructing
a so-called strongly heteroclinic orbit for8v from the full nonlinear equation. This case is also known as Case II
[61] or nonlinear marginal stability [63,65], or as pushing [59,68,69]. Or, the selected velocityvsel is determined
by linearizing about the unstable stateφ = 0, which case is known as Case I or linear marginal stability, or as
pulling. We, henceforth, will use the terms “pushing” and “pulling” for the two different propagation mechanisms
of a selected front evolving from steep initial conditions, since they, very literally, express the different dynamical
mechanisms.

In a pushed front just like in a front propagating into a (meta)stable state, the dynamics is essentially determined
in the nonlinear “interior part” of the front, whereφ varies from close toφ = 0 to close to the stable state. The
construction of the selected front as a strongly heteroclinic orbit in the pushed case continuously extends into the
construction of the heteroclinic orbit of the unique attractor if the invaded state is (meta)stable (f ′(0) < 0). For
both pushed fronts and fronts propagating into linearly stable states, the spectrum of linear perturbations is bounded
away from zero, so that convergence towards the asymptotic front is exponential in time.

11 An entry into the more mathematically oriented literature is the paper by Bates et al. [80].
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In a pulled front, the dynamics is quite different: as we shall see, it is determined essentially in the region linearized
about the unstable state. We call this region the leading edge of the front. Eq. (1.1) is appropriate for analyzing
the front interior. We will see in Section 2.4, that a stability analysis performed in this representation is not able to
capture the convergence of a steep initial condition towards a pulled front. Rather the substitution

ψ = φ eλ
∗ξ , ξ = x − v∗t, (1.8)

which we shall term theleading edge representation, transforms (1.1) into

∂tψ = ∂2
ξ ψ + f̄ (ψ, ξ), (1.9)

f̄ ≡ eλ
∗ξ [f (ψ e−λ∗ξ )− f ′(0)ψ e−λ∗ξ ] = o(ψ2 e−λ∗ξ ).

This equation will turn out to be appropriate for analyzing a leading edge dominated dynamics. Note thatf̄ is at
least of orderψ2 with an exponentially small coefficient asξ → ∞. For largeξ , the dynamics is purely diffusive.
If the nonlinearity obeysf (φ) − f ′(0)φ < 0 for all φ > 0, which is known as a sufficient criterion for pulling,
the nonlinearityf̄ is always negative. Then̄f purely damps the dynamics in the region of smallerξ . The dynamics
evolving under (1.9) is equivalent to simply linearizing (1.1) about the unstable state in the largeξ region — there
is only one subtle but important ingredient from the requirement that the dynamics in the linear region crosses over
smoothly to the nonlinear front behavior at smallerξ that actually enters our leading edge analysis in the form of
a boundary condition. In the leading edge representation (1.9), this is brought out by the presence of the sink-type
termf̄ which is non-zero in a localized region behind the leading edge. With this small caveat,12 we can conclude
that the leading edge of the front “pulls the rest of the front along”, which is precisely the mechanism that gives rise
to the universal algebraic convergence behavior. In a pushed front, in contrast, the nonlinearity “pushes the leading
edge forward” and convergence is exponential.

To illustrate this discussion by a concrete example, we note that when the functionf (φ) in the nonlinear diffusion
equation is of the form

f = fε(φ) = εφ + φn+1 − φ2n+1, n > 0. (1.10)

we can rely on known analytic solutions for8v. In this case, the stateφ = 0 is (meta)stable forε < 0. For
0 < ε < (n + 1)/n2, the selected front is pushed, and forε > (n + 1)/n2, it is pulled (see Section 2 and
Appendix C).

At this point, a brief explanation of our use of the word “metastable” may be appropriate. For systems with a
Lyapunov function, the word metastable is often used in physics to denote a linearly stable state, which does not
correspond to the absolute minimum of the Lyapunov function or “free energy”. A domain wall or front between
the absolutely stable and a metastable state then moves into the metastable domain; one may therefore loosely call
a linearly stable state “metastable”, if it is invaded by another “more stable” state through the motion of a domain
wall or front.

The understanding of the two different dynamical mechanisms of pushing and pulling in the nonlinear diffusion
equation (1.1) lays the basis for the analysis of equations like those listed in Table 1. The essential step towards
a generalization of the leading edge representation (1.9) is done by a saddle point analysis, that identifies which
Fourier modes of linear perturbations of the unstable state will dominate the long time dynamics. This analysis
yields the parametersv∗, λ∗, the diffusion constantD and possible higher order terms required for the leading edge
representation.

12 Note though, that this subtle point is quite important — as we shall see, the saddle point or pinch point analysis gives precisely the wrong
prefactor for the leading 1/t convergence term because this boundary condition is not satisfied.
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1.3. Sketch of method and results on front relaxation in the pulled regime

Bramson’s method [74] to calculate algebraic convergence is specifically adapted to equations of type (1.1). It is
based on a representation of the diffusion equation by Brownian processes, which are evaluated probabilistically.
Instead, we construct the asymptotic convergence trajectory towards a known asymptotic state by solving the
differential equations in a systematic asymptotic expansion which, though non-rigorous, extends immediately to
higher order equations. Our approach leads toexactresults since the expansion parameter are inverse powers of the
time t , so these terms become arbitrarily small in the asymptotic regime.

The idea of the method is that in a pulled front, the speed is essentially set in the leading edge, where linearization
of the equation of motion about the unstable state is justified. This leading edge has to be connected to what we
will refer to as the interior part of the front, defined to be the region where we have to work with the full nonlinear
equation. For the interior, we use the fact that for large times the shape of the converging front will resemble the
asymptotic front, and thus can be expanded about it. We also explicitly make use of the fact that the initial state
φ(x,0) for largex is steeper than the asymptotic front profile8∗ = 8v∗ in the leading edge, i.e.,φ(x,0)eλ

∗x → 0
asx → ∞. The structure of the problem then dictates the expansion in 1/

√
t .

The structure of the expansion in 1/
√
t is the only real input of the analysis; its self-consistency becomes clear a

posteriori and it can be motivated from the earlier work on the long time expansion of the Green’s function of the
linearized equations. Equivalently, the self-consistency emerges from the observation that the equation governing
the convergence towards the asymptotic front profile (1.9) reduces essentially to a diffusion equation in the leading
edge of the front. The derivation of the exact results summarized in Table 2 is essentially based on this ansatz.

The shape convergence is also obtained explicitly from our analysis. The crucial input for the analysis is the
right frame and structure to linearize about. At first sight, a natural guess would be that for large times, the actual
shape of the frontφ(x, t) should be linearizable about the shape of the asymptotic front8∗(x− v∗t). However, the
algebraic velocity convergence (1.3) implies that if a converging front profileφ is close to the asymptotic uniformly
translating front profile8∗(x − v∗t) at sometimet0, the distance between the actual profile and8∗ will diverge at
large timest asX(t) = −(3/2λ∗) ln(t/t0) + · · · . This result which is illustrated in Fig. 1 implies that if we want
to linearizeφ about8∗ at all times,we have to move8∗ along with the non-asymptotic velocityv(t) (1.3) of the
converging front. A crucial step for the analysis is thus to linearize about8∗(ξX) in a coordinate system:

(ξX, t), ξX ≡ ξ −X(t) = x − v∗t −X(t), (1.11)

moving with the converging front. If we expandφ about8∗(ξX) with ξX from (1.11) and then resum, we find that

Fig. 1. Illustration of the fact, that even though the shape of a front profile is quite close to8∗, the position of a front is shifted logarithmically
in time relative to the uniformly translating profile8∗(ξ). Solid lines: evolution of some initial conditionφ(x,0) of the form (4.2) under
∂tφ = ∂2

x φ + φ − φ3 at timest = 5,10,15. Dotted lines: evolution ofφ(x, t) = 8∗(ξ), ξ = x − 2t , at timest = 5,10,15.8∗ is placed such
that the amplitudeφ = 1

2 coincides with that ofφ(x, t) at timet = 5. The logarithmic temporal shift is indicated by the fat line.
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the interior shape of the front is given by

φ(x, t) = 8v(t)(ξX + x0)+ O

(
1

t2

)
(1.12)

for ξX � √
4Dt. x0 expresses the translational degree of freedom of the front. The uniformly translating front8v(ξ)

is a solution of the ordinary differential equation for the uniformly translating profileφ(x, t) = 8v(x − vt), but
with v replaced by theinstantaneousvaluev(t) of the velocity. For example, for the nonlinear diffusion equation
(1.1),8v(ξ) is the solution of

−v∂ξ8v(ξ) = ∂2
ξ 8v(ξ)+ f (8v(ξ)). (1.13)

Eq. (1.12) also confirms that to leading order the interior is slaved to the slow dynamics of the leading edge. The
transient profiles8v(t) in (1.12) propagate with velocityv(t) smaller thanv∗ according to (1.3).

For the special case of Eq. (1.1) it is well known (see also Section 2) that when constructing a front8v starting
from8v = 1 atξ → −∞, it eventually will become negative for finiteξ , wheneverv < v∗, and that globally such
fronts either do not exist or are dynamically unstable, depending on the properties off for negativeφ. However, only
the positive part of8v(t) from ξ → −∞ up toξ � √

t plays a role as a transient. That the convergence trajectory
is approximately given by8v(t), was already observed numerically in equations of type (1.1) by Powell et al. [67].
Our analytical derivation of this result actually holds for a larger class of equations, but at the same time we find
that it only holds up to a correction term of order 1/t2. This non-universal correction is always non-vanishing.

For ξX � √
4Dt, the transient crosses over to

φ(x, t) = αξX exp

{
−λ∗ξX − ξ2

X

4Dt

}(
1 + O

(
1√
t

)
+ O

(
1

ξX

))
. (1.14)

The analytical expression for the universal correction of order 1/
√
t in (1.14) is given by Eqs. (3.65) and (3.67) for

the nonlinear diffusion equation and is generalized by Eqs. (5.39) or (5.69), while the correction of order 1/t will
depend on initial conditions, and is thus non-universal.

A crucial insight implemented above is that the front consists of different dynamical regions which have to be
matched to each other. The situation is sketched in Fig. 2. For a pulled front, the Gaussian region (1.14) of the leading
edge essentially determines the velocity while the front interior (1.12) is slaved to leading order. The Gaussian region
might be preceded by a region of “steepness”λ being conserved in time which for sufficiently steep initial conditions
λ > λ∗ has no dynamical importance (where the steepnessλ is defined in Eq. (2.6) below). Likewise, for flat initial
conditions, the dynamics is dominated by the conservedλ region, while pushed dynamics is dominated by the front

Fig. 2. Sketch of a relaxing pulled front with the different dynamical regions: the interior is the nonlinear region, the leading edge is the region
linearized about the unstable state. Depending on the initial conditions, the leading edge might still consist of two different regions: a Gaussian
region and a region of conserved steepnessλ. Forλ > λ∗ (defining “sufficiently steep” initial conditions), the (intermediate) asymptotic Gaussian
region determines the velocity relaxation.
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Table 2
The central results on the universal algebraic relaxation towards uniformly translating pulled fronts, see also Fig. 2. These results apply to steep
initial conditions in the nonlinear diffusion equation in the pulled regime (Case IV of Table 4, see Sections 3 and 4) and to more general equations
(see Section 5)

interior. In both of these cases, the intermediate Gaussian region is absent. For the nonlinear diffusion equation (1.1),
the different cases are discussed in Section 2 and summarized in Table 4. Our results (1.3)–(1.14) are universal in
four ways:
• They are independent of which “height” or level curve is being tracked to define the front velocity.
• The predicted convergence behavior is independent of the precise initial conditions, provided they decay quicker

than e−λ∗|x| far in the unstable regime.
• The leading edge behavior (1.3) and (1.14) is independent of the precise nonlinearities. For Eq. (1.1), the constants
v∗, λ∗ andD depend onf ′(0) only. For the more general equations, these constants are completely determined
by the saddle point expansion in the equation linearized about the unstable state.

• If we analyze general equations like those listed in Table 1, our prediction for the interior part of the front (1.12)
stays unchanged, as long as the front speed stays determined by the linearization about the unstable state, i.e., the
front stays pulled, and as long as the state behind the front stays homogeneous. The effect of the nonlinearities
just gets absorbed in appropriate functions8v.
The results summarized in this section are the most central new results of this paper. They are summarized, for

easy reference in Table 2.

1.4. Organization of the paper

Before embarking on our explicit calculation of the velocity and shape convergence in the pulled regime, we
review in Section 2 rather well known results on the multiplicity, stability and convergence of pushed fronts in the
nonlinear diffusion equation, and discuss how far these results can be extended to pulled fronts or fronts emerging
from “flat” initial conditions. Since the convergence towards pulled fronts cannot be derived by linear stability
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analysis, we set the stage for Section 3 by introducing the leading edge transformation. In the central Section 3, the
detailed analysis of pulled front relaxation in the nonlinear diffusion equation (1.1) is given. The detailed numerical
simulations that fully confirm our analytical predictions are presented in Section 4. In this section, we also pay
attention to the specific problems of spatial discretization and system size arising in the numerical solution of pulled
front propagation. In Section 5, we extend our analysis to more general equations, discuss the example equations
listed in Table 1, and present numerical results, again in excellent agreement with our analytical predictions. Here
the picture of a new center manifold theorem for pulled front propagation emerges. We then close the main body of
the paper with a summary and outlook in Section 6.

Since this is a long paper with a large number of detailed results of various types, and since we have made an
attempt to make our results accessible for readers from different fields, we introduce Table 3 as a “helpdesk” for the

Table 3
A guide through the paper for the efficient reader who wants to read about specific results only, or who already has some background knowledge
on the problem of front propagation into unstable states
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reader who wants to focus on a particular aspect of the front propagation problem only, or who wants to get only
an idea of the essential ingredients of our approach and the main results.

We finally note that a brief sketch of our results can be found in [82] and the lecture notes [83]. Later extensions
of the present work can be found in [37,46,48,72,73,99].

2. Stability, selection and convergence in the nonlinear diffusion equation

In this section, we provide the necessary background information on fronts propagating into unstable states by
reviewing a number of results on the multiplicity and stability of uniformly translating front solutions of the nonlinear
diffusion equation [32,36,38,49–51,54,61,63,65–70,84,85,87,88,90–92,114–116] .13 We also summarize to what
extent the linear stability analysis of these uniformly translating fronts allows us to solve the selection problem, i.e.,
to determine the basins of attraction of these solutions in the space of initial conditions and for different nonlinearities
f , and to what extent it allows us to answer the related question of the convergence rate and mechanism. It will
turn out that the linear stability analysis fails to explain how pulled fronts emerging from sufficiently steep initial
conditions relax to their asymptotic speed and profile. This sets the stage for a different approach to pulled fronts
by introducing the leading edge representation.

2.1. Statement of problem and essential concepts

In Sections 2–4, we analyze the nonlinear diffusion equation

∂tφ(x, t) = ∂2
xφ + f (φ), (2.1)

wheref (φ) is assumed to be continuous and differentiable. For studying front propagation into unstable states, it
is convenient to take

f (0) = 0 = f (1), f ′(0) = 1, f (φ) > 0 for all 0< φ < 1, (2.2)

so that in the interval [0,1], f (φ) has one unstable state atφ = 0 and only one stable state atφ = 1. Eq. (2.2)
implies thatf ′(1) < 0. Note, that we have specified the behavior off (φ) only on the interval 0≤ φ ≤ 1. This is
all we need since it can be shown by comparison arguments [51]14 that an initial state with 0≤ φ(x,0) ≤ 1 for all
x conserves this property in time under the dynamics of (2.1) and (2.2).

In passing, we note that for a nonlinearity like (1.10), a general equation of the form

∂τϕ = D∂2
yϕ + Fε(ϕ), Fε(0) = 0 = Fε(ϕs), F ′

ε(0) = ε, ϕs > 0, (2.3)

results. It allowsε to take either sign. Forε < 0, the stateφ = 0 is linearly stable, forε > 0, it is unstable. Fronts
propagating into metastable states (ε < 0) will sometimes also be discussed briefly for comparison. Ifε > 0, (2.3)
transforms to the normal form (2.1) as

t = ετ, x =
( ε
D

)1/2
y, φ = ϕ

ϕs
, f (φ) = Fε(ϕ)

εϕs
. (2.4)

Hence velocities transform as dx/dt = [dy/dτ ]/(Dε)1/2.

13 See, e.g., Section 3.2 in [86].
14 A brief overview of comparison type arguments can be found in the Appendix of Ref. [61].
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The front propagation problemcan now be stated as follows. Consider some initial condition 0≤ φ(x,0) ≤ 1
with

lim
x→∞φ(x,0) = 0, φ(x,0) > 0 for somex, (2.5)

that evolves under the equation of motion (2.1) with (2.2) into a front propagating to the right. Which time-independent
profile and which velocity will this front approach asymptotically as timet → ∞, if any? How quick will the con-
vergence to this asymptotic front be? Can we identify the mechanisms that generate such dynamical behavior? Can
we rephrase it in such terms that we can generalize results to equations other than (2.1)? These questions essentially
concern the nature of the front selection mechanism.

As is well known, the answers to these questions depend on more specific properties of the initial condition as
well as of the nonlinearityf (φ). For the nonlinear diffusion equation, the answer to the selection problem is known
in full rigor, but we will only review here those concepts which are important in a more general context and which
play a role in the subsequent relaxation analysis. We now briefly outline these main concepts and results and explain
them in more detail in the rest of Section 2.

Existence of a family of front solutions. For front propagation into unstable states, the selection problem is
different and more intricate than for bistable fronts (fronts between two linearly stable states), since when one
solves the ODE for the uniformly translating profileφ(x − vt) = 8v(ξ) one finds that there is a family of fronts
solutions parametrized by the continuous variablev that are possible attractors of the dynamics. This is in contrast
to the situation for bistable fronts where the selected velocityv is obtained simply as a nonlinear eigenvalue
problem.

Steepness of a front. Most of our discussion focuses more than earlier work on the central and unifying role of
thesteepnessλ of the leading edge of a front, defined as the asymptotic exponential decay rate:

φ(x, t)
x→∞∼ e−λx ⇔ λ = − lim

x→∞

(
∂ ln φ

∂x

)
. (2.6)

Whenφ(x, t) decays faster than exponentially asx → ∞, this impliesλ = ∞.
Pulled and pushed fronts. The family of uniformly translating and dynamically stable fronts8v can be uniquely

parametrized either by the velocityv or by the spatial decay rate or steepnessλ. The difference between pushed
and pulled solutions is especially clear if we characterize them byλ. A given nonlinearityf defines two particular
steepnesses:λsel which characterizes the pushed and pulled front solutions andλsteepwhich characterizes the basin
of attraction of these so-called selected fronts. The front solution withλ = λsel> 1 defines the pushed front, while
the pulled one hasλ = λsel = λ∗ = 1. The continuous family of dynamically stable front solutions that exists in
addition to these selected fronts is parametrized byλ < λsteep ≤ 1. The nature and construction of the fronts is
discussed in more detail in Section 2.2, together with a simple property of pulled fronts which will play an important
role in our later relaxation analysis, namely the fact that the asymptotic large time profile of a pulled front is as
8v∗(ξ) ∼ ξ e−λ∗ξ for ξ � 1.

We will characterize also an initial condition by its steepnessλ and call ita sufficiently steep initial condition, if
φ(x, t = 0) decays to zero exponentially faster than e−λsteepx for someλsteep≤ 1, i.e.,

sufficiently steep : φ(x,0)
x→∞
< e−λx for some λ > λsteep, (2.7)

otherwise we call itflat:

flat : φ(x,0)
x→∞∼ e−λx, λ < λsteep. (2.8)

How λsteepis determined byf (φ), will be discussed in Section 2.4. We will see that always 0< λsteep ≤ 1 for
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Eq. (2.1), and in particular that for pulled fronts

pulled fronts : λsteep= λ∗ = 1, (2.9)

while for pushed frontsλsteep< 1. The criterion (2.7) for steepness includes all initial conditions with bounded
support or, e.g., the initial conditionφ(x,0) = θ(−x) with θ the step function.

Note that the intermediate caseφ(x,0) ∼ x−ν e−λ∗x is neither sufficiently steep nor flat, according to our
definitions. In Section 3, we shall recover Bramson’s [74] observation that such special initial conditions also lead
to a 1/t relaxation of the velocity profile, but with aν-dependent prefactor forν < 2.

Conservation of steepness. In Section 2.5, we discuss what we term conservation of steepness: if an initial
condition is characterized by a steepnessλ, then at any finite time the steepness ofφ(x, t) is the same as that of the
initial conditionφ(x, t = 0). (Note that the limitst → ∞ andx → ∞ do not commute.)

The linear stability analysisof front solutions can be performed in detail for the nonlinear diffusion equation.
As summarized in Section 2.3, pushed fronts have a gapped spectrum, while pulled fronts have a gapless spectrum
within their natural Hilbert space. In the selection analysis, we in general also need perturbations from outside this
Hilbert space.

Stability and selection. In Section 2.4, we discuss the connection between the stability of front solutions and the
selection mechanism; this connection, which underlies much of the marginal stability scenario [61,63,65], hinges
on the fact that the conservation of steepness allows one to relate the steepness of the initial condition to the
steepness of the late stage evolution of the front that can be decomposed into an asymptotic front profile plus a
linear perturbation. The spectral decomposition of this perturbation is largely determined by the steepness of the
initial and the asymptotic state.

Basins of attraction and rate of convergenceare also discussed in Section 2.4. Flat initial conditions (2.8)
approach a front characterized by their initialλ. Sufficiently steep initial conditions (2.7) in the pushed regime
(λsel > 1) evolve at late times into a pushed front corrected by linear perturbations that can be represented by
eigenfunctions of the stability operator, whose spectrum has a gap. Hence the convergence of a pushed front is
exponential in time. In contrast, the rate of convergence of pulled fronts (λsel = 1) cannot simply be obtained from
the spectrum, as it is gapless, and generic perturbations are not spanned by the “natural” eigenfunctions of the
spectrum.

Leading edge and interior dominated dynamics. Both the stability analysis and our relaxation analysis bring out
the importance of distinguishingleading edge dominatedfrom interior dominateddynamics. The most obvious
form of leading edge dominated dynamics results from flat exponential initial conditions (2.8) with finite steepness
λ. In this case, the asymptotic front speed is just the speed

v(λ) = λ+ 1

λ
(2.10)

with which the exponential tail e−λx propagates according to the linear dynamical equation

∂tφ = ∂2
xφ + φ + o(φ2). (2.11)

This equation is obtained by linearizing about the unstable stateφ = 0, and is appropriate in the leading edge
region. The more important leading edge dominated dynamics occurs, however, for sufficiently steep initial con-
ditions (2.7) converging to apulled front. As already mentioned, for pulled fronts the asymptotic front speed
is just the linear spreading velocityv∗ determined in the leading edge where the dynamics is essentially gov-
erned by the linearized evolution equation. This type of leading edge dominated pulled dynamics occurs when
the nonlinearities inf (φ) are mostly saturating so that they slow down the growth. In passing, we note that
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we rederive in Appendix A the well-known sufficient criterion for pulling in the nonlinear diffusion equation,
viz.

f ′(0) = max
0≤φ≤1

f (φ)

φ
, (2.12)

with the help of a transformation that we call the leading edge transformation [73,82]. This form of a proof is gen-
eralizable to some other equations [72,73,99]. Pulled fronts are actually at the margin of leading edge domination:
although the linearized equation (2.11) is sufficient to determinevsel = v∗ = 2, we will see in Section 3 that the
convergencetowards this velocity is governed by a non-trivial interplay of the dynamics in the leading edge and
the “slaved” interior.

Leading edge dominated dynamics contrasts withinterior dominateddynamics, which occurs when the nonlinear
function f (φ) is such that steep initial conditions give rise topushedfronts. For interior dominated orpushed
dynamics,vsel is associated with the existence of a strongly heteroclinic orbit in the phase space associated with
8v(ξ) (Section 2.2). This means that the whole nonlinearityf (φ) is needed for constructingvsel, not only the
linearizationf ′(0) about the unstable state. The linear stability analysis of Section 2.3 implies that pushed fronts
converge exponentially in time to their asymptotic speed (Section 2.4). This type of dynamics extends smoothly
towards fronts propagating into metastable states, i.e., towardsε < 0 in (2.3).

While in this section, we consider the nonlinear diffusion equations (2.1) and (2.2) only, the straightforward
extension to generalized PDEs of the formF(φ, ∂xφ, ∂2

xφ, ∂tφ) = 0 can be found in Appendix B.
In the following subsections, the above assertions are further substantiated. Readers familiar with most of the

concepts and results listed above can proceed to Section 3.

2.2. Uniformly translating fronts: candidates for attractors and transients

In this section, we recall some well known properties [49–51,61,63,65,69,93,94,117]15 of uniformly translating
front solutions of the nonlinear diffusion equations (2.1) and (2.2). We transform to a coordinate system moving with
uniform velocityv: (x, t) → (ξ, t), ξ = x − vt, so that the temporal derivative transforms as∂t |x = ∂t |ξ − v∂ξ |t .
For a frontφ(x − vt) = 8v(ξ) translating uniformly with velocityv, the time derivative vanishes in the comoving
frame∂t |ξ8v = 0, and so8v(ξ) obeys the ordinary differential equation

∂2
ξ 8v + v∂ξ8v + f (8v) = 0. (2.13)

In view of the initial condition (2.5), throughout this paper we will focus on the right-moving front and hence we
impose the boundary conditions

8v(ξ) → 1 for ξ → −∞, 8v(ξ) → 0 for ξ → ∞. (2.14)

Close to the stable stateφ = 1, the differential equation can be linearized aboutφ = 1 and solved explicitly. The
general local solution is a linear combination of exp{−λ̃±ξ} with

λ̃± = 1
2(v ± (v2 − 4f ′(1))1/2). (2.15)

According to (2.2),f ′(1) is negative. Thus for any realv, λ̃+ is positive and̃λ− is negative. With the convention
(2.14), only the negative root is acceptable. So

8v(ξ) = 1 ± exp{−λ̃−(ξ − ξ0)} + o(exp{−2λ̃−ξ}) for ξ → −∞. (2.16)

15 We stress that we claim no originality here. In the physics literature, this type of analysis has appeared in various places, quite often in relation
to Ginzburg–Landau or mean-field type approaches (see, e.g., Refs. [79,95,97]).
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The free integration constant multiplying exp{−λ̃−ξ} here has been decomposed into a sign± and a free parameter
ξ0 accounting for translation invariance. Apart from translation invariance, there are two solution for8v close to
φ = 1 distinguished by±.

A global view of the nature and multiplicity of solutions can be obtained with a well-known simple particle-in-a-
potential analogy. This analogy has of course been exploited quite often in various types of approaches [63,95–97]
and only works for the nonlinear diffusion equation, not for equations with higher spatial derivatives; for these, we
have to rely on a construction of solutions as trajectories in phase space as sketched around Eq. (2.24).

The particle-in-a-potential analogy is based on the identification of Eq. (2.13) with the equation of motion of a
classical particle with friction in a potential. One identifies8v with a spatial coordinate,ξ with time,v with a friction
coefficient, andf with the negative force,f = −force= ∂φV (φ) derived from the potentialV (φ) = ∫ φ dφ′ f (φ′).
The potential has a maximum atφ = 1 and a minimum atφ = 0. The construction of8v is equivalent to the motion
of a classical particle with “friction”v in this potential, where at “time”−∞ the particle is at rest at the maximum
of V . Obviously, for any positive “friction”v > 0, the particle will never reach the minimum atφ = 0, if it takes
off from the maximum atφ = 1 towardsφ > 1. It will always reachφ = 0 if it takes off towardsφ < 1. Thus
for everyv > 0, there is a unique uniformly translating front (unique up to a translation), that starts as (2.14) and
reachesφ = 0 monotonically. Close toφ = 1 it is given by the− branch in Eq. (2.16).

Let us be more specific on howφ = 0 is approached. If the “friction”v is sufficiently large, the motion of the
particle will be overdamped when it first approachesφ = 0, it will reachφ = 0 only for “time” ξ → ∞, and
form a monotonic front over the wholeξ axis. This behavior continues down to a critical value of the “friction”
vc. It defines the critical velocityvc as the smallest velocity at which8v(ξ) monotonically reaches8v(ξ) → 0
at ξ → ∞. (As we will discuss in Section 2.3, a uniformly translating front8v is dynamically stable if and only
if v ≥ vc.) If v < vc, the particle will reachφ = 0 at a finite “time”ξ and cross it. What then happens, depends
on f (φ) for negative arguments. Iff ′(0) = 1 for both positive and negative argumentsφ as in the case of the
nonlinearities (1.2) or (1.10), the particle might oscillate a finite or an infinite number of times throughφ = 0 and
reachφ = 0 asymptotically forξ → ∞ as

8v(ξ) =



Av e−λ−ξ + Bv e−λ+ξ for v > 2,

(αξ + β)e−λ∗ξ for v = v∗ = 2,

Cv e−λ0ξ cosk(ξ − ξ2) for |v| < 2,

(2.17)

where

λ±(v) = λ0(v)± µ(v) (v > 2), λ0(v) = 1
2v (all v), (2.18)

µ(v) = 1
2(v

2 − 4)1/2 (v > 2), k(v) = 1
2(4 − v2)1/2 (v < 2), (2.19)

λ∗ = λ0(v
∗) = λ±(v∗) = 1 (v = v∗ = 2). (2.20)

The solution (2.17) of the equation linearized aboutφ = 0 contains two free parameters for everyv. These parameters
are determined by the unique approach of the front8v from φ = 1 and will, in general, both be non-vanishing.
The special valuev∗ = 2 is determined by linearization about the unstable state. As can be seen from (2.17), it
is a lower bound on the critical velocityvc. At this value of the velocity, the two rootsλ+ andλ− coincide. As a
result, the asymptotic profile is not the sum of two exponentials, but an exponential times a first order polynomial
in ξ .

Depending on the nonlinearityf , the criticalvc can be determined by two different mechanisms that turn out to
distinguish pushed (vc > v∗) or pulled (vc = v∗) fronts. Suppose first that upon loweringv the front solutions8v
remain monotonic tillv = v∗. In this case,vc = v∗ is determined by the equation linearized about the unstable
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state, and we will see, that sufficiently steep initial conditions (2.7) evolve into pulled fronts. A second possibility is
the following. At very largev, the front solution is certainly monotonic, since in the particle-on-the-hill analogy the
particle slowly creeps to the minimum of the potential for large “friction”v. HenceAv in (2.17) is positive for large
v. Now, depending on the nonlinearities, it may happen upon loweringv that at some velocityv = v†, A

v† = 0.

The front is non-monotonic forv < v† asAv will be negative forv < v†. Hence in this casevc = v† and pushed
fronts result. The pushed velocityv† thus emerges from the global analysis of the whole nonlinear front, and not
only from linearization about the unstable state.

For uniformly translating pulled fronts, we will use the short-hand notation8∗ ≡ 8v∗ . For largeξ they are
asymptotically

8∗(ξ) ≡ 8v∗(ξ)
ξ→∞∼ ξ e−ξ , (2.21)

since in general the coefficientα in (2.17) is non-zero. This particular form will in Section 3 turn out to have
important consequences for the convergence of pulled fronts: it determines the prefactor of the 1/t relaxation term.

For fronts with velocityv > v∗, the smallerλ will dominate the largeξ asymptotics, so generically

8v(ξ)
ξ→∞∼ e−λ−ξ . (2.22)

However, for a front solution with velocityv†, we haveA
v† = 0, and so

8†(ξ) ≡ 8
v†(ξ)

ξ→∞∼ e−λ+ξ . (2.23)

An alternative formulation that can be generalized to higher order equations is the following. A construction of
front solutions of Eq. (2.13) is equivalent to a construction of trajectories in a phase space (8v,9v ≡ ∂ξ8v) in
which the flow is given by

∂ξ

(
8v

9v

)
=
(

9v

−v9v − f (8v)

)
. (2.24)

Front solutions correspond to trajectories between the fixed points(8v,9v) = (1,0) and(0,0). These are thus
heteroclinic orbits in phase space. Out of the(1,0) fixed point come two trajectories in opposite directions along one
eigenvector according to (2.16). When we follow the direction for which8v decreases for increasingξ , its behavior
near the(0,0) fixed point is given by (2.17). Now, since the flow depends continuously onv, so will Av andBv in
(2.17). For largev,Av is positive, and from the construction of the flow in phase space one sees thatAv may change
sign on loweringv. The largestv with Av = 0 determines the change from monotonic to non-monotonic fronts. At
v = v†, the trajectory flows into the stable(0,0) fixed point along the most strongly contracting eigendirection —
this is precisely what is expressed in (2.23). For this reason, the solution8† is referred to by Powell et al. [67] as a
strongly heteroclinic orbit. In [66], this solution was referred to as “the nonlinear front solution”.

In summary, the main results of the preceding analysis are:
1. For everyv ≥ vc, there is a uniformly translating front8v with velocityv, which monotonically connectsφ = 1

at ξ → −∞ to φ = 0 atξ → ∞. All 8v with these properties are uniquely determined byv up to translation
invariance.

2. For every 0< v < vc, there is a unique front solution8v that translates uniformly with velocityv, and that
monotonically connectsφ = 1 atξ → −∞ to φ = 0 at some finiteξ = ξ̄ .

3. Depending on the nonlinearities, the change from monotonic to non-monotonic behavior can either occur at the
velocity v∗, with v∗ = 2 for (2.1) and (2.2), or at a larger velocityv†: vc = max[v∗, v†]. If v† exists, it is the
largest velocity at which there is a strongly heteroclinic orbit.
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Fig. 3. Steepnessλ (2.6) versus velocityv(λ) = λ + f ′(0)/λ with solid line for realλ and dotted line for real part of complexλ. v† is the
pushed velocity derived from global analysis,v∗ the linear spreading velocity. A fat line or point on the axes denotes the possible attractors
8v(x − vt) of the dynamics, parametrized either by velocityv or by steepnessλ: (a) the casef ′(0) < 0 corresponding to front propagation into
a (meta)stable state. In this case, there is a unique attractor with velocityvsel = v† and steepnessλsel = λ+(v†); (b) and (c) the casef ′(0) > 0
corresponding to front propagation into an unstable state. In this case there is a continuum of attractors parametrized byv ≥ vc; (b) the pushed
regime:vsel = vc = v† > v∗. The steepnessλsel = λ+(v†) of the steepest attractor is isolated just as in case (a). There is a continuous family
of fronts parametrized by 0< λ < λsteep= λ−(v†); (c) the pulled regime:vsel = vc = v∗. The steepnessλ∗ = λsteep= λsel of the steepest
attractor is at the margin of theλ-continuum of attractors.

The results for invasion into either metastable (f ′(0) < 0) or unstable states (f ′(0) > 0) and forvc = v† > v∗

andvc = v∗ are summarized inv(λ) plots in Fig. 3, which show the multiplicity of stable uniformly translating
fronts8v parametrized by eitherv or λ.

The results of this section play a role in the subsequent analysis:
• There are important connections [61] between the properties of the uniformly translating front solutions and the

stability of these fronts (see Section 2.3). In particular, front solutions with velocityv ≥ vc are dynamically stable
and possible attractors of the long-time dynamics. Fronts with velocityv < vc either do not exist or are unstable.

• The results for front selection can be easily formulated in terms of the properties of these uniformly translating
solutions [61,63,65]: for sufficiently steep initial conditions, the dynamically selected velocity coincides with
vc : vsel = vc. If vsel = v†, we speak of thepushedregime, while ifvsel = v∗ we speak ofpulledfronts.

• We will see in Section 3 that the positive monotonic part of the front solutions8v(ξ)with velocityv < v∗ plays a
role in the convergence behavior in the interior region of pulled fronts. Note, however, that while a solution8v(ξ)

of the ODE has according to (2.17) an oscillatory leading edge for largeξ , that causes the dynamic instability of
these solutions, the relaxing front is approximated by8v(t) only in the interior front region and crosses over to
a different functional form in the leading edge. This behavior is in agreement with the conservation of positivity
of the solution in a nonlinear diffusion equation, if the initial condition was positive.

All arguments essentially also apply to higher order equations, though then the positivity and monotonicity properties
of the solutions loose their distinguished role.

2.3. Linear stability analysis of moving front solutions

To study the linear stability of a uniformly translating front8v, we linearize about it in the frameξ = x − vt
moving with the constant velocityv, by writing

φ(ξ, t) = 8v(ξ)+ η(ξ, t). (2.25)

Inserting (2.25) into (2.1), we find to linear order the equation of motion forη(ξ, t)

∂tη = Lvη + O(η2) (2.26)
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with the linear operator

Lv = ∂2
ξ + v∂ξ + f ′(8v(ξ)). (2.27)

Lv is not self-adjoint, so left- and right eigenfunctions will differ. The trouble is caused by the linear derivativev∂ξ .
It can be removed by the following transformation [61,85]:

ψ = evξ/2η, (2.28)

Hv = −evξ/2Lv e−vξ/2. (2.29)

Hv is the linear Schrödinger operator

Hv = −∂2
ξ + V (ξ), V (ξ) = 1

4v
2 − f ′(8v(ξ)), (2.30)

and the equation of motion (2.26) transforms to

−∂tψ = Hvψ + O(ψ2 e−vξ/2). (2.31)

This Schrödinger problem is, of course, well known to physicists [86] (see also [85,87–91]), as long asψ lies in
the natural Hilbert space ofHv.

However, the transformation (2.28) and (2.29) increases the weight of the leading edge (ξ → ∞) by a factor
evξ/2, while it enhances convergence atξ → −∞. Therefore, only perturbations with

lim
ξ→∞

|η| eλ0(v)ξ < ∞ with λ0(v) = 1
2v (2.32)

are spanned by the eigenfunctions within the conventional Hilbert space ofHv. For the selection analysis in Section
2.4 below, this function space in general is not sufficient. As it is discussed in detail in Appendix D, one can
construct eigenmodes ofLv outside the Hilbert space defined by (2.32). With this extension of the function space,
scalar products of arbitrary eigenfunctions might be divergent, so one looses the efficient tool of projection onto
eigenfunctions by taking inner products. Nevertheless, in most cases generic perturbations still can be decomposed
into these eigenfunctions, except in the case of pulled fronts: the linear perturbationη of a sufficiently steep front
φ ∼ e−λξ with λ > 1 (2.7) about the asymptotic pulled front8∗ ∼ (αξ + β)e−ξ (2.17) and (2.21) will decay
asymptotically as

η = φ −8∗ξ�1∼ − (αξ + β)e−ξ . (2.33)

Since there is only one zero mode of translation with a slightly different asymptotic behavior

Lvη0 = 0, η0 = ∂ξ8
∗ξ�1∼ − (αξ + β − α)e−ξ , (2.34)

the asymptotics ofη cannot fully be decomposed into eigenfunctions. Here the double root structure of the leading
edge withα 6= 0 plays a crucial role, as it later will do again.

The most important conclusions from the present discussions and the detailed Appendix D are:
1. Non-monotonic fronts are intrinsically unstable, and generically will not be approached by any initial condition.
2. Monotonic fronts propagating with velocityv are stable against perturbations steeper than e−λ−(v)ξ .
3. Perturbationsη about pushed fronts8† that decay more rapidly thanλ−(v†) have a gapped spectrum (see

Eq. (D.14)). The same holds for perturbations about fronts8v with a velocityv > v†, if their steepness is larger
thanλ−(v).
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4. The spectrum of pulled fronts is gapless and cannot be decomposed into eigenfunctions ofHv even outside the
conventional Hilbert space.
Before closing this section, we note that although the particle-on-a-hill analogy for8v or the mapping onto the

Schrödinger equation forησ are insightful and very efficient ways to arrive at our results for existence and stability
of uniformly translating front solutions, the analysis by no means relies on these. In fact, much of the phase space
analysis can easily be generalized to higher order equations as those shown in Table 1. For example, in the stability
analysis of non-monotonic fronts, the discrete set of solutions withAv = 0 plays a particular role. For equations
like the EFK equation from Table 1, monotonicity ceases to be a criterium, but conditions likeAv = 0 defining
the so-called strongly heteroclinic solutions continue to play a central role in the stability analysis, as discussed in
Appendix H to Section 5.

2.4. Consequences of the stability analysis for selection and rate of convergence; marginal stability

Suppose now, that we start with an initial conditionφ(x,0) in the nonlinear diffusion equation (2.1) with a given
nonlinearityf (φ), and then study the ensuing dynamics. What will the linear stability analysis tell us about the
asymptotic (t → ∞) state and the rate of convergence? It turns out that the issue of selection is more closely related
to that of stability than one might expect at first sight. The reason is the conservation of steepness discussed in more
detail in Section 2.5 below:If initially at t = 0 the steepnessλ defined in(2.6) is non-zero(finite or infinite), then
at any finite timet < ∞ the steepness is conserved:

φ(x,0)
x→∞∼ e−λx ⇒ φ(x, t)

x→∞∼ e−λx for all t < ∞. (2.35)

Note that the limitsx → ∞ andt → ∞ do not commute. We characterize the initial condition by its steepnessλinit

defined by

φ(x, t = 0)
x→∞∼ e−λinitx. (2.36)

As a consequence of (2.35), we can useλinit to characterize not only the initial conditions but also the profile at any
later time 0≤ t < ∞, when the front velocity might be already close to its asymptotic value.

The conservation of steepness (2.35) entails that a front characterized by an initial steepnessλinit , will be char-
acterized by the same steepness after any finite time, so also at a late stage when the velocity and shape of a front
are close to their asymptotic limits. At such a late stage, the frontφ can be decomposed into a possible attractor
8v(x − vt) of the dynamics plus a linear perturbationη as in (2.25). We characterize the attractor8v, that we
investigate by its steepnessλasympt. The resulting perturbationη(x, t) = φ(x, t) − 8v(x − vt) then will have
steepness

λη = min[λinit , λasympt]. (2.37)

Whether the perturbationη will grow or decay, that means, whether8v with a particular velocityv is the attractor
of the evolution ofφ or not, is determined by the decomposition of the perturbationη into eigenmodes of the linear
operator. Whether this spectrum has growing eigenmodes, depends on the operator and the function space defined
by the steepnessλη. With the tools of the stability analysis from Appendix D, the selection question can therefore
be rephrased purely in terms ofλη, λasymptand the two steepnessesλsteepandλsel characterizing the nonlinearity
f : for pushed fronts

λsteep= λ−(v†), λsel = λ+(v†), vsel = v†, (2.38)
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Table 4
Table of initial conditions and nonlinearities, resulting in relaxation cases I–IV from Appendix E. Fronts at all timest are characterized by
their steepnessλ (2.6) in the leading edge, and an arrow→ indicates the evaluation of the quantity fort → ∞. The nonlinearity only enters
through the existence of a strongly heteroclinic orbit8v(x− vt) with vsel = v† > v∗ (see Section 2.2) or its non-existence (thenvsel = v∗). vsel

determinesλ±,0(vsel) as in (2.18), which in turn classifies the initial conditions. Pushed or pulled dynamics are special cases of interior or leading
edge dominated dynamics for steep initial conditions. Cases I–III are treated in Appendix E with stability analysis methods and generically show
exponential relaxation. Case IV is not amenable to stability analysis methods. It shows algebraic relaxation and is treated from Section 3 on

and for pulled fronts

λsteep= λsel = λ∗, vsel = v∗, (2.39)

in the notation of (2.18)–(2.20).
A detailed discussion of the question to what extent one can understand the selection and rate of convergence of

fronts following this line of analysis is given in Appendix E and summarized in Table 4. The two most important
conclusions for our purposes concern fronts evolving from sufficiently steep initial conditions:
1. The gapped spectrum of the conventional Hilbert space for pushed fronts implies that the relaxation towards

pushed front solutions is exponential in time.
2. Even after extending linear stability analysis beyond the Hilbert space,it is not possible to derive the rate of

convergence of pulled fronts from the stability spectrum, since it is gapless, and generic perturbations cannot be
decomposed into eigenmodes of the linear stability operator even in an enlarged functions space.
We finally note that the usual marginal stability viewpoint is to characterize the family of stable front solutions8v

by the velocityv; from this perspective, the front velocityvsel selected by the sufficiently steep initial conditions is
at the edge of a continuous spectrum ofstablesolutions withv ≥ vsel. In this sense, both the pushed and the pulled
attractors are marginally stable [61,63,65]. The picture changes, however, when the attractors are not characterized
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by the velocityv, but by their asymptotic steepnessλ (see Fig. 3). The pulled front then still is at the margin of a
continuous spectrum, while the pushed front is isolated just like the bistable front.

2.5. The dynamics of the leading edge of a front

In this section, we reconsider the dynamics in the leading edge in more detail, first to demonstrate the conservation
of steepness expressed by (2.35), second to clarify the dynamics that ensues from flat initial conditions, and third
to lay the basis for the quantitative analysis of the relaxation of pulled fronts in Section 3.

2.5.1. Equation linearized aboutφ = 0
When we analyze the leading edge region of the front, where|φ| � 1, to lowest order, we can neglect o(φ2) in

(2.11) and analyze

∂tφ = ∂2
xφ + φ. (2.40)

We first explore the predictions of this equation, before exploring the corrections due to the nonlinearityf in Section
2.5.2.

Eq. (2.40) is a linear equation, so the superposition of solutions again is a solution. A generic solution is, e.g., an
exponential e−λx . It will conserve shape and propagate with velocityv(λ) = λ+ 1/λ (2.10):

φ(x, t) ∼ exp{−λ[x − v(λ)t ]}. (2.41)

The minimum ofv(λ) is given byv∗ = v(λ∗ = 1) = 2.
Consider now a superposition of two exponentialsc1 e−λ1x +c2 e−λ2x . Without loss of generality, we can assume

the maximum velocity to bevmax = max[v(λ1), v(λ2)] = v(λ1). In the coordinate systemξ1 = x − v(λ1)t , the
temporal evolution then becomes

φ(x, t) = c1 e−λ1ξ1 + c2 e−λ2ξ1 e−σ t , (2.42)

σ = λ2(v(λ1)− v(λ2)) > 0. (2.43)

Clearly, the contribution ofλ2 decays on the timescale 1/σ , and so for large times� 1/σ , the velocity of a so-called
level curve ofφ = const. > 0 in anx, t diagram will approachv(λ1) and the profile will converge to e−λ1ξ1 (see
[75] for a similar type of analysis). The steepness of the leading edge atξ → ∞, on the other hand, will be given
by λmin = min[λ1, λ2] for all timest < ∞.

This simple example already backs up much of our discussion of perturbations outside the Hilbert space in
Appendix E that apply to the Cases II and III in Table 4:
1. The limitsξ → ∞ andt → ∞, in general, do not commute.
2. The steepnessλ = mini [λi ] is a conserved quantity atx → ∞ andt < ∞. As the explicit example of [102]

shows, for equations for which one can derive a comparison theorem, the conservation of steepness can easily
be derived rigorously.

3. The velocity of a constant amplitudeφ = const. > 0 will be governed by the quickest mode presentv =
maxi [v(λi)] at large timest � 1.
Let us now analyze initial conditions steeper than any exponential. Quite generally, an initial conditionφ(x,0)

evolves under (2.40)) as16

φ(x, t) =
∫ ∞

−∞
dy φ(y,0)

exp{−[(x − y)2 − 4t2]/(4t)}
(4πt)1/2

. (2.44)

16 Eliminate the linear growth term in (2.40) by the transformationφ = et φ̄, solve the diffusion equation∂t φ̄ = ∂2
x φ̄, and transform back.
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Assume for simplicity, that the initial conditionφ(y,0) is strongly peaked abouty = 0, so that for large times, we
can neglect the spatial extent of the region whereφ(y,0) 6= 0 initially. Upon introducing the coordinateξ = x− 2t
we get

φ(x, t) ∝ exp{−ξ − ξ2/(4t)}√
t

for t � 1. (2.45)

This general expression leads to three important observations:
1. The steepness of the leading edge characterized byλ = ∞ at ξ → ∞ indeed is conserved for all finite times
t < ∞.

2. At finite amplitudesφ = const. > 0 and large timest , the steepness of the front propagating towardsξ → ∞
approachesλ∗ = 1 and the velocity approachesv∗ = 2.

3. Eq. (2.45) furthermore implies that a steep initial condition likeφ(y,0) approaches the asymptotic velocityv∗

as

v(t)lin = v∗ + ξ̇h = 2 − 1

2t
+ O

(
1

t2

)
, (2.46)

where we defined the positionξh(t) of the amplitudeh in the comoving frameξ = x − 2t asφ(ξh(t), t) = h.
Eq. (2.46) is then obtained simply by solving lnφ = −ξh − ξ2

h/4t − 1
2 ln t = const.

This algebraic convergence is consistent with the gapless spectrum of linear perturbations, and as such it identifies
the missing link in the analysis of the relaxation of pulled fronts. However, Bramson’s work [74] shows that the
qualitative prediction of convergence as 1/t is right, but the coefficient of 1/t is wrong. In fact, the mathematical
literature [53] has established (2.46) as an upper bound for the velocity of a pulled front in a nonlinear diffusion
equation. The algebraic convergence clearly comes from the 1/

√
t prefactor characteristic of the fundamental

Gaussian solution of the diffusion Eq. (2.45) — this qualitative mechanism will be found to be right in Section 3.
We finish our discussion of solutions of the linearized equation (2.40) with another illustrative example. After the

discussion of the solution (2.41) one might be worried about initial conditions withλ � 1. Such an initial condition
is steep according to our definition, so it should approach the velocityv∗. But according to (2.41), it approaches
the larger velocityv(λ). However, even in the framework of the linearized equation, this paradox can be resolved:
an initial condition e−λx on the whole real axis is, of course, unphysical, and we in fact only want this behavior at
x � 1, whereφ is small. Let us therefore truncate the exponential for smallx by writing, e.g.,φ(x,0) = θ(x)e−λx ,
with θ the step function. Insertion into (2.44) yields the evolution

φ(x, t) = exp{−λ[x − v(λ)t ]}1 + erf[(x − 2λt)/
√

4t ]

2
, (2.47)

where erfx = 2π−1/2
∫ x

0 dt e−t2 is the errorfunction. Fort � 1, the crossover region wherex ≈ 2λt separates two
different asymptotic types of behavior:

φ(x, t) ≈




exp{−λ[x − v(λ)t ]} for x � 2λt,

exp{−(x − 2t)− (x − 2t)2/4t}√
4πtλ(1 − x/(2λt))

for x � 2λt.
(2.48)

In the region ofx � 2λt , we find our previous solution (2.41) with conserved leading edge steepness and velocity
v(λ), while in the region ofx � 2λt we essentially recover (2.45), withξ = x − 2t .

Considering the three different velocities —v(λ) for the region of conservedλ, v∗ = 2 for the “Gaussian” region
behind, and 2λ for the crossover region between the two asymptotes — the distinction between flat and steep initial
conditions now comes about quite naturally:
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1. For flat initial conditions, we haveλ < 1, and an ordering of velocities as 2λ < v∗ < v(λ). The crossover region
then moves slower than both asymptotic regions, so for large times the region of finiteφ will be dominated by
exp{−λ[x − v(λ)t ]}.

2. For steep initial conditions, we haveλ > 1, and the velocities order asv∗ < v(λ) < 2λ. The crossover
region then will move quicker than both asymptotic regions, and the region of finiteφ will be dominated by
exp{−ξ − ξ2/(4t)}/√t , whereξ = x − 2t .
We finally note that the above results can also be reinterpreted in terms of the intuitive picture advocated in

[63,65]: the group velocityvgr(λ) = dv(λ)/dλ of a near exponential profile in the leading edge is, according to
(2.10), negative forλ < 1 and positive forλ > 1. In this way of thinking, the region with steepnessλ in the case
considered above expands whenλ < 1 since the crossover region moves back in the comoving frame (case 1), and
it moves out of sight towardsξ → ∞ for λ > 1 (case 2), since the crossover region moves faster than the local
comoving frame.

2.5.2. Leading edge representation of the full equation
Just as the linear stability analysis of the front was insufficient to cover the full dynamical behavior of the nonlinear

diffusion equation (2.1) and in particular the dynamics of the leading edge, so is the linearized equation (2.40).
In Section 3, we will see that only through joining these complementary approaches, we can gain a quantitative
understanding of the convergence of steep initial conditions towards a pulled front8∗.

The shortcomings of the linearized equation (2.40) become quite clear by confronting it with what we will call
the leading edge representation of the full equation (2.1):

∂tψ = ∂2
ξ ψ + f̄ (ψ, ξ), (2.49)

where we transformed with

ψ = φ eλ
∗ξ , ξ = x − v∗t. (2.50)

The parameters areλ∗ = 1
2v

∗ = f ′(0)1/2. This transformation eliminates the terms of orderψ and∂ξψ from the
linear part of the equation. The nonlinearity is

f̄ (ψ, ξ) = eλ
∗ξ (f (ψ e−λ∗ξ )− f (0)− f ′(0)ψ e−λ∗ξ ) = o(ψ2 e−λ∗ξ ). (2.51)

This transformation is quite comparable to the transformation of a linear perturbationη into the Schrödinger picture
as in (2.27) and (2.28). Here, however, we transform the full nonlinear equation, and not only the linearization about
some asymptotic solution.

For, e.g.,f (φ) = φ−φ3 we havef̄ = −ψ3 e−2ξ . When we neglect̄f in (2.49), the equation is equivalent to the
linearization aboutφ = 0 (2.40). The linearization is correct forξ � 1, but the presence of the crossover towards a
different behavior for smallerξ has important consequences for the solutions of the full nonlinear diffusion equation.

In particular, for the leading edge of a pulled front8∗ ∼ (αξ + β)e−ξ (2.17), we generically findα 6= 0 and
accordingly the leading edge behavior (2.21). This leading edge behavior will play a central role in Section 3. In
Section 2.2, we derivedα 6= 0 from the uniqueness of the trajectory in phase space, i.e., from the construction of
the whole front fromφ = 0 up toφ = 1. We now will give a different argument forα 6= 0 from the analysis of
(2.49), that does not rely on constructing the whole solution up toφ = 1.

The front8∗ propagates uniformly with velocityv∗ = 2, so in the frameξ = x−2t , it is stationary.9∗ = 8∗ eξ

then solves

∂2
ξ 9

∗ + f̄ (9∗, ξ) = 0. (2.52)
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The boundary conditions (2.14) for8∗ imply for 9∗:

9∗(ξ) ∼
{
αξ + β for ξ → ∞,

O(eλ
∗ξ ) for ξ → −∞.

(2.53)

The solution9∗ = αξ + β for ξ → ∞ can directly be derived from (2.52) and the condition that8∗ vanishes at
ξ → ∞. Now integrate (2.52) over the realξ axis, and find

α = −
∫ ∞

−∞
dξ f̄ (9∗, ξ). (2.54)

The integral on the RHS is well defined, sincef̄ vanishes exponentially, both forξ → −∞ and forξ → ∞.
Clearly, a nonlinearityf̄ 6= 0 generically impliesα 6= 0 and hence the leading edge behavior (2.21) for a pulled8∗

front. Only for particular nonlinearitiesf , we occasionally findα = 0 (see (3.67) and Appendix C). Havingα = 0
is obviously only possible iff̄ has terms of opposite sign, so that its spatial average vanishes. For the nonlinearity
of form f = φ − φk with k > 1 (1.2), we findα 6= 0 always, and in this case the term̄f acts like a localized
sink term in the diffusion equation (2.52) forψ . This interpretation is especially useful for the discussion of the
non-uniformly translating fronts [72,73,99].

2.6. Concluding remarks — interior and edge dominated dynamics

Table 4 summarizes the results of this section for various nonlinearities and initial conditions. For pushed fronts,
the stability analysis gives essentially all the ingredients to determine the rate of convergence for pushed fronts.
For pulled fronts emerging from sufficiently steep initial conditions one finds, however, (see Case IV of Appendix
E) that the linear stability analysis is not the appropriate tool: the spectrum is gapless and the rate of convergence
cannot be determined from the spectrum.

The crucial insight for the further analysis is that a relaxing front can be decomposed into different dynamical
regions. Linear stability analysis is the appropriate tool for the interior dominated dynamics of a pushed front. Pulled
fronts and fronts evolving from “flat” initial conditions are leading edge dominated. This calls for different methods
of analysis. The relaxation of pulled fronts emerging from sufficiently steep initial conditions will be addressed in
the next section.

3. Universal pulled convergence of steep initial conditions in the nonlinear diffusion equation

In the present section, we will combine our understanding of the dynamics of the leading edge and of the interior
of a front into one consistent analytical frame, that allows us to calculate the long time convergence of steep initial
conditions towards a pulled front — as we discussed in the previous section, the relaxation in this case cannot be
obtained from the linear stability analysis of the asymptotic solution. The different dynamical regions of such a front
are sketched in Fig. 2. We match an expansion in the interior, that resembles features of the linear stability analysis,
to an expansion of the leading edge. Both expansions are asymptotic expansions in 1/

√
t . This approach allows

us to derive the power law convergence of the front velocity and the front profile towards8∗. This convergence is
universal in leading and subleading order and we calculate all universal convergence terms analytically. For clarity,
we present the detailed calculation for the nonlinear diffusion equation in this section first, and then discuss the
generalization in Section 5.
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3.1. Observations which motivate our approach

3.1.1. Asymptotic steepness of leading edge determines rate of convergence
Our calculation of the spreading of the leading edge under the linearized equation in Section 2.5 gave qualitatively

the right results, but failed to reproduce the quantitative results for the nonlinear equation: inserting sufficiently steep
initial conditions (2.7) into thelinearizedequation (2.11), we found that the asymptotic shape (2.45) approaches
e−ξ times a Gaussian fort → ∞ andξ � 1 and that this implies for the asymptotic convergence thatv(t)lin =
2 − 1/(2t) + · · · (2.46). For thenonlinearequation, we know that the asymptotic front profile8∗ behaves as
8∗ ∼ ξ e−ξ for ξ � 1 (2.21) and Bramson [74] has derived with probabilistic methods thatv(t) = 2−3/(2t)+· · ·
independent of the height at which the velocity is measured.

How the exact result of Bramson [74] comes out naturally and generally is brought out quite clearly by rephrasing
an argument of [65] as follows (see also [70,82]).

Let us work in the leading edge representation (2.49) and (2.50), and let us from here on use the comoving variable
ξ specifically for the frame moving with the pulled velocityv∗ = 2,

ξ = x − v∗t = x − 2t. (3.1)

The fundamental similarity solution of the diffusion-type equation (2.49) for the leading edge variableψ = φ eλ
∗ξ

in the region where the nonlinearity can be neglected, is of course the Gaussian

ψ0(ξ, t) = exp{−ξ2/(4t)}
(4πt)1/2

. (3.2)

It reproduces our solution (2.45) forφ. But also any derivative of the Gaussianψn = ∂nξ ψ0 solves (2.49) forξ � 1.

Theψn/ψ0 are simply Hermite polynomials [98].17 In particular, the dipole solution

ψ1(ξ, t) = ∂ξψ0 ∝ ξexp{−ξ2/(4t)}
t3/2

(3.3)

also solves the diffusion equation (2.49) forξ � 1 and has the proper asymptotics8eξ ∝ ξ for t → ∞.
Transforming (3.3) back toφ, we find

φ(x, t) ∝ (x − 2t)exp{−[x − 2t + 3
2 ln t ]}exp

{−(x − 2t)2

4t

}
. (3.4)

If we now trace the position 2t + Xh(t) of the point whereφ reaches the amplitudeh in the originalx frame, we
find by solvingφ(2t +Xh, t) = h from (3.4) forXh(t) � (4t)1/2

v(t) = 2 + Ẋh = 2 − 3

2t
+ · · · , (3.5)

in agreement with Bramson’s result. This indicates that for large timest � 1 and far in the leading edgeξ � 1,
the converging front is approximately given by (3.3) ifα 6= 0 in (2.17) — remember thatα 6= 0 implies that
8∗(ξ) ∼ ξ e−ξ for large ξ . We will see indeed that (3.3) does emerge as the dominant term in a systematic
asymptotic expansion in the leading edge region. For reasons explained below it is, however, more convenient to
formulate this expansion in a slightly different frame.

17 See Messiah [86], Appendix B.
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3.1.2. Interior follows leading edge: uniform convergence
The above argument shows that the leading−3/(2t) velocity correction is due to the diffusion-type dynamics

in the leading edge. Why would the convergence to the asymptotic profile beuniform, i.e., be independent of the
heightφ = h whose position is tracked? The answer to this question is intuitively quite simple. AsẊh ' −3/(2t),
Xh ' −3

2 ln t . If we compare the positionXh1 of a heighth1 in the leading edge (h1 � 1) with a positionXh2 of a
heighth2 in the interior (h2 = O(1)) where the dynamics ofφ is described by the nonlinear equation, we will have
Xh2 = Xh1 −W(h1, h2), whereW is the width of the front between these two heights. Clearly, ifW approaches
a finite value for long times, we need to have alsoXh2 ' 3

2 ln t in dominant order ast → ∞, and hence also
Ẋh2 = −3/(2t)+ · · · . But an equation of motion like (1.1) has front solutions whose width is finite, so we expect
indeed thatW = O(1) for large times. Our analysis will confirm this expectation. In other words, the leading order
velocity correction as−3/(2t) is set by the dynamics of the leading edge, and because of the finite asymptotic width
of the front, the convergence isuniform, i.e., independent ofh.

3.1.3. Choose proper frame and subtraction for the interior
The above observations have another important consequence. After the front has evolved for some time, we will

find it self-consistent to assume, that its shape will resemble the asymptotic shape8∗. If we want to understand
the interior part of the front, it might at first sight seem appropriate to linearize the converging frontφ about the
asymptotic front8∗. However, the profile8∗ propagates uniformly with velocity 2, while as we saw above, the
transient profileφ propagates with velocityv∗ − 3/(2t). Thus, if the interior regions of theφ- and the8∗-fronts
are at about the same part of space at timet0, their distance willdivergeas 3

2 ln(t/t0) ast grows! This was already
illustrated in Fig. 1. Hence, linearization ofφ about the asymptotic profile8∗ during the whole time evolution
requires to move8∗ along with the velocity 2−3/(2t)+· · · of φ and not with its proper velocity 2. Our expansion
is therefore based on writingφ as

φ(ξ, t) = 8∗(ξX)+ η(ξX, t), (3.6)

where

ξX = ξ −X(t) = x − 2t −X(t). (3.7)

This ansatz anticipates that we need to shift the profile8∗ an appropriate distanceX(t) ∝ ln t , and that with a
proper choice ofX(t), η becomes a small and decaying perturbation.

3.1.4. Choose proper expansions and match leading edge to interior
We will need two different expansions for the leading edge and for the interior. The expansions have to be chosen

such that they can be matched in overlapping intervals through resummation of the expansions.
Since we use the coordinate system (3.7) in the interior, we also should use it in the leading edge. The leading

1/t contribution from the leading edge suggests to expandη in the interior asη1(ξX)/t + · · · , and we shall see
indeed that such a form emerges automatically from the ansatz (3.6). The appropriate variable forξX � √

t in the
leading edge, on the other hand, is the similarity variable of the diffusion equation

z = ξ2
X

4t
, (3.8)

as suggested by (3.2)–(3.4). ExpressingξX by z andt introduces a dependence on 1/
√
t . We find, that it is actually

consistent to expand the interior in powers of 1/
√
t (instead of 1/t) times functions ofξX, and the leading edge also

in powers of 1/
√
t times functions ofz.
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The structure of these expansions is essentially our only input. Given this structure, the leading and subleading
order universal terms of the expansions are uniquely determined.

3.2. Expansion in the interior region

We first analyze the interior part of the front whereφ varies from close to 0 to close to 1. We work in the comoving
frameξX = x − v∗t −X(t) of (3.7), whereX will have to be determined. We expandφ about8∗(ξX) as in (3.6).
Because of translation invariance, we have the freedom to fix the position of8∗ and the zero of the coordinate
system by imposing

φ(0, t) = 1
2 and 8∗(0) = 1

2 ⇒ η(0, t) = 0. (3.9)

For8∗, one has8∗(−∞) = 1, and we also assume thatφ approaches 1 forξX → −∞. This results in the second
condition onη

lim
ξX→−∞

η(ξX, t) = 0. (3.10)

We insertφ into the equation of motion (1.1), transformx to the coordinateξX (3.7) and find forη the equation18

∂tη = ∂2
ξ η + v∗∂ξη + Ẋ∂ξ8

∗ + f (8∗ + η)− f (8∗). (3.11)

Onceη is small enough because time has evolved sufficiently long,f (8∗ + η) can be expanded inη and we find

∂tη = L∗η + Ẋ∂ξ8
∗ + Ẋ∂ξη + 1

2f
′′(8∗)η2 + O(η3), (3.12)

where

L∗ = ∂2
ξ + v∗∂ξ + f ′(8∗(ξX)) (3.13)

is the linearization operator (2.27) forv = v∗.
In Sections 2.5.1 and 3.1.1, we have argued that one expectsẊ(t) = O(t−1). Asymptotic balancing in (3.12) then

requires that the leading order term ofη is of the same orderη = O(t−1). We therefore expand asη = η1(ξX)/t+· · · .
We have argued that connecting the interior expansion to the leading edge expansion requires an ordering in powers
of 1/

√
t . So we choose the ansatz

Ẋ = c1

t
+ c3/2

t3/2
+ c2

t2
+ · · · , (3.14)

η(ξX, t) = η1(ξX)

t
+ η3/2(ξX)

t3/2
+ · · · . (3.15)

Substitution of the above expansions into (3.13) and ordering in powers of 1/
√
t yields a hierarchy of ODEs of

second order:

L∗η1 = −c1∂ξ8
∗, (3.16)

L∗η3/2 = −c3/2∂ξ8
∗, (3.17)

L∗η2 = −η1 − c1∂ξη1 − c2∂ξ8
∗ − 1

2f
′′(8∗)η2

1, (3.18)

L∗η5/2 = −3
2η3/2 − c1∂ξη3/2 − c3/2∂ξη1 − c5/2∂ξ8

∗ − f ′′(8∗)η1η3/2, (3.19)

18 Throughout this paper, we shall suppress the indexX on partial derivatives with respect toξX for notational convenience. Since∂ξX |t = ∂ξ |t ,
this does not lead to any ambiguities.
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etc. Generally,

L∗ηn/2 = −1
2(n− 2)η(n−2)/2 −

n−2∑
m=2

cm/2∂ξη(n−m)/2 − cn/2∂ξ8
∗

−
∞∑
k=2

f (k)(8∗)
k!

(∑
mk

ηmk

)k∣∣∣∣∣∣∑
kmk=n/2

. (3.20)

It is important to realize that we do not need to drop nonlinear terms, but that the expansion off (8∗ +η) in powers
of η is also ordered in powers of 1/

√
t . So the higher order termsηn find their natural place as inhomogeneities

in the equations forηi for i ≥ 2. The hierarchy of ODEs is such that the differential equation forηi contains
inhomogeneities that depend only onηj with j < i. The equations therefore can be solved successively. Eachηi

solves a second order differential equation, and the two constants of integration are fixed by the two conditions (3.9)
and (3.10).19

Note also, that the time dependent collective coordinateX(t) in ξX = ξ −X(t) only enters Eqs. (3.16)–(3.20) in
the form of the constantscn/2, which at this point are still undetermined, and that the functionsηn/2 obey ODEs.

Let us now compareη = φ −8∗ to the variations of the profile shape with velocityv,

δ = 8v∗+Ẋ −8∗ = Ẋηsh + 1
2Ẋ

2η
(2)
sh + · · · , (3.21)

whereηsh ≡ d8v/dv|v∗ is a “shape mode”, which gives the change in the profile under a change inv. By considering
variations ofv in the ODE for the profile8v, we find thatηsh andη(2)sh obey

L∗ηsh + ∂ξ8
∗ = 0, (3.22)

L∗η(2)sh + 2∂ξηsh + f ′′(8∗)(ηsh)
2 = 0. (3.23)

Comparing (3.22) and (3.23) with (3.16)–(3.18), we can identify

η1 = c1ηsh, (3.24)

η3/2 = c3/2ηsh, (3.25)

η2 = c2ηsh + 1
2c

2
1η
(2)
sh + c1ρ, (3.26)

with ρ a correction term, that solves the equation

L∗ρ + ηsh = 0. (3.27)

In these differential equations,ηsh, η
(2)
sh andρ obey the conditions

ηsh(0) = 0, η
(2)
sh (0) = 0, ρ(0) = 0, (3.28)

ηsh(−∞) = 0, η
(2)
sh (−∞) = 0, ρ(−∞) = 0, (3.29)

cf. (3.9) and (3.10).

19 Had we introduced anη1/2, we would have found the equationL∗η1/2 = 0 with the unique solutionη1/2 = 0.
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ρ is the first non-vanishing term that indicates the difference between the transient profileφ(x, t)and the uniformly
translating front solution with the instantaneous velocity

v(t) = v∗ + Ẋ, (3.30)

as resummation ofφ yields

φ(ξX, t) = 8v(t)(ξX)+ c1

t2
ρ(ξX)+ t0

t2
ηsh(ξX)+ O

(
1

t5/2

)
. (3.31)

This equation confirms that up to order 1/t2, the profile shape is given by the solution8v(t) of the ODE with the
instantaneous velocityv(t).

Some remarks on these results are in place:
1. We see, that the dynamics in the front interior is slaved to the evolution ofv(t) imposed by the leading edge, as

we anticipated in Section 3.1.3.
2. The fact that the profileφ is up to ordert−2 given by8v(t)(ξX) can be traced back to the fact that sincev(t)

varies ast−1, the time derivative term∂tφ in the dynamical equation generates terms of ordert−2. This is why
the first two equations in the hierarchy, (3.16) and (3.17), coincide with the ODE (3.22) for the shape mode.

3. Based on numerical data, Powell et al. [67] have conjectured thatφ converges along the trajectory in function
space formed by the8v ’s with v < v∗. We here have derived this result analytically, and identify the velocity
v of the transients8v with the actual instantaneous velocityv = v∗ + Ẋ of the front. We find a non-vanishing
correction of order 1/t2 to φ ≈ 8v∗+Ẋ.

4. The transients8v have alwaysv < v∗ at late times, since we will find thatc1 = −3
2, in accord with the discussion

of Section 3.1.1. Note that as discussed in Section 2.2, such8v ’s are positive fromξX → −∞ up to a finite
value ofξX only. For the transient (3.31), we need only the positive part of8v. The transient (3.31) crosses over
to a different functional form, before8v becomes negative.

5. There is a non-universal contribution of order 1/t2 to (3.31). It is non-universal, because it depends on initial
conditions: the structure of our expansion (3.14) and (3.15) is an asymptotic expansion aboutt → ∞, that does
not fix t = 0. We thus can expand in 1/(t − t0) = 1/t + t0/t

2 + O(1/t3) just as well as in 1/t . This allows us
to add an arbitrary multiple ofηsh/t

2 to φ in Eq. (3.31). The order 1/t2 term in (3.31) is thus always non-zero,
because the functionρ(ξX) in (3.32) is non-vanishing and not a multiple ofηsh(ξX), but its precise value will
depend on initial conditions.

6. The expansion is an asymptotic expansion [100]. Thus, when we have determined the coefficientsc1 andc3/2 in
(3.14) later, these are theexactprefactors if we expand the velocity and shape in inverse powers oft in the limit
t → ∞. However, the expansion will not have a finite radius of convergence in 1/

√
t .

3.3. Interior shape expanded towards the leading edge

We will now see that forξX ≥ O(
√
t), the structure of our expansion (3.15) breaks down. We then have to resum

the terms and use a different expansion.20

Let us calculate the contributionsηi from (3.16)–(3.20) explicitly in the leading edge region, whereξX � 1 and
φ,8∗ � 1. In this regionL∗ (3.13) and8∗ (2.17) are

L∗ = ∂2
ξ + 2∂ξ + 1, 8∗ = (αξX + β)e−ξX , for ξX � 1. (3.32)

20 Actually, the interior expansion also breaks down forξX → −∞. There too, a different expansion can be used, and this expansion can be
matched to the one we introduced for the interior region. We will not discuss this further here, as it is of no further consequence.
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We remove the exponential through the transformation

L∗ = e−ξX ∂2
ξ eξX , ηn/2 = e−ξX ψn/2, φ = e−ξX ψ. (3.33)

The differential equations determining theψn/2 are explicitly

∂2
ξ ψ1 = c1(αξX + γ ), γ = β − α,

∂2
ξ ψ3/2 = c3/2(αξX + γ ),

∂2
ξ ψ2 = [−1 + c1(1 − ∂ξ )]ψ1 + c2(αξX + γ ),

∂2
ξ ψ5/2 = [−3

2 + c1(1 − ∂ξ )]ψ3/2 + c3/2(1 − ∂ξ )ψ1 + c5/2(αξX + γ ), . . . (3.34)

Generally,

∂2
ξ ψn/2 = [−1

2(n− 2)+ c1(1 − ∂ξ )]ψ(n−2)/2 +
n−2∑
m=3

cm/2(1 − ∂ξ )ψ(n−m)/2 + cn/2(αξX + γ ),

where we have omitted exponentially small corrections of order e−ξX in the inhomogeneities on the RHS of the
equations. The conditions (3.9) and (3.10) onη do not influence the solution in the leading edge.

Eqs. (3.34) are easily solved. Forψ = eξXφ, we find in the regionξX � 1

ψ = eξX8∗ +
∞∑
n=2

ψn/2

tn/2
= αξX + β + c1αξ

3
X

3! t
+ c1γ ξ

2
X

2! t
+ O

(
ξX

t

)
+ c3/2αξ

3
X

3! t3/2
+ O

(
ξ2
X

t3/2

)

+c1(c1 − 1)αξ5
X

5! t2
+ c1[(c1 − 1)γ − c1α]ξ4

X

4! t2
+ · · · + c3/2(2c1 − 3

2)αξ
5
X

5! t5/2
+ · · ·

+c1(c1 − 1)(c1 − 2)αξ7
X

7! t3
+ · · · . (3.35)

Obviously, forξX ≥ √
t , the expansion is not properly ordered in powers of 1/

√
t anymore, since, e.g.,ξ3

X/t

eventually will become larger thanξX. A quick inspection of (3.35) shows that we can continue to work in an 1/
√
t

expansion if we use the variablez = ξ2
X/4t (3.8) instead ofξX. The expression (3.35) can be identified with

ψ = √
tα

(
(4z)1/2 + c1(4z)3/2

3!
+ c1(c1 − 1)(4z)5/2

5!
+ c1(c1 − 1)(c1 − 2)(4z)7/2

7!
+ · · ·

)

+t0
(
β + c1(β − α)(4z)

2!
+ c3/2α(4z)3/2

3!
+ · · ·

)
+ O(1/

√
t). (3.36)

This resummed expansion anticipates the crossover to the expansion inz and 1/
√
t below for ξX, t� 1,

z = ξ2
X/4t = O(1), which will fix the coefficientsc1, etc. Note that forc1 = −3

2, terms of order
√
t sum up to

α(4zt)1/2 e−z = ξX exp{−ξ2
X/(4t)}, which is, in dominant order, the behavior already anticipated in

Section 3.1.1.
Instead of resumming the interior expansion explicitly, it is much more transparent to write an expansion directly

in terms of powers of 1/
√
t and the similarity variablez of the diffusion equation. This approach, which amounts

to a matching procedure, is the subject of the next subsection.
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3.4. Analysis of the leading edge

We now take up the analysis of the leading edge regionξX ≥ O(
√
t) in the case that the initial conditions are

sufficiently steep, so that forψ = φ eξX

lim
ξX→∞

ψ(ξX, t) < e−δξX , δ > 0. (3.37)

Note that according to the discussion of Section 2.5, this condition holds at any finite timet < ∞ if it is obeyed
initially at t = 0.

We have already argued in Sections 2.5 and 3.1.1 that the asymptotic profile of the leading edge might be expected
to be somewhat like a Gaussian inξX andt times a Hermite polynomial. Also the resummation of the interior front
solution suggests such a form for largeξX. We now investigate this expansion more systematically, and will show
that it actually takes the form of a Gaussian times a generalization of Hermite polynomials, namely confluent
hypergeometric functions [98].

In passing, we stress that the arguments from 3.1.1 can be compared directly to our calculation here only to
lowest order, because we now work with the coordinatez = (x − 2t −X(t))2/(4t), while we presented our earlier
intuitive arguments in the coordinatez∗ = (x − 2t)2/(4t). Of course, one can also set up a systematic expansion in
the latter coordinatez∗, but this requires the introduction of logarithmic terms for a proper matching to the interior
part of the front. Working throughout in the shifted framesξX = x − 2t −X(t) or z avoids this altogether.

In the coordinatesξX and t , the equation of motion forψ in the leading edge region is (recall that the earlier
leading edge representation in (2.49) was in the frameξ = x − 2t)

∂tψ = ∂2
ξ ψ + Ẋ(∂ξ − 1)ψ + o(e−ξX ). (3.38)

The differential operators transform under change of coordinates toz = ξ2
X/4t andt as

∂t |ξ = ∂t |z − z

t
∂z|t , ∂ξ |t =

(z
t

)1/2
∂z|t . (3.39)

Motivated by the form (2.45) and the discussion of Section 3.1.1, we extract the Gaussian exp{−ξ2
X/(4t)} = exp{−z}

fromψ by writing:

ψ(ξ, t) = e−z G(z, t), z = ξ2
X

4t
. (3.40)

This extraction also allows us to make contact later with functions tabulated in [98]. The dynamical equation (3.38)
is equivalent to the equation forG:

[z∂2
z + (1

2 − z)∂z − 1
2 − t∂t − c1]G = [(Ẋt − c1)+ Ẋ

√
t
√
z(1 − ∂z)]G. (3.41)

The equation is organized such that the differential operators of ordert0 are on the LHS of the equation, while the
RHS has the operators of ordert−1/2 and smaller.

In analogy to our earlier expansion (3.15), we now make an ansatz forG in powers of 1/
√
t times functions of

z. A glimpse at the form of the interior shape expanded towards the leading edge (3.36) tells us, that the expansion
should start with the order

√
t . We write

G(z, t) = √
tg−1/2(z)+ g0(z)+ g1/2(z)√

t
+ · · · . (3.42)

Insertion of this ansatz into (3.41) again results in a hierarchy of ordinary differential equations, that can be solved
successively:
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[z∂2
z + (1

2 − z)∂z − 1 − c1]g−1/2 = 0, (3.43)

[z∂2
z + (1

2 − z)∂z − 1
2 − c1]g0 = [c3/2 + c1

√
z(1 − ∂z)]g−1/2, (3.44)

[z∂2
z + (1

2 − z)∂z − c1]g1/2 = [c2 + c3/2
√
z(1 − ∂z)]g−1/2 + [c3/2 + c1

√
z(1 − ∂z)]g0, (3.45)

etc. The general solution of the homogeneous equations with two constants of integrationkn/2 andln/2 can be found
in [98], they are confluent hypergeometric functions. The special solutionsg

sp
n/2 of the inhomogeneous equations

can also generally be expressed in terms of double integrals over known functions, as discussed in Appendix F.
Below we will, however, just guess the series expansion of the special functiong

sp
0 we need. We write the general

solution as

gn/2(z) = g
sp
n/2(z)+ kn/2M(c1 + 1

2(1 − n), 1
2, z)+ ln/2

√
zM(c1 + 1

2(2 − n), 3
2, z), (3.46)

where the functionsM(a, b, z) can be expressed by the Kummer series [98]

M(a, b, z) = 1 + az

b
+ a(a + 1)z2

b(b + 1)2!
+ · · · + (a)nz

n

(b)nn!
+ · · · , with (a)n =

n∏
k=1

(a + k − 1) = 0(a + n)

0(a)
.

(3.47)

Just as in the integration of the interior shape in Section 3.2, there are two constants of integration to be determined
in every solutiongn/2. In addition, however, theci are not just parameters of the equations as in Section 3.2, but
they now have to be determined also. The conditions we use to determine these three constants per equation are now
(3.36) and (3.37) in analogy to the two conditions (3.9) and (3.10) for theηn/2: (i) The solutiongn/2 has to agree
with the expansion of the interior towards the leading edge (3.36) forz � 1. Then the coefficients ofz0 and

√
z

in (3.36) determine the constants of integrationkn/2 andln/2. (ii) The transients have to be sufficiently steep in the
sense that they obey (3.37) at any finite timet . Because of the form the expansions (3.41) and (3.43), we require that
each termg in the expansion diverges forz � 1 at most as a power law ofz, not exponentially as ez. In addition,
ψ = ezG should not diverge ast → ∞, but approach a time-independent limit. This gives another condition on
the constants of integration, that can be obeyed only for a particular choice ofc(n+3)/2. With these choices of the
constants, the smallz expansion ofψ = e−zG from (3.40) and (3.42) becomes identical with the interior shape
expanded towards the leading edge (3.36).

We will solve the first two equations (3.43) and (3.44) explicitly, since they determine the universal terms of the
velocity correctionẊ. In particular, the solution forg−1/2 (3.43) will connect to our qualitative discussion of the
leading 1/t velocity convergence term (3.5) in Section 3.1.1. Eq. (3.44) will give the universal subleading term21

of order 1/t−3/2.
Let us now start with the solution of the homogeneous leading order equation (3.43), whereg

sp
−1/2(z) = 0. The

constants of integration are fixed by (3.36) ask−1/2 = 0 andl−1/2 = 2α. Thereforeg−1/2(z) is after matching to
the interior

g−1/2(z) = 2α
√
zM(c1 + 3

2,
3
2, z). (3.48)

In order to analyze, howc1 is determined by the matching and the requirement that all transients are exponentially
steeper forξX → ∞ than the asymptotic profile, we first recall the largez behavior of Kummer functionsM(a, b, z)
[98]: for positiveb each term of the series (3.47) is finite. Ifa is neither zero nor a negative integer, the series is

21 Do not confuse the expansion in 1/
√
t of the velocity in (3.5) or (3.14) with the denominators in (3.2) and (3.3). These powers of 1/

√
t in

theξ∗ = x − v∗t representation are absorbed into theX(t) of ξ in theξ -representation, as sketched in (3.4).
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infinite. Fora zero or a negative integera = −n, the series is finite, since all terms from orderzn+1 on contain the
factor(a + n) = 0, and forb = 1

2 or 3
2, these finite polynomials are Hermite polynomials. The largez asymptotics

of M(a, b, z) for positiveb is

M(a, b, z)
z→∞∼

{
za−b ez0(b)/0(a) for − a /∈ N0,

z|a|(a)|a|/(b)|a|(|a|)! for − a ∈ N0,
(3.49)

whereN0 denotes the non-negative integers. If one inserts (3.49) into (3.48) one finds forξX � √
t

φ ∝ ξX e−ξX
{
(ξ2
X/t)

c1 −c1 − 3
2 /∈ N0,

(ξ2
X/t)

−c1−3/2 exp{−ξ2
X/(4t)} −c1 − 3

2 ∈ N0.
(3.50)

For −c1 − 3
2 not a Non-negative integer, we see from (3.50) thatψ(ξX, t) does not converge exponentially fast

to zero, in violation of the condition (3.37). Accordingly, for the so-called sufficiently steep initial conditions that
obey (3.37), we conclude thatc1 + 3

2 has to be zero or a negative integer. Possible solutions are

c1 = −3
2, g−1/2(z) = 2α

√
z,

c1 = −5
2, g−1/2(z) = 2α

√
z(1 − 2

3z),

c1 = −7
2, g−1/2(z) = 2α

√
z(1 − 4

3z+ 4
15z

2), (3.51)

etc., with theg−1/2 given by Hermite polynomials.
There are two ways to argue, why genericallyc1 = −3

2 is the appropriate solution. (a) If the initial condition is
always non-negative, e.g., becauseφ is a density, the transient may not have nodes, soc1 = −3

2 is the only possible
solution. (b) If one can create a front with nodes whose leading edge after some evolution is the superposition of the
solutions in (3.51), the solution withc1 = −3

2 propagates quickest, so the other contributions will be convected to
the back, and thec1 = −3

2 solution will dominate at large times [72]. This argument coincides with the argument
from Section 2.3, that fronts with nodes generically are not attractors for the long time dynamics for the nonlinear
diffusion equation (1.1). A similar reasoning for the leading edge region can be developed from the arguments in
Section 6.6. Furthermore, we have checked various initial conditions with nodes numerically and we have found that
either the node gets stuck behind the evolving front or moves away toξ → ∞ with velocity larger thanv∗, leaving
in both cases a leading edge of the front behind that develops withc1 = −3

2. We thus find for initial conditions
(3.37) steeper than8∗ generically

c1 = −3
2, g−1/2(z) = 2α

√
z. (3.52)

This solution is identical with the order
√
t of ψ ez with ψ from (3.36). Forφ, we find in the regionξX � 1

linearizable about the unstable state in leading order

φ = αξX exp{−ξX − ξ2
X/(4t)}

(
1 + O

(
1

ξX

)
+ O

(
1√
t

))
, (3.53)

ξX = x − v∗t + 3
2 ln t + O

(
1√
t

)
, (3.54)

consistent with the arguments from Section 3.1.1.
Integration ofg0 now gives the subleading universal terms, which are O(1/

√
t) in (3.53) and (3.54). Insertion of

(3.52) into (3.44) results in

[z∂2
z + (1

2 − z)∂z + 1]g0 = 2α(3
4 + c3/2

√
z− 3

2z). (3.55)
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We now can follow Appendix F for the general solution of the inhomogeneous equation, or we rather can guess a
special solution of the inhomogeneous equation by noting that the function

FN(z) =
∞∑
n=N

(1)n−2z
n

(1/2)nn!
(3.56)

is proportional to a truncated Kummer seriesM(−1, 1
2, z) (3.47) and solves

[z∂2
z + (1

2 − z)∂z + 1]FN(z) = zN−1

(1/2)N−1(N − 1)
. (3.57)

The special solution of the inhomogeneous equation (3.55) is then easily seen to be

g
sp
0 (z) = 2α(3

4 + 2c3/2
√
z− 3

4F2(z)). (3.58)

Comparing (3.56) to (3.47) and (3.49), one finds

g
sp
0 (z)

z→∞∼ − 3
2α

√
πz−3/2 ez. (3.59)

The general solution (3.46) of (3.55) is thus

g0(z) = g
sp
0 (z)+ k0(1 − 2z)+ l0

√
zM(−1

2,
3
2, z)

z�1= (3
2α + k0)+ (4αc3/2 + l0)

√
z+ O(z) (3.60)

z→∞∼ − (3
2α

√
π + 1

4l0) z
−3/2 ez, (3.61)

where we have used (3.49) and (3.59) for the largez asymptotics. Compare now the smallz expansion (3.60) with
(3.36). One obviously has to identify

3
2α + k0 = β, 4αc3/2 + l0 = 0. (3.62)

If g0 would decay asymptotically asz−3/2 ez for largez (3.61), the subleading contribution of order 1/
√
t in φ (3.53)

would not decay like a Gaussian exp{−ξ2
X/(4t)} as the leading order term does, but it would decay algebraically

like ξ−3
X (4t)3/2. This would destroy the ordering of our expansion (3.42) and lead to a divergence ofψ for t → ∞.

Thus the coefficient of the leading order termz−3/2 ez in g0 (3.61) has to vanish:

3
2α

√
π + 1

4l0 = 0. (3.63)

Eqs. (3.62) and (3.63) fix all constantsk0, l0 andc3/2. The velocity correction of order 1/t3/2 is

c3/2 = 3
2

√
π, (3.64)

and the analytic solution forg0(z) is

g0(z) = β(1 − 2z)+ 3α(z− 1
2F2(z))+ 6α

√
πz(1 −M(−1

2,
3
2, z)), (3.65)

with α andβ the coefficients of the asymptotic leading edge shape8∗(ξ) = (αξ + β)e−ξ for 8∗ � 1. Note that
the subleading termβ contributes only the rather trivial(1−2z) term, while the coefficient of the leadingα contains
all non-trivial terms. The result (3.64) and (3.65) reproduces the ordert0 in (3.36) identically.

We summarize the results obtained from the analysis of the leading edge: the appropriate coordinate system is
ξX = x − v∗t −X(t), and the universal velocity correction is given by

Ẋ = − 3

2t

(
1 −

(π
t

)1/2
)

+ O

(
1

t2

)
. (3.66)
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The shape in the leading edge, whereφ � 1, is given in terms of the variablesξX andt by

φ(ξX, t) = exp{−ξX − ξ2
X/(4t)}G

(
ξ2
X

4t
, t

)
(3.67)

= exp{−ξX − ξ2
X/(4t)}

(
αξX + g0

(
ξ2
X

4t

)
+ 1√

t
g1/2

(
ξ2
X

4t

)
+ · · ·

)
, (3.68)

with g0(z) from (3.65).
Eqs. (3.65), (3.66) and (3.67) are the second part of our final result, valid in the leading edge of the front, where

φ � 1. It complements our earlier result (3.31), valid in the interior of the front, with functionsκv from (3.22) and
ρv from (3.27).

3.5. Summarizing remarks

Let us end this section by putting these analytical results into perspective:
1. The requirement that the leading edge remains steeper than the asymptotic profile8∗ at any finite time together

with the requirement that it converges to8∗ as t → ∞, determines the velocity convergence constantscn/2.
These constants are thus determined in the leading edge by the initial conditions. They are just parameters in the
equations for the interior (3.16)–(3.20).

2. The leading order velocity correctionc1 reproduces Bramson’s result [74], which he derived through solving the
(nonlinear) diffusion equation with probabilistic methods. The universal subdominant 1/t3/2 is new.

3. According to our discussion in connection with the interior expansion,g1/2 andc2 should be termed non-universal,
because the change from 1/

√
t to 1/(t − t0)

1/2 in the asymptotic expansion aboutt → ∞ changes these terms.
As for (3.31), we conclude that at least parts of these terms depend on initial conditions and are therefore
non-universal.

4. We stress once more that the full expansion is only asymptotic in 1/
√
t , but that the prefactors of the 1/t and

1/t3/2 terms are exact.
5. The leading edge expansion is an intermediate asymptotics inz valid for 1 � z � √

t or
√
t � ξX � t ,

respectively. Above, we extensively made use of the crossover to the interior expansion forz � 1. Let us now
look into the breakdown forz ≥ O(

√
t), i.e., forξX ≥ O(t). This second breakdown immediately follows from

inserting into (3.42) our resultsg−1/2(z) = O(
√
z) andg0(z) ≥ O(z) (in fact,g0(z) = O(z ln z) according to

Appendix F). This new crossover actually needs to exist in view of our discussion in Section 2.5.1: the steepness
λ is conserved forx → ∞ for all timest < ∞. It will retain the information about the precise initial condition.
This region of conserved steepness atξX > O(t) crosses over to the universal Gaussian leading edge region for
ξX < O(t), which determines the universal relaxation behavior as discussed above. The region of conserved
steepnessλ at ξX > O(t) has no further consequence for the dynamics, if the initial steepness isλinit > λ∗. It
will disappear towardsξX → ∞ by outrunning the leading edge region with an approximately constant speed.
This scenario is sketched in Fig. 2.

6. Our result is valid in the pulled regime but it does not apply at the bifurcation point from the pulled to the pushed
regime. For nonlinearity (1.10) this means, that the analysis applies forε > 3

4 [65]. Only then8∗(ξ) ∝ ξ e−ξ ,
which is one of the essential ingredients of our asymptotic analysis. Forε < 3

4, the front is pushed, and
convergence is exponential, as discussed in Sections 2.3 and 2.4. Forε = 3

4, precisely at the pushed/pulled
transition,8∗(ξ) ∝ e−ξ . In this case, convergence is still algebraic, but the analysis of this chapter does not
apply exactly. The convergence analysis, however, can be set up along the same lines. As shown in Appendix G
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we then get instead of (3.66)

Ẋ = − 1

2t

(
1 − 1

2

(π
t

)1/2
)

+ O

(
1

t2

)
. (3.69)

Note that the factor32 of the 1/t term is replaced by12 at the bifurcation point. Along the lines of the argu-
ments of Section 3.1.1 this can be understood simply from the fact that at the bifurcation point the asymptotic
behavior of8∗ is as8∗(ξ) ∼ e−ξ , not asξ e−ξ , and hence that the simple Gaussian leading edge solution
exp{−ξ−ξ2/(4t)}/√t matches to the asymptotic front profile in leading order. However, the velocity relaxation
(3.69) at the pushed/pulled transition does contain a universal subleading term of order 1/t3/2 that is absent in
the relaxation of the linear equation (2.46).

7. Up to now we excluded the particular initial conditionsφ(x,0) ' x−ν e−x from our discussion, since they are
neither sufficiently steep nor flat according to our definition. It is amusing to see that also such initial conditions
can be treated with our approach. For sufficiently steep initial conditions, we discarded the case that−c1 − 3

2
would be different from an integer or zero after Eq. (3.50), because it would violate the exponential bound (3.37)
for largeξX. However, for the above particular initial conditions, the asymptotic behavior (3.37) is replaced by
ψ ≈ ξ−ν

X for ξX � 1. For anyν < 2 one concludes immediately from Eq. (3.50) that

φ(x,0) ' x−ν e−x ⇒ v(t) = 2 − ν + 1

2t
+ · · · , (3.70)

a result also derived by Bramson [74]. In other words, in the case in which the initial conditions are intermediate
between sufficiently steep and flat, the prefactorc1 doesdepend on the initial conditions and may even change
sign, but the relaxation is still power-law like. To get the next order term in the expansion for these special initial
conditions, our expansion will probably have to be generalized. We will comment on this in Section 6.

4. Simulations of pulled fronts in the nonlinear diffusion equation

In this section, we present simulation data for fronts in the nonlinear diffusion equation∂tφ = ∂2
xφ + f (φ) (1.1)

propagating into the unstable stateφ = 0, and compare these with our analytical predictions. In particular, we
thoroughly investigate fronts with the nonlinearityf (φ) = φ − φ3, so that the equation becomes

∂tφ = ∂2
xφ + φ − φ3. (4.1)

This equation forms pulled fronts withv∗ = 2 andλ∗ = 1 = D, if the initial conditions are sufficiently steep. As an
example of a nonlinearity allowing for both pushed and pulled fronts, we also present data forf (φ) = εφ+φ3−φ5

for ε = 0.56 and 0.96.
As an initial condition, we here always choose

φ(x,0) = 1

1 + exp{λinit (x − x0)} →
{

exp{−λinit (x − x0)}, x → ∞,

1, x → −∞.
(4.2)

According to our analytical results, all initial conditions with initial steepnessλ∗ < λinit ≤ ∞ exhibit the same
universal relaxation behavior asymptotically ast → ∞, if the front is pulled. We indeed do find this in our
simulations. Below we only present simulations forλinit = 10.

The section is organized into a discussion of the specific numerical features of pulled fronts (Section 4.1), the
presentation of the raw simulation data for nonlinearitiesf (φ) = φ − φ3 andf (φ) = εφ + φ3 − φ5 (Section 4.2),
and a detailed comparison of the simulations for (4.1) with the analytical predictions (Section 4.3).
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4.1. Numerical features specific to pulled fronts

To integrate a given initial conditionφ(x,0) forward in time t for a nonlinear diffusion equation, we use a
semi-implicit algorithm which is explained in detail in Section 5.6.6 (Eq. (5.114)). When running the program, we
have to choose a spatial and temporal discretization1x and1t , a system size 0≤ x ≤ L, and a positionx0 of the
initial condition within the system. Comparing results for different parameters1x,1t ,L, andx0 to each other and
to the analytical predictions in the extreme precision of often better than six significant figures, we find two features
specific to the particular dynamic mechanism of pulled fronts.

4.1.1. Effect of finite difference code
The numerical results of the simulation depend of course on the step sizes1x and1t of the finite difference

code. In fact, in Section 5.6.6, we will have collected all analytical tools to calculate the corrections tov∗ = 2,
λ∗ = 1 andD = 1, that depend on the numerical integration scheme and on the parameters1x and1t . All data
presented here are derived for1x = 0.01 = 1t . For a pulled front in a nonlinear diffusion equation solved with a
semi-implicit scheme, our analytical prediction (5.116) yieldsv∗ = 2.000075,λ∗ = 0.999954, andD = 1.00035.
We will need the accuracy of the data below, when we compare to our analytical relaxation prediction.

4.1.2. Effect of finite system size
In contrast to a pushed front, the finalt → ∞ relaxation of a pulled front very sensitively depends on system size

L and front positionx0. This effect is closely related to the pulled mode of propagation and the breakdown of the
linear stability analysis. Because the half-infinite spacex � 1 of the leading edge dominates the dynamics, the very
long time dynamics of the front is sensitive to the region atx � 1, even though thereφ � 1. More precisely, the
diffusive spreading of the linear perturbation as in Eq. (3.3) or (3.67) that determines the speed, strongly depends
on the boundary conditions atξX = x − v∗t −X(t) = O(

√
4Dt).

For this reason, we shift the front back to its original positionx0 within the system after every time stept2−t1 = 1.
This eliminates thex-interval 0≤ x ≤ xshift ≈ v∗ on the back side of the front from our data, while a newx-interval
L−xshift ≤ x ≤ L has to be created. One might assume that this procedure yields good results for integration times
T upT = O((L− x0)

2/(4D)) because of the diffusive nature of the spreading. However, the precision noticeably
breaks down earlier because of the arbitrariness of the newly createdx-intervalL − xshift ≤ x ≤ L in the shift
process. Filling this region with the constantφ(x) = φ(L − xshift) creates a flat initial condition, and the front
accelerates beyondv∗ for sufficiently long times. We therefore useφ(x) ≡ 0 in this region. The observed velocities
vφ(t) for L < ∞ then always will stay below those in the infinite systemL → ∞. The simulations in the finite
system are close to those in the infinite system up to timesT = O((L− x0)/v

∗).

4.2. Simulation data

4.2.1. f (φ) = φ − φ3: pulled fronts
As an example, we will extensively discuss simulations of Eq. (4.1). We present data with initial conditions (4.2)

andλinit = 10, where the initial condition is located atx0 = 100 in a system of sizeL = 1000. According to our
estimate above, the simulations then should be reliable up to timest of order 1

2(L − x0) = 450. We present data
up to t = 400. The data from this simulation is evaluated in a sequence of figures showing increasing detail and
precision.

Fig. 1 already showed the temporal evolution of a sufficiently steep initial condition under the equation of motion
(4.1). It shows both, the total displacement of the front, and the evolution of the front shape. We now choose different
presentations that show these two different aspects of the dynamics separately and in higher precision.
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Fig. 4. Simulation of the evolution of the shape of a front under (4.1) at the times denoted in the figure. The initial condition is (4.2) with
λinit = 10. The comoving frameξX is chosen in such a way thatφ(ξX = 0, t) = 1

2 for all t : (a) a plot ofφ versusξX shows mainly the interior
of the front; (b) a plot of logφ versusξX for sufficiently largeξX shows mainly the leading edge of the front. Note the different scales ofξX .

Let us first study the evolution of the front shape: in Fig. 4, we presentφ(ξX, t) as a function ofξX, where
ξX = x − v∗t −X(t), Eq. (3.7), is adjusted such thatφ(0, t) = 1

2 (3.9) for all timest . The remaining dynamics in
this frame is then the pure evolution of the shape from its steep initial profileφ(ξX,0) towards its flatter asymptotic
profileφ → 8∗(ξX) ast → ∞. Fig. 4(a) showsφ as a function ofξX on the interval−5 < ξX < 5. One sees the
interior or nonlinear part of the front. Fig. 4(b) shows logφ in the range 10−90 < φ < 1. This plot is appropriate
to show the development of the leading edge, which here essentially determines the dynamics. Accordingly, a very
different range ofξX has to be plotted, namely 0< ξX < 190. As sketched already in Fig. 2, the leading edge
consists of two regions, namely the “Gaussian” region, through which the asymptotic steepnessλ∗ spreads in time
towards largerξX, and the region of conserved steepnessλ = λinit in front of it. In fact, Fig. 4(b) shows that the
initial λinit = 10 on the levelφ = 10−90 is still fully present for timest = 1 and 2, while at later times it gradually
approachesλ∗ = 1. At higher levels,φ = 10−10 say, this process of replacement of one steepness by the other is
essentially completed at timet = 70, while at level 10−90, it is not completed even at timet = 400, where the
simulation stops.

In Fig. 5, we focus on the second feature, namely the displacement of the front. We plot the velocityvφ(t) of
various amplitudesφ as a function oft . According to our previous definition, we identifyv1/2(t) = v∗ + Ẋ(t).
For comparison, the predicted asymptotic valuev∗ is plotted as a dashed line. In Fig. 5(a), the non-universal initial
transients up to timet = 20 are shown on the range 0< v < 3. In Fig. 5(b), the velocities are plotted up to time
t = 400 on the velocity interval 1.97< v < 2. One observes,
• that for fixedt , the velocityvφ(t) is the smaller, the largerφ is. This is an immediate consequence of the fronts

becoming flatter in time, cf. Fig. 4,
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Fig. 5. The same simulation as in Fig. 4. Now the velocitiesvφ(t) of amplitudesφ = 0.99, 0.9, 0.7, 0.5, 0.3, 0.1, 0.05, 0.01, 0.001, and 0.0001
(solid lines) are shown as a function of timet . The asymptotic velocityv∗ is marked by the dashed line: (a) initial transients for times 0≤ t ≤ 20;
(b) the same data plotted for longer times 0≤ t ≤ 400 on an enlarged scale ofv. The velocitiesvφ(t) become largely independent of the “height”
φ, and together slowly approachv∗ in agreement with the predicted universal algebraic relaxation.

• that thevφ(t) for larget approach a value largely independent ofφ, that is still far from the asymptotic valuev∗.
We will see below, that this is the signature of the shape relaxing likevφ1(t)− vφ2(t) ∝ 1/t2 ast → ∞, while
the overall relaxation isvφ(t)− v∗ ∝ 1/t .

4.2.2. f (φ) = εφ + φ3 − φ5: pushed versus pulled fronts
A well-known example of a nonlinear diffusion equation (1.1) exhibiting both pushed and pulled fronts is given

by the nonlinearity (1.10) withn = 2:

∂τϕ = ∂2
yϕ + εϕ + ϕ3 − ϕ5. (4.3)

This equation forε < 0 is often used as a phenomenological (Ginzburg–Landau type) mean field model for a first
order transition. Likewise, its extension to a complex field is often used to model a subcritical bifurcation in pattern
forming systems. According to arguments recalled in Appendix C, fronts of (4.3) are pushed forε < 3

4, and pulled
for ε > 3

4.
The rescaling necessary to bring (4.3) to our standard form (2.2) is discussed in (2.3) and (2.4), and yields

∂tφ = ∂2
xφ + φ + 1

ε̄
φ3 −

(
1 + 1

ε̄

)
φ5, (4.4)

where

ε̄ = 1
2((1 + 4ε)1/2 − 1), ϕ2

s = 1 + ε̄. (4.5)

The criticalε̄, where the pushed/pulled transition occurs, isε̄c = 0.5.
We present data for the pushed front withε̄ = 0.4 (ε = 0.56) and the pulled front with̄ε = 0.6 (ε = 0.96). The

initial condition is the one given before in (4.2). The system size isL = 250 and the front is located atx0 = 50.
The data therefore should be reliable up to time of order 100, so the data presented extend over 0≤ t ≤ 100.

In Fig. 6, we plotvφ(t) as a function oft for both values of̄ε as solid lines, in the same way as the plot of Fig. 6
for the other nonlinearity. The dashed lines denote the asymptotic pulled velocityv∗ = 2 predicted for̄ε = 0.6, and
the asymptotic pushed velocity (cf. Appendix C)

v† = 1 + 4ε̄

(3ε̄(1 + ε̄))1/2
= 2.00594 for ε̄ = 0.4. (4.6)
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Fig. 6. Plot ofvφ(t) as a function oft as in Fig. 5(b), but now for Eq. (4.3). Simulations forε̄ = 0.4 (ε = 0.56) andε̄ = 0.6 (ε = 0.96) are shown.

The dashed lines denote the asymptotic pulled velocityv∗ = 2 of the front withε̄ = 0.6, and the asymptotic pushed velocityv† = 2.00594
of the front with ε̄ = 0.4. Note the quick exponential relaxation towardsv† in contrast to the slow algebraic relaxation towardsv∗. Further
away from the transition̄ε = 0.5 (ε = 0.75) from pulled to pushed front propagation, the relaxation in the pushed regime is even faster and the
differencev† − v∗ is larger.

Fig. 6 shows (i) that the simulated fronts in fact do approach the predicted asymptotic velocities, (ii) that up to time
t ≤ 10 both fronts show quite similar initial transients, (iii) that for timet � 10, however, the relaxation towards
the asymptotic velocityv† for ε̄ = 0.4 is much more rapid than that towardsv∗ for ε̄ = 0.6. This very clearly
illustrates the difference between pushed exponential and pulled algebraic relaxation, despite the tiny difference
betweenv∗ andv†.

We do not plot the figures of shape relaxation equivalent to Fig. 4, the only difference being that in the pushed
case the region of conserved steepnessλ = λinit at ξX � 1 is invaded by a region of steepnessλ† rather than by
the pulled steepnessλ∗. λ† is determined by the front interior, whileλ∗ is determined by the Gaussian region of the
leading edge.

4.3. Comparison of simulations and analytical predictions

We now return to our extensive simulation of the pulled front formed by the F-KPP equation∂tφ = ∂2
xφ+φ−φ3,

and compare the simulation data to our analytical predictions from Table 2 withv∗ = 2, λ∗ = 1 = D.

4.3.1. Analysis of the velocity data
We first concentrate on the analysis of the velocity datavφ(t) from Fig. 5. The prediction for the velocitiesvφ(t)

of the amplitudesφ is derived from the expressions in Table 2 throughvφ(t) = −∂tφ/∂xφ|φ fixed. The result is

vφ(t) = v∗ + Ẋ − Ẍ
ηsh

∂ξ8∗

∣∣∣∣
φ fixed

+ O

(
1

t3

)
. (4.7)

Remember, thaṫX is universal only till order 1/t3/2 and will exhibit contributions in order 1/t2, that depend on
initial conditions. Thedifferencevφ1(t)− vφ2(t), however, will turn out to be independent of initial conditions up
to order 1/t5/2. Let us now test these predictions on the simulations in a series of plots with growing precision in
Figs. 7–9.
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Fig. 7. The datavφ(t) from Fig. 5, but now plotted over 1/t . The lower (straight) dashed line is the asymptotev(t) = v∗ + Ẋ1(t) (4.8), the upper
(curved) dashed line is the asymptotev(t) = v∗ + Ẋ3/2(t) with v∗ = 2: (a) time regime 5< t < 400; (b) time regime 100< t < 400. Note
that due to thet−3/2 correction term, the effective slope in this plot is less than3

2 , even at these long times.

As the velocity correctionẊ is O(1/t) in leading order, we plotvφ(t) as a function of 1/t in Fig. 7, for the
time range 5< t < 400 in Fig. 7(a), and for 100< t < 400 in Fig. 7(b). The dashed lines present the predicted
asymptotesv∗ + Ẋ = 2+ Ẋ1(t) (the lower dashed line), andv∗ + Ẋ = 2+ Ẋ3/2(t) (the upper-dashed line), where
we define

Ẋ1(t) = − 3

2t
, Ẋ3/2(t) = − 3

2t

(
1 −

(π
t

)1/2
)
. (4.8)

First of all, in comparing Figs. 7(a) and (b), we recognize the asymptotic nature of the 1/
√
t expansion: whether

the Ẋ1 or theẊ3/2 asymptote gives the better prediction, depends on the timescale: if we neglect the upper three

Fig. 8. The datavφ(t) from Figs. 5 and 7 for times 20≤ t ≤ 400 in different representations: (a)vφ(t)− 2− Ẋ3/2 as a function ofẌ3/2 (see Eq.
(4.8) for the definition ofẊ3/2); (b) (vφ(t)− v∗ − Ẋ3/2)/Ẍ3/2 as a function of 1/

√
t for φ = 0.99, 0.5, 0.01, and 0.0001. Dotted lines:v∗ = 2,

solid lines: with the corrected valuev∗ = 2.000075 for our numerical scheme and grid size according to Section 5.6.6.
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Fig. 9. The solid lines are again the data from Figs. 5,7 and 8 for times 20≤ t ≤ 400, now plotted as(vφ(t) − v0.5(t))/Ẍ3/2 over 1/t for
φ = 0.99, 0.5, 0.01, and 0.0001. As explained in the text, this eliminates a non-universal 1/

√
t term that depends on the initial conditions. The

crosses result from solving the ODEs for8∗ andηsh numerically and plotting−ηsh/∂ξ8
∗|φ for φ = 0.99, 0.5, 0.01, and 0.0001. Eq. (4.11)

predicts that the lines should extrapolate to the crosses. Since they do, and sinceẌ(t) is of order 10−5 at the latest times, these data confirm our
predictions with extreme precision.

solid lines with velocitiesvφ(t) for the very small amplitudesφ = 0.01, 0.001, and 0.0001, the asymptote 2+ Ẋ1

clearly fits much better in Fig. 7(a) for times 5< t < 400 — while the asymptote 2+ Ẋ3/2 essentially coincides
with v0.001(t), an observation we have no analytical explanation for. For times 100< t < 400 in Fig. 7(b), however,
the coincidence with 2+ Ẋ3/2 is excellent for allφ, and 2+ Ẋ1 very clearly is “far off” on this very detailed scale.
Hence we will work below with the asymptote 2+ Ẋ3/2(t), and we present data for the time regime 20< t < 400
in Figs. 8 and 9.

Let us now further zoom in on theφ-dependent velocity corrections (4.7) toẊ. Fig. 8(a) showsvφ(t)− 2− Ẋ3/2

as a function ofẌ3/2 = 3/(2t2)(1 − 3
2(π/t)

1/2). According to the prediction (4.7), the plot for small values of
Ẍ3/2 → 0 should show essentially straightφ-dependent lines, all approachingvφ(t)−2− Ẋ3/2 → 0 asẌ3/2 → 0.
Clearly, that is what they do.

Fig. 8(b) shows one further step of precision aiming now at the precise value ofv∗: (4.7) predicts

vφ(t)− v∗ − Ẋ

Ẍ
= − ηsh

∂ξ8∗

∣∣∣∣
φ fixed

+ O

(
g(φ)

t

)
. (4.9)

However, the evaluation of this expression withẊ3/2 (4.8) yieldsφ-independent corrections of order 1/
√
t :

vφ(t)− v∗ − Ẋ3/2

Ẍ3/2
= − ηsh

∂ξ8∗

∣∣∣∣
φ

+ 2c2

3
+ 3c2

√
π + 2c5/2

3
√
t

+ O

(
ḡ(φ)

t

)
. (4.10)

Remember, that the constantsc2, c5/2, etc. depend on the initial conditions. According to (4.10), if we plot(vφ(t)−
v∗−Ẋ3/2)/Ẍ3/2 as a function of 1/

√
t , we expect these functions to approach aφ-dependent constant as 1/

√
t → 0.

Fig. 8(b) shows, that they in fact do so — but only if we choose the correct value ofv∗! The dotted lines show
the function forv∗ = 2, the fat solid lines forv∗ = 2.000075. The latter value is the analytical prediction ofv∗

taking the finite grid size corrections of the numerical code into account, as explained in Sections 4.1.1 and 5.6.6.
The two values ofv∗ differ in the sixth significant figure. Fig. 8(b) thus is an extremely precise demonstration of
the correctness of our analytical arguments from both Sections 3 and 5, since it clearly confirms our predictions to
more than six significant figures!
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Our test in Fig. 8(b) is so sensitive, because we divide in Fig. 8(b) by the small quantitiesẌ3/2, which are of order
10−5. Without this division the difference of thev∗’s in Fig. 8(a) is not yet visible. The plot in Fig. 8(b) shows that
we fully understand the specific numerical features of pulled front solutions, both the effect of the finite difference
code and of the finite system size, cf. Section 4.1.

We can eliminatev∗ and the non-universal corrections−c2/t
2, etc. by plotting(vφ(t) − v0.5(t))/Ẍ3/2(t) as a

function of 1/t . Now (4.7) predicts

vφ(t)− v0.5(t)

Ẍ3/2
= − ηsh

∂ξ8∗

∣∣∣∣
φ

+ O

(
1

t

)
. (4.11)

Fig. 9 shows this plot with the solid lines forφ = 0.99, 0.5, 0.01, and 0.0001. The crosses on the axis are not
(!) extrapolated from the curves, but they mark the predicted asymptotes−ηsh/∂ξ8

∗|φ for φ = 0.99, 0.5, 0.01,
and 0.0001. The necessary data onηsh(ξ) and8∗(ξ) are derived from the numerical solution of the appropriate
ODEs, and completely independent from the numerical integration of the PDE for the initial value problem. The
coincidence of the extrapolated PDE data with the analytically predicted ODE asymptote is most convincing.

4.3.2. Analysis of the shape data
We now leave the analysis of the velocity data, and come back to the shape data from Fig. 4. Table 2 immediately

yields

φ(ξX, t)−8∗(ξX)
Ẋηsh(ξX)

= 1 + O

(
1

t

)
. (4.12)

This gives the clue on how to rewrite the shape dataφ(ξX, t) at different times as a function ofξX. The solutions
of the ODEs forηsh and8∗ that are needed for evaluating (4.12) are derived numerically. They have been used for
generating the crosses in Fig. 9 and are now also used in Fig. 10.

Plotting the LHS of Eq. (4.12) allows us to combine the information about the interior from Fig. 4(a) and the
information about the leading edge from Fig. 4(b) into one plot. In Fig. 10(a), we do not divide byẊ, but present
the data at the small timest = 1, 2, 3, 5, 7, 10, and 20 as−(φ−8∗)/ηsh overξX. In Fig. 10(b), the data at the large

Fig. 10. In this figure, the shape data from Fig. 4 are represented differently using data from the numerical solution of the ODEs for8∗ andηsh:
(a)−(φ−8∗)/ηsh (solid) as a function ofξX for timest = 1, 2, 3, 5, 7, 10, and 20; (b)(φ−8∗)/(Ẋ3/2ηsh) (solid) as a function ofξX for times
t = 20, 40, 70, 100, 140, 200, 250, 300, 400. Dotted line: predicted asymptote(φ −8∗)/(Ẋηsh) → 1 ast → ∞. Dashed lines in (a) and (b)
give8∗(ξX) andξX = 0 for orientation.
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timest = 20, 40, 70, 100, 140, 200, 250, 300, and 400 are shown as(φ−8∗)/(Ẋηsh) overξX, where we use again
the approximationẊ = Ẋ3/2 (4.8). For comparison, both plots also show8∗(ξX) and the axisξX = 0 as dashed
lines. Fig. 10(b) also shows the large time prediction(φ −8∗)/Ẋηsh → 1 ast → ∞ as a dotted line.

Fig. 10(a) shows how the interior of the front rapidly relaxes. Fig. 10(b) demonstrates (i) that withẊ = Ẋ3/2,
we indeed have chosen the correct asymptote, and (ii) how the predicted asymptotic value(φ −8∗)/(Ẋηsh) → 1
ast → ∞ is approached from above in the interior of the front and from below in the leading edge.

Note that in Fig. 10(b) all lines approximately cross one point of height unity far in the leading edge. We have no
intuitive or analytical understanding of this observation.

5. Generalization of pulling to higher order (sets of) equations

5.1. Introduction

In the last 15 years, it has become clear that many of the observations and intuitive notions concerning the
behavior of front solutions of the nonlinear diffusion equation (1.1) generalize to higher order equations or sys-
tems of coupled PDEs. First of all, taking the spreading velocityv∗ of a linear perturbation of the unstable state
(Eqs. (1.4) and (1.5)) as the generalization ofv∗ = 2f ′(0)1/2 for (1.1), we observe that there are numerous examples
[9,12,17,22,61,64–66,116] of fronts whose asymptotic velocity approaches the pulled valuev∗ given by (1.5). So
there is no doubt that the mechanism of fronts “being pulled along” by the leading edge generalizes to a large class
of equations. Second, there is also quite a bit of evidence for the existence of a pushed regime in more complicated
equations. In a number of cases, the pushed regime was again found to be related to the existence of a strongly
heteroclinic solution with velocityv† > v∗. An example of a non-monotonic but still uniformly translating pushed
front solution in the EFK equation is shown in Fig. 7 of [65]. In the quintic complex Ginzburg–Landau equation, it
has turned out to be possible to solve for a strongly heteroclinic front profile exactly, and in numerical simulations
it was empirically found that this solution does play the same role in the front selection process as the pushed
front 8† in the nonlinear diffusion equation [66]. Pushed fronts also emerge in coupled amplitude equations for
chaotic domain boundary motion [21]. For extensions of the Swift–Hohenberg equation there are numerical and
perturbative indications that both pulled and pushed regimes occur, and that one can tune the front velocity from
one regime to the other with one of the nonlinear terms in the equation [65].

Much of our understanding of the above general findings has been intuitive and empirical, or based on conjectures.
We shall now show that many of our results for the second order nonlinear diffusion equation generalize to other
equations, not only to (sets of) partial differential equations of higher order, but also to other types of equations like
difference–differential equations [22,102], or differential equations with memory kernels [103]. We will concentrate
here on equations whose relevant front solutions are uniformly translating. For PDEs in this class, essentially the
whole classification of nonlinearities and initial conditionsφ(x,0) in Table 4 applies, provided the uniformly
translating fronts8v, and in particular the fronts8∗ and8† exist. Many aspects of the stability analysis can be
generalized, while the relaxation of pulled fronts requires the generalization of the calculation in Section 3. This
generalization, that we will develop below, leads tonewandexplicit predictions for the front convergence in the
pulled regime, as summarized in Table 2. The fact that these predictions for various examples are fully corroborated
numerically in Section 5.6 makes us conclude that the velocity selection and relaxation of uniformly translating
fronts is now essentially understood even for general sets of equations.

While this paper was nearing completion, it was becoming increasingly clear that even though pattern forming
fronts — both fronts leading to regular periodic patterns, as in the Swift–Hohenberg equation [60,65,71], and fronts
leading to chaotic patterns as in some parameter ranges of the complex Ginzburg–Landau equation — present
additional complications, our most central result for the universal algebraic velocity relaxation carries over even
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to these. We will leave this discussion to the future [72,73,99], and focus here on PDEs whose asymptotic pulled
fronts are uniformly translating front solutions of the type8∗(x − v∗t), just as in the nonlinear diffusion equation.

In writing this section, we face the following two dilemmas:
The extension of both the stability considerations of uniformly translating front solutions of Section 2 and of

the relaxation analysis of pulled fronts of Section 3 depends quite crucially on two ingredients: first, that the front
propagation into unstable states is in the pulled regime, and, second, that there is a family of uniformly translating
front solutions around8∗(x − v∗t): only then the relaxation in the front interior can be along the manifold of
front solutions according toφ(x, t) = 8v(t)(ξX)+ O(1/t2). However, to our knowledge there is no general theory
concerning the conditions under which fronts are pulled and concerning the multiplicity of front solutions: for
particular equations under study or for some restricted classes of equations, one can often convince oneself that
the front should be pulled and that8∗ should be a member of a family of front solutions, but a general theory is
lacking.

An immediate jump to the most general (but abstract) case is pedagogically not justified and moreover would
assume knowledge of the derivation of the pulled velocityv∗ that most readers probably do not have.

We have chosen to deal with these dilemmas by simply summarizing our main assumptions and our results
concerning the extensions of Section 2 to more general equations below, relegating the details of the analysis to
Appendices. Then, we proceed with the relaxation analysis of pulled fronts in two steps. We first consider in Section
5.3 the analysis of a single PDE which is of first order in time but of arbitrary order in space. After that, the extension
to PDEs that are of higher order in time is discussed in Section 5.4. The extension to even more general classes
of equations, including difference equations or integro-differential equations, e.g., with memory kernels, is then
immediate, as we discuss in Section 5.5. We there also discuss coupled equations. Section 5.6 contains the explicit
analytical and numerical results for several of the equations listed in Table 1.

5.2. Basic assumptions underlying the relaxation analysis of pulled fronts; generalization of Table 4

Most of the results discussed in Section 2 for the nonlinear diffusion equation can be generalized to higher order
nonlinear partial differential equations, as well as to difference or integro-differential equations and to coupled
equations:
• The family of solutions can be parametrized as well by the steepnessλ which gives the rate of exponential decay

of 8v(ξ) asξ → ∞.
• If there are one or more strongly heteroclinic solutions, then at each velocity where such a solution exists, there

is a strongly heteroclinic mode of the linear stability operator which changes stability, i.e., which is such that the
mode is stabilizing for fronts with velocities larger than this value and destabilizing for velocities less than this
value. This implies in particular that the pushed velocityv† is the largest velocity at which there is a strongly

heteroclinic front solution8†
v , and that front solutions withv < v† are unstable (see Appendices H and I).

• The linear spreading velocityv∗, given by Eqs. (5.16) and (5.17) below, is the pulled front speed and coincides
with the minimum of the velocities of uniformly translating frontsv(λ) (see Section 5.3.2).

• If there are no strongly heteroclinic solutions withv > v∗, all front solutions withv > v∗ are stable to perturbations
which are steeper thanλ∗, while front solutions withv < v∗ are unstable: the pulled front solution is then the
slowest and steepest solution which is stable.

• The fronts that dynamically emerge from steep initial conditions (falling off faster than e−λ∗x) converge to pulled
fronts propagating with speedv∗.
In this section, we will investigate the front relaxation under the assumptions:

1. The front solutions are pulled, i.e., starting from a steep initial condition the asymptotic front speedvsel equals
the linear spreading speedv∗ given by Eqs. (5.16) and (5.17) below.
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2. The asymptotic front is uniformly translating, i.e., of the form8∗(x − v∗t), and it is a member of a continuous
family of uniformly translating solutions8v(x − vt), parametrized byv.
To put our general assumptions 1 and 2 into perspective, we note that for a given equation the existence of a

family of front solutions can often be demonstrated by counting arguments. This is shown in Appendix H for PDEs
of first order in time that are invariant under space reflection. Such counting arguments also lead one to expect
that generically either8∗(x − v∗t) is a member of a continuous family of front solutions, or there is no uniformly
translating front solution8∗ at all. For, if there is a discrete set of front solutions (solutions8v exist at isolated
values of the velocity), there is no particular symmetry reason to have one atv = v∗, since the existence of an
isolated solution depends on the full nonlinear behavior of the ODE, not just on the properties near one of the
asymptotic fixed points. We comment in Section 6 on what might happen when there is no uniformly translating
front solution, even though the front dynamics is pulled.

5.3. Pulled front relaxation in single PDEs of first order in time

In this subsection, we discuss an arbitrary PDE

F(φ, ∂xφ, . . . , ∂
N
x φ, ∂tφ) = 0 (5.1)

for a single fieldφ(x, t). We assume thatF is analytic in all its arguments, and that the equation admits homogeneous
steady-state solutionsφ = 0 andφ = 1. Moreover, we assumeφ = 0 to be linearly unstable andφ = 1 to be
linearly stable, and we consider fronts connecting these two asymptotic states as in (2.14). Also, according to our
assumption (B), Eq. (5.1) admits a continuous family of uniformly translating frontsφ(x, t) = 8v(x − vt). The
linearization of some frontφ(x, t) about some8v generalizes from (2.25)–(2.27) to

φ(x, t) = 8v(ξ)+ η(ξ, t), ∂tη = Lv(ξ)η + O(η2), (5.2)

where the linear operator is now

Lv(ξ) =
N∑
n=0

fn(ξ)∂
n
ξ + v∂ξ , fn(ξ) = −Fn(ξ)

FN+1(ξ)
. (5.3)

Here theFn(ξ) denote the functional derivatives ofF :

Fn(ξ) = dF(φ(0), . . . , φ(N+1))

dφ(n)

∣∣∣∣∣
φ(m)=∂mξ 8v(ξ), m<N+1, φ(N+1)=−v∂ξ8v(ξ)

. (5.4)

In order that theFn have no singularities,FN+1 should be of one sign; for convenience, we takeFN+1(ξ) < 0 for
all ξ and rescale timet such thatFN+1(∞) = −1. We also assume thatFN(ξ) neither vanishes nor changes sign
for anyξ .

5.3.1. The pulled velocityv∗

In the pulled regime and with steep initial conditions, the asymptotic front velocity equals the linear spreading
velocity v∗, i.e., the velocity with which a localized perturbation spreads according to the linearized equations.
Since the calculation ofv∗ forms the basis of our subsequent analysis, we summarize its derivation in the context of
our first order PDE (5.1). The general formulation in Section 5.5, which is necessary to treat difference equations
or integro-differential equations, is closest to the original “pinch point” analysis [56,58], from which many of these
ideas originally emerged.
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In the rest frame(x, t), the equation linearized aboutφ = 0 is

∂tφ = L0(∞)φ =
N∑
n=0

an∂
n
x φ, (5.5)

which is the generalization of (2.40), and where we introduced the short-hand notationan = fn(∞). The dispersion
relationω(k) of a Fourier mode exp{ikx− iω(k)t} is given by

−iω(k) =
N∑
n=0

an(ik)
n, for φ ∼ exp{ikx− iω(k)t}. (5.6)

Since we will later again characterize fronts by their exponential spatial decay rateλ = −ik, we already define the
growth rates(λ) of the steepnessλ as

s(λ) = Re(−iω(iλ)) = Re
N∑
n=0

an(−λ)n (5.7)

for later use. We restrict the analysis to equations where the temporal growth rate Re(−iω(k)) in (5.6) will be
negative for short wavelength Fourier modesk, i.e., where

ReaN(±i)N < 0, (5.8)

since otherwise all smooth solutions will be unstable against perturbations of arbitrarily short wavelengths.
An arbitrary initial conditionφ(y,0) will develop under (5.5) as

φ(x, t) =
∫ ∞

−∞
dy G(x − y, t)φ(y,0), (5.9)

G(x, t) =
∫ ∞

−∞
dk

2π
exp{ikx− iω(k)t} (5.10)

in generalization of (2.44).
For sufficiently steep initial conditionsφ(y,0), the asymptotic behavior ofφ(x, t) can be obtained from the

large-time asymptotics of the Green’s functionG (5.10) that can be evaluated by a saddle point integration [100]
(also known as “steepest decent approximation”). The result will depend on the frame of reference. In an arbitrary
coordinate systemξ = x − vt with v fixed, a saddle pointkn is a saddle of−iω(k)+ ivk,

d

dk
(−iω(k)+ ivk)

∣∣∣∣
kn

= 0 ⇒ dω(k)

dk

∣∣∣∣
kn

= v. (5.11)

A polynomial of degreeN (5.6) generically hasN − 1 saddle pointskn, n = 1, . . . , N − 1, (5.11) in the complex
k-plane. The integral (5.10) is therefore dominated by the saddle point with the largest growth rate through which
we can lead thek-contour by continuously deforming it off the real axis. If the contour can be deformed to go
through several saddle points, the relevant one is thus that particular saddle pointk∗(v) of the ones we can reach
that has the maximal growth rate:

Re(−iω(k∗)+ ivk∗) = max
n

Re(−iω(kn)+ ivkn). (5.12)

It will have

D(v) = 1

2

d2iω(k)

dk2

∣∣∣∣
k∗(v)

, ReD > 0. (5.13)
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We stress that Eq. (5.11) only expresses the condition for theexistenceof a saddle point. Which saddle point the
k-contour can be made to go through by contour deformation is a condition that depends on theglobal properties
of ω(k) that can only be analyzed for agivendispersion relation. It isnot a local condition. For a further discussion
of this point we refer to Appendix M: we proceed by assuming that the saddle point indicated by a star∗ is the one
that obeys (5.12) and this condition, without distinguishing this underlying condition with our notation.

The expansion of the integral (5.10) about the saddle pointk∗(v) can be performed in a frame with arbitrary
velocityv and yields

G(x, t) = exp{ik∗ξ + (−iω(k∗)+ ivk∗)t}Iv(ξ, t), ξ = x − vt. (5.14)

The integralIv(ξ, t) is expressed after substitution of(k − k∗) = κ/
√
t as

Iv =
∫ ∞

−∞
dκ

2π
√
t
exp

{
iκξ√
t

−Dκ2 + O

(
D3κ

3

√
t

)}
= exp{−ξ2/(4Dt)}

(4πDt)1/2

(
1 + O

(
D3ξ

D2t

))
(5.15)

for larget and arbitraryξ . ObviouslyD plays the role of a diffusion coefficient.D3 is defined below in (5.28).
Generically, the growth (or decay) rate of the saddle point mode Re(−iω(k∗(v))+ ivk∗(v))will be non-vanishing.

We now define the particular linear spreading or pulled velocityv∗ through Re(−iω(k∗) + iv∗k∗) = 0, which is
equivalent to

v∗ = Imω(k∗)
Im k∗ = s(−ik∗)

Im k∗ , k∗ = k∗(v∗). (5.16)

This means, that in the frame moving with velocityv∗, the absolute value of the Green’s function (5.14) neither
grows nor decays in leading order.v∗, k∗ andω(k∗) are determined by (5.12) and (5.16), and by Eq. (5.11) evaluated
atv∗:

dω(k)

dk

∣∣∣∣
k∗

= v∗. (5.17)

In addition, the solution determinesD = D(v∗) (5.14).
Note that the leading order larget result (5.14) and (5.15) for the Green’s functionG in (5.9) is diffusive just like

in (2.45), despite the fact, that we are dealing here with an equation with higher spatial derivatives. We shall see in
Sections 5.4 and 5.5 that this even remains true for much more general types of equations.

Note also that in our discussion of PDEs in this and the next section, we only take the spatial Fourier transform
of G(x, t), as in (5.10) above. However, the most general formulation, which also applies to difference equations
or integro-differential equations, is most conveniently done by taking a Fourier transform in space and a Laplace
transform in time. In the present context, the Green’s functionĜ(k, ω) is then defined as

Ĝ(k, ω) =
∫ ∞

0
dt
∫ ∞

−∞
dx exp{−ikx+ iωt}G(x, t) = 1

S(k, ω)
, where S(k, ω) = iω(k)− iω, (5.18)

and the long-time asymptotics is determined by the double roots of the characteristic equationS(k, ω(k)) = 0 (5.6).
We defer this type of formulation, which is closer to the “pinch point” analysis of [56,58], to Section 5.5.

In practice, one first will drop condition (5.12) and generically deriveN solutions(k∗, v∗) from (5.16) and (5.17)
for a given dispersion relation. But as we already pointed out above, not all of these may be appropriate saddle
points for the dynamics. Typically there are solutions withλ∗ ≡ Im k∗ > 0 andv∗ > 0, which describe a profile
spreading to the right and solutions withλ∗ < 0 andv∗ < 0 describing the spreading to the left, and thek-contour
will have to be deformed through the appropriate one for the left- and right-moving front. These solutions are related
by symmetry, if the original PDE is symmetric under space reflection: if (5.6) only contains even powers ofk and
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if the an are real, then for every solution(k∗, v∗) there is a solution(−k∗,−v∗). Moreover, as mentioned already
above, there might be various non-trivial saddle point solutions which are not related by symmetry, if the degreeN

of spatial derivatives is sufficiently large. The saddle point analysis as well as the arguments of Section 2.5.1 for
the competition between different solutions of the linearized equations clearly show that the dynamically relevant
solution is the one with the largest velocityv∗ through which thek-contour can be led.

However, choosing the saddle point with the largestv∗ might according to counting arguments (as in Appendix
H) be inconsistent with assumption 2 from Section 5.2 of the existence of a family of uniformly translating fronts,
since one expects the multiplicity of front solutions to be different for every saddle point(v∗, k∗). The discussion
of this issue we defer to Section 6.4, as for the applications discussed in Section 5.6, this problem does not
rise.

5.3.2. Uniformly translating solutions8v
In the analysis of the nonlinear diffusion equation in Section 2, we saw that the uniformly translating solution

8v decayed as e−λξ with λ real forv ≥ v∗. Here,λ = λ−(v) (2.18) is the smallest root ofv = s(λ)/λ, wheres(λ)
(5.7) here equalss(λ) = λ2 + 1. v ≥ v∗ implied Rek = 0, λ = Im k > 0. These front solutions were found to be
stable to perturbations which are steeper than the front solution8v itself provided there is no pushed front solution
vc = v†. The solutions withv < v∗ had Rek 6= 0, Reω 6= 0, and were unstable.

We will focus here on the immediate generalization of these results, i.e., assume that fronts withv ≥ v∗ have
Rek = 0, so that their asymptotic spatial decay is as e−λξ . In particular, this gives for the pulled fronts

Rek∗ = 0, λ∗ ≡ Im k∗ > 0, Reω(k∗) = 0, s(λ∗) ≡ Imω(k∗) > 0,

D = 1

2

d2s

dλ2

∣∣∣∣
λ∗
> 0, ImD = 0. (5.19)

With this assumption we consider only the generic case, that dynamically accessible uniformly translating solutions
of real equations will be characterized by a real spatial decay rateλ and a real growth rates, and that they will leave
a homogeneous stateφ = 1 behind. This might exclude some pathological cases of uniformly translating front
solutions, that are not characterized by a realλ. 22

If the saddle point obeys (5.19), the expression fort � 1 (5.14) andv = v∗ for the Green’s functionG reduces
to

G(ξ, t) = exp{−λ∗ξ}exp{−ξ2/(4Dt)}√
4πDt

(
1 + O

(
D3ξ

D2t

))
, ξ = x − v∗t. (5.20)

Except for a rescaling of time- and length-scales with the real constantsλ∗ andD, this is precisely the functional
form of (2.45).

If we consider the velocityv(λ) of the family of front solutions whose asymptotic spatial decay is as e−λξ with
realλ, then it is straightforward to seethat8∗ is the slowest of all these uniformly translating fronts: according
to the linearized equation (5.5) the solution in the leading edge is as exp{−λx − iω(iλ)t}. The resulting velocity
v is

v(λ) = −iω(iλ)

λ
= s(λ)

λ
for all λ. (5.21)

22 Elsewhere [99], we will discuss an extension of the notion of uniformly translating fronts that allows to write pattern forming fronts in the
Swift–Hohenberg equation as uniformly translating solutions of a suitable set ofcomplexamplitude-like modes. For these we have Rek 6= 0.
Similar considerations hold for fronts in the complex Ginzburg–Landau equation itself [66].
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The minimum of this curve is given by

0 = ∂v(λ)

∂λ

∣∣∣∣
λ∗

= 1

λ

(
∂s(λ)

∂λ
− s(λ)

λ

)∣∣∣∣
λ∗
, (5.22)

d2v(λ)

dλ2

∣∣∣∣
λ∗

= 2D

λ∗ > 0. (5.23)

Taking into account thatω(k) is analytic, Eqs. (5.21) and (5.22) are equivalent to Eqs. (5.16) and (5.17), because
at a saddle of an analytic function, the maximum as a function of realk coincides with a minimum as a function of
imaginaryk.

The analysis of the stability of the uniformly translating solutions proceeds largely as in Section 2.3: the existence
of a family of front solutions implies, according to counting arguments as given in Appendix H, that there is at least
a continuous spectrum of eigenmodes of the stability operator. Indeed, if we again write the temporal behavior of the
stability eigenmodes as e−σ t and the steepness of the modes as3, and if we first focus on the spectrum of perturbations
that is also continuous in3, then we have for the front solutions withv(λ) ≥ v∗ : σ = −(s(3)−v(λ)3). Expanding
3 of the perturbation aboutλ of the front, we get

σ(3) ≈ −
(
∂s(λ)

∂λ
− v(λ)

)
(3− λ) = −λ∂v(λ)

∂λ
(3− λ), (5.24)

using (5.21) for the second identity. Since we showed above that∂v/∂λ < 0 for λ < λ∗ (v > v∗), σ(3) > 0
for 3 > λ. This generalizes the result (D.14) for the nonlinear diffusion equation that the front solutions8v are
stable to modes from the continuous spectrum which are steeper than the front itself. In addition to the continuous
3 spectrum there again may be discrete perturbation modes associated with the existence of pushed front solutions.

We show in Appendix H that the existence of a strongly heteroclinic front solution8† implies the existence of
unstable strongly heteroclinic stability modes forv < v†, again in parallel to the results for the nonlinear diffusion
equation. The central assumption of our further analysis is of course that we are in the pulled regime, and hence
that such solutions are absent.

We finally note that the fact thatv(λ) has a minimum forλ = λ∗, v = v∗, implies that forv < v∗ front
solutions decay to zero in an oscillatory manner forξ → ∞ as they have Rek 6= 0. By expanding the function
v(λ) about the bifurcation point atv∗, λ∗, it is easy to show that for small|v − v∗|, this branch of solutions has
Im(k − k∗) = λ− λ∗ ≈ (λ∗)2v′′′/(12D)|v − v∗|, Rek ≈ (λ∗|v − v∗|/D)1/2, wherev′′′ = (∂3v(λ)/∂λ3)|λ∗ . One
usually hasv′′′ < 0 and then such solutions are unstable according to a slight generalization of (5.24).

5.3.3. The leading edge representation
As in our analysis of the pulled dynamics of the nonlinear diffusion equation, we will find it expedient to study

the large time asymptotics in the leading edge by using the leading edge representationψ . For uniformly translating
fronts, the immediate generalization of the transformation (2.50) from Section 2 is

ψ(ξ, t) = φ(x, t)eλ
∗ξ , ξ = x − v∗t. (5.25)

The linearized dynamical evolution equation for the leading edge representation now generalizes (2.49) to

∂tψ = Dψ + o(ψ2 e−λ∗ξ ), (5.26)

where

D = eλ
∗ξ Lv∗(∞)e−λ∗ξ =

N∑
n=2

Dn∂
n
ξ . (5.27)
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A short calculation (Appendix J) reveals that the constantsDn can be expressed in terms of the dispersion relation
ω(k) (5.6) as

Dn = 1

n!

∂n

∂(−λ)n (−iω(iλ)− v∗λ)
∣∣∣∣
λ=λ∗

= 1

n!

∂n

∂(−λ)n (s(λ)− v∗λ)
∣∣∣∣
λ=λ∗

. (5.28)

Note that in this generalized leading edge representation (5.26), the coefficients ofψ and∂ξψ again are vanishing.
This is an immediate consequence of the proper choice ofv∗ andλ∗. In fact, for uniformly translating fronts (5.19)
D0 = 0 is equivalent to the proper choice of the velocityv∗ (5.16) andD1 = 0 is equivalent to the saddle point
equation (5.17) fixingλ∗ for givenv∗. D2 is obviously identical toD from (5.13). We will see below, that in the
leading edge, the contribution proportional toD2 = D gives the dominant contribution, whileD3 appears only
in the subdominant term, similar to what we already observed in (5.15). We therefore will essentially recover the
results of the nonlinear diffusion equation (1.1), which had the particular property ofDn = 0 for n > 2.

5.3.4. The relaxation analysis
We have now laid the basis for the extension of the analysis of the relaxation of pulled fronts for our more general

equation (5.1) in the case of sufficiently steep initial conditions which as before are characterized by the requirement
that

lim
x→∞φ(x,0)eλx = 0 for someλ > λ∗. (5.29)

The analysis in Section 3 for the nonlinear diffusion equation (1.1) was based on the following steps:
Step1. The proper choice of the comoving coordinate system

ξX = x − v∗t −X(t), Ẋ = c1

t
+ c3/2

t3/2
+ · · · , (5.30)

allowing for a logarithmic shiftX(t) ∝ ln t relative to the asymptotic coordinate systemξ = x − v∗t .
Step2. An expansion ofφ in the nonlinear interior part of the front about the asymptotic front profile8∗(ξX),

taken, however, not in the frame moving with velocityv∗, but in the frameξX = x − ∫ t dt ′ v(t ′) with velocity
v(t) = v∗ + Ẋ(t).

Step3. A resummation of this expansion ofφ in the crossover region towards the leading edge, where the new
variablez = ξ2

X/(4t) is introduced for the region withξX ≥ O(
√
t).

Step4. An analysis of the leading edge in variablesz andt , whereφ is now linearized about the unstable state
φ = 0, and not about8∗. The two boundary conditions thatφ crosses over to the functional form of Step 3 for
z � 1, and thatφ is steeper than8∗ for z � 1, now determine both the functional form ofφ and the constantscn/2
in Ẋ. (We can think of this as a matching procedure.) In this analysis, the fact that the parameterα in the asymptotics
8∗(ξX) = (αξX + β)e−λ∗ξX is non-zero (see Section 2.5.2) plays a central role.

The generalization of these steps to our equation (5.1) which is of higher order in space, is actually quite
straightforward. We again use the general coordinateξX (5.30) withẊ(t) to be determined. The interior expansion
η(ξX, t) = φ − 8∗(ξX) from Section 3.2 applies literally, except that we now need to use the linear operator
L∗ = Lv∗(ξX) from (5.3). Accordingly, also the resummation (3.31) again is valid, and we again have

φ = 8v(t)(ξX)+ O

(
1

t2

)
(5.31)

with 8v a uniformly translating solution of (5.1) with velocityv. The correction O(1/t2) is again non-vanishing
and non-universal, as it depends on the precise initial conditions.



U. Ebert, W. van Saarloos / Physica D 146 (2000) 1–99 55

The expansion of the interior shape towards the leading edge (3.36) depends on both the differential operatorL∗

for ξ → ∞ and on the shape of the asymptotic front8∗ (3.32). Eq. (3.32) is generalized to

8∗(ξ)
ξ�1∼ (αξ + β)e−λ∗ξ + · · · , (5.32)

since the saddle point expansion in Section 5.3.2 implies that for a pulled front8∗, two roots of the dispersion
relation coincide. Generally,

α 6= 0, (5.33)

since a calculation resulting in a generalization of (2.54) can be set up along similar lines: if there is a bounded
uniformly translating solution8∗(ξ), then upon going to the leading edge representation and integrating the equation
for 9∗(ξ) once overξ , we find thatα can be expressed in terms of the spatial integral over the nonlinear terms.

How does the leading edge develop under inclusion of the higher spatial derivatives? First of all we observe that
the large-t-solutions (5.20) and (2.45) of the linearized equation (5.5) are in leading order identical up to rescaling.
In other words, the saddle point approximation renders the spreading around the asymptotic exponential solution
diffusive. This suggests that the leading edge can be analyzed by the same type of similarity variables(z, t) as in
(3.40). In fact, in our shifted coordinate frameξX (5.30) the leading edge representation is

φ(x, t) = e−λ∗ξX ψ(ξX, t), (5.34)

∂tψ = Dψ + Ẋ(∂ξ − λ∗)ψ + o(e−λ∗ξX ) (5.35)

with the differential operatorD from Eq. (5.27). After a rescaling with

ζY = λ∗ξX, τ = D2λ
∗2
t, dn = Dnλ

∗n

D2λ∗2 , Ẏ = Ẋλ∗

D2λ∗2 = C1

τ
+ C3/2

τ3/2
+ · · · ,

Cn = cnλ
∗(D2λ

∗2
)n−1, (5.36)

this equation takes the form

∂τψ =
(
∂2
ζ +

N∑
n=3

dn∂
n
ζ

)
ψ + Ẏ (∂ζ − 1)ψ (5.37)

that is the same as Eq. (3.38), except that there are now higher derivatives∂nζ . As we show explicitly in Appendix
K, the leading edge can be analyzed with the same ansatz as in (3.40) and (3.42),

ψ(ζY , τ ) = e−zG(z, τ ), z = ζ 2
Y

4τ
, (5.38)

G(z, τ) = √
τg−1/2(z)+ g0(z)+ g1/2(z)√

τ
+ · · · ,

and in rescaled variables, one gets

C1 = −3
2, C3/2 = 3

2

√
π, g−1/2(z) = 2α

√
z,

g0(z) = β(1 − 2z)+ 3α(1 + d3)z− 2αd3z
2 − 3

2αF2(z)+ 6α
√
πz(1 −M(−1

2,
3
2, z)). (5.39)

In these variables the result is identical with that for the nonlinear diffusion equation in Section 3, except for the
additional terms proportional tod3 in g0(z). In particular, the velocity parametersC1 andC3/2 and the leading order
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contributiong−1/2(z) are independent of the value ofd3, just like the subdominant termβ from (5.32) entersg0(z)

but not the other quantities. That for the problem written in variablesz andτ , d3 can only contribute in subleading
order, is in fact immediately obvious after the transformation. It is surprising, however, that the subleading velocity
coefficientC3/2 is independent of the value ofd3. We will find it to be unchanged even for much more general
equations.

In terms of the unscaled variables, the universal algebraic convergence of the velocity is given by

v(t) = v∗ − 3

2λ∗t

(
1 −

√
π

(λ∗)2Dt

)
+ · · · , (5.40)

wherev∗ andλ∗ are determined by the saddle point equations (5.16) and (5.17) together with (5.12), and where the
diffusion coefficientD (5.13) equalsD2 from (5.28). The central results of this analysis are summarized in Table 2.

5.4. Generalization to single PDEs of higher order in time

We now proceed in two further steps of generalization. In this subsection, we first discuss partial differential
equations for a single fieldφ(x, t), which include higher order temporal derivatives as well as mixed temporal and
spatial derivatives. These are of the form

F(φ, ∂xφ, . . . , ∂
N
x φ, ∂tφ, . . . , ∂

M
t φ, ∂t ∂xφ, . . . , ∂

M
t ∂

N
x φ) = 0, (5.41)

generalizing (5.1) toM ≥ 1. In Section 5.5, we also deal with difference or integro-differential equations and
coupled equations.

The extension to equations of type (5.41) presents no conceptual difficulty — we will follow here a route that is
the immediate generalization of the discussion in the previous section. The new elements in the discussion will be the
fact that higher order temporal derivatives and mixed spatial and temporal derivatives are generated in the dynamical
equation for the leading edge representationψ , but as we shall see these turn out not to affect the expression for
the velocity relaxation and for the relaxation of the shape in the interior front region. The notation in (5.48)–(5.54),
which may strike the reader at first sight as unnecessarily heavy, prepares for the discussion of even more general
equations and sets of equations in Section 5.5, where finding a proper scalar leading edge representation is less
straightforward than here.

If we linearize (5.41) aboutφ = 0, we get an equation of the form

M∑
m=0

N∑
n=0

amn∂
m
t ∂

n
x φ(x, t)+ o(φ2) = 0. (5.42)

For solving the initial value problem in time, it is convenient to Fourier-transform in space

φ(x, t) =
∫ ∞

−∞
dk

2π
eikx φ̃(k, t). (5.43)

Below we will use the superscript˜ to denote a quantity Fourier transformed in space.
The Fourier transformation of (5.42) results in an ODE of orderM for every Fourier modẽφ(k, t):

M∑
m=0

Am(k)∂
m
t φ̃(k, t) = 0, Am(k) =

N∑
n=0

amn(ik)
n. (5.44)

Obviously, we needM functions to specify the initial conditions. We write these as anM-dimensional vector:

φ̃ = (φ̃, ∂t φ̃, . . . , ∂
M−1
t φ̃). (5.45)
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The equation of motion (5.44) can now be written in Fourier space as

∂t φ̃(k, t) = −T̃ (k) · φ̃(k, t) (5.46)

with theM ×M matrix

T̃ (k) =




0 −1 0 · · · 0
0 0 −1 0

...
. . .

0 0 0 · · · −1
A0/AM A1/AM A2/AM · · · AM−1/AM


 . (5.47)

For later use, we here define the matrix

Ŝ(k, ω) = AM(k)
(
T̃ (k)− iω1

)
, (5.48)

which later will result from a Fourier–Laplace transformation as in (5.18). Here and below, we use the superscript
ˆ to denote a Fourier–Laplace transformed quantity to distinguish it from spatially Fourier transformed quantities,
which are indicated with a tilde. 1is theM ×M identity matrix 1mn = δmn.

TheM eigenvaluesωm(k) (m = 1, . . . ,M) of the matrixT̃ (k) are determined by the characteristic equation
S(k, ωm(k)) = 0, whereS(k, ω) is the characteristic polynomial

S(k, ω) = detŜ(k, ω) =
M∑
m=0

Am(k)(−iω)m =
M∑
m=0

N∑
n=0

amn(−iω)m(ik)n. (5.49)

Defining the eigenvectors̃Um(k) of the matrixT̃ (k) through

T̃ (k) · Ũm(k) = iωm(k)Ũm(k), (5.50)

and their adjoints through

Ũ
†
m(k) · Ũn(k) = δmn, (5.51)

the matrixT̃ (k) can be written as

T̃ (k) =
M∑
m=1

iωm(k)Ũm(k)× Ũ
†
m(k), (5.52)

where× denotes the outer product.
Now (5.46) is easily integrated in time and the Fourier transformation inverted. We find in generalization of (5.9)

and (5.10):

φ(x, t) =
∫

dy G(x − y, t) · φ(y,0), (5.53)

G(x, t) =
M∑
m=1

∫
dk

2π
exp{ikx− iωm(k)t}Ũm(k)× Ũ

†
m(k). (5.54)

Obviously, the quickest growing modẽUm(k), characterized now by Fourier modek and branch of solutionsm,
again will be determined by a saddle point (5.16) and (5.17). Even more than in the case of a first-order equation, we
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can in general have more than one saddle point, as each branch of the dispersion relation can in principle have one
or more saddle points (a trivial example for two coupled equations is discussed in Appendix L). Again, the relevant
saddle point is the one through which thek-contour can be deformed and which has the largest velocityv∗ in the
comoving frame. The associated saddle point values are denoted ask∗ = iλ∗,D, etc. As before, we assume uniform
translation as in (5.19), so thatk∗ andω(k∗) are purely imaginary. Suppose thatv∗ lies on the branchω1(k). We
then find in the comoving frameξ = x − v∗t for long timest :

G(ξ, t) = e−λ∗ξ exp{−ξ2/(4Dt)}√
4πDt

Ũ1(k
∗)× Ũ

†
1 (k

∗)+ · · · (5.55)

in generalization of (5.20).
This result shows that in the long time limit, the Green’s functionG projects onto the eigendirectioñU1(k

∗). The
result (5.55) is not restricted to the explicit form (5.47) of the matrixT , hence it applies to sets of coupled PDEs

just as they also can be written in the form (5.46). Projection onto the eigendirectionŨ1(k
∗) then defines the scalar

leading edge equation resulting from coupled PDEs. We will further exploit this property in the following section.
In this section, we just use (5.55) to calculatev∗ andλ∗, and to demonstrate why the leading edge transformation

catches the relevant dynamics. Proceeding as in earlier sections, the scalar equation (5.42) now transforms under
the leading edge transformation withv∗ andλ∗ to

φ(x, t) = e−λ∗ξψ(ξ, t), ξ = x − v∗t, (5.56)

0 =
M∑
m=0

N∑
n=0

amn(∂t − v∗∂ξ + v∗λ∗)m(∂ξ − λ∗)nψ =
M∑
m=0

M+N∑
n=0

bmn∂
m
t ∂

n
ξ ψ(ξ, t). (5.57)

Just as theamn from Eq. (5.42) can be written in terms of derivatives of the characteristic polynomialS(k, ω)

(5.49) as

amn = (i∂ω)m

m!

(−i∂k)n

n!
S(k, ω)

∣∣∣∣
(k=ω=0)

(5.58)

so thebmn can be written as derivatives as well, similar to (5.28). In showing this, it simplifies the notation to use
coordinates expanded about the saddle point by introducing the variables

� = ω − v∗k, q = k − k∗ = k − iλ∗, (5.59)

and by defining

S∗(q,�) = S(k∗ + q, ω∗ + v∗q +�), k∗ = iλ∗, ω∗ = v∗k∗. (5.60)

When we will later consider the Fourier–Laplace transform ofψ(ξ, t) in the frameξ , the frequency in this frame will
turn out to be� and the wave number will turn out to beq, since exp{−iωt+ ikx} = exp{−λ∗ξ}(exp{−i�t+ iqξ}).
Accordingly, the long-time–small-gradient expansion ofψ(ξ, t) will correspond to a small-�–small-q expansion.
Indeed, in line with this interpretation, inspection of (5.57) shows that thebmn are simply

bmn = (i∂ω)
m

m!

(−i)n(∂k + v∗∂ω)n

n!
S(k, ω)

∣∣∣∣
(k∗,v∗k∗)

= (i∂�)m

m!

(−i∂q)n

n!
S∗(q,�)

∣∣∣∣
(q=�=0)

. (5.61)

We will discuss the precise correspondence between the formulation in terms ofS and the dispersion relationω1(k)

below, and just note here that the saddle point equations that determineλ∗ andv∗ are expressed by

b00 = S∗(0,0) = 0, b01 = −i∂qS
∗(q,�)|q=�=0 = 0. (5.62)
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After dividing the whole equation (5.57) byb10 and introducing the notations

Dn = −b0n

b10
, w = b11

b10
, τ1 = b20

b10
, etc., (5.63)

the terms with the lowest derivatives are

(∂t + τ1∂
2
t + · · · −D2∂

2
ξ −D3∂

3
ξ + · · · + w∂t∂ξ + · · · )ψ + o(ψ2 e−λ∗ξ ) = 0. (5.64)

This is the leading edge equation in its most general form. Note that after the leading edge transformation, the
coefficientw may be non-zero even if the coefficienta11 = 0 of ∂t∂xφ in the original equation of motion (5.44)
vanishes.

To show the connection with our discussion of first-order equations in earlier sections, it is instructive to analyze
the relation betweenS and the dispersion relation. The various branchesωm(k) or�m(q) of the dispersion relation
are defined implicitly through the roots of

S(k, ωm(k)) = 0 ⇔ S∗(q,�m(q)) = 0, (5.65)

As before, letω1(k) (�1(q)) be the branch on which the saddle point determiningv∗ lies. Upon differentiating
(5.65) once with respect tok or q and using Eqs. (5.61) and (5.62), we get our familiar result

dω1(k)

dk

∣∣∣∣
k∗

= v∗ ⇔ d�1(q)

dq

∣∣∣∣
q=0

= 0. (5.66)

Likewise, by differentiating (5.65) twice we get

d2�1(q)

dq2

∣∣∣∣
q=0

= d2ω1(k)

dk2

∣∣∣∣
k∗

= − ∂2
qS(q,�)

∂�S(q,�)

∣∣∣∣∣
q=�1(0)=0

. (5.67)

If we combine this with the expressionD = −b02/b10, we recover our familiar expression

D = ∂2
qS(q,�)

2i∂�S(q,�)

∣∣∣∣∣
q=�1(0)=0

= id2�1(q)

2dq2

∣∣∣∣∣
q=0

= id2ω1(k)

2dk2

∣∣∣∣∣
k∗
. (5.68)

For the case of an equation which is of first order in time, one can easily check that our general expression forDn

reduces to the one given before in (5.28),Dn = (−i/n!)dnω/d(ik)n|k∗ .
Before we discuss the consequences of (5.64), we note in passing that formally we could have proceeded directly

from the linearized equation of motion (5.42) to the leading edge representation (5.57) and hence to (5.64), by
choosing the two parametersv∗ andλ∗ such that the two conditionsb00 = 0 = b01 are obeyed. The detour from
this straightforward transformation via the saddle point analysis was taken to bring out the physical origin of the
transformation in this context and to show why one has to use the saddle point(v∗, λ∗) with the largestv∗ through
which the contour can be deformed. In addition, it explicitly shows how a particular “direction”U1(k

∗) of the vector
field φ corresponds to the slow leading edge dynamics. We will see in the next section that for coupled equations
there is some freedom in choosing the projection onto a scalar leading edge variable.

Let us now analyze the implications of the leading edge representation (5.64). First of all, we observe that a
uniformly translating pulled front8∗(ξ) = e−λ∗ξ9∗(ξ) still will have the form (5.32)9∗(ξ) = αξ + β, and that
the argument forα 6= 0 from Section 2.5.2 still does apply.

Can the extra termsτ1∂2
t ψ , w∂t∂ξψ , etc. change our relaxation prediction from Section 5.3? A short inspection

shows that after rewriting the equation in variablesz andt , cf. (5.36)–(5.38) and (3.39),w∂t∂ξψ will be of the same
subleading order in 1/

√
t asD3∂

3
ξ ψ , while both the termsτ1∂2

t ψ andD4∂
4
ξ ψ will be one order lower. Also, when



60 U. Ebert, W. van Saarloos / Physica D 146 (2000) 1–99

rewriting the equation in the variableξX = x−v∗t−X(t), higher temporal derivatives will create terms likeẌ and
Ẋ2 from the exponential factor in the leading edge transformationφ(ξX, t) = exp{−λ∗ξX}ψ(ξX, t). Since these
are of order 1/t2, they do not influence the leading and subleading terms.

We do not repeat the detailed calculation here, because it completely follows the lines of the earlier one. One finds
that the result again is given by (5.39), except that the subleadingg0(z) picks up another polynomial contribution
fromw besides the one fromD3, namely

g0(z) = g0(z)[(5.39)] + 2αwλ∗(z2 − 3
4). (5.69)

The uniform velocity relaxation is invariably

v(t) = v∗ − 3

2λ∗t

(
1 −

(
π

(λ∗)2Dt

)1/2
)

+ · · · , (5.70)

and the interior part of the front is again slaved to the tip like

φ(x, t) = 8v(t)(ξX)+ O

(
1

t2

)
, (5.71)

so the predictions from Table 2 also apply to PDEs with higher temporal derivatives like (5.40), if the front is
pulled.

Thus we reach the important conclusion thatthe universal power law convergence is not an artifact of the
diffusion-type character of the nonlinear diffusion equation: it holds generally in the pulled regime of uniformly
translating fronts, because the expansion about the saddle point, which governs the dynamics of the leading edge
representationψ , is essentially diffusive.

5.5. Further generalizations

We now complete the last step in our discussion, and show that our results hold much more generally: even if
the original dynamical equation is not a PDE, the dynamical equation for the appropriate leading edge variableψ

is still the same diffusion type equation (5.64), and consequently, our results for the velocity and shape relaxation
from Table 2 do apply.

When we have a set of coupled equations, we can view them as components of a vector field, using a notation
as in (5.46) with a different matrix̃T (k). The main complication we are facing in this case is that the leading edge

dynamics then not only “selects” a velocityv∗ in the pulled regime, but also an associated eigendirectionŨm(k)

in this vector space — this eigendirection determines the relative values of the various fields in the leading edge of
the front. The long-time dynamics in the frame moving with the pulled velocityv∗ is then associated with a slow
dynamics along this eigendirection, while the dynamics along the other eigendirections is exponentially damped.
The appropriatescalar leading edge variableψ will then turn out to be nothing but the projection of the dynamics
along this slow direction.

The second complication is that we now consider equations whose temporal dependence is not necessarily of
differential type∂Nt : they may just as well be of difference type or contain memory kernels. To treat such equations,
we also perform a Laplace transformation in time besides the Fourier transformation in space just as in (5.18) by
defining

φ̂m(k, ω) =
∫ ∞

0
dt eiωt φ̃m(k, t). (5.72)

We thus consider dynamical systems that after the Fourier–Laplace-transformation of the equations, linearized about
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the unstable state, are of the form

M∑
m=1

Ŝnm(k, ω)φ̂m(k, ω) =
M∑
m=1

H̃nm(k)φ̃m(k, t = 0), n = 1, . . . ,M. (5.73)

The terms on the RHS generally arise upon partial integration of temporal derivative terms, when we take the
Laplace transform. They contain the initial conditions. Before exploring the implications of (5.73), we first discuss
in more detail the type of systems whose linear dynamical equations can be written in the above form.

Sets of PDEs. Single or coupled PDEs can generally be written in the matrix notation(∂t + T̃ (k)) ·
φ̃(k, t) = 0 (Eq. (5.44)) and after Laplace transformation immediately yield (5.73), with the matricesŜ(k, ω) =
AM(k)(T̃ (k)− iω1̃) as before in (5.48), and̃H(k) = AM(k)1. The leading edge behavior of single PDEs, where the

matrix T̃ (k) has the explicit form (5.47), was discussed in the previous section. For coupled PDEs, the derivation
of a scalar leading edge equation is not as straightforward, and also leaves some freedom, as we discuss below and
for an example in Appendix L. Nevertheless, we will see that the results summarized in Table 2 are robust, in that
they do not depend on the particular choice made. We discuss examples of single PDEs in Sections 5.6.1 and 5.6.4,
and an example of sets of PDEs in 5.6.2. Of course, if one has a PDE for a single scalar fieldφ, one can directly
take the Fourier–Laplace transform without writingφ as a vector field. This yields a slight generalization of (5.73),
the most important difference being thatH then also depends onω. Our results can obviously also be obtained via
this route (see Section 5.5.2 for further details).

Difference–differential equations. When we have difference equations in space, the equations can also be reduced
to the above form — the only difference is that upon Fourier transformation in space, thek-values can be restricted
to lie in a finite interval (the “Brillouin zone”, in physics terminology). An example will be discussed in Section
5.6.3. Likewise, when we analyze a dynamical equation with finite time difference, the Laplace integral can be
replaced by a sum over integer times but the “frequency” remains a continuous variable. The only difference is that
upon Laplace inversion, the integral is over a finite interval ofω values. Examples of difference equations in both
space and time, arising from numerical schemes, can be found in Section 5.6.6.

Equations with memory or spatial kernels. If the equation has memory and/or spatial kernels of the type∫
dx′ ∫ t

0dt ′K(x − x′, t − t ′)φ(x′, t ′) [103,104], then upon Fourier–Laplace transformation these just give rise

to terms of the formK̂(k, ω)φ̂(k, ω) in (5.73), as will be illustrated with a simple example in Section 5.6.5. The
only difference with the case of PDEs from this point of view then is that the elementsŜmn are not polynomials in
ω andk, but more general functions of these arguments.

5.5.1. Long-time asymptotics of the Green’s function via a Fourier–Laplace transformation
We now return to the problem of extracting the long-time behavior of the dynamical equation (5.73) in Laplace–

Fourier representation. In analogy with our earlier analysis of PDEs, and following [56,58], we introduce the Green’s
function23 G(k, ω) of the linear equations, defined by

Ĝ(k, ω) = Ŝ(k, ω)−1. (5.74)

Ŝ
−1

is the inverse of the matrix̂S. Eq. (5.73) now immediately can be solved as

φ̂(k, ω) = Ĝ(k, ω) · H̃ (k) · φ̃(k, t = 0). (5.75)

23 A different choice for the definition of the Green’s function isĜ(k, ω) = Ŝ(k, ω)−1·Ĥ (k), which avoids the convolution of the initial condition

with H(z) in (5.79), and also for equations of the form (5.44) leads to the easier expressionĜ(k, ω) =
(
T̃ (k)− iω1̃

)−1
. The advantage of the

choice (5.74) is that we consistently work with derivatives ofS = detŜ.
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We write the eigenvectors and eigenvalues ofŜ in analogy to (5.50)–(5.52) as

Ŝ(k, ω) · Ûm(k, ω) = um(k, ω)Ûm(k, ω). (5.76)

The determinant of̂S can now be written as

S(k, ω) = detŜ(k, ω) =
M∏
m=1

um(k, ω), (5.77)

and the characteristic equation

um(k, ωm(k)) = 0 (5.78)

determines the dispersion relationωm(k) of the mode with eigendirection̂Um(k, ω). Note that each eigenvalue
um(k, ω)may be a nonlinear function ofk andω. Therefore it can happen that the equationum(k, ω) = 0 specifies
more than one branchω(k) of the dispersion relation. For simplicity, we will not distinguish this possibility with
our notation, but we stress that our results are generally valid. For equations of the form (5.46), we can identify
um(k, ω) = AM(k)(iωm(k)− iω) andÛm(k, ω) = Ũm(k).

Upon inverting the Fourier and Laplace transformations, where the Laplace inversion requires a sufficiently large
realγ , we now find for the Green’s function in the comoving frameξ = x − vt:

φ(ξ, t)=
∫

dy G(ξ − y, t) ·
∫

dy′H(y − y′) · φ(y′,0),

G(ξ, t)=
∫ −iγ+∞

−iγ−∞
dω

2π

∫ ∞

−∞
dk

2π
exp{ikξ − i(ω − vk)t}Ĝ(k, ω),

Ĝ(k, ω)=
M∑
m=1

Ûm(k, ω)× Û
†
m(k, ω)

um(k, ω)
. (5.79)

The expression forG(ξ, t) is the immediate generalization of (5.54). When we evaluate the Fourier–Laplace inver-
sion ofG(ξ, t) in the long-time limit, each term in the sum (5.79) can be evaluated by the so-called “pinch point”
analysis [56,58] making use of expansions about zeroes ofum(k, ω). We then need to deform not only the contour
of k-integration, as in the saddle point analysis in the previous sections, but also the contour ofω integration. The
pinch point analysis is based on first evaluating thek-integral, and then the resultingω-integral. Alternatively, we
can extract the long-time dynamics by first closing theω-contour, and then performing thek-integral. This last
route is closer to that of Section 5.4. For a further discussion of both approaches and of the global conditions that
determine which of the saddle points or pinch points is dynamically relevant, we refer to Appendix M. As before,
we use∗ to denote the appropriate solution that satisfies these conditions.

As always, there can in principle be several saddle point or pinch point solutions through which the integration
contour can be deformed, and if this happens, the relevant one is the one corresponding to the largest velocityv∗. If
we again writeu1(k, ω) for the eigenvalue on which this solution lies and as before use a superscript∗ for functions
which are written in terms of the transformed variable� andq as in (5.59) and (5.60), the saddle or pinch point
equations assume their familiar form

u1(k
∗, ω∗) = 0 ⇔ u∗

1(0,0) = 0,

(∂k + v∗∂ω)u1(k, ω)|k∗,ω∗ = 0 ⇔ ∂qu
∗
1(q,�)|0,0 = 0. (5.80)
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Note that sinceS is the product of all eigenvalues, cf. Eq. (5.77), these equations are equivalent to those given before
in terms ofS, Eq. (5.62). Likewise, we get for the long-time asymptotics of the Green’s function the immediate
generalization of (5.55),

G(ξ, t) = e−λ∗ξ exp{−ξ2/(4Dt)}
(4πDt)1/2

Ũ1(k
∗, ω∗)× Ũ

†
1 (k

∗, ω∗)
i∂ωu1(k, ω)|(k∗,�∗)

+ · · · , (5.81)

which is our usual Gaussian expression again, withD given by its familiar expression (5.68).
Our strategy in deriving the long-time front dynamics is always to use the long-time evaluation of the Green’s

function just to show how the pulled velocityv∗ and the dominant exponential behavior e−λ∗ξ emerge, and to
motivate why the leading edge variablesψ(ξ, t) have essentially slow diffusive dynamics. The analysis of the
slow ψ dynamics and the matching to the front interior is most properly done by going back to the PDE(s) for
the spatio-temporal evolution ofψ . Switching back to the space–time formulation forψ comes out most directly
from Fourier–Laplace inversion of the small-q and small-� expansion of theψ-equation. Indeed, forψ(ξ, t) the

appropriate Green’s function is eλ
∗ξ G(ξ, t) and according to (5.79), we have

eλ
∗ξ G(ξ, t) =

∫
d�

2π

∫
dq

2π
exp{iqξ − i�t}Ĝ∗

(q,�), (5.82)

which confirms that� andq are the proper Fourier–Laplace variables of the leading edge variableψ .

5.5.2. The case of a single field
In contrast to our earlier matrix notation, a single equation for a single fieldφ(x, t) after Fourier–Laplace

transformation can also be written in a scalar form:

S(k, ω)φ̂(k, ω) = function{k, φ̃(k,0), ∂t φ̃(k, t)|t=0, . . . }. (5.83)

The most common and direct way to arrive at the above equation is by performing a Fourier–Laplace transformation
on the original dynamical equation. In this case one immediately gets the characteristic functionS(k, ω) on the LHS,
while the partial integrations (or partial summations in the case of difference equations, where also the derivatives
in the initial condition terms are replaced by finite difference versions) of higher order temporal derivatives yield
ω-dependent initial condition terms on the RHS in (5.83). Of course, we can also arrive at this equation via the route
of Section 5.4, where we introduced a vector notation for a scalar PDE of higher order in time, so that the dynamical

equation is of the matrix form (5.73). Indeed, when we calculate detS(k, ω) with S(k, ω) = AM(k)
(
T̂ (k)− iω1̂

)
by developing the determinant along the last row of the matrix, one easily sees that one just retrieves the above
result.

Of course, the asymptotic analysis ofφ(ξ, t) parallels the earlier discussion of Section 5.4, irrespective of whether
or not the equation is written in vector form. Again, the asymptotic spreading speed is given by a saddle point of
S(k, ω). However, as we have seen, for analyzing the proper front dynamics we want to return to the dynamical
equation for the leading edge variableψ . For the case of a PDE, this can be done simply by transforming the original
equation forφ to the leading edge representationψ(ξ, t) = eλ

∗ξ φ(ξ, t), but for difference equations or equations
with memory terms, additional steps are clearly necessary. The general analysis is based on the observation that in
the leading edge representation, the dynamical equation is of the form

S∗(q,�)ψ̂(q,�) = initial condition terms. (5.84)

If we expandS∗ in q and�m and perform an inverse Fourier–Laplace transform, we immediately arrive at the
PDE (5.57) forψ(ξ, t) with coefficientsbmn given in terms of the derivatives ofS∗ according to (5.61)! From there
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on, the analysis completely follows the one in the last part of Section 5.4, and we recover again all our familiar
expressions for the relaxation of the front velocity and the profile.

We stress that for agivenequation, the transformation to the leading edge variable can be doneexactly. If this
is done for a PDE, we again get a PDE of finite order. As no approximations are made, the resulting equation still
allows one to study the fast or small-scale dynamics in the linear region as well. For finite difference equations or
for integro-differential equations, the transformation to the leading edge variableψ still results in a finite difference
equation or an integro-differential equation: the usual PDE forψ then only emerges ifin addition a gradient
expansion is made forψ . Such an expansion will obviously contain an infinite number of terms. (We will see
explicit examples of this in Sections 5.6.3, 5.6.5 and 5.6.6.) Normally, such an expansion is not of much use.
However, when we turn to the long-time relaxation towards pulled fronts in the leading edge,ψ becomesarbitrarily
smooth and slowand hencethe derivatives become nicely ordered. Moreover, the long-time large-scale relaxation
ofψ corresponds precisely to the low-frequency small-wave number behavior of the Fourier–Laplace transform and
that is why the expansion ofS∗ gives the proper evolution equation to analyze the front relaxation: as (5.61) shows,
the coefficientsbmn in this equation are then nothing but the expansion coefficients of the characteristic equation
S∗(q,�) for smallq and�. In other words,independently of whether we started from a differential, a difference
or an integro-differential equation, we find at this point always the same PDE for the leading edge variableψ , and
hence the same expression for the velocity relaxation!

Let us finally remark, that instead of the leading edge transformation, we could also have performed a leading
edge projection onto the slow dynamics, as discussed in the following section. We will show, that the results of
Table 2 do not depend on this choice.

5.5.3. The case of a set of fields and possible projections
For dynamical equations which inherently consist of sets of equations for more than one field, one obviously

can only arrive at an equation for a scalar variableψ by some kind of projection onto the slow direction. The way
in which one projects out the slow dynamics clearly entails a certain freedom of choice. For a given equation the
“best” choice may be obvious, but in general there is some ambiguity. We illustrate this explicitly in Appendix L.

We note first, that a vector field̂ψ(q,�) can be decomposed into its dynamical componentsπ̂m(q,�) as

ψ̂(q,�) =
M∑
m=1

π̂m(q,�)Û
∗
m(q,�), (5.85)

π̂m(q,�) = Û
∗†
m (q,�) · ψ̂(q,�), (5.86)

where the superscript∗ on the eigenvectorsUm and eigenvaluesum is to remind us that these are written in terms
of the variablesq and�.

Eachπ̂m(q,�) has its own dynamics, cf. (5.84),

u∗
m(q,�)π̂m(q,�) = initial condition termsm. (5.87)

The natural projection onto a scalar leading edge variable is thus onto the eigendirection with the largestv∗, which
we denote withÛ

∗
1(q,�). We then identify the scalar leading edge variable withπ̂1(q,�). Inverting now the

Fourier–Laplace transformation, we find a PDE forπ1(ξ, t) of the form (5.57) with the coefficients

b(1)mn = (i∂�)m

m!

(−i∂q)n

n!
u∗

1(q,�)

∣∣∣∣
(q=�=0)

. (5.88)
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Table 5
The saddle or pinch point equations, determiningv∗, k∗ = iλ∗ andD for a given characteristic functionS(k, ω) = detŜ(k, ω). If there are
several dynamically relevant saddle point solutions (for relevance see Appendix M), take the one with the largestv∗

Defining the saddle point parameters just as in (5.62) and (5.63) for Eq. (5.57), they in general will depend on whether
we derived the coefficients fromS or fromu1. However, we will argue below that the saddle point parametersv∗,
λ∗ andD do not depend on this choice.

Though the projection ontôU
∗
1(q,�) is formally the simplest one, the direction of projection is actually not

very practical, as it depends onq and�. In practice, one will want to project along a fixed direction. Our previous
analysis, summarized by Eq. (5.81), indeed suggested to project the long-time dynamics of the Green’s function
ontoU1(k

∗, ω∗) = Û
∗
1(0,0). Projection ofψ̂(q,�) onto this eigendirection yields

ψ̂p(q,�) = Û
∗†
1 (0,0) · ψ̂(q,�) =

M∑
m=1

π̂m(q,�)Û
∗†
1 (0,0) · Û∗

m(q,�). (5.89)

Now only for q ≈ 0 ≈ �, we haveψ̂p(q,�) ≈ π̂1(q,�), while for finite q and�, alsoπ̂m(q,�) with m > 1
will contribute. Inverting the Fourier–Laplace transform and working in the frameξ = x − v∗t , we find the
contributions fromπ̂m>1 to decay exponentially in time. Such contributions we encountered already a number of
times before, for the first time in Section 2.5. The more important contribution comes from the coefficient ofπ̂1,

which isÛ
∗†
1 (0,0) · Û∗

1(q,�) = 1− O(q,�). These algebraic corrections inq and� actually modifybmn for the
projectionψ̂p(q,�) in comparison with (5.88), except for the diffusion coefficientD, as we will see below.

Still, other projections might be physically useful as illustrated in the explicit example of Appendix L. We now
turn to the consequences of all these different choices.

5.5.4. The freedom of projection and the universality of Tables 2 and 5
At first sight, the leading edge transformation or the different leading edge projections each determine their own

saddle or pinch point equations or expansion parametersbmn; compare, e.g., (5.61) with (5.88).
Nevertheless, the definition of the saddle or pinch point parametersv∗, λ∗ and D in Table5does not depend on the

choice of the leading edge transformation or projection, and hence the universal relaxation results for the velocity
v(t) and the shape8v(t) in Table2 are independent of these as well.

For the saddle/pinch point equations of Table 5 this conclusion is based on two observations: (i)S(k, ω) con-
tainsu1(k, ω) as a factor (5.77). The saddle point is determined by a double root ink of u1(k, ω), which can be
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written as

u∗
1(q,�) = b

(1)
10 (−i�+ Dq2 + · · · ) = u1(k, ω) = b

(1)
10 (−i(ω − v∗k)+D(k − k∗)2 + · · · ). (5.90)

D here obviously is defined asD = −b(1)02 /b
(1)
10 with b(1)mn from (5.88). The root (5.90) fully determines the lowest

derivatives ofS = ∏
mum at the saddle pointq = 0 = � — up to a constant prefactor, resulting from the other

factors inS. (ii) The saddle point parameters are defined by homogeneous equations (5.62) or ratios of derivatives
(5.63). So the prefactors depending on differentiation of eitheru1 or S will cancel in the equations that determine
v∗, λ∗ andD. In particular,D defined byD = −b02/b10 in (5.63) is identical withD = −b(1)02 /b

(1)
10 here and with

otherD’s resulting from different projections.
The subleading termsD3 andw for the scalar leading edge variable in (5.64), in contrast, do depend on the

choice of projection. Hence, as there always will be a leading edge equation of the form (5.64), and as the universal
results summarized in Table 2 do not depend on the values ofD3 or w, Table 2 is a universal result,independent
of the particular projection chosen. The subleading contributiong0(z) in the leading edge will always be solved
as in (5.69), so it will not depend on initial conditions,but will depend on the direction of projection through the
parametersD3 andw.

In conclusion, we reiterate that the relaxation results also apply to dynamical equations other than PDEs, because
the dynamics of the leading edge representationψ becomes arbitrarily slow and diffusive for long times. This allows
one to do a gradient expansion in time and space forψ , even if the original equations are not PDEs! In this case the
path of analysis via the Fourier–Laplace transformation and pinch point analysis is necessary. For equations that
are of differential form in time, Fourier transformation in space and saddle point analysis is sufficient.

5.6. Applications

In this section, we support the above arguments by summarizing the results of numerical simulations of three
equations — a spatially fourth order PDE, a set of two coupled PDEs and a difference–differential equation —
which are all in complete agreement with our predicted universal relaxation trajectory as in Table 2, consisting of
the velocity convergence (5.70), the slaved interior (5.71), and the crossover to a diffusive type of dynamics in the
leading edge forξ &

√
t . We also briefly consider a PDE with second order temporal derivatives, an extension of

the nonlinear diffusion equation with a memory kernel, and the discretization corrections in the Euler and in the
semi-implicit numerical integration method for a nonlinear diffusion equation. The last results were used already
in Section 4 in our numerical study of the nonlinear diffusion equation.

5.6.1. The EFK equation
The EFK (“extended Fisher Kolmogoroff”) equation is an extension of the nonlinear diffusion equation [64,65],

which has been investigated quite intensely in the mathematical literature [101]. It reads

∂tφ = ∂2
xφ − γ ∂4

xφ + φ − φ3. (5.91)

A straightforward calculation [65] shows that the saddle point equations (5.13), (5.16) and (5.17) yield

v∗ = 2λ∗(1 − 2γ λ∗2
), λ∗ =

(
1 − (1 − 12γ )1/2

6γ

)1/2

, D = (1 − 12γ )1/2 for γ < 1
12. (5.92)

Forγ > 1
12, the saddle point solution has Rek∗ 6= 0, and in agreement with this, the pulled fronts in this equation

are then found to be non-uniformly translating and to generate periodic patterns [64]. We will therefore focus here
on the regimeγ < 1

12. The arguments of the Appendix of [65] for the multiplicity of front solutions (summarized
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Fig. 11. Velocity relaxation in the EFK equation (5.91) forγ = 0.08: plot ofvφ(t)− v∗ − Ẋ3/2 as a function ofẌ3/2 as in Fig. 8(a) for times
60 ≤ t ≤ 200. System sizeL = 200, front positionx0 = 25, initial steepnessλinit = 20 in (4.2). Grid sizes1x = 0.01 = 1t .

in Appendix H) give evidence that this equation indeed admits a family of uniformly translating fronts in this
regime. One also can prove that the front cannot propagate with a velocity larger thanv∗ if the initial conditions are
sufficiently steep [72,99]. The convergence towards the pulled front solution should therefore be given by Eq. (5.40)
for v(t) and Eq. (5.31) or Eqs. (5.38) and (5.39) for the interior of the leading edge of the front profile. Fig. 11 shows
some of the results of our numerical simulations forv(t) atγ = 0.08. This value ofγ is just below the bifurcation
valueγc = 1

12 = 0.083. The plot is of the same type as in Fig. 8(a) for the nonlinear diffusion equation.
The numerical grid sizes of the simulation are1x = 0.01 = 1t . The system size isL = 200, the initial condition

is characterized byλinit = 20 andx0 = 25. The analytical prediction forγ = 0.08 is, according to (5.92), in the
limit 1x → 0,1t → 0:D = 0.2, λ∗ = (5

3)
1/2 = 1.29, andv∗ = 4.4

3 λ
∗ = 1.89. The ratio between the 1/t- and

the 1/t3/2-contribution inv(t) according to (5.40) is measured on the timescale

T = 1

λ∗2
D
, (5.93)

as in the dimensional analysis (5.36). Forγ = 0.08, we haveT = 3. The plot of Fig. 8(a) gave good results from
time t = 20 on, whereT = 1. It is therefore consistent that the plot of Fig. 11 withT = 3 is good from times
t = 60 on. We thus plot here the time interval 60≤ t ≤ 200. One can already anticipate from the plot that again a
correction ofv∗ for the numerical finite difference code will be required if we proceed to even higher precision. In
conclusion, we find the results to be in full accord with our analytical predictions.

5.6.2. The streamer equations
Streamers are discharge patterns which result from the competition between an electron avalanche formation

due to impact ionization, and the screening of the electric field by space charges in the ionized region. For planar
streamer fronts, the equation for the electron densityσ and electric fieldE are [15]

∂tσ = Dσ∂
2
xσ + ∂x(σE)+ σfstr(E), ∂tE = −Dσ∂xσ − σE, (5.94)

where we have assumed that in the regionx � 1, where the electron density vanishesσ+ = σ(x → ∞, t) = 0,
the electric fieldE+ = E(x → ∞, t) does not change in time:∂tE+ = 0. The field-dependent ionization rate
has a functional form likefstr(E) = |E| exp{−1/|E|}. This is the functional form we use in our simulations. The
state(σ,E) = (0, E+) is unstable, and also for these equations, it is known [15] that they admit a one parameter
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Fig. 12. Velocity relaxation in the streamer equations (5.94) forE+ = −1 andD = 0.1, plotted as in Figs. 8(a) and 11 for times 40≤ t ≤ 200.
Initial condition: Gaussian electron densityσ(x,0) = 0.9 exp{−x2} (thusλinit = ∞), E(x,0) = −1. System sizeL = 400, front position
shifted back tox0 = 100, after it is reached. Grid sizes:1x = 0.01,1t = 0.0025.

family of uniformly translating front solutions. The dispersion relation for linear perturbations about the unstable
stateσ = 0,E = E+ < 0 reads−iω(k) = ikE+ +fstr(E

+)−Dσk2, where we choose to analyze the leading edge
in a projection onto theσ -axis. The saddle point equations (5.13), (5.16) and (5.17) then yield

v∗ = −E+ + 2(Dσfstr(E
+))1/2, λ∗ =

(
fstr(E

+)
Dσ

)1/2

, (5.95)

D = Dσ . (5.96)

Again, the simulations of these equations show that the velocity convergence follows our analytical prediction
(5.40). An example of our results is shown in Fig. 12 in a plot as in Figs. 8(a) and 11, where we track various levels
of the electron densityσ . The dimensionless time isT = 1/fstr(E

+) = e1 = 2.718 forE+ = −1. We plot our data
for times 40≤ t ≤ 200, and again find our predictions to hold.

5.6.3. A difference–differential equation
We now summarize some key elements of our analysis [102] of the difference–differential equation,

∂tCj (t) = −Cj + C2
j−1, C0(t) = 0, Cj�1(t) = 1, (5.97)

with j integer. This equation originates from kinetic theory [17]. If we transform withφj (t) = 1 − Cj (t) to

∂tφj (t) = −φj + 2φj−1 − φ2
j−1, φ0(t) = 1, φj�1(t) = 0, (5.98)

we have our usual notation with the stateφj = 0 being unstable and the stateφj = 1 stable. As usual, we consider
fronts between these states starting from sufficiently steep initial conditions. It is easy to see that such initial
conditions will create a pulled front [102].

Eq. (5.98) provides the first illustration of our argument from Section 5.5 that our analysis applies to difference
equations as well — with the only difference that the spatial Fourier modesk now extend over a finite interval or
“Brillouin zone” 0 ≤ k < 2π only. Substitution of the Fourier ansatzφj ∼ exp{−iωt + ikj} into the equation of
motion linearized about the unstable stateφj = 0,

∂tφj = −φj + 2φj−1, (5.99)
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yields the dispersion relation

−iω(k) = 2e−ik − 1 ⇔ s(λ) = 2eλ − 1. (5.100)

As discussed before, the long-time asymptote of the leading edge is again determined by the saddle point which
obeys (5.13), (5.16) and (5.17). This results in

v∗ = 2eλ
∗ = 2eλ

∗ − 1

λ∗ . (5.101)

When we choose the solution withv∗ > 0, the saddle point equations are solved by

−ik∗ = λ∗ > 0 real, v∗ = 2eλ
∗ = 4.31107, λ∗ = 2eλ

∗ − 1

2eλ∗ = 0.768039,

D =D2 = 1
2v

∗, Dn = (−)nv∗

n!
. (5.102)

TheDn values are determined from (5.28). We now perform the leading edge transformation

φj (t) = e−λ∗ξψ(ξ, t), ξ = j − v∗t. (5.103)

The large-time, small-gradient expansion in the leading edge now results in the PDE

∂tψ = D∂2
ξ ψ +D3∂

3
ξ ψ + · · · . (5.104)

The velocity convergence is again given by (5.40), withv∗, λ∗ andD given by (5.102). We do find indeed that the
fronts in this equation are pulled, and that the velocity convergence follows (5.40). This is illustrated in Fig. 13,
where we plot(v(t)− v∗ + 3/(2λ∗t))/t−3/2 as a function of 1/

√
t . v(t) = ẋ(t) is the velocity of the front defined

asx(t) = ∑∞
j=0φj (t). The curve in Fig. 13 should extrapolate to 3/(2λ∗)(π/(λ∗2

D))1/2 = 3.0699 as 1/
√
t → 0.

This predicted asymptote is marked by the cross on the axis. Indeed, the data of(v(t)− v∗ + 3/(2λ∗t))/t−3/2 for
40 ≤ t ≤ 4000 extrapolate very well to the predicted asymptote, especially in view of the fact, thatt3/2 ≈ 2× 105

at the latest times. The slight offset at the end might be due either to finite system sizeL or to finite numerical
discretization1t .

Fig. 13. Velocity relaxation for the difference–differential equation (5.97), wherev(t) = ẋ(t), andx(t) = ∑∞
j=0φj (t), see Eq. (5.98). Plot of

(v(t)− v∗ + 3/(2λ∗t))/t−3/2 as a function of 1/
√
t for times 40≤ t ≤ 4000. The curve is predicted to extrapolate toc3/2 as 1/

√
t → 0. The

predicted value ofc3/2 is marked by the cross on the axis. Initial conditionφj (0) = exp{−j2}. System sizeN = 4000 grid points. Front shifted
back ton0 = 75, after it has been reached. Temporal grid size1t = 0.0005.



70 U. Ebert, W. van Saarloos / Physica D 146 (2000) 1–99

5.6.4. Diffusion equation with second order time derivative
Quite recently, it was shown [77] that, not surprisingly, fronts in a second order extension of the F-KPP equation,

τ2
∂2φ

∂t2
+ ∂φ

∂t
= ∂2φ

∂x2
+ φ − φ3, (5.105)

are also pulled. One interesting aspect of this equation is that while the diffusive spreading in a first order diffusion
equation is, in a sense, infinitely fast, the second order term gives a finite speed of propagation of the disturbances.

As discussed in Section 5.4, our results immediately apply to this equation, so the velocity and front relaxation
is then given by Eqs. (5.70) and (5.71), with

v∗ = 2

(1 + 4τ2)1/2
, λ∗ = (1 + 4τ2)

1/2, D = 1

(1 + 4τ2)2
. (5.106)

The expression forD nicely illustrates the effective renormalization of the diffusion coefficient due to the second
order time derivative.

5.6.5. An extension of the F-KPP equation with a memory kernel
As an example of an equation with a memory kernel, consider the extension of the F-KPP equation

∂tφ(x, t) = ∂2
xφ(x, t)+

∫ t

0
dt ′K(t − t ′)φ(x, t ′)− φk(x, t) (k > 1). (5.107)

Upon Fourier–Laplace transformation as in (5.18), this equation is a scalar version of (5.73) withS(k, ω) =
iω − k2 + K̃(ω), and so according to our discussion of Section 5.5, our analysis directly applies. If we take for
instance

K(t − t ′) = 1

π1/2τ3
exp

{
−(t − t ′)2

4τ2
3

}
, (5.108)

the equation reduces to the F-KPP equation in the limitτ3 → 0, and the characteristic equation becomes

λ2 − s + exp{τ2
3 s

2} erfc(τ3s) = 0, (5.109)

where we follow the notation of Section 5.3.2 in writings = Imω, λ = Im k, and where erfc is the complementary
error function. The results forv∗, λ∗ andD, obtained by solving (5.109) together with the saddle point condition
∂s/∂λ = s/λ|λ∗ numerically, are shown in Fig. 14.

Other examples of equations with memory kernels can be found, e.g., in [103,104].

5.6.6. Exact results for numerical finite difference schemes
The fact that our results also apply to finite difference equations has the important implication that if we study

a PDE with pulled fronts numerically using a finite difference approximation with grid size1x and timestep1t ,
we can calculatev∗(1x,1t) as well asv(t;1x,1t) exactly. This allows us to estimate analytically the intrinsic
discretization error in these quantities, and hence to decidebeforehandwhich grid and step size are needed to obtain
a given accuracy.

As a first illustration, suppose that one integrates the F-KPP equation (1.1) numerically with an explicit Euler
scheme. This amounts to approximating the PDE by

uj (t +1t)− uj (t)

1t
= uj+1(t)− 2uj (t)+ uj−1(t)

(1x)2
+ uj (t)− ukj (t). (5.110)



U. Ebert, W. van Saarloos / Physica D 146 (2000) 1–99 71

Fig. 14. Plot ofv∗, λ∗, andD as a function ofτ3 for the extension (5.107) of the F-KPP equation with a memory kernel (5.108).

Upon substitution ofuj (t) ∼ exp{st− λx}, x = j 1x into the linearized equation (we again follow the notation of
Section 5.3.2 by writings = Imω, λ = Im k), we obtain

exp{s1t} − 1

1t
= 1 +

(
sinh 1

2λ1x

1
21x

)2

, (5.111)

which is straightforward to solve fors(λ;1x,1t). As we emphasized above, by solving the saddle point condition
∂s/∂λ = s/λ|λ∗ = v∗, we can obtain the exact values ofv∗, λ∗ andD for any step and grid size, and in this way
determine the accuracy of the numerical scheme. In general, these equations have to be solved by a simple numerical
iteration routine, but for small1x and1t , the result can easily be calculated analytically: expanding in1x and1t ,
we find the dispersion relation

s(λ;1x,1t) = 1 + λ2 + 1
12λ

4(1x)2 − 1
2(1 + λ2)21t + · · · . (5.112)

For1t → 0, 1x → 0, this reduces to the continuum results(λ) = 1 + λ2, as it should. For the saddle point
parameters, we find

v∗ = 2 − 21t + 1
12(1x)

2 + · · · ,
Euler : λ∗ = 1 +1t − 1

8(1x)
2 + · · · ,

D = 1 − 41t + 1
2(1x)

2 + · · · .
(5.113)

In practice, the Euler scheme is not used very often, because it is numerically very unstable and not very accurate.
We have done all our simulations in Section 4 and in this section with a more stable and accurate semi-implicit
method [105],24 which for the F-KPP equation amounts to the discretization

uj (t +1t)− uj (t)

1t
= 1

2

[
uj+1(t)− 2uj (t)+ uj−1(t)

(1x)2

]

+1

2

[
uj+1(t +1t)− 2uj (t +1t)+ uj−1(t +1t)

(1x)2

]
+ 1

2

[
uj (t)+ uj (t +1t)

]
−1

2
[2ukj (t)+ kuk−1

j (t)(uj (t +1t)− uj (t))]. (5.114)

24 For the diffusion term, this method amounts to theCrank–Nicholsonscheme, see, e.g., Section 17.2 of [118].
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The last term is obtained by expandingukj (t+1t) aboutukj (t) to first order inuj (t+1t)−uj (t), so that one obtains
a linear equation for theuj (t + 1t). This expansion makes what would otherwise have been an implicit method,
into a semi-implicit method. This difference, however, does not matter for the leading edge dynamics evaluated
below.

The dispersion relation is now given by

tanh1
2s1t

1
21t

= 1 +
(

sinh 1
2λ1x

1
21x

)2

, (5.115)

which immediately yieldss(λ;1x,1t). For small1x and1t , the result is

s(λ;1x,1t) = 1 + λ2 + 1
12λ

4(1x)2 + 1
12(1 + λ2)3(1t)2 + · · · . (5.116)

For this integration scheme, it is now straightforward to find

v∗ = 2 + 2
3(1t)

2 + 1
12(1x)

2 + · · · ,
Semi-implicit : λ∗ = 1 − 2

3(1t)
2 − 1

8(1x)
2 + · · · ,

D = 1 + 3(1t)2 + 1
2(1x)

2 + · · · .
(5.117)

We stress that these are theexactexpressions for the application of this numerical scheme to the nonlinear diffusion
equation, scaled to the normal form (2.1) and (2.2). They are therefore the “ideal” finite difference correction terms
in the absence of numerical instabilities, round-off errors, etc. The correctness and accuracy of the prediction (5.117)
for v∗ is demonstrated in Section 4 in Fig. 8(b).

We finally note that an early example of pulled front relaxation observed in a finite difference equation in space
andtime was seen in a mean-field model of ballistic growth [22]. In this paper, the prefactor of the 1/t term, obtained
by plottingv versus 1/t , was found to be about 9% toosmall. Presumably, this discrepancy is due to the corrections
from the 1/t3/2 term: according to (5.70), the term(1 − (π/(λ∗2

Dt))1/2) generally gives rise to aloweringof the
effective slope in av versus 1/t plot, as Fig. 7(b) clearly demonstrates.

6. Summary and outlook

6.1. Summary of the main results

The essential result of this paper is that for front propagation into unstable states, starting from steep initial
conditions, the convergence of front velocity and shape is given in the pulled regime by theuniversalexpressions

v(t) = v∗ + Ẋ(t), (6.1)

Ẋ(t) = − 3

2λ∗t

(
1 −

(
π

(λ∗)2Dt

)1/2
)

+ O

(
1

t2

)
, (6.2)

φ = 8v(t)(ξX)+ O

(
1

t2

)
, for ξX .

√
t, (6.3)

ξX = x − v∗t −X(t), (6.4)

provided the asymptotic front profile is uniformly translating. All terms in the expression forv(t), λ∗, v∗ andD are
given explicitly in terms of the dispersion relation of dynamical equation, linearized about the unstable state (see
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Eqs. (5.16), (5.17) and (5.19) or Table 5). These results are also summarized in Table 2. The dependence on pushing
or pulling and on the initial conditions is sketched in Table 4.

With universalwe mean that not only the asymptotic profile is unique, but also the relaxation towards it, pro-
vided we start with sufficiently steep initial conditions which decay exponentially faster than e−λ∗x for x → ∞.
Moreover, the relaxation is universal in that it is independent of the precise nonlinearities in the equation, and
of the precise form of the equation: it holds for PDEs, sets of PDEs, difference–differential equations, equa-
tions with memory kernels, etc., provided fronts are pulled and that the asymptotic front solution is uniformly
translating, and provided that we are not at the bifurcation point from the pulled to the pushed regime, or at
the bifurcation pointD = 0 towards pattern forming fronts (e.g., atγ = 1

12 in the EFK-equation). The fact
that the results also apply to finite difference equations has a nice practical consequence: if a PDE is stud-
ied numerically using a finite difference approximation scheme, bothv∗ and the prefactors of the algebraic
relaxation terms can also be calculatedexactly for the numerical scheme. This allows one to estimate in ad-
vance how big step and grid sizes need to be, in order to achieve a particular numerical accuracy (see Sec-
tion 5.6.6).

The remarkable relaxation properties are reminiscent of the universal corrections to scaling in critical phenomena,
if we think of the relaxation as the approach to a unique fixed point in function space along a unique trajectory. An
alternatively way to express this in more mathematical terms is to say that we have constructed thecenter manifold
for front relaxation in the pulled regime.

The above expressions containall universal terms: those of ordert−2 depend on the precise initial conditions and
on the nonlinearities in the equations. The order of the limits is important here: our results are the exact expressions
in a 1/t expansion, i.e., when we take the large time limit while tracking the velocity of a particular fixed value
of φ. To order 1/t2, this is equivalent to keepingξX fixed. When we interchange the limits by takingξX large at
fixed time, there is a crossover to a different intermediate asymptotic regime forξX &

√
t . The different dynamical

regions of a pulled front are sketched in Fig. 2.
The slow algebraic convergence of pulled fronts to the asymptotic velocity has important consequences,

as it prohibits the derivation of a standard moving boundary approximation for patterns in more than one dimen-
sion that consist of propagating pulled fronts whose width is much smaller than their radius of curvature
[37].

While we have limited the analysis in this paper to equations that admit uniformly translating front solutions, it
turns out that most elements of our analysis can be extended to pattern forming fronts for which Rek∗ 6= 0 and
Reω∗ 6= 0. In this case, the expression (6.2) with 1/

√
D replaced by Re(1/

√
D) applies [72,73,99].

In addition to our derivation of the above expressions for the convergence of pulled fronts, we have reformu-
lated and extended the connection between front selection and the stability properties of fronts. This leads to an
essentially complete picture also of front relaxation in the pushed regime and in the case of leading edge domi-
nated dynamics resulting from flat initial conditions. For an interpretation of these results, again a consideration
of the different dynamical regions of a front as in Fig. 2 is helpful. The relaxation behavior in the pulled regime
with sufficiently steep initial conditions cannot be obtained simply from the properties of the stability opera-
tor of the pulled front solution, and therefore had to be obtained along a different route, which is summarized
below.

6.2. Summary of the main conceptual steps of the analysis

The derivation of our central result on pulled front relaxation is based on the following steps:
1. From the dispersion relationω(k) or from the characteristic functionS(k, ω), we obtainv∗, λ∗ andD (see

Table 5).



74 U. Ebert, W. van Saarloos / Physica D 146 (2000) 1–99

2. The double root condition which determinesv∗ andλ∗ implies that the asymptotic largeξ behavior of uniformly
translating front solutions is as8∗(ξ) = (αξ + β)e−λ∗ξ , where genericallyα 6= 0.

3. The double root condition which determinesv∗ andλ∗ also implies that the lowest order spatial derivative term in
the dynamical equation for the leading edge representationψ = eλ

∗ξ φ(ξ, t) is of the diffusion type,D∂2ψ/∂ξ2

(see Sections 5.3.3, 5.4 and 5.5).
4. The diffusion type dynamics implied by 3 shows that in the comoving frameξ = x− v∗t , the front profile shifts

back with the collective coordinateX(t)which grows logarithmically in time. Linearization about the asymptotic
front solution8∗(ξ) in theξ frame is therefore impossible (see Sections 3.1.3 and 3.1.4). Instead, we introduce
the frameξX = x−v∗t−X(t)with the expansioṅX(t) = c1/t+c3/2/t

3/2 +· · · and the corresponding leading
edge transformationψ(ξX, t) = eλ

∗ξXφ(x, t).
5. In thefront interior, the long-time expansion foṙX generates an expansion for the corrections to the front profile

in inverse powers oft . To ordert−2 temporal derivatives of the front corrections do not come in, so that to this
order the equations for the profile shape reduce to those for8v(t). This immediately leads to (6.3) for the time
dependence of the front profile.

6. In the leading edge, where nonlinearities can be neglected, we use an asymptotic expansion forψ(ξX, t),
linearized aboutψ = 0, in terms of functions of the similarity variablez = ξ2

X/(4Dt) of the diffusion equation.
Now for small values ofz, the expansion has to match the boundary conditionψ ≈ e−λ∗ξX8∗(ξX) ≈ αξX + β

(implied by observation 2), and for largeξX, the terms in the (intermediate) asymptotic expansion have to decay
as a Gaussian e−z = exp{−ξ2

X/(4Dt)} times a polynomial in the similarity variablez. These two requirements
fix the constantsc1, c3/2, . . . in the expansion oḟX, and hence (6.2).

6.3. Open problems

What one considers as remaining open problems concerning pulled front propagation, will depend largely on
one’s background and standards regarding the desired mathematical rigor. While our results are exact and yield an
almost complete understanding of the general mechanism of pulled front propagation, they have, of course, not been
derived rigorously. In physics, such a situation is often not just quite acceptable but even quite gratifying, but more
mathematically inclined readers may wish to take up the challenge to provide a more rigorous justification. More
work could also be done on enlarging the classes of equations for which the assumptions underlying our approach
can be shown to hold, i.e., for which one can show that fronts are pulled and that there exists a family of uniformly
translating front solutions.

Within the realm of our approach, one can consider slight extensions of our method to two non-generic special
cases. First of all, we have focused on the case of sufficiently steep initial conditions such that the steepness
λ = −limx→∞ ln φ(x,0) is larger thanλ∗. As we discussed at the end of Section 3, the intermediate case in
which for largex, φ(x,0) ' x−ν e−λ∗x with ν < 2, does give aν-dependent result for the coefficient of the 1/t

term. According to Bramson [74], the next order correction is of order 1/(t ln t). This suggests that for this special
case logarithmic terms will have to be included in the expansion. Second, at the bifurcation point from uniformly
translating solutions to pattern forming fronts, which in the EFK equation (5.91) happens atγ = 1

12, the diffusion
coefficientD vanishes (see Eq. (5.92)). At this bifurcation point, the equation for the leading edge representationψ

is not of the diffusion type, so our asymptotic expansion breaks down right at this point. We have not investigated
what happens then.

As mentioned before, we will elsewhere address what we consider the most interesting remaining challenges, the
extension of (part of) these results to pattern forming and chaotic fronts [72,73,99] and the question whether weakly
curved fronts can be analyzed with a moving boundary approximation [37], an issue which is of central importance
for understanding fronts in two and three dimensions like streamers [15].
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6.4. The multiplicity of front solutions and of solutions of the saddle point equations

As we discussed in Section 5.2, our general discussion of the convergence of pulled fronts to their asymptotic
velocity and shape is based on the assumption that a uniformly translating front solution8∗(ξ) exists (see (5.19) for
a definition), and that it is a member of a one-parameter family of front solutions. What happens if this family of front
solutions does not exist has, to our knowledge, not been investigated systematically for real equations. However,
experience with various pattern generating fronts — especially with a similar case in which no generalized uniformly
translating solutions exist in the quintic complex Ginzburg–Landau equation [66], even though the dynamics is pulled
— yields the scenario that the leading edge just spreads according to the linearized equations, and that the front
interior “just follows”, in the sense that if there are uniformly translating front solutions, the front interior and the
region behind it relax smoothly, while if there are none, it is forced to follow the spreading in some other way. This
leads one to conjecture that if there is no family of uniformly translating front solutions, the velocity relaxation will
still be described by Eqs. (6.1) and (6.2) in the leading edge, but that in the interior front region the dynamics will
be inherently time-dependent, e.g., incoherent [73].

This can occur in particular in the following situation: as mentioned in Section 5.3.1, it can happen that the
dispersion relation is such that there is more than one allowed non-trivial solution for the equations forv∗ andλ∗.
According to the linearized equation, arbitrary, sufficiently steep initial conditions will spread out asymptotically
with the largest speedv∗. Hence the asymptotic spreading speed of pulled fronts emerging from steep initial
conditions is simply the largest velocityv∗. Now, according to a counting argument for the multiplicity of uniformly
translating front solutions, the multiplicity of front solutions associated with different solutions of the saddle point
equations forv∗ will differ: if there are two solutionsv∗

1 andv∗
2 with λ∗

1 < λ∗
2, the multiplicity of front solutions

with velocity nearv∗
2 and an asymptotic spatial decay rate nearλ∗

2 will be smaller than that of those with velocity
nearv∗

1 and a spatial decay rate nearλ∗
1. Investigations of the issue of the competition between various solutionsv∗

will therefore also bear on the issue raised in the beginning of this section, the question what happens when there
is no uniformly translating solution8∗. In particular, the dynamics in an equation that has a family of uniformly
translating fronts associated with the solutionv∗

1, should show a transition from smoothly relaxing interior dynamics
for v∗

1 > v∗
2 to incoherent interior dynamics forv∗

1 < v∗
2.

6.5. A step-by-step guideline for applying these results

If one just wants to apply our results to a given dynamical equation with a given initial condition without worrying
about the derivation and justification, one can simply follow the following guidelines:
1. Linearize the dynamical equation about the unstable state, and determine the characteristic equationS(k, ω) = 0

for modes exp{−iωt + ikx} in the linearized equation.
2. Solve the double root or saddle point conditions from Table 5 to determinev∗, k∗ andD.
3. Check whether the leading edge of the initial conditions is steeper than e−λ∗x with Im k∗ = λ∗. Only then the

front is a candidate for pulling with an asymptotic velocityv∗.
4. Check whether the conditions (5.19) under which fronts are expected to be uniformly translating, Rek∗ =

Reω∗ = 0, ImD = 0 are satisfied. If not, the fronts will be pattern generating rather than uniformly translating
(see Section 6.4 above).

5. Assuming the conditions under 4 are obeyed, so that the asymptotic front is expected to be uniformly translating,
investigate by a counting argument or otherwise whether there is a one-parameter family of uniformly translating
front profiles8v(ξ) that includes8∗(ξ).

6. Determine, by using bounds, comparison theorems or physical arguments, whether the fronts will be pushed or
pulled. This determines, which particular regime from Table 4 applies.
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7. If according to points 4–6 there is a family of front solutions that include8∗, and if the dynamics is pulled,
then our predictions (6.1)–(6.3) or Table 2 apply. If the conditions under 4 are satisfied but there is no family
of uniformly translating solutions according to 5, then our formula (6.2) should apply but one can then expect
intrinsic non-trivial dynamics in the front interior to remain, so that (6.3) does not apply. If 4 is not satisfied (as for
the EFK equation (5.91) forγ > 1

12), one expects pattern generating fronts with a similar algebraic convergence
(see [72,73,99]).

6.6. The subtle role of the nonlinearities: an alternative intuitive explanation

As we have seen in (2.46) and (5.20), the convergence of thelinear spreading velocity to the asymptotic value
v∗ is asv(t) = v∗ − 1/(2λ∗t)+ · · · , while the convergence of nonlinear fronts is asv(t) = v∗ − 3/(2λ∗t)+ · · · .
The prefactor of the 1/t in the latter case is just three times larger than for the linear spreading velocity. What is
this subtle difference due to?

In this paper, we have attributed the difference to the presence of the termαξ in the large-ξ asymptotics
(αξ + β)e−λ∗ξ of 8∗(ξ). We used an argument closely related to the one presented below, to prove in Section
2.5.2, thatα 6= 0. The functional form of8∗ leads to the requirement that the leading term in the expansion in
similarity solutions in the leading edge is(ξ/t3/2)exp{−ξ2/(4Dt)}, not(1/

√
t)exp{−ξ2/(4Dt)} (see Section 3.1.1).

Nevertheless, one may want to have a better intuitive understanding of why the asymptotics of the linear spreading
velocity is not correct for the nonlinear front relaxation — after all, one might at first sight think that the linear
spreading results should be correct sufficiently far forward in the leading edge, where the nonlinearities can be
neglected. The following picture allows us to understand why this is wrong, and why the same type of algebraic
convergence also applies to pattern forming and chaotic fronts [72,73,99].

Consider for simplicity the F-KPP equation (1.1). As discussed in the introduction and Section 2.5.2, the dynamical
equation for the leading edge representationψ(ξ, t) of φ is

∂tψ(ξ, t) = ∂2
ξ ψ(ξ, t)− ψ3(ξ, t)e−2λ∗ξ . (6.5)

We can think of the nonlinearψ3 e−2λ∗ξ term as a localized sink term in the diffusion equation forψ : the term
vanishes for positiveξ due to the exponential term, and for large negativeξ sinceψ vanishes exponentially in the
region to the left whereφ saturates (see (2.54)). Thus, if we think ofψ as representing the density of diffusing
particles, then in the region where this term is non-vanishing it describes the annihilation of particles. For the half
space to the right of it, where the particles freely diffuse, this term therefore acts like an absorbing boundary on the
left. This is actually all that remains of the nonlinearities in the equation! Whenever the integrated sink strengthα

(the spatial integral of the nonlinear term, in agreement with (2.54)) is non-zero, the problem in the leading edge
reduces to that of the build-up of a diffusion field in the presence of an absorbing boundary (and at the same time,
as (2.54) shows,α 6= 0). In this language, the pulled to pushed transition occurs precisely when the absorption
strengthα vanishes, and indeed precisely at this point the velocity convergence is asv(t) = v∗ − 1/(2λ∗t) + · · ·
(see Eq. (3.66)).

There is one complication: unlike the usual problems of diffusion in the presence of a given absorbing boundary,
the “sink” in (6.5) depends on the relaxing fieldψ itself. In fact, as we discussed extensively in the paper, the diffusive
dynamics ofψ leads to a logarithmic shift of the sink in time, in the frameξ . That is why in this interpretation we
have to go, for self-consistency, to the frameξX = ξ −X(t). In this frame, the “sink” or “absorbing wall” remains
essentially fixed in time, and so the dynamics ofψ is, in leading order, that of a diffusion field in the presence of a
fixed absorbing wall. As it is well known, in such a case a linear gradientψ ∝ ξX will build-up in front of the wall,
to balance the constant annihilation of particles in the wall region.
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Clearly, even if the “sink” strength is not stationary in time, the build-up of the linear diffusion gradient far ahead
of it will not be affected. The present interpretation therefore yields a natural starting point for analyzing the velocity
relaxation of non-uniformly translating fronts. This will be explored elsewhere [72,73,99,102].

We end this paper by stressing that while we have shown that nonlinear fronts relax according to the “3
2 law”

v(t) = v∗ − 3/(2λ∗t)+ · · · , one cannot apply this result completely with closed eyes. An amusing illustration of
this warning is the following. It has been noted that the spreading velocity in the equation

∂φ

∂t
= ∂2φ

∂x2
+ φ + e

(
∂φ

∂x

)2

(6.6)

follows the “1
2 law” v(t) = v∗ − 1/(2λ∗t) · · · = 2 − 1/(2t)+ · · · [106,119]. At first sight, this equation therefore

might appear to yield a counterexample to our assertions. In fact, it does not. Our results only hold for equations
where the growth of the dynamical field saturates behind the front,not in the case in which the growth is unbounded.
If the growth is unbounded, our arguments for whyα 6= 0, and hence for the “32 law”, break down. The above
equation is precisely an example in which the growth does not saturate: fore > 0 and positiveφ, the nonlinear
term only increases the growth. Hence there is no saturation and the spreading velocityvnl(t) in the presence of the
nonlinearities is larger than the one of the linear equation:vnl(t) ≥ v∗ − 1/(2t)+ · · · . Apparently, in practice the
equality is obeyed asymptotically. Of course, if we add a saturation term of the type−φk with k > 1 to the RHS of
(6.6), we obtain regular fronts and our usual expression forv(t) is recovered.
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Appendix A. An upper bound for vcvcvc in the nonlinear diffusion equation

With a generalization of the leading edge transformation introduced in Section 2.6, it is straightforward to prove
the well-known upper boundvc ≤ vsup, where

vsup = 2 sup
0≤φ≤1

(
f (φ)

φ

)1/2

, (A.1)

for the selected front velocity in the nonlinear diffusion equation, if the initial conditions have steepnessλ > 1
2vsup.

The steepnessλ of a front is defined in (2.6). To prove this bound, transform (2.1) to a frameξ = x − vt, and write

ψ(ξ, t) = exp{1
2vξ}φ(x, t). (A.2)

The equation of motion is now

∂tψ = ∂2
ξ ψ − 1

4v
2ψ + exp{1

2vξ} f (ψexp{−1
2vξ}). (A.3)

If the initial steepness isλ > 1
2v, then

lim
ξ→±∞

ψ(ξ, t) = 0 for all 0 ≤ t < ∞ (A.4)
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since the steepness of the leading edge (ξ → ∞) is conserved for all finite times, cf. the discussion in Section 2.5;
and since convergence atξ → −∞ is guaranteed byφ → 1 behind the front together with the transformation (A.2).
Thus the decay ofψ at ξ → ±∞ is exponential inξ for t < ∞. Hence, the whole equation can be multiplied by
ψ and integrated overξ . This yields

∂t

∫
ξ

ψ2

2
= −

∫
ξ

{
(∂ξψ)

2 + ψ2

[
v2

4
− f (ψ exp{−1

2vξ})
ψ exp{−1

2vξ}

]}
, (A.5)

where all integrals are finite. The RHS of this equation is strictly negative, ifv > vsup (A.1). Therefore, in a frame
moving with velocityv > vsup, the integral

∫
ξ
ψ2 decays in time. This means, that the frame is propagating too

rapidly, so that the front shrinks away in the leading edge representationψ (A.2). Only a frame moving with velocity
v ≤ vsupcan propagate along with the speed of the front.vsupis therefore an upper bound for the asymptotic velocity
of any initial condition withλ > 1

2vsup.
For nonlinearityfKPP = φ − φk, we havevsup = 2. But on the other hand, we know (see Section 2) that

vsup ≥ vc ≥ v∗ = 2. Hence, these fronts are pulled withvc = v∗ = 2. For nonlinearityfε = εφ + φn+1 − φ2n+1,
we havevsup = (1 + 4ε)1/2 > 2

√
ε = v∗.

This version of the argument forv < vsup [72] can be generalized for equations with higher spatial derivatives,
forming both uniformly translating fronts or pattern forming fronts [73,99].

Appendix B. The generalized nonlinear diffusion equation

Analyze a general equation with first temporal and second spatial derivative:

F(φ, ∂xφ, ∂
2
xφ, ∂tφ) = 0. (B.1)

A front translating uniformly with velocityv solves

F(8v, dξ8v, d
2
ξ 8v,−vdξ8v) = 0, ξ = x − vt. (B.2)

The stability analysis of such a solution and the further treatment of convergence is identical with what we did
for the nonlinear diffusion equation (1.1) in Sections 2 and 3. We only need to transform the linear operators as
discussed below. Our analysis is directly relevant for the equation studied in [107].

We use the definition of functional derivatives as in (5.32)–(5.36). A linear perturbationη(ξ, t) (2.25) about a
uniformly translating state8v then solves the linear equation∂tη = Lvη (2.26), respectively, (5.30) with the linear
operator being now

Lv = f2(ξ)∂
2
ξ + f1,v(ξ)∂ξ + f0(ξ), f1,v = v + f1. (B.3)

For transforming to a Schrödinger problem∂tψ = Hvψ+o(ψ2 e−α),Hv = −∂2
y +Vv(y), we now have to make the

coefficient of the first order derivative∂ξ vanish, and the coefficient of the second-order derivative∂2
ξ constant. This

can be achieved through a transformation similar to (2.28) and (2.29), combined with a nonlinear transformation
y(ξ) of the lengthscaleξ :

ψ = eα η, dα(ξ) = 2f1,v − ∂ξf2

4f2
dξ, (B.4)

Hv(y) = −eα(ξ) Lv e−α(ξ) = −∂2
y + Vv(y), (B.5)
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dy(ξ) = dξ

(f2(ξ))1/2

(
⇔ ∂y =

√
f2(ξ)∂ξ

)
, (B.6)

Vv(y(ξ)) = f 2
1,v − 4f0f2

4f2
+ f2dξf1,v − f1,vdξf2

2f2
+ 3(dξf2)

2 − 4f2d
2
ξ f2

16f2
. (B.7)

We use again the convention limξ→∞8v(ξ) = 0. By construction, the pulled velocityv∗ is the velocity, where
Vv∗(∞) = 0. Accordingly, now

v∗ = 2
√
f0(∞)f2(∞)− f1(∞). (B.8)

The steepness of the leading edge is

λ∗ = ∂ξα|ξ→∞,v=v∗ =
(
f0(∞)

f2(∞)

)1/2

. (B.9)

(In the convention of Section 5.2:fn(∞) = cn.) In the leading edge region, the relation betweeny andξ is linear:
y = ξ/(f2(∞))1/2.

If Vv∗(y) ≥ 0 for all y, there are no destablizing linear modes within the Hilbert space of (B.5). Then the front
propagating withv∗ is stable. The remaining analysis translates from Sections 2 and 3 step-by-step with only the
explicit form of the linear operatorsLv andHv and the transformation operator eα being more involved.

If there is a range ofy such thatVv∗(y) becomes negative, there might be a destabilizing mode in the spectrum of
linear perturbations. In this case, there must be a pushed front solution with some velocityv† > v∗ with steepness
λ = λ+(v†) > λ0(v

†) = 1
2v

†. Such a pushed front might even be integrated analytically, if one can find an analytic
solutionψ(φ) of

F

(
φ,ψ,ψ

dψ

dφ
,−vψ

)
= 0, (B.10)

equivalent to (C.3).ξ(φ) can then be integrated as in (C.5). (Again, a closed form forψ(φ) cannot be found for
pulled fronts, except possibly for equations at the pushed/pulled transition.)

Appendix C. Analytical solutions for pushed nonlinear diffusion fronts and transition to pulling

We here discuss, how to find analytical solutions for uniformly translating frontsφ(ξ) in the equation

∂2
ξ φ + v∂ξφ + f (φ) = 0. (C.1)

• We rephrase and straighten the method from [65] (see also [108,109]) how to find analytical front solutions.
• We recall that analytical solutions can be found only for pushed fronts (propagating either into a meta- or into an

unstable state, Cases I and II from Table 4), but not for pulled fronts (Case IV).
• We recall that only a strongly heteroclinic orbit, i.e., a front approachingφ = 0 with λ > λ0(v), is a candidate

for a pushed front. This allows us to calculate the criticalε for the pushed/pulled transition in the case of the
nonlinearity (1.10).
Write the equation as a flow in phase space as in (2.24)

∂ξ

(
ψ

φ

)
=
(−vψ − f (φ)

ψ

)
, (C.2)
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whereξ parametrizes the flow. Ifφ is monotonic inξ ,ψ can be parametrized byφ instead of byξ . This substitution
yields forψ(φ)

ψ
∂ψ

∂φ
+ vψ + f (φ) = 0. (C.3)

This is the differential equation for the trajectory in phase space, where now the translational degree of freedom is
removed together with the parametrizationξ of the flow. The resulting differential equation is one order lower than
the original differential equation (C.1). According to (2.16), the initial condition for the integration atφ ≈ 1 is

ψ(φ = 1 − δ) = −λ̃−δ + o(δ2), λ̃− = 1
2v − (1

4v
2 − f ′(1))1/2, (C.4)

so the front trajectory is unique and can be integrated. In some cases, the integration can be done analytically, if one
is lucky enough to find an analytical solutionψ(φ) of Eq. (C.3) for a givenf (φ). If we have a solutionψ(φ), then
the functionξ(φ) can be integrated as

ξ =
∫ φ(ξ)

φ(0)

dφ

ψ(φ)
. (C.5)

The final step consists in finding the inverse functionφ = φ(ξ), if this is possible.
Note now that solutionsψ(φ) can be found analytically only, ifφ approachesφ = 0 with a single exponential

φ ∝ e−λξ , since only thenψ(φ) has the simple analytic formψ(φ) = −λφ + o(φ2) atφ → 0. Any other form of
the approach toφ = 0, cf. (2.17), would not be expressible in a simple analytic expression forψ(φ). In particular,
a generic8∗ front with8∗ ∝ (αξ + β)e−λ∗ξ in the leading edge does not have a simple analytical expression for
ψ(φ) sinceψ(φ) = −λ∗φ + αφ/(αξ + β)+ o(φ2), so a pulled front generically cannot be integrated analytically.
Againα 6= 0 spoils the conventional tools of analysis!

Given an analytical front solution with velocityv and decay rateλ, one has to check the nature of the front. A
pushed front is a strongly heteroclinic front, i.e., it has leading edge steepnessλ = λ+(v) > λ0(v). (For the notation
of λ’s, compare Eq. (2.20).) Ifλ = λ0(v) = λ±(v), we have found a front at the transition point from pushed to
pulled with leading edge behaviorφ ∝ e−λ∗ξ . This is the only pulled front, we can integrate. Ifλ = λ−(v) < λ0(v),
we have a particular flat front, that has evolved from an initial condition with the same flatness in the leading edge.

Finding analytical solutions for pushed fronts can even be turned into a machinery, if we do not fixf and look
for aψ , but if we defineψ(φ) and then calculatef (φ). For

ψ = −λφ(1 − φn), (C.6)

we calculate, e.g.,

f (φ) = λ(v − λ)φ + λ(λ(n+ 2)− v)φn+1 − λ2(n+ 1)φ2n+1 = ε̄φ + φn+1 − (1 + ε̄)φ2n+1, (C.7)

where we have to identifyv = (n + 2)λ − 1/λ, andε̄ = λ(v − λ). The analytic front solution for (C.6) can be
calculated from (C.5) and inverted to yield

φ(ξ) = [1 + (φ(0)−n − 1)eλnξ ]−1/n. (C.8)

This solution is a pushed front, ifλ ≥ λ0(v) = 1
2v, which impliesε̄ ≤ 1/n. For suchε̄, we find pushed fronts

with decay rateλ = ((ε̄ + 1)/(n + 1))1/2, velocityv = (1 + ε̄(n + 2))/((n + 1)(1 + ε̄))1/2, and analytical form
(C.8). Forε̄ = 1/n, the solution is a front on the transition point from pushed to pulled fronts with asymptotic
decayφ ∝ e−λ∗ξ + o(φ2). For ε̄ > 1/n, the solution (C.8) is a flat front evolving from flat initial conditions. Fronts
evolving from sufficiently steep initial conditions are then pulled, propagate with velocity 2ε̄1/2, have decay rate
λ∗ = ε̄1/2 and no analytic form of the front solution can be found.
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Eq. (1.1) with nonlinearity (C.7) can also be rescaled to bring the equation to the more familiar form

∂τϕ = ∂2
yϕ + εϕ + ϕn+1 − ϕ2n+1, (C.9)

ε = ε̄(1 + ε̄), (1 + ε̄) = t

τ
=
(
x

y

)2

=
(
ϕ

φ

)n
. (C.10)

This reproduces precisely the form of the nonlinearity (1.10) with the stable state now atϕs = [ 1
2(1+(1+4ε)1/2)]1/n.

Accordingly, the criticalε is now εc = (n + 1)/n2. Fronts propagate forε < εc with the pushed velocityv† =
[(n+ 2)(1+ 4ε)1/2 − n]/[2(n+ 1)1/2] and decay rateλ+(v†) = [1 + (1+ 4ε)1/2]/[2(n+ 1)1/2]. For ε > εc, they
propagate with the pulled velocityv∗ = 2ε1/2 and decay rateλ∗ = ε1/2.

Appendix D. Linear stability analysis of moving front solutions

In this appendix, we study the linear perturbationsη of a uniformly translating front8v(ξ) in the nonlinear
diffusion equation. The problem is defined in Eqs. (2.25)–(2.27) and can be transformed to a Schrödinger problem
(2.28)–(2.31) with linear operatorHv. SinceHv is self-adjoint, we can decompose functions that lie in the Hilbert
space ofHv, into the orthonormal set of eigenfunctions ofHv. Eigenfunctions in this Hilbert space form a complete
set. However, it is obvious that not all linear perturbations with|η| � 1 are in this space: only perturbations with

lim
ξ→∞

|η| eλ0(v)ξ < ∞ with λ0(v) = 1
2v (D.1)

can lie in the Hilbert space (which consists of square integrable functions and of solutions proportional to plane
waves eikξ asξ → ±∞).

D.1. Schrödinger stability analysis

The general properties of the spectrum and eigenfunctions ofHv within the Hilbert space can be immediately
obtained from a few well-known results which to physicists are known from quantum mechanics (see, e.g., [86]),
sinceHv is the Hamiltonian operator for a (quantum) wave in a potential in one dimension. The potential is
asymptotically lower on the right than on the left, since

V (∞) = 1
4v

2 − f ′(0) < 1
4v

2 − f ′(1) = V (−∞), (D.2)

according to (2.2). If we write the temporal behavior of an eigenfunction asψ̃σ (ξ)e−σ t , one finds that the spectrum
of

Hvψ̃σ = σψ̃σ (D.3)

is continuous forσ ≥ V (∞), and that the eigenfunctions are distributions, i.e., essentially plane waves eikξ with
k = ±(σ − V (∞))1/2 asξ → ∞. One immediately concludes that a front8v with velocityv < v∗ = 2(f ′(0))1/2

will be unstable against the continuous spectrum of linear perturbations with “energies”V (∞) < σ < 0.
For a front8v with velocity v ≥ v∗ = 2(f ′(0))1/2, there still might be a point spectrum of bound and square

integrable states withσ < 0. Bound states have a finite number of nodes, and there is a one-to-one correspondence
between the number of nodes and the eigenvalue of the bound state “wave function”ψσ : the eigenfunction with
the lowest eigenvalueσ is nodeless (if it exists), the eigenfunction corresponding to the next largest bound state
eigenvalue has one node, etc. Therefore, the point spectrum is bounded from below by the “energy”σ of the nodeless
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eigenfunction, if it exists. Now, one eigenfunction is known: the translation modeψ̃0 clearly hasσ = 0. It can be
generated by an infinitesimal translation of8v:

ψ̃0 = eλ0(v)ξ ∂ξ8v, Hvψ̃0 = 0. (D.4)

If 8v is monotonic,ψ̃0 will be nodeless. If8v is non-monotonic,̃ψ0 will have nodes.
From this one might be tempted to immediately draw conclusions on the stability of monotonic or non-monotonic

front solutions. However, this is only possible ifψ̃0 is in the Hilbert space! Comparison with (2.17) shows, that this
is the case, if eitherv = v∗ andα = 0, or if v > v∗ andAv = 0, i.e., for one of the strongly heteroclinic orbits.

If a front8v obeys one of these conditions and if it is monotonic, thenψ̃0 is the eigenfunction in the Hilbert space
with the lowest “energy”σ = 0. Therefore all other eigenfunctions will haveσ > 0 and will decay in time as e−σ t .
An arbitrary linear perturbation in the Hilbert space can be decomposed into the complete set of eigenfunctions,
and therefore it will decay too (apart of course from the non-decaying translation modeψ̃0).

If such a front8v is non-monotonic it will haven extrema, withn > 0 some integer. The translation mode then
hasn nodes, and hence there are thenn bound eigenfunctions̃ψσ with negativeσ . The front profile is then linearly
unstable with respect to these modes. Since any generic initial condition will have a non-vanishing contribution
from these destabilizing modes, a non-monotonic8v will generically not be approached for long times. Such a8v

is called dynamically unstable.
The analysis of the spectrum and eigenfunctions of the Schrödinger operator in the Hilbert space therefore yields

the following results:
1. A front8v with velocityv < v∗ is intrinsically unstable against a continuous band of linear perturbations from

the Hilbert space. Such a front generically will not be approached under the dynamics.
2. A front8∗ with velocity v = v∗ andα = 0 is unstable against perturbations from the Hilbert space, if it is

non-monotonic, and it is stable, if it is monotonic. There is a continuous band of linear perturbations withσ ≥ 0
that continuously extends down toσ = 0. Accordingly, there is no gap in the excitation spectrum, which already
hints at the non-exponential convergence towards a monotonic8∗.

3. A strongly heteroclinic orbit8v with v > v∗ andAv = 0, if it exists, is unstable against perturbations from the
Hilbert space, if it is non-monotonic, and it is stable, if it is monotonic. If strongly heteroclinic orbits exist, by
construction (see Section 2.2) only the one with the largest velocityv = v† is monotonic, and the front8∗ with
velocityv = v∗ < v† is non-monotonic and thus unstable. So only for8†, the spectrum of linear perturbations
is purely positive:σ ≥ 0. For8† there is at best a discrete spectrum of linear perturbations in the Hilbert space

in the range 0< σ < V (∞) = 1
4(v

†2 − v∗2
), and the continuous spectrum begins atσ ≥ V (∞). Convergence

of all perturbations in the Hilbert space will thus be exponential in time like e−σ t , with σ the smallest positive
eigenvalue.
Note the restrictions of this analysis:

1. Up to now, we have no predictions for fronts with velocityv ≥ v∗, whose translation modẽψ0 (D.4) is outside
the Hilbert space. We will see that the equivalence of stability and monotonicity extends beyond the Hilbert
space analysis.

2. The analysis of general initial conditions might require linear perturbations, that lie outside the Hilbert space,
even ifψ̃0 is in the Hilbert space.

D.2. Linear perturbations outside the Hilbert space

The mapping to the Schrödinger problem is a powerful method for perturbationsη about a front8v, that lie within
the Hilbert space, because we then can work with a complete set of orthogonal functions. In general, however, this
space of perturbations needs to be completed by functions from outside the Hilbert space.
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To see this, consider for simplicity an initial condition, that is close to some8v with v ≥ v∗, but steeper than
this asymptotic front: limx→∞φ(x,0)/8v(x) = 0. Then the steepness in the leading edge ofη = φ −8v will be
dominated by8v, and

ψ = ηeλ0(v)ξ
ξ→∞∼



αξ + β for v = v∗,

e−µ(v)ξ for v = v† or generally, for v > v∗ and Av = 0,

eµ(v)ξ for v > v∗ and Av 6= 0.

(D.5)

with µ(v) = (1
4v

2 − 1)1/2 > 0 from (2.17). Accordingly, only for a pushed front propagating with velocityv = v†

(or more generally for a strongly heteroclinic orbit withv > v∗ andAv = 0) or for a pulled front with velocityv∗

andα = 0, the linear perturbationη eλ0(v)ξ is in the Hilbert space ofHv. The decay of the zero modẽψ0 (D.4) is
asymptotically the same as that ofψ in (D.5). So a treatment of linear perturbations outside the Hilbert space is
clearly called for.

In general, we want to decompose perturbationsη that obey

lim
ξ→±∞

|η(ξ, t)| � 1. (D.6)

This is required for the linearization ofφ about8v in (2.26). We aim at a decomposition ofη(ξ, t) into eigenfunctions
ησ (ξ)e−σ t . We therefore return to the eigenvalue equation for such an eigenmode, which according to (2.26) and
(2.27) is given by

[∂2
ξ + v∂ξ + f ′(8v(ξ))+ σ ]ησ = 0. (D.7)

Our previous analysis in the Hilbert space already has identified many of these eigenmodes, in fact all those, which
obey (D.1). This criterium onησ is too strict atξ → ∞, so we now need to additionally analyze perturbations
with e−λ0(v)ξ < |ησ (ξ)| < 1 asξ → ∞, which lie outside the Hilbert space. On the other hand, forξ → −∞,
Eq. (D.1) is less restrictive than (D.6). This gives us the freedom to impose only|ησ (ξ)| . eλ0(v)|ξ | asξ → −∞,
since such a divergence can be compensated for by perturbations from inside the Hilbert space, where we make use
of its completeness. We therefore now impose the boundary conditions

lim
ξ→∞

|ησ (ξ)| < ∞, lim
ξ→−∞

eλ0(v)ξ |ησ (ξ)| < ∞, (D.8)

where perturbations that additionally obey e−λ0(v)ξ |ησ (ξ)| < ∞ asξ → ∞, are in the Hilbert space ofHv.
First of all, we note that the translation modeη0(ξ) = ∂ξ8v(ξ) (D.4) now is always included in the larger space

(D.8) of perturbations.
Second, solve (D.7) forξ → ∞ and find in analogy to (2.17) that

ησ (ξ) = Aσ e−3−ξ + Bσe−3+ξ , (D.9)

with

3±(σ, v) = 1
2v ± (1

4v
2 − f ′(0)− σ)1/2. (D.10)

For brevity of notation, we here allowed3±(σ, v) to be complex. In Fig. 15, we plot3± versusσ , both for the case
of a front propagating into an unstable state (f ′(0) > 0), and for the case of a front between a stable and a metastable
state (f ′(0) < 0), and forf ′(0) > 0, we furthermore distinguish betweenv > v∗ andv = v∗. The leading edge
solution (D.9), of course, precisely coincides with the leading edge behavior of the Hilbert space functions, except
that one case was excluded from the Hilbert space: a leading edge withAσ 6= 0 andσ ≤ V (∞) = 1

4v
2−f ′(0) does
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Fig. 15. Steepness3(σ, v) (D.10) versus decay rateσ of linear perturbationsησ ((D.7) and (D.8)) of a given front8v with velocity v ≥ v∗.
The solid curve denotes real3, the dotted curve denotes the real part of complex3. λ±(v) andλ∗ are the steepnesses of8v and of the zero
modeη0 = ∂ξ8v . They are marked by circles on the3-axis. The generic steepness of a front8v with v > v∗ is λ−(v), while in the particular
case ofAv = 0, it is λ+(v). The continuous spectrum ofσ is denoted by a fat solid line on theσ -axis, the interval in which there may be
discrete eigenvaluesσ by the fat dotted line. The continuous spectrum within the Hilbert space ofHv exists only at14v

2 − f ′(0) ≤ σ . The
continuous spectrum for−f ′(0) < σ < 1

4v
2 − f ′(0) is on the3−-branch. There might be discrete solutions characterized byAσ = 0. They

lie on the3+-branch, might exist for allσ < 1
4v

2 − f ′(0), and need to be constructed: (a) the front8v propagates into a metastable state
(f ′(0) < 0). Its steepness isλ+(v). It is stable against all linear perturbations with3 < λ+(v). The discrete spectrum of steep perturbations
with3 > λ+(v) needs to be investigated; (b) the front propagates into an unstable state (f ′(0) > 0) with velocityv > v∗. It is stable against all
linear perturbations withλ−(v) < 3 < λ+(v), it is unstable against the continuous spectrum of very flat perturbations with 0< 3 < λ−(v),
which might be excluded by the initial conditions. The discrete spectrum of steep perturbations with3 > λ+(v) needs to be investigated; (c)
the front propagates into an unstable state (f ′(0) > 0) with velocityv = v∗. The discussion is as for (b) after identifyingλ±(v∗) = λ∗.

not obey the boundary condition (D.1). It does obey the boundary condition (D.6), ifσ ≥ −f ′(0). Let us therefore
now focus on the additional perturbations with

−f ′(0) < σ ≤ V (∞) = 1
4v

2 − f ′(0). (D.11)

If Aσ 6= 0, such perturbations are outside the Hilbert space, but they do obey (D.8).
Are there such perturbations for a givenσ , and how many? For answering this question we need to analyze

ησ globally, in close analogy to the global analysis of the8v as a function ofv in Section 2.2. Solving (D.7) at
ξ → −∞ yields two exponents

3̃±(σ, v) = 1
2v ± (1

4v
2 − f ′(1)− σ)1/2 = λ0(v)± (V (−∞)− σ)1/2, (D.12)

in analogy with (2.15) and (2.16). SinceV (−∞) > V (∞) (D.3), forσ ≤ V (∞)we certainly haveV (−∞)−σ > 0.
The coefficient of e−3̃+(σ,v)ξ therefore needs to vanish forησ to obey (D.8). Behind the front forξ → −∞, we
therefore find that

ησ (ξ) = ±e−3̃−(ξ−ξ0) + o(e−23̃−ξ ) (D.13)

for anησ obeying (D.8) and (D.11). Eq. (D.13) determinesησ uniquely because the arbitrary constant coefficient
±e3̃−ξ0 can be scaled out of a linear equation like (D.7). Such a linear equation can always be integrated towards
ξ → ∞, where it uniquely determines the coefficientsAσ andBσ in (D.9). Accordingly,Aσ andBσ generically
are non-vanishing, in complete analogy to the argument forAv andBv in (2.17) to be generically non-vanishing in
8v.

What do we gain with these extra solutions? The eigenfunctions in the Hilbert space had a continuous spectrum
for σ ≥ V (∞) = 1

4(v
2 − v∗2

) ≥ 0 and at best a discrete spectrum defined byAσ = 0 for σ < V (∞). Adding the
solutions, that obey (D.8), we extend the continuous spectrum down toσ ≥ −f ′(0) = V (∞)− 1

4v
2 < 0 and find

at best a discrete spectrum defined byAσ = 0 for σ < −f ′(0). These discrete solutions forσ < −f ′(0) all lie in
the Hilbert space.
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Let us now look at the steepness in the leading edge of the solutions outside the Hilbert space. They have aσ

from the interval (D.11), andAσ 6= 0. For these we observe (cf. Fig. 15) that

3−(σ, v) > λ−(v) for σ > 0 (decaying),
3−(σ, v) < λ−(v) for σ < 0 (destabilizing),
3−(0, v) = λ−(v) for σ = 0 (marginal),

(D.14)

with λ−(v) from (2.16). This means, that these linear eigenmodesησ of 8v will decay (σ > 0), if they are steeper
than e−λ−(v)ξ , and that they will destabilize a front8v, if they are flatter. Note that the spectrum of decaying modes
is continuous down to zero, asσ ↓ 0 as3− ↓ λ−.

It is tempting to conclude here immediately, that a front8v(ξ) with velocity v ≥ v∗ will be stable against all
perturbations, which are steeper in the leading edge than e−λ−(v)ξ . However, the possible existence of the discrete set
of solutions withAσ = 0 andσ < 0 requires special attention, since these perturbations are steeper than e−λ0(v)ξ ,
but destabilizing (σ < 0). Now, if8v is strongly heteroclinic (Av = 0), we already found in Section D.1, that such
destabilizing perturbations exist, if and only if8v is non-monotonic. We now need to show that this argument also
holds for fronts8v with v > v∗ andAv 6= 0 or for fronts8∗ with velocity v∗ andα 6= 0. The following five
steps (i)–(v) prove this: (i) Impose (D.13) atξ → −∞. This defines a unique solution of Eq. (D.7) forησ for every
σ < V (−∞). In fact, we only need to analyzeσ < V (∞), since we know the spectrum for largerσ . (ii) Integrate
(D.7) forward towardsξ → ∞ for a very large negativeσ . The variation off ′(8v(ξ)) in space then can be almost
neglected. Therefore atξ → ∞, we will find (D.9) with |Aσ/Bσ | � 1. For our further construction it is crucial to
observe that such a perturbation for sufficiently large negativeσ will be nodeless. It does not matter, on the other
hand, that this solution typically will not obey our bound (D.8), since we only use it as a means for constructing the
solutions withAσ = 0, which will not only obey (D.8), but even lie inside the Hilbert space. (iii) Upon increasing
σ continuously, at discrete values ofσ < V (∞), ησ will gain an extra node. Since the generation of every new
node is associated with a change of sign of the perturbation atξ → ∞, if the sign atξ → −∞ is kept fixed, the
appearance of an additional mode can only occur at aσ , where the sign ofAσ changes. (iv) We know the number
of nodes of the zero modeη0. It is identical to the number of extrema of8v. We therefore know the number of
particular perturbations withAσ = 0 andσ < 0. (v) From this it follows that if8v is monotonic, there are no
particular perturbations withAσ = 0 andσ < 0. If 8v is non-monotonic, there are such perturbations.

In Section 2.2, we have counted the multiplicity of front solutions8v as a function ofv. Here we have counted the
multiplicity of perturbationsησ of a front8v as a function ofσ . This counting was based on the proper asymptotics
of the solutions atξ → ±∞, which is of the same structure for both8v andησ , so the counting argument follows
exactly the same lines in both cases.

The conclusions from this appendix are summarized in Section 2.3.

Appendix E. Stability analysis, selection and rate of convergence

In this appendix, we analyze the implications of the results of the stability analysis of Appendix D for understanding
the selection of fronts and for the rate of convergence towards the asymptotic front solution. For pushed fronts, the
stability analysis implies that the relaxation towards the pushed front solution is exponentially fast, while for pulled
fronts the spectrum is gapless, and the convergence cannot be obtained from the stability spectrum.

E.1. Pushed regime:vc = v†

We first consider equations with the nonlinearityf (φ) such that the slowest stable front is a strongly heteroclinic
orbit in phase space withA

v† = 0 in (2.17). We have denoted this asymptotic front with8† and its velocity with
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v†. Its steepness isλ+(v†) = λ0(v
†)+µ(v†), cf. (2.23). There is a continuous family of stable front solutions8v

with velocity v > v† which are all flatter thanλ−(v†) = λ0(v
†)− µ(v†). Their steepnessλ = λ−(v†) is related

to their velocityv through

v(λ) = λ+ 1

λ
, (E.1)

as can be obtained by inverting (2.18).
CaseI. Consider an initial condition with steepnessλinit > λ0(v

†). We letφ evolve sometime, and then linearize
it about8†. According to (2.37), the perturbationη will have steepnessλη > λ0(v

†). It then is in the Hilbert space
analyzed in Section D.1. We can decompose the perturbation into the known eigenperturbations. The spectrum of
decay rates has no negative eigenvalues, one eigenvalue zero and then a gap above zero. A contribution from the
zero mode can be made vanishing by adjusting the position of the subtracted asymptotic front8v, by making use
of the translational freedom of8v. The perturbation then can be decomposed into Hilbert space functionsησ with
σ all positive and bounded away from zero. Thus, for large times the perturbation will decay exponentially. This
means that an initial condition withλinit > λ0(v

†) will converge to8† exponentially in time, generically with
e−σ1t , whereσ1 is the smallest positive eigenvalue.

CaseII. If the initial steepness isλ−(v†) < λinit ≤ λ0(v
†), the perturbation ofφ about8† will not be in the

Hilbert space. However, we do know from the results illustrated in Fig. 15 that there is an eigenmodeησ of the
linear stability operator of8† with the proper steepnessλinit = λη, that will decay exponentially in time (see
Section D.2). The remaining linear perturbationη − ησ might lie in the Hilbert space, in which case we are back
to Case I. If it does not, we have to identify the subleadingλ, its corresponding eigenmodeησ , etc. The iteration
of this construction leads us to conclude that the perturbation indeed will decay exponentially in time. (Examples
of exponential convergence towards pushed fronts which is dominated by such modes can be found in Fig. 19 of
[65].) Another way of putting the argument is that only perturbations withλ < λ−(v†) can grow in time, but these
cannot be involved in the decomposition of a perturbation withλη > λ−(v†). A more elegant way of analyzing this
case and the following ones is discussed in Section 2.5.

CaseIII. If the initial steepness isλinit < λ−(v†), and we linearizeφ about8†, there is a perturbationησ with
steepnessλη = λinit that is growing in time (σ < 0). So such an initial condition cannot approach8† or any
other asymptotic front8v with steepnessλasympt> λinit . If we linearizeφ about the asymptotic front8v with the
same steepnessλinit = λasympt, the remaining perturbation will be steeper, so contributions from the zero mode are
excluded by construction, and the perturbation can be decomposed into eigenperturbations of8v, which all decay
in time.

In summary: all initial conditions withλinit > λ−(v†) converge exponentially in time to the “selected” front with
velocity vsel = v† and steepnessλsel = λ+(v†). Initial conditions withλinit < λ−(v†) will converge to a quicker
asymptotic front with steepnessλasympt= λinit and velocityv(λinit ) given by (E.1).

In Section 2.1, we have termed an initial condition sufficiently steep (λinit > λsteep), if it approached the “selected”
front for large times. We have denoted the steepness of the selected front withλsel. In the pushed regime, one can
thus identify these parameters with

λsteep= λ−(v†) = 1
2v

† − µ(v†), µ(v†) = (1
4(v

†2 − 4))1/2,

λsel = λ+(v†) = 1
2v

† + µ(v†), vsel = v†. (E.2)

E.2. Fronts into metastable states

The only difference between a pushed front propagating into an unstable state, i.e., with a nonlinearityf such
thatf ′(0) > 0 andvc = v† > v∗, and a front propagating into a metastable state, i.e., withf ′(0) < 0, is the sign
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of λ−(v): for a front into a metastable state, we have

µ(v) = (1
4(v

2 − 4f ′(0)))1/2 > 1
2v for f ′(0) < 0, (E.3)

soλ−(v) < 0 andλ+(v) > 0 for all v > 0 (the sign ofλ0(v) is the same as the sign ofv). Suppose, that the selected
front still travels with positive speedvsel = v† (otherwise reversex). Because nowλ−(v) < 0,

λsteep= 0, (E.4)

so all initial conditions are sufficiently steep and converge to8†. The continuous spectrum of asymptotic solutions
8v with λasympt< λsteepceases to exist, and the asymptotic front8† therefore now is unique.

For the convergence of an initial conditionφ towards8† we still need to distinguish whetherλinit is larger
or smaller thanλ0(v

†) = 1
2v

†. If λinit > λ0(v
†), the perturbation about8† lies in the Hilbert space, while for

λinit < λ0(v
†), it does not. This corresponds to the Cases I and II forvc = v† above, which apply literally. In both

cases the initial conditions converge to8† exponentially in time. Case III does not occur for fronts into metastable
states.

E.3. Pulled regime:vc = v∗

At the transition from fronts propagating into metastable towards fronts into unstable states,f ′(0) changes sign,
and so doesλ−(v). At this point a continuum of possible attractors8v of the dynamics comes into existence, but
the convergence behavior of sufficiently steep initial conditions is completely unchanged. In other words: Cases I
and II are completely unchanged and only Case III needs to be considered additionally for initial conditions with
λinit < λsteep.

A qualitative change in the convergence behavior of sufficiently steep initial conditionsλinit > λsteeponly takes

place at the transition from the pushed to the pulled regime. This happens forf changing such thatv† approaches
v∗. Then

λsteep= λ0(v
∗) = λsel. (E.5)

This transition leaves the multiplicity of possible attractors unchanged, but the resulting changes in the spectrum
have deep consequences for the convergence behavior of sufficiently steep initial conditions.

We now need to distinguish but two cases for the initial condition, namelyλ ≥ λ∗ andλ < λ∗, where we use the
short-hand notationλ∗ = λ0(v

∗) = λ±(v∗) = 1
2v

∗.
For flat initial conditionsλinit < λ∗, the arguments from Case III above apply literally. Such an initial condition

will approach a front8v with velocityv(λinit ) > v∗ given by (E.1) and with steepnessλasympt= λinit . Sufficiently
steep initial conditions, however, exhibit a new behavior.

CaseIV. Consider a sufficiently steep initial condition withλ > λ∗. As before we linearize the profileφ(x, t)
about the selected front8∗ after a sufficient evolution time. The corresponding perturbationη = φ − 8∗ then
decays like8∗ (2.21), because the steepness ofφ(x, t) remains larger than that of8∗ at any finite timet (cf.
Eq. (2.37)). As a result,η is just outside the Hilbert space in the generic case ofα 6= 0 (2.17), just like the zero
mode (D.4). The Hilbert space has a continuous spectrum for all decay ratesσ > 0, and there are no growing
perturbations withσ < 0. The perturbationη can be written as a multiple of the zero modeη0 plus a remainder
inside the Hilbert space. From this we might be tempted to argue that the perturbation will decay, and that we
only cannot tell how quickly — probably non-exponential, because the spectrum is gapless. However, in contrast
to Cases I–III, there is no way to get rid of the zero mode, because no matter at which positionξ0 one places the
subtracted8∗(ξ − ξ0),8∗ will always dominate the largeξ behavior, and therefore the coefficient of the zero mode
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in the decomposition of the perturbation will always be non-vanishing. A convergence argument based on simply
neglecting the contribution from the zero mode is bound to be wrong: in the very same way we could argue that
a steep initial condition converges to8v with just anyv ≥ v∗. Strictly speaking, the linear stability analysis does
not even allow us to conclude that sufficiently steep initial conditions approach8∗ at all. We only can reason that
there is no steeper attractor than8∗, and that one therefore expects that the pulled front solution8∗ is selected from
steep initial conditions. The different analytical tools that are developed in Section 2.5 to analyze the convergence
behavior confirm this.

The results of this appendix are summarized in Table 4 (in Section 2).

Appendix F. General integration ofgsp
n/2(z)g
sp
n/2(z)g
sp
n/2(z)

We here show how to find special solutionsgsp
n/2(z) of inhomogeneous equations like (3.44) or (3.45) in general.

The general form of such an equation is

T̂n[z, dz]g(z) = in(z), (F.1)

with in(z) the inhomogeneity and̂Tn[z, dz] the operator

T̂n[z, dz] = z
d2

dz2
+
(

1
2 − z

) d

dz
+ 1

2n. (F.2)

We search for a particular solutiong(z) of Eq. (F.1). A particular solution of the homogeneous equation (in(z) = 0)
can be expressed by Hermite polynomials:

T̂n[z, dz]hn(z) = 0, h0(z) = 1, h1(z) = √
2z, h2(z) = 1 − 2z, etc. (F.3)

The ansatzg(z) = hn(z)un(z) reduces (F.1) to an equation fordzun(z) of first order:

T̂ng = zhn(z)

(
d

dz
+ d lnhn(z)

dz
+ 1 − 2z

2z

)
dun(z)

dz
= zhn(z)

dz(Mn(z)dzun(z))

Mn(z)
, (F.4)

where in the last line we introduced the integrating factor

Mn(z) = h2
n(z)

√
ze−z. (F.5)

Identify now T̂ngn = in, integrate twice, and substituteMn by the full expression. A special solution of (F.1) then
reads

g(z) = hn(z)

∫ z

a

dx

∫ x
b

dy in(y)hn(y)e−y/√y
h2
n(x)

√
x e−x , (F.6)

where the integration constantsa andb are free. If we in particular chooseb = ∞, the integrated exponential
exp{x − y} cannot exceed unity, andgsp

n (z) can at most diverge algebraically, if the integrated inhomogeneityin(z)

is algebraic.
Integrating Eq. (3.55) forg0(z) as in (F.6) withb = ∞, we find for the algebraic divergence ofg0(z) for largez:

g0(z) ∼ 3αz ln z as z → ∞, (F.7)

while the solution of the homogeneous equation diverges only ash2(z) ∼ z. For determining the smallz expansion
of (F.6), it must be noted that the factorhn(x)−2 is singular at the zeroes ofhn(x). Hence, (F.6) needs to be evaluated
separately in each interval between the zeroes ofhn(x). This can be done by a proper choice ofa. It can be shown
that the results in each interval join smoothly.
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Appendix G. Algebraic convergence at the pushed/pulled transition

In Section 3, we have analyzed equations that are within the pulled regime. We here analyze equations that are at the
pushed/pulled transition. Leading edges of fronts within the pulled regime have the form8∗ = (αξ+β)e−ξ ∝ ξe−ξ

(ξ � 1), cf. (2.17). Leading edges of fronts within the pushed regime are given by8† ∝ e−λ+(v†)ξ , cf. (2.23).
Leading edges of fronts at the pushed/pulled transition accordingly behave as

8∗ = β e−ξ for ξ � 1, λ+(v∗) = λ∗ = 1. (G.1)

For our example nonlinearity (1.10), fronts are within the pulled regime forε > (n+1)/n2 and at the pushed/pulled
transition forε = (n+ 1)/n2. The analysis below can again be extended to more general equations along the lines
of Section 5. We will come back to this at the end of this appendix.

At the pushed/pulled transition, the spectrum of linear perturbations is still gapless, and convergence therefore
is algebraic. On the other hand, the form of the leading edge played a crucial role in determining the velocity
correctionsẊ. Compare our qualitative discussion in Section 3.1.1. The leading edge behavior (G.1) immediately
lets us expect, that nowv(t) = 2− 1/(2t)+ · · · , in contrast to (3.5) and (3.66) for fronts within the pulled regime,
and in agreement with (2.46) for the spreading of perturbations under the linearized equation. Intuitively, we can
argue that the slower convergence of fronts within the pulled regime is due to the leading edge having to pull the
interior part of the front along. This also makes the leading edge flatter. The quicker convergence of fronts at the
pushed/pulled transition and in the linearized equation then resembles the fact that the leading edge and the interior
part of the front “impose the same speed”.

Let us now do the explicit convergence analysis for fronts developing from initial conditions steeper than e−x

for x � 1 and approaching (G.1) for large times. The analysis of the interior is identical with Section 3.2, where
constantscn/2 are yet undetermined. When expanding the interior shape towards the leading edge as in Section 3.3,
the inhomogeneities created by8∗ (G.1) are different, because nowα = 0. The differential equations for theψn/2
result from (3.34) withα = 0, γ = β and start with

∂2
ξ ψ1 = c1β, ∂2

ξ ψ3/2 = c3/2β, ∂2
ξ ψ2 = [−1 + c1(1 − ∂ξ )]ψ1 + c2β + o(e−ξX ), etc. (G.2)

Integrating and resumming, we now find forξ � 1

ψ = β + c1βξ
2
X

2!t
+ c1δξX

t
+ O

(
1

t

)
+ c3/2βξ

2
X

2!t3/2
+ O

(
ξX

t3/2

)
+ c1(c1 − 1)βξ4

X

4!t2

+c1(c1δ − δ − c1β)ξ
3
X

3!t2
+ O

(
ξ2
X

t2

)
+ c3/2(2c1 − 3

2)βξ
4
X

4!t5/2
+ O

(
ξ3
X

t5/2

)
+ · · · + · · · . (G.3)

Hereδ is an unknown integration constant fixed by condition (3.9). We will see below, that it is not involved in
fixing the velocity, just as also the subleadingβ for the leading edge (3.32) within the pulled regime is not involved
in fixing the velocity, cf. the calculation till (3.65).

Again for ξX � √
t , we have to reorder the expansion in powers of

√
z = (ξ2

X/(4t))
1/2 and 1/

√
t , and find

ψ = β

(
1 + c1(4z)

2!
+ c1(c1 − 1)(4z)2

4!
+ O(z3)

)

+ 1√
t

(
c1δ(4z)

1/2 + c3/2β(4z)

2!
+ c1(c1δ − δ − c1β)(4z)3/2

3!
+ c3/2(2c1 − 3

2)β(4z)
2

4!

)
+ O

(
1

t

)
.

(G.4)
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The structure of the expansion is the same as in (3.42), except that now the leading order term is of ordert0:

G(z, t) = ezψ = g0(z)+ g1/2(z)√
t

+ · · · . (G.5)

The equations of motion for the leading and subleading term are derived from (3.43)–(3.45) through putting
g−1/2 = 0. Forg0, we find now the homogenous equation

[z∂2
z + (1

2 − z)∂z − 1
2 − c1]g0 = 0. (G.6)

Just like (3.43) was solved by (3.52), we now solve (G.6) with

c1 = −1
2, g0(z) = β. (G.7)

The equation forg1/2 is now, cf. (3.45) and (G.7),

[z∂2
z + (1

2 − z)∂z + 1
2]g1/2 = β[c3/2 − 1

2

√
z]. (G.8)

Again a special solution of the inhomogeneous equation can be found, and the general solution contains the constants
of integrationk1/2 andl1/2:

g1/2 = β

[
2c3/2 −

√
z

2

∞∑
n=1

(1)n−1z
n

(3
2)nn!

]
+ k1/2M(−1

2,
1
2, z)+ l1/2

√
z (G.9)

z�1= 2βc3/2 + k1/2 + l1/2
√
z+ O(z) (G.10)

z→∞∼ −β√
π

4z
ez − k1/2

2z
ez. (G.11)

Comparing (G.10) to the order 1/
√
t in (G.4) and imposing proper convergence of (G.11) forz → ∞, we find

2βc3/2 + k1/2 = 0, l1/2 = −δ, β
√
π + 2k1/2 = 0. (G.12)

With these constants, the velocity correctionc3/2 is

c3/2 = 1
4

√
π, (G.13)

and forg1/2 we find

g1/2 = β
√
π

2

[
1 −M(−1

2,
1
2, z)−

( z
π

)1/2 ∞∑
n=1

(1)n−1z
n

(3
2)nn!

]
− δ

√
z. (G.14)

In summary, we find for the convergence to a front at the pushed/pulled transition, whose leading edge accordingly
takes the form (G.1), that the velocity correction is given by

Ẋ = − 1

2t

(
1 − 1

2

(π
t

)1/2
)

+ O

(
1

t2

)
. (G.15)

In the interior, i.e., forξX � √
t , the front is given by (3.31) just like a front within the pulled regime. In the leading

edge, whereξX � √
t , the front is given by

φ(ξX, t) = exp{ξX − ξ2
X/(4t)}G

(
ξ2
X

4t
, t

)
, (G.16)
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where

G(z, t) = β + g1/2(z)√
t

+ O

(
1

t

)
. (G.17)

The extension along the lines of Section 5 to more general equations is straightforward. The general expression
for Ẋ(t) is

Ẋ = − 1

2λ∗t

(
1 − 1

2λ∗
( π

Dt

)1/2
)

+ O

(
1

t2

)
, (G.18)

but the subleading functiong1/2(z) will depend on the additional terms in the expansion, just like the subleading
g0(z) in Section 5.3.

Appendix H. Multiplicity of fronts and linear eigenmodes for reflection symmetric equations of first order
in time

The generical multiplicity of uniformly translating fronts8v can be determined by counting arguments analogous
to those performed in Section 2.2. Uniformly translating solutions8v(ξ) of (5.1) can be understood as a heteroclinic
orbit in N -dimensional phase space between fixed points characterized by8v = 1 at ξ → −∞ and8v = 0 at
ξ → ∞. For a linear perturbationδ = 1 −8v about the fixed pointφ = 1 from (5.2), we get the equation

Lv(−∞)δ + O(δ2) = 0, (H.1)

which is a linear ODE with constant coefficients with the linear operatorL being defined in (5.3). The same is true
for a linear perturbation8v = 0 + δ of the fixed pointφ = 0, which solves

Lv(∞)δ + O(δ2) = 0. (H.2)

In linear order ofδ, each of these equations hasN solutions e−λn(v)ξ , n = 1, . . . , N .
Let us restrict the analysis to real equations which are isotropic in space, i.e., where (5.41) is invariant under

x → −x. Such equations are even in∂x , soN needs to be even. According to arguments presented in Appendix A
of [65], (H.1) and (H.2) forv > 0 will have 1

2N + 1 eigenvaluesλn with positive real part and12N − 1 ones with
a negative real part, if the state, about which we linearize, is linearly unstable against a range of Fourier modes. If
it is stable, we will have1

2N eigenvalues with positive real part and1
2N ones with a negative real part. We assume

φ = 1 to be stable, so atξ → −∞ there are1
2N directions in phase space with negative real part ofλ, that need to

be excluded. Ifφ = 0 is unstable, we have only12N − 1 bad eigendirections atξ → ∞. We then generically have
a front connecting these fixed points for arbitrary values ofv. If, however, the stateφ = 0 is metastable, there are
1
2N bad eigendirections atξ → ∞. Then alsov needs to be tuned to find a solution. So for fronts propagating into
unstable states, we generically have a front solution8v for a continuum of velocities, while for fronts into metastable
states, there are solutions8v only for discrete values ofv, in generalization of the arguments from Section 2.2.

The multiplicity of linear perturbations is determined along the same lines. We again decompose the linear
perturbationsη (5.30) intoη(ξ, t) = ησ (ξ)e−σ t by separation of variables. Theησ then solve the ODE

[Lv(ξ)+ σ ]ησ (ξ) = 0. (H.3)

For counting the generic multiplicity of solutions, we need to linearize the equations aboutξ → ±∞, which
amounts to a problem equivalent to (H.1) and (H.2), except for a shift of the constant contribution ofLv(ξ) by σ .
For fronts propagating into unstable states, we in general expect a continuous spectrumσ of linear perturbations at
least in some finite interval ofσ , in generalization of Section 2.3.
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Appendix I. Strongly heteroclinic orbits and change of stability atv†v†v†

According to the counting argument from Appendix H, the front8∗(ξ) propagating uniformly with velocity
v∗ does exist. The question is now, whether it is stable and whether it will be approached by steep initial con-
ditions. In particular, we want to analyze initial conditionsφ(x,0), that are steeper than e−λ∗x in the leading
edge.

This amounts to the question, whether in the spectral decompositionησ (H.3) of a genericφ(x,0)−8∗(x), there
are destablizing modes withσ < 0. As in Section 2.3, the contributing modes in general will all decay at least as
quick as8∗ in the leading edge. The leading edge properties of theησ in general will depend smoothly onσ , just
as in (D.14), so generically8∗ will still be stable against all perturbations, that in the leading edge decay quicker
than8∗.

An exemption is again the generalization ofAσ = 0 from (D.9). For an equation of orderN with φ = 0 unstable,
there are1

2N + 1 exponents3n(σ, v) > 0. The leading edge will be a superposition of all the exponentials

ησ (ξ) =
1
2N+1∑
n=1

A(n)σ e−3nξ as ξ � 1. (I.1)

The conditionA(1)σ = 0, where31 is the smallest one of the positive3n, fixes a discrete set (which can be either
empty or not empty) of negativeσ ’s whose eigenfunctionsησ have a steepness in the leading edge larger than8∗.
The stability of the pulled front8∗ thus again depends on the “strongly heteroclinic” perturbations.

If there are strongly heteroclinic perturbations, that destabilize the pulled front propagating with velocityv∗, then
there will be a steeper and quicker front8†, which can be constructed as a strongly heteroclinic orbit of (5.41). The
zero mode∂ξ8† then again is a strongly heteroclinic perturbation, and as discussed in Appendix D on the stability
of front solutions, we can conclude that the quickest of all strongly heteroclinic orbits cannot be destabilized, so it
will attract all sufficiently steep initial conditions.

We conclude, that Table4 generalizes to higher order equations, which form uniformly translating fronts, if we
only appropriately adjust the explicit definitions of the velocitiesv and steepnessesλ.

Appendix J. Relation between the generalized diffusion constantsDnDnDn and the dispersion relation

If we use the expansion (5.6) for the dispersion relationω(k), we get

D= eλ
∗ξ
(

N∑
m=0

am∂
m
ξ − v∗∂ξ

)
e−λ∗ξ =

N∑
m=0

am(∂ξ − λ∗)m − v∗(∂ξ − λ∗)

=
N∑
m=0

m∑
n=0

am
m!

n!(m− n)!
(−λ∗)(m−n)∂nξ − v∗(∂ξ − λ∗)

=
N∑
n=0

(
∂n

∂(−λ∗)n

N∑
m=n

am(−λ∗)m
)

1

n!
∂nξ − v∗(∂ξ − λ∗). (J.1)

This immediately yields the expansion (5.27) with the identification (5.28).
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Appendix K. Edge analysis of uniformly translating pulled fronts with M = 1M = 1M = 1

We analyze the leading edge representation (5.37) for a uniformly translating front whose equation of motion
(5.41) is of arbitrary orderN in space and of first order in timeM = 1:

∂τψ =
(
∂2
ζ +

N∑
n=3

dn∂
n
ζ

)
ψ + Ẏ (∂ζ − 1)ψ. (K.1)

We generalize the leading edge analysis from Sections 3.3 and 3.4.
With the notions and ansatz

D = ∂2
ζ +

N∑
n=3

dn∂
n
ζ , Ẏ =

∞∑
n=2

Cn/2

τn/2
, (K.2)

ψ(ζY , τ ) = αζY + β + ψ1/2

τ1/2
+ ψ1

τ
+ ψ3/2

τ3/2
+ · · · , (K.3)

the expansion of the interior in the region ofζY � 1 at the crossover towards the leading edge reads

Dψ1/2 = 0, Dψ1 = C1(α ζY + γ ), γ = β − α, Dψ3/2 = C3/2(αζY + γ ), . . . , (K.4)

in generalization of (3.34). These equations can be integrated explicitly. The result can be written in leading edge
variablesz = ζ 2

Y /(4τ) as

ψ = √
τα

(
(4z)1/2 + C1(4z)3/2

3!
+ · · ·

)
+ τ0

(
β + C1(β − α(1 + d3))(4z)

2!
+ · · ·

)
+ O

(
1√
τ

)
. (K.5)

This generalizes the results of Section 3.3 and supplies us with the smallz expansion of the leading edge function

ψ(ζ4, τ ) = e−z G(z, τ ), z = ζ 2
4

4τ
. (K.6)

G solves (compare Eq. (3.41))

[z∂2
z + (1

2 − z)∂z − 1
2 − τ∂τ − C1]G

= 1√
τ

[C3/2 + C1
√
z(1 − ∂z)]G− d3

√
z√
τ

[ 3
2(∂z − 1)2 + z(∂z − 1)3]G+ O

(
1

τ

)
, (K.7)

where we wrote all operators of orderτ0 on the LHS of the equation and the operators of orderτ−1/2 on the RHS.
With the ansatz

G(z, τ) = √
τg−1/2(z)+ g0(z)+ g1/2(z)√

τ
+ · · · (K.8)

as in (3.42), we find thatg−1/2(z) solves again (3.43), so we copy from Section 3.4, that

C1 = −3
2, g−1/2(z) = 2α

√
z. (K.9)

Forg0(z) we then find instead of (3.55):

[z∂2
z + (1

2 − z)∂z + 1]g0 = 2α[ 3
4(1 + d3)+ c3/2

√
z− 3

2z+ d3(z
2 − 3z)]. (K.10)
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A special solution of the inhomogeneous equation is now instead of (3.58):

g
sp
0 (z) = 2α(3

4(1 + d3)+ 2c3/2
√
z− 3

4F2(z)− d3z
2), (K.11)

with F2(z) from (3.56). The general solution is

g0(z) = g
sp
0 (z)+ k0(1 − 2z)+ l0

√
zM(−1

2,
3
2, z)

z�1= (3
2α(1 + d3)+ k0)+ (4αc3/2 + l0)

√
z+ O(z)

z→∞∼ −(3
2α

√
π + 1

4l0)z
−3/2 ez, (K.12)

Note, thatd3 6= 0 does not cause any divergences atz → ∞. It only shifts the constant contribution atz → 0.
Suppressing the divergence atz → ∞ in (K.12), and comparing its smallz expansion to (K.5) yields again

C3/2 = 3
2

√
π, (K.13)

g0(z) = β(1 − 2z)+ 3α(1 + d3)z− 2αd3z
2 − 3

2αF2(z)+ 6α
√
πz(1 −M(−1

2,
3
2, z)).

Appendix L. Leading edge projections for coupled equations: an example

As a simple illustration of the various questions related to the projection discussed in Section 5.5.3, we consider
two coupled F-KPP equations,

∂tφ1 = ∂2
xφ1 + φ1 − φ3

1, ∂tφ2 = D∂2
xφ2 + φ2 − φ3

2 +Kφ1. (L.1)

The dynamics of this set of equations for fronts propagating into the stateφ1 = φ2 = 0 with steep initial conditions,
is of course immediately obvious: whenK = 0, the two equations are uncoupled, and fronts in the first equation
propagate with speedv∗

1 = 2, while those in the second equation propagate with speedv∗
2 = 2D1/2. The dynamics

of φ1 is always independent of that ofφ2, even forK 6= 0, so forK > 0 andD < 1, the dynamics of the coupled
equations amounts to a normal F-KPPφ1 front, with relaxation given by our usual expressions. This front entrains
a front with speedv = v∗

1 = 2 in φ2. ForD > 1, theφ1 andφ2 fronts keep on propagating with different speeds.
We consider the caseD < 1 and make a leading edge transformationφ1 = e−ξ ψ1, φ2 = e−ξ ψ2 (whereλ∗ = 1)
to the frame moving with velocityξ = x − v∗

1t . The linearized equations then become

∂tψ1 = ∂2
ξ ψ1, ∂tψ2 = D∂2

ξ ψ2 + 2(D − 1)∂ξψ2 + (D − 1)ψ2 +Kψ1. (L.2)

The matrixS∗(q,�) of the linearized equations is in this case

S∗(q,�) =
(

i�− q2 0
K i�− q2 + J (q)

)
, (L.3)

whereJ (q) = (D − 1)(1 + 2iq − q2). Since the elementS∗
12(q,�) = 0, the eigenvaluesu∗

1 andu∗
2 are simply the

diagonal element ofS∗(q,�), u∗
1(q,�) = i� − q2 andu∗

2(q,�) = i� − q2 + J (q). However, the eigenvectors
arenotboth along theψ1 andψ2 axis. Indeed, we have in the notation of Section 5.5

U∗
1(q) =

(
1

−K/J(q)

)
, U

∗†
1 = (1,0), (L.4)

U∗
2 =

(
0

1

)
, U

∗†
2 (q) = (K/J (q),1), (L.5)
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The appropriate saddle point is� = q = 0, and sinceJ (0) = (D − 1), we have

U∗
1(0) =

(
1

−K/(D − 1)

)
. (L.6)

The fact that the second component is non-zero just expresses the fact that the variableψ2 is entrained by the leading
edge inψ1. We can now illustrate our assertion that different choices of projection lead to different dynamical
equations for the projected leading edge variableψp, but that the universal results from Table 2 are independent
of the particular choice of projection. Clearly, one obvious intuitively appealing choice is to takeψp = ψ1, since
theψ1 dynamics is independent of that ofψ2. In this case, the dynamical equation forψp is nothing but the single
F-KPP equation, and all the results for this equation carry over in detail. Likewise, the choiceψp = π1(q,�) (5.86)
leads to the linearized F-KPP equation forψp sinceu∗

1(q,�(q)) = 0 gives the dispersion relation of the F-KPP
equation. However, this choice is more formal than practical, since the direction in the vector space(ψ1, ψ2) is
not fixed, but depends on the variableq which influences the dynamics. A more practical choice for the coupled
variables would be to takeψp as the component alongU∗

1(0), as this corresponds to a fixed ratio ofψ1 andψ2.

SinceU∗†
2 · U∗

1 = K/J(q)−K/J(0) = −2K iq/(D − 1)+ O(q2), the projected equation in this case picks up a
third order derivative termD3∂

3
ξ ψ

p, among other ones.
Thus, we observe in this particular example, that indeed the universal results from Table2 on velocity and shape

relaxation are independent of the choice of projection, while the subleading contributiong0(z) in the leading edge
is universal in the sense, that it is independent of the precise initial conditions, but it does depend on the direction
of projection.

Appendix M. Pinch point versus saddle point analysis

In this appendix, we briefly discuss the major differences and similarities between the saddle point and the pinch
point approach for evaluating the integral

Im =
∫ iγ+∞

iγ−∞
dω

2π

∫ ∞

−∞
dk

2π
exp{ikξ − i(ω − vk)t}

M̂
m
(k, ω)

um(k, ω)
(M.1)

from Eq. (5.79) on a given branchm. Hereγ > 0 needs to be large enough, that the integrand is analytic along and
above the path ofω integration in the complexω plane. We introduced the abbreviation̂M

m
(k, ω) = Ûm(k, ω)×

Û
†
m(k, ω). In the moving frameξ , it is obviously convenient to transform to the variable� = ω − vk, and to

introduce

uvm(k,�) = um(k,�+ vk) = um(k, ω), � = ω − vk. (M.2)

The characteristic equation

um(k, ωm(k)) = 0 ⇔ uvm(k,�m(k)) = 0 (M.3)

defines the dispersion relationωm(k) or�m(k). The integrals are now of the form

Im =
∫ iγ+∞

iγ−∞
d�

2π

∫ ∞

−∞
dk

2π
exp{ikξ − i�t}

M̂
m
(k,�+ vk)

uvm(k,�)
. (M.4)
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The “saddle point” type approach, that we follow in Sections 5.3,5.4 and 5.5 of this paper, is based on first evaluating
the� integral by closing the� contour in the lower half plane fort > 0 around the simple pole∝ (�− �m(k)).
The integral then yields

Im =
∫ ∞

−∞
dk

2π
exp{ikξ − i�m(k)t}

M̂
m
(k,�m(k)+ vk)

i∂�uvm(k,�m(k))
, (M.5)

whereγ needs to be larger than maxk real(Im�m(k)). From here on, the saddle point analysis proceeds essentially
as in Section 5.4: thek-contour is deformed continuously such that it passes through a saddle point of�m(k) that
allows for a steepest descent evaluation of thek-integral. A saddle point is a double root ink of uvm(k,�), so that

uvm(k,�)|sp = 0 ⇔ ωsp = ωm(ksp) ⇔ �sp = ωm(ksp)− vksp, (M.6)

∂ku
v
m(k,�)|sp = 0 ⇔ (∂k + v∂ω)um(k, ω)|sp = 0 ⇔ v = − ∂kum(k, ω)|sp

∂ωum(k, ω)|sp
. (M.7)

By expanding about such a saddle point, we get for larget to leading order

Im =
M̂
m
(k, ω)

i∂ωum(k, ω)

∣∣∣∣∣
sp

exp{ikspξ − i�spt}
∫
q

exp{iqξ −Dspq
2t} + · · · , (M.8)

with the diffusion constant

Dsp = −i(∂k + v∂ω)
2um|sp

2∂ωum|sp
= −i∂2

k u
v
m|sp

2∂ωuvm|sp
. (M.9)

The remaining integral over realq = k − ksp is a simple Gaussian integral of the form discussed previously in
Section 5.3.1. As before, we are in the comoving frame, if

Im�sp = 0 ⇔ v = Imωm(ksp)

Im ksp
. (M.10)

Differentiating the dispersion relationu(k, ωm(k)) = 0 with respect tok: ∂ku(k, ωm(k)) = 0, and comparing to
(M.7), we can immediately identify

v = ∂ωm(k)

∂k

∣∣∣∣
sp
. (M.11)

From∂2
k u(k, ωm(k)) = 0 and (M.9), we get

D = i∂2ωm(k)

2∂k2

∣∣∣∣
sp
. (M.12)

Choosing in (5.79) the branchm with the largest velocityvsp = v∗, Eq. (5.81) immediately results.
If the denominator of an integral like (M.4) contains a product of characteristic functions

∏M
m=1u

v
m(k,�), then

each factoruvm(k,�)will contribute with its pole and yield an integral as in (M.5), so that the total integral amounts
to a sum ofM integrals of the form (M.5). Again the dominating contribution forξ fixed andt � 1 will be the one
with the largest velocityvsp through which the contour ofk-integration can be deformed.

The pinch point analysis [56] is based on evaluating (M.1) by a different order of the integrations, i.e., by first
closing thek-contour to getk = k(�) and then evaluating the remaining� integral. (Forξ > 0, thek-contour must
be closed in the upper half plane.) As discussed most clearly by Bers [56], this is done as follows.γ in (M.4) has
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to be large enough to lie above the maxima of the dispersion relation�m(k) for realk. When� varies along the
integration path, the poles in thek-plane move. Now whenγ is lowered sufficiently, that it approaches the maximum
of the line�m(k) traced out by the realk values, a pole in thek-plane will approach the realk-axis. When that
happens, thek-contour can be continuously deformed to avoid this pole. This in turn allows one to lower the value
of γ . This process can continue until two poles in thek-plane approach thek-contour from opposite sides, and
“pinch off” the k-contour at a particular value of�∗. Clearly, that point corresponds to a double root, since for that
given value of� the twok roots coincide. When thek-contour is closed, this point generates a branch-cut in the
� plane, since near�∗ we havek − k∗ = ±((�−�∗)/D)1/2. When the� contour is subsequently closed in the
lower half� plane, these branch points then generate the usual leading asymptotic behavior ((5.14) and (5.15)).

In both approaches, there are conditions for a saddle or pinch point to be dynamically relevant; these arise from the
global properties of the dispersion relationω(k). In the saddle point approach, only saddle points that will dominate
thek-integral along the deformed contour of integration, are relevant for the dynamics. Pictorially, a saddle point
that obeys these conditions is located between “valleys” of Imω(k) in the direction of realk that are not completely
separated by “ridges” from the realk-axis. In this formulation, the condition ReD > 0 naturally comes out. If
there is more than one such saddle point, the one with the highest velocityv∗ determines the asymptotic spreading
velocity. In the pinch point formulation, the condition usually mentioned is that the poles in thek-plane “pinch off”
thek-contour, while the condition ReD > 0 is usually not mentioned, but it is actually hidden in the formulation as
well: it just expresses that the pinch point is associated with a point of the dispersion relation, where the growth rate
is maximal. In fact, the examples discussed in [[56], pp. 466–467] for solutions of the saddle point equations which
are no pinch points, are just cases where ReD < 0, i.e., solutions which are excluded by a saddle point formulation
as well. In the pinch point formulation, the improper solutions of the saddle point equations correspond to solutions
where two poles in thek-plane do not “pinch off” the deformedk-contour, but instead just merge by themselves.
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