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a b s t r a c t

An interfacial approximation of the streamer stage in the evolution of sparks and lightning can be written
as a Laplacian growth model regularized by a ‘kinetic undercooling’ boundary condition. We study the
linear stability of uniformly translating circles that solve the problem in two dimensions. In a space of
smooth perturbations of the circular shape, the stability operator is found to have a pure point spectrum.
Except for the eigenvalue λ0 = 0 for infinitesimal translations, all eigenvalues are shown to have negative
real part. Therefore perturbations decay exponentially in time. We calculate the spectrum through a
combination of asymptotic and series evaluation. In the limit of vanishing regularization parameter, all
eigenvalues are found to approach zero in a singular fashion, and this asymptotic behavior is worked out
in detail. A consideration of the eigenfunctions indicates that a strong intermediate growthmay occur for
generic initial perturbations. Both the linear and the nonlinear initial value problem are considered in a
second paper.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Themotion of interfaces in a Laplacian field is of general interest
and has been a subject of intense study over many years (see for
instance the reviews [1,2]). Such problems arise in many physical
contexts, such as viscous fingering inmulti-phase fluid flow [3–16],
dendritic crystal growth in the quasi-steady small Peclet number
limit [17–20], void electromigration [21–25] and a host of other
phenomena such as the growth of biological systems like bacterial
colonies or corals [26].
More recently, a similar mathematical problem has been

discovered in the study of ‘streamers’ [27–34] which occur during
the initial stage of electric breakdown and play an important role
both in the natural phenomena of sparks and lightning as well
as in numerous technical applications [33]. Streamers are weakly
ionized bodies growing into some nonionized medium due to an
externally applied electric field. This field is so strong that the
drifting electrons very efficiently create additional electron ion
pairs by impact ionization, and the nonlinear coupling between
ionized body and field further increases this effect.
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Models for negative streamers in simple gases like nitrogen or
argon are based on a set of partial differential equations for the
densities of electrons and of positive ions coupled to the electric
field [28–33]. Analysis and numerical solutions of these equations
reveal that in the front part of the streamer, a thin surface charge
layer develops where the electron density strongly exceeds the
ion density. Therefore the electric field E varies strongly when
crossing this layer. Right before the layer, it is enhanced, but in
the interior of the streamer, it is screened to such a low level
that impact ionization is suppressed and the electron current
transporting charge from the interior to the surface charge layer is
small. Consequently we may take the interior as being essentially
passive, and the growth of the streamer is governed by the surface
charge layer which is driven by the strong local field.
If the external field is very strong, the thickness ` of the surface

charge layer can become small compared to the typical diameter
2R of the streamer [34]. This suggests modeling this layer as
an interface separating the ionized interior from the nonionized
exterior region. In this model the variation of the potential ϕ
across the surface charge layer is replaced by a discontinuity on the
interface. Since the interior is considered passive, only the limiting
value ϕ+ reached by approaching the interface from the outside
is relevant for the dynamical evolution, and analysis of results of
the PDE-model suggests [34–36] that with an appropriate gauge,
ϕ+ is coupled to the limiting value E+ of the electric field by the
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boundary condition

ϕ+ = −`n · E+. (1)

Here n is the outward normal on the interface, ` is the
regularization length corresponding to the interface thickness,
and E+ = −∇ϕ+, where the + again indicates the limit of
approaching the interface from the outside. In the context of
dendritic crystal growth, this boundary condition is equivalent
to including the kinetic undercooling effect1 while excluding the
usual Gibbs–Thompson surface energy correction to the melting
temperature.
As the motion of the interface is caused by the drift of the

electrons in the local electric field v = −E, the interface moves
with normal velocity

vn = −n · E+, (2)

and outside the streamer the potential obeys the Laplace equation

∆ϕ = 0. (3)

We discuss the problem defined by Eqs. (1)–(3) in infinite
two-dimensional space, with the electric field becoming constant,
E = −∇φ → E∞, far from the streamer; such a condition
is realized frequently in atmospheric discharges, e.g., inside
thunderclouds. This far-field condition on ∇φ is different from
the usual source/sink condition in viscous fingering in the absence
of side-walls, or undercooling specification in the quasi-steady
low Peclet number crystal growth problem which have been
extensively studied. However,moving bubbles and fingers in a long
Hele–Shaw channel are indeed subjected to this type of far-field
condition. (For the discussion of the streamer problem equivalent
to the Saffman-Taylor finger, we refer to [38].) Further, in the
crystal growth or directional solidification problem, a systematic
inner-outer analysis for small Peclet number [17,20] shows that
this is an appropriate condition at∞ for the ‘‘inner’’ problem.
A simple steady solution to the streamer equations given above

is a circle translating with constant velocity determined by E∞
[35,36]. Though such circles differ from proper streamers, which
are growing channels of ionized matter [33,38–40], their front half
closely resembles the head of the streamerwhere the growth takes
place. It is therefore a question of physical interest whether or not
translating circular solutions are stable to small perturbations and
this is the subject of the present investigation.
The relevance of this analysis for more realistic streamer

shapes is supported by results found in another physical context.
Steadily translating circles also arise in viscous fingering in a
Hele–Shaw cellwhen surface tension is included (instead of kinetic
undercooling) in the limit when the bubble is small compared
to the cell-dimensions [3]. The linear stability of these bubbles,
including larger non-circular steadily translating bubbles, has
been studied before both for one and two fluids [10,14] and the
results largely mimic those obtained for a finger, though the latter
calculations are mathematically much more involved.
It has been known for a while that in the absence of any

regularization, such as surface tension or kinetic undercooling, the
initial value problem in a Laplacian field is ill-posed [9] in any
norm that is physically relevant to describing interfacial features.
This is reflected in the instability of any steady shape, when the
growth rates increase with the wave numbers of the disturbances.
Ill-posedness makes idealized model predictions sometimes
physically irrelevant (see [15] for a thorough discussion) and
regularization becomes essential.

1 Under most natural conditions of crystal growth, kinetic undercooling is
important in a limit when the Peclet number is not small enough to justify a
Laplacian field approximation; nonetheless, there have been some studies of steady
Laplacian crystal growth with kinetic undercooling effects only [37].
Considering a planar front, one finds that regularization does
not remove the instability against fluctuations of small wave
number. However, for largewave numbers, linear stability analysis
exhibits a basic difference between surface tension and kinetic
undercooling. All large wave number components of a disturbance
decay with surface tension regularization, while for kinetic
undercooling the growth rate saturates to a constant that scales
as `−1 [16]; for streamers, such a saturating dispersion relation is
derived and discussed in [41,42].
For curved fronts, one can pose the question: how does

curvature stabilize, if at all, a disturbance whose wavenumber
is in the unstable regime for a flat interface, either with surface
tension or with kinetic undercooling regularization? With surface
tension regularization, some answers are available in the existing
literature. Arguments have been presented [4,6] that suggest that
a localized wave packet with wave numbers in the unstable
regime2 advects along the front as it grows; once it reaches the
side of the front where the local normal velocity is zero, the
disturbance stops growing. If the steady shape is closed, as it is
for a circle, the continued advection of the wave-packet towards
the receding parts of the interface will cause the disturbance
to decay eventually.3 If regularization is small, there is a large
transient growth. Unless the disturbance amplitude is smaller than
a threshold that shrinks to zero with regularization, the transient
exponential growth causes the interface to enter a nonlinear
regime that can destabilize the steady front, even when it is
predicted to be linearly stable. Analysis of approximate equations,
supported by numerical calculations of the full equations support
the above scenario. Similar stabilization should occur for the
kinetic undercooling boundary condition as well, though we are
not aware of any explicit study affirming this expectation.
Note, however, that stabilization of localized wave packets

does not rule out instability to long ranged disturbances. A formal
asympotic study for small nonzero surface tension [12,14] as well
as numerical studies [7] reveal that surface tension stabilizes
precisely one branch of steady solutions for fingers and bubbles in
a Hele–Shaw cell. Similar results follow for a needle crystal [18]
though in the latter case, convective instability of wave packets
caused by significant normal speed along the parabolic front
is believed to cause dendritic structures [1]. These conclusions
have been challenged at times by alternate scenarios (see for
instance [19]) that are based on formal calculations, but with
different implicit assumptions. Such controversy affirms the need
for more rigorous mathematical studies of the stability problem,
even if it is for relatively simple shapes such as the circle in the
present study.
For the kinetic undercooling boundary condition, relying

merely on a numerical study to understand the long time behavior
is fraught with difficulties. One finds a collapsing spatial scale for
large time at the rear of the circle. Analytically, this is found for
ε = `/R = 1 in [35,36].4 As will be argued in the present and
the companion paper, the occurrence of this collapsing scale is a
general feature for any ε > 0. This means that as t → ∞, one
must resolve progressively finer scales near the back of the bubble.
Further, calculations for small ε require resolving a large number of
transiently growing modes. All this underscores the need of some
progress on the analytical side.

2 Localized disturbances refer to those with wavelengths far smaller than the
typical radius of curvature of the steady shape. These can be unstable only if the
regularization parameter is sufficiently small.
3 Surface tension causes localized disturbances to decay as they advect to the
sides even when an interface is not closed but becomes parallel to the direction of
motion as is the case for a finger in a Hele–Shaw cell. However, no decay is expected
for kinetic regularization. This is where a closed interface is different.
4 We recall that R is a measure of the size of the streamer. The precise definition
is given in Eq. (5).
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The present paper, which is part I of a two-paper sequence,
is devoted to the spectral properties of the linear stability
operator, associated with infinitesimal perturbations of a circle.
In part II [43], we will consider the initial value problem,
presenting analytical and numerical results on the evolution of
both infinitesimal and finite perturbations.
The present paper is organized as follows. In Section 2 we

reformulate the problem defined by Eqs. (1)–(3) by standard
conformal mapping, and we present the PDE governing the time
evolution of infinitesimal perturbations of the circle. This material
has been presented before in [35,36], where also the general
solution of the PDE in the case ε = 1 has been discussed
in detail. The explicit solution found for ε = 1 shows that
outside any fixed neighborhood of the rear of the bubble, the
long-term behavior of infinitesimal perturbations is described by∑
∞

n=0 e
λntβλn , where λn is the nth eigenvalue (ordered according

to absolute value) of the linear stability operator and βλn is the
corresponding eigenfunction.
We then study this eigenvalue value problem for arbitrary

ε > 0. We show in Section 3 that the linear stability operator,
defined in an appropriate space of analytic functions, has a pure
point spectrum. In Section 4 it is proven that there are no discrete
eigenvalues with non-negative real part, except λ = 0 that
corresponds to the trivial translation mode. A set of discrete,
purely negative eigenvalues is calculated in Section 5 as a function
of ε; they smoothly extend the results found previously for
ε = 1. The results suggests that as ε → 0, the spectrum
degenerates to the trivial translation mode and this limit is
discussed in detail in Section 6. Section 7 contains a discussion of
the eigenfunctions belonging to these eigenvalues, and Section 8
contains the conclusions. Somepart of our analysis exploits general
results on the asymptotic behavior of the coefficients of Taylor
expansions. These results are presented in an Appendix.

2. Reformulation by conformal mapping

In this section,we collect results andnotations from [35,36] that
will be used in later sections.

2.1. Problem formulation and rescaling

We consider a compact ionized domain D in the (x, y)-plane.
We assume that the net charge on the domain vanishes (i.e., it
contains the same number of electrons and positive ions). The
domain moves in an external field that far from the domain
asymptotically approaches

E∞ = −|E∞| x̂. (4)
Here x̂ is the unit vector in x-direction, and |E∞| sets the scale of E
and thus of the potential ϕ. As length scale we take

R =

√
|D|

π
. (5)

where |D| is the area ofD , which is known to be conserved. This
follows from the charge neutrality of the streamer since

0 =
∫

D

dx dy ∇ · E =
∫
∂D

ds n(s) · E = −
∫
∂D

ds vn, (6)

where in the last step we inserted Eq. (2) for the normal velocity of
the boundary. Since∫
∂D

ds vn = ∂t |D|, (7)

the area is conserved, irrespective of the precise charge distribu-
tion in the interior.5 Also introducing the time scale R/|E∞|, we

5 We remark that the argument is straight forward to generalize to three spatial
dimensions. Therefore the volume of a charge neutral object with surface velocity
v ∝ E+ in three spatial dimensions is conserved as well.
rescale the basic equations to the dimensionless form

∆ϕ = 0, (x, y) 6∈ D (8)

vn = n · (∇ϕ)+ (9)

ϕ+ = ε n · (∇ϕ)+. (10)

The only remaining parameter in the rescaled problem is

ε = `/R. (11)

The boundary condition at infinity after rescaling takes the form

ϕ→ x+ const for
√
x2 + y2 →∞. (12)

2.2. Conformal mapping

We now identify the physical (x, y)-plane with the closed
complex plane z = x + iy, and we introduce a conformal
map f (ω, t) that maps the unit disk Uω in the ω-plane to the
complement of D in the z-plane, with ω = 0 being mapped on
z = ∞,

z = f (ω, t) =
a−1(t)
ω
+ f̂ (ω, t), a−1(t) > 0. (13)

We further define a complex potentialΦ(ω, t) obeying

Re[Φ(ω, t)] = ϕ(f (ω, t)) for ω ∈ Uω. (14)

The boundary condition (12) and the Laplace Eq. (8) enforce the
form

Φ(ω, t) =
a−1(t)
ω
+ Φ̂(ω, t) (15)

with Φ̂ being holomorphic for ω ∈ Uω .
The two boundary conditions (9) and (10) take the form

Re
[
∂t f
ω∂ωf

]
= Re

[
ω∂ωΦ

|∂ωf |2

]
for ω ∈ ∂Uω, (16)

|∂ωf | Re[Φ] = −ε Re[ω∂ωΦ] for ω ∈ ∂Uω, (17)

which completes the reformulation of the moving boundary
problem (8)–(12) by conformal mapping.
We will restrict the analysis here to initial conditions f̂ (ω, 0)

holomorphic in some domainU′0 ⊃ Uω . In part II [43] of this paper
sequence,wewill give evidence that analyticity onUω is preserved
in time, though the distance of the domain of analyticity U′t to
∂Uω shrinks with time. The streamer boundary ∂D , which is the
image of boundary ∂Uω under f (ω, t), will turn out to be analytic
and therefore smooth. Similar analytic representations exist for the
entire class of 2-D Laplacian growth, with details depending on the
type of boundary condition, geometry and asymptotic conditions
at infinity. For the classic viscous fingering problem, Polubarinova-
Kochina [44] and Galin [45] use a representation that coincides
with the one given above in the unregularized case ε = 0.

2.3. Linear perturbation of moving circles

It is easily seen that Eqs. (16) and (17) allow for the simple
solution

f (0)(ω, t) =
1
ω
+

2t
1+ ε

,

Φ(0)(ω, t) =
1
ω
−
1− ε
1+ ε

ω,

(18)

which in physical space describes circles of radius 1 moving with
constant velocity 2/(1 + ε) in x direction. (We recall that the
radius was scaled to unity in Section 2.1.) We note that relaxing
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the analyticity conditions on f (ω, t) on |ω| = 1, one can
obtain another set of uniformly translating solutions, as recently
discovered [46]. The present paper is restricted to perturbations of
the steady circle that retain the imposed analyticity of the streamer
shapes, and hence analyticity of f (as well asΦ) on |ω| = 1.
As the area is conserved (as shown in Section 2.1), the residue

a−1 = 1 does not change to linear order in the perturbation. We
therefore can use the ansatz

f (ω, t) = f (0)(ω, t)+ η β(ω, t),

Φ(ω, t) = Φ(0)(ω, t)+ η
2
1+ ε

χ(ω, t),
(19)

whereη is a small parameter, andβ(ω, t),χ(ω, t) are holomorphic
inUω . A first order expansion of Eqs. (16) and (17) in η yields the
following boundary conditions for the analytic functions β(ω, t)
and χ(ω, t) on |ω| = 1:

Re[ω∂τβ − ω∂ωβ] = Re[−ω∂ωχ ],

ε

2
Re
[(
ω +

1
ω

)
ω2∂ωβ

]
= Re[εω∂ωχ + χ ],

(20)

where we rescaled time as

τ =
2
1+ ε

t. (21)

Since the left and right sides of each of the two equations in (20)
are real parts of analytic functions and each is assumed a priori
continuous up to the boundary, they can differ everywhere in ω
by at most an imaginary constant. Evaluation at ω = 0 shows this
constant to be zero for the first of the two equations. Elimination
of χ results in the linear PDE:

Lε β = 0 (22)

with the operator

Lε =
ε

2
∂ω (ω

2
− 1) ω ∂ω + ε ∂ω ω ∂τ + ∂τ − ∂ω. (23)

We note thatLε is of similar structure as the operator resulting
from a linear stability analysis of translating circles in the context
of void electromigration [22,24]. The main difference here is the
occurrence of the mixed derivative ∂ω ω ∂τ .

2.4. Formulation of the eigenvalue problem

To motivate our formulation of the eigenvalue problem, we
note some results on the temporal evolution of infinitesimal
perturbations. In [36], the equation Lε β = 0 was solved as an
initial value problem for the special value ε = 1. It was found
that any initial perturbation β(ω, 0) holomorphic inU′ ⊃ Uω for
τ →∞ is exponentially convergent to some constant. This results
from the expansion

β(ω, τ) =

∞∑
n=0

gn β
(1)
λn
(ω) eλnτ , (24)

with

λn = −n, n ∈ N0, for ε = 1. (25)

The coefficients gn and the eigenfunctions6

β
(1)
λn
(ω) =

∫ ω

0

x dx
ω2

(
x− 1
x+ 1

)−λn
(26)

6 Note that the exponent−λn in (26) is correct while+λn in Eq. (4.20) in [36] is
a typo.
are determined by an expansion of (2+ω∂ω)β(ω, 0) in powers of
(1−ω)/(1+ω). For n > 0 the eigenfunctions (26) are singular at
ω = −1, though β(ω, τ) is not. The expansion (24) is convergent
in a domain Dτ expanding in time that eventually includes every
point in Ūω \ {−1}. For large τ the region where the expansion is
invalid, shrinks to ω = −1 exponentially. This region is measured
by the new scale η1(ω, τ) = (1 + ω)eτ , and the expansion (24)
is valid if η1 is large. For η1 ≤ O(1) the perturbation for τ → ∞
behaves as β(ω, τ)→ F0(η1)+ O(e−τ ) where F0 is some analytic
function of its argument, depending on β(ω, 0).
For an analytic initial condition on U′, with a lone branch

point singularity ωs in |ω| > 1 not on the positive real axis, the
emergence of this new scale near ω = −1 can be related to the
approach of this complex singularity towards −1 exponentially
in τ for large τ . Asymptotic arguments that will be presented in
part II [43] suggest that this behavior is generic for all ε > 0. The
analysis is based on the linear the evolution equations for bk, where

β(ω, τ) =

∞∑
k=0

bk(τ )ωk.

For k� eτ , we find the asymptotic relation

bk ∼ (−1)kk−αh(τ ) exp [−kf (τ )] ,

where

f (τ ) = log
[
1+ Ce−τ

1− Ce−τ

]
, with C =

ωs + 1
ωs − 1

.

For ωs 6∈ (1,∞), f (τ ) stays finite and approaches 0 exponentially
in τ for large τ . If ωs ∈ (1,∞), f (τ ) increases monotonically
to ∞ for τ ∈ (0, τc) where e−τc = 1/C . For τ > τc , f (τ )
decreases monotonically and approaches 0 exponentially in τ as
τ → ∞. In either case, from the known relation between Taylor
series coefficients and the location of the closest singularity of an
analytic function (see the Appendix), it follows that f (τ ) ∼ e−τ
as τ → ∞ implies that β has a singularity approaching ω = −1
exponentially in τ for large τ . This feature is retained for any other
isolated initial singularities as well, though k−α is replaced by a
more complicated dependence in k. Since the problem is linear, the
evolution of a distribution of initial singularities can be understood
from the linear superposition principle.
This suggests that for any ε > 0, as for ε = 1, β(ω, τ) has a

collapsing scale (1+ω)eτ , and an expansion of the type (24) cannot
be valid in this neighborhood of ω = −1.
Thus, in seeking an eigenfunction by substituting

β(ω, τ) = β
(ε)
λ (ω) e

λτ , (27)

into (22) and (23), it is appropriate to allow β(ε)λ to be singular at
ω = −1. Indeed, substituting the form (27) reduces Eqs. (22) and
(23) to the eigenvalue problem

L(ε, λ) β(ε)λ (ω) = 0, (28)

L(ε, λ) =
ε (ω2 − 1)ω

2
∂2ω +

(
ε (3ω2 − 1)

2
− 1

)
∂ω

+ λ(1+ ε + εω∂ω). (29)

Evidently this ODE has three regular singular points, namelyω = 0
and ω = ±1. The independent solutions at these points for ε > 0
are in leading order

β
(ε)
λ (ω) ∼

{
ω0

ω−2/ε
for ω→ 0, (30)

β
(ε)
λ (ω) ∼

{
(1∓ ω)0

(1∓ ω)1/ε∓λ
for ω→±1, (31)
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We require the eigenfunctions βελ to be solutions of (28) that are
analytic in ω = 0 and ω = 1. This is also the natural choice
from a physical point of view since it is the right half of the circle,
Re[ω] > 0, that corresponds to the physically interesting tip of
the streamer. In general, eigenfunctions cannot be expected to be
regular at all three points. Startingwith a function regular atω = 0,
we cannot generally require regularity at both points ω = ±1 by
adjusting the single parameter λ. As shown in Section 4.3, the only
eigenfunction regular at all three points is the trivial translation
mode

λ0 = 0, β
(ε)
0 (ω) = const. (32)

As noted above, an operator similar to Lε (23) occurs in the
problem of void electromigration, see section 4.1.3 in [24]. Again
an eigenvalue analysis would yield a second order linear operator
with three singular points at ω = 0 and ±1 and therefore the
eigenmodes in general cannot be regular at all three singular
points. It is interesting to note that the authors [24] conclude
that their problem is unstable because the initial value problem
for large time is singular at ω = −1. In the current problem,
the solution [43] of the initial value problem is not singular at
ω = −1; the singularity of the eigenfunctions does not reflect
the true behavior of solution since, as has been pointed out earlier,
there is an anomalous contracting scale eτ (1 + ω) near the back
of the bubble. Whether or not there is an analogous contracting
scale for the void electromigration problem [24] remains an
interesting question. This anomalous scale shows up when the
limiting processes limω→−1 and limτ→+∞ do not commute for the
solution of the initial value problem.

3. Discreteness of the spectrum

We define λ to be in the spectrum, if the linear operator L(ε, λ)
does not have a bounded inverse in the class of functions f that
are analytic in an arbitrary compact connected set V ⊂ U′ \ {−1}
that contains the whole line [0, 1] in its interior. λ is in the discrete
spectrum if (28) has a nonzero solution β(ε)λ (ω) that is analytic in
any such domain V . We now argue that if λ is not in the discrete
spectrum, then L(ε, λ) has a bounded inverse, i.e. there is only a
discrete spectrum in this problem.
To determine L−1, we solve the equation

L(ε, λ)g = h (33)

for a given h analytic in V , imposing the condition that also
g is analytic in V . The solutions of the homogeneous equation
L(ε, λ)f = 0 that are regular at ω = 0 or ω = 1
will be denoted by f1(ω) or f2(ω), respectively. It follows from
Eqs. (30) and (31) that these functions are determined uniquely
up to a multiplicative constant. In the exceptional case where both
independent solutions are regular at ω = 1, λ belongs to the
discrete spectrum, see Section 5. A standard calculation shows that
Eq. (33) is solved by

g(ω) =
1

C(ε, λ)

∫ ω

0
dω′ G(ω, ω′) h(ω′)+ a1[h] f1(ω), (34)

where

G(ω, ω′) =
ω′
2/ε

(1− ω′)1/ε−λ(1+ ω′)1/ε+λ

×
[
f2(ω)f1(ω′)− f1(ω)f2(ω′)

]
, (35)

and the coefficient a1[h] is a functional of h(ω′). C(λ, ε) does not
vanish since otherwise the Wronskian f1 ∂ωf2 − f2 ∂ωf1 vanishes
identically and λ is part of the discrete spectrum. It is easily seen
that Eqs. (34) and (35) render g(ω) analytic in ω = 0, and this
condition eliminates any contribution of the form a2[h] f2(ω).
Analyticity at ω = 1 is enforced by a proper choice of a1[h].
To make the analysis explicit, in addition to f2(ω), we introduce
another solution to L[ε, λ]f = 0 by requiring

f3(ω) = (1− ω)1/ε−λ f̂3(ω), (36)

where f̂3(ω) is analytic at ω = 1. Using this form of f3(ω), we
exclude the case 1

ε
− λ ∈ Z+, that will be discussed later. Writing

f1(ω) as

f1(ω) = c2f2(ω)+ c3f3(ω), (37)

we find that G(ω, ω′) from Eq. (35) takes the form

G(ω, ω′) =
c3ω′

2/ε

(1+ ω′)1/ε+λ

×

[
f2(ω)f̂3(ω′)−

(
1− ω′

1− ω

)λ−1/ε
f̂3(ω)f2(ω′)

]
.

Evidently the first part in the square brackets for ω → 1 yields
a regular contribution to g(ω) from Eq. (34). The contribution to∫
G h that is singular in ω = 1 has the form

−c3f3(ω)
∫ ω

0
dω′ (1− ω′)λ−1/εH(ω′),

where

H(ω′) =
ω′
2/ε

(1+ ω′)1/ε+λ
f2(ω′) h(ω′) (38)

is regular at ω′ = 1. If Re λ− 1
ε
> −1, we can write

− c3f3(ω)
∫ ω

0
dω′ (1− ω′)λ−1/εH(ω′)

= −c3f3(ω)
∫ 1

0
dω′ (1− ω′)λ−1/εH(ω′)

+ c3 f̂3(ω)
∫ 1

ω

dω′
(
1− ω′

1− ω

)λ−1/ε
H(ω′). (39)

The second part is regular at ω = 1 and the singular first part is
canceled by the choice

a1[h] =
∫ 1

0
dω′ (1− ω′)λ−1/εH(ω′). (40)

We note that this result is valid also for λ = 1
ε
+ n, n ∈ N,

where f3(ω) instead of being of the form (36) shows a logarithmic
singularity.
If −n > Re λ − 1

ε
> −n − 1, n ∈ N, we carry through n

subtractions of H(ω′) at ω′ = 1, defining

[
H(ω′)

]
n = H(ω

′)−

n−1∑
j=0

Hj (1− ω′)j, (41)

so that
[
H(ω′)

]
n ∼ const (1−ω

′)n. A short calculation shows that
the singular part of

∫
G h is canceled by the choice

a1[h] =
∫ 1

0
dω′ (1− ω′)λ−1/ε

[
H(ω′)

]
n

+

n−1∑
j=0

Hj
λ− 1

ε
+ j+ 1

. (42)

The expressions above clearly remain valid when 1
ε
− Re λ = n,

except when 1
ε
− λ = n, a positive integer.

When 1
ε
− λ = n is a positive integer, from well-known

theory [47] for regular singular points, instead of (31), the
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solutions f1 and f2 as defined earlier must have the following local
representation near ω = 1:

f1(ω) = C1(1− ω)nB1(ω) log(1− ω)+ B2(ω), (43)

f2(ω) = (1− ω)nB1(ω), (44)

where B1 and B2 are analytic at ω = 1. If f1 and f2 are independent,
as they are when λ is not in the discrete spectrum, then C1(ε, λ)
6= 0.
We now define

H(ω) = B2(ω)(1+ ω)n−2/εω2/εh(ω), (45)

while Hj is still defined by the expression (41). It is also convenient
to define

Q (ω) = B1(ω)(1+ ω)n−2/εω2/εh(ω), (46)

Note that each of H and Q are analytic at ω = 1. Straight forward
calculation based on (34) shows that the possibly singular part of
g(ω) at ω = 1 is given by

−
Hn−1
C
ln(1− ω)B1(ω)(1− ω)n

+ f1(ω)

(
a1 −

∫ 1

0
dω′

ω′
2/ε f2(ω′)h(ω′)

C(ε, λ)(1− ω′)n(1+ ω′)2/ε−n

)

+
C1f2(ω)
C

∫ ω

1
dω′ Q (ω′) ln

1− ω′

1− ω
.

The last term is analytic at ω = 1. The singularity vanishes if we
choose

a1 =
Hn−1
C1C
+

∫ 1

0
dω′

ω′
2/ε f2(ω′)h(ω′)

C(ε, λ)(1− ω′)n(1+ ω′)2/ε−n
. (47)

For any λ for which C(λ, ε) 6= 0, using the explicit expression
(34) with a1 determined from (40), (42) or (47), whatever the case
may be, we have in the domain V ,

‖g‖∞ ≤ C‖h‖∞, (48)

This conclusion follows from observing the properties of the
integrand and noting that the Hj, j = 1, . . . n are bounded by
some multiples of supω∈V |h(ω)|, since they involve only a finite
number of derivatives of h at ω = 1. Since the boundary ∂V is at
a finite distance from ω = 1, the derivatives ∂ jωh|ω=1 by Cauchy’s
theorem are bounded by bj supω∈V |h(ω)|where bj is independent
of h. Hence, we have shown7 that λ is in the spectrum only if
C(λ, ε) = 0, i.e. we can only have a discrete spectrum in this
problem.

4. Absence of eigenvalues with positive real part and of purely
imaginary eigenvalues

4.1. Purely positive eigenvalues

Real eigenvalues λ > 0 easily are excluded. Substituting into
Eq. (28) the power series

β
(ε)
λ (ω) =

∞∑
k=0

bk ωk, (49)

which converges for |ω| < 1 due to the location of the regular
singular points, we find the recursion relation

bk = 2λ
1+ εk
k(2+ εk)

bk−1 + ε
k− 2
2+ εk

bk−2 for k ≥ 2, (50)

7 Note that by definition, λ is not in the spectrum if the resolvent L−1 is bounded.
and

b1 = 2λ
1+ ε
2+ ε

b0. (51)

We choose b0 = 1 as initial value.
For λ > 0, evidently all bk are positive, and bk obeys the bound

bk > ε
k− 2
2+ εk

bk−2,

and therefore

bk >
Γ
( k
2

)
Γ
(
1+ 1

ε
+
k
2

) const. > 0. (52)

For k� 1/ε, this yields the lower bound

bk > const k−1−1/ε,

which shows that a sufficiently high derivative of β(ε)λ (ω) (49)
diverges for ω = 1, which contradicts the regularity requirement.

4.2. Eigenvalues with positive real part

To eliminate eigenvalues λ = µ + iν with µ > 0 needs
more refined arguments. We first derive an inequality replacing
(52) above. Motivated by (52), we rewrite the recursion relation
(50) in terms of

ck =
Γ
(
1+ 1

ε
+
k
2

)
Γ
( k
2

) bk, k ≥ 1. (53)

This yields

ck = λ gk ck−1 + ck−2, k ≥ 3, (54)

where

gk ≡
2(1+ εk) Γ

( k−1
2

)
Γ
(
1+ 1

ε
+
k
2

)
k(2+ εk) Γ

( k
2

)
Γ
( 1
2 +

1
ε
+
k
2

)
=
2
k

(
1+ O

(
1
k

))
. (55)

We now multiply (54) by c∗k−1 and take the real part. With the
notation

rk = Re
{
ckc∗k−1

}
, (56)

we get the relation

rk = µ gk |ck−1|2 + rk−1, k ≥ 3. (57)

Since µ > 0 and

r2 = Re
{
c2c∗1

}
= 2µ|λ|2

(1+ ε)(1+ 2ε)
(2+ ε)2

Γ
( 3
2 +

1
ε

)
Γ
(
2+ 1

ε

)
Γ
( 1
2

)
> 0,

the rk form an increasing series of positive numbers bounded by

rk ≥ r2 > 0. (58)

The recursion relation (57) formally is solved as

rk = µ
k∑
j=3

gj |cj−1|2 + r2, k ≥ 3. (59)

Using now the relation

|ck|2 + |ck−1|2 = 2rk + |ck − ck−1|2 ≥ 2rk,

we find the bound

|ck|2 + |ck−1|2

2
≥ µ

k∑
j=3

gk |cj−1|2 + r2. (60)
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We note that this bound is positive and increases monotonically.
We now recall that by definition of the eigenfunctions, the only

singularity in the complex plane is of the form

(1+ ω)1/ε+λ f (ω),

where f (ω) is regular in |ω| ≤ 1, including ω = −1. A standard
result on the relation of power series coefficients to the closest
complex singularity (see the Appendix) is, that the asymptotic
behavior of bk of the expansion (49) satisfies

|bk| ∼ B∞ k−µ−1/ε−1,

where B∞ is some constant. In view of (53), this implies

|ck| ∼ const 2−1−1/ε k−µ → 0

for k → ∞ which contradicts the bound (60). We thus conclude
that there are no eigenvalues λwith Re λ > 0.

4.3. Purely imaginary eigenvalues

Now consider the possibility of a purely imaginary eigenvalue
λ = iν with ν real. From the recursion relation, it is clear that
ν = 0 corresponds to the translation mode. So we only consider
the case ν 6= 0. From complex conjugation symmetry, it is clear
that if λ = iν is an eigenvalue, so is λ = −iν. Therefore, we may
assume without any loss of generality that ν > 0.
We introduce

b̂k = i−kbk. (61)

The recursion relation (50) takes the form

b̂k = 2ν
1+ εk
k(2+ εk)

b̂k−1 − ε
k− 2
2+ εk

b̂k−2,

b̂0 = 1, b̂−1 = 0, (62)

which shows that b̂k is real for any k. Thus the function

β̂(ω̂) =

∞∑
k=1

b̂kω̂k = β
(ε)
λ (ω), ω̂ = iω, (63)

is real for real ω̂, and the reflection principle guarantees

β̂∗(ω̂∗) = β̂(ω̂).

Thus β̂(ω̂) either is singular both at ω̂ = ±i, corresponding to
ω = ∓1, or is entire. When λ = iν is some eigenvalue, we cannot
have a singularity at ω̂ = −i and so β̂(ω̂)must be entire. We will
now show that this is impossible.
First, note from the recursion relation that β̂(ω̂) cannot be a

polynomial since if bk = 0 = bk−1, then so must bk−2 and all the
previous coefficients. Choose k0 so large that for k ≥ k0 ≥ 4

εk
1+ ε(k+ 2)

≥
1
2
,

2+ ε(k+ 2)
εk

≤ 2. (64)

We choose a specific ρ large enough that

ρ ≥ 4,
ρ

2ν
> 4. (65)

Since
∑
∞

k=k0
b̂kω̂k is an entire function, it follows that for any k0,

there exists a constantM > 0 so that

ρk|b̂k| ≤ M for k ≥ k0. (66)

We redefineM in the relation (66) to be the least upper-bound for
ρk|b̂k|. Note that since β̂(ω̂) is not a polynomial,M cannot be zero.
We now introduce

dk =
ρk b̂k
M

(67)
and rewrite recursion relation for k ≥ k0 + 2 as

dk = 2ν
1+ εk
k(2+ εk)

ρ dk−1 − ε
k− 2
2+ εk

ρ2 dk−2. (68)

The bound (66) translates into

|dk| ≤ 1 for k ≥ k0. (69)

Solving (68) for dk−1, and shifting the indices k→ k+2, we obtain
for k ≥ k0

dk+1 =
ρ(k+ 2)
2ν

εk
1+ ε(k+ 2)

[
dk +

(
2+ ε(k+ 2)

εkρ2
dk+2

)]
.(70)

Since M was the least upper bound for ρkb̂k, it follows that there
exists some k∗ ≥ k0 so that

|dk∗ | ≥
1
2
. (71)

On using (64), (65) and |dk∗+2| ≤ 1, it follows from (70) that

|dk∗+1| ≥ (k∗ + 2)
[
1−

1
4

]
> 1 (72)

which is inconsistent with (69).
We note that this argument not only excludes imaginary

eigenvalues, but it also shows that except for the trivial translation
mode β(ε)0 (ω) ≡ 1 corresponding to λ = 0, there are no
eigenfunctions regular at all three points ω = 0, ±1. This follows
from simply replacing ν by −iλ (or |λ|, respectively) in the above
analysis without necessarily restricting λ to be imaginary.

5. Calculation of negative eigenvalues for ε > 0

We now concentrate on the infinite discrete set of negative
eigenvalues λn(ε) which continue the eigenvalues λn(1) = −n
found in [35,36]; here the general case of ε > 0 is consideredwhile
the limit ε ↓ 0 is subject of Section 6.
Observing the parametric dependence of the operator L in

(29) on ε and λ, any solution β of the homogeneous equation
L(ε, λ)β = 0 is analytic in λ and ε, with the possible exception
of ε = 0. Therefore the Wronskian of any two solutions is an
analytic function of (λ, ε), except at ε = 0. Since each eigenvalue
λn(ε) is determined as a zero of a particular Wronskian, it follows
that it will change continuously with ε, except at ε = 0. Since
eigenvalues {λn(ε)}n are all real at ε = 1, as ε is decreased
continuously from 1 towards 0, the only way eigenvalues can
become complex is through collision of erstwhile real eigenvalues,
i.e., through the existence of a higher order zero of the Wronskian
for some ε. Such collisions are not observed in our numerical
calculation, consistent with the fact that all eigenspaces are one-
dimensional, as is obvious from the behavior of β(ε)λ (ω) for ω→ 0
(30). This suggests that eigenvalues with negative real parts and
nonvanishing imaginary part are not possible, and therefore they
will not be considered in the ensuing.
For the present problem the calculation of λn(ε) as zeros of

the Wronskian is feasible only for ε not too small. Relying on the
numerical solution of the ODE (28), with decreasing ε this method
rapidly breaks down since for |λ| � 1/ε, the second independent
solution near ω = 1 shows only a very weak singularity, cf.
Eq. (31). It therefore needs extreme numerical precision to
determine reliably the solution that is regular at ω = 1.
To circumvent this problem, we note that in the parameter

space spanned by (ε, λ), there exist special points where both
independent solutions of Eq. (31) are regular atω = 1. These points
are found on curves

λ =
1
ε
−m,

1
ε
< m ∈ N, (73)
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where the general solution near ω = 1 can be written as [47]

β
(ε)
λ (ω) = c1(ω − 1)

mB1(ω)

+ c2
(
A(ε) (1− ω)m B1(ω) ln(ω − 1)+ B2(ω)

)
. (74)

Here c1,2 are arbitrary constants, B1,2(1) = 1 and both B1(ω) and
B2(ω) are regular at ω = 1. At the zeros ε0 of A(ε), the singularity
vanishes. For the corresponding λ = 1/ε0 − m, both independent
solutions are regular at ω = 1. Therefore solutions regular both at
ω = 0 and at ω = 1 can be constructed, and λ is an eigenvalue
for the particular value ε0. In our case, these special points in the
(ε, λ)-plane can be determined as roots of polynomials in ε with
integer coefficients; and therefore they can be determined with
unlimited numerical precision.
We base the calculation on the formal Taylor expansion about

ω = 1:

β
(ε)
λ (ω) =

∞∑
k=0

dk(1− ω)k. (75)

The ODE (28) yields the recursion relation

dk =
εk(k− 2) dk−2 − [2λ(1+ εk)+ 3εk(k− 1)] dk−1

2k(1− ε(λ+ k))
for k ≥ 1, (76)

where we take d0 = 1, d−1 = 0. For λ as in (73) and for k =
m, the denominator vanishes and for general ε the ansatz (75)
breaks down, showing that β(ε)λ (ω) picks up the singular part with
A(ε) 6= 0 in (74). However, if the numerator in Eq. (76) vanishes,
the solution stays regular.
In evaluating this condition, it is preferable to rewrite the

recursion relation (76) in terms of

Pk(ε) = εkk!

(
k∏
j=1

(1− ε(λ+ j))

)
dk, (77)

with λ = 1/ε −m inserted. This yields

Pk(ε) = ε4
k
2
(k− 1)(k− 2)(m− k+ 1) Pk−2(ε)

−

[
1+ ε(k−m)+ ε2

k
2
(3 k− 2m− 3)

]
Pk−1(ε) (78)

with P−1(ε) = 0 and P0(ε) = 1. Pk(ε) is a polynomial in ε of degree
2k, with integer coefficients. Any real zero ε0 of Pm(ε) yields an
eigenvalue λ = 1/ε0 −m.
Using this approach we determined the 11 largest negative

eigenvalues for values of m ranging from m = 2 to m = 2000, the
latter value corresponding to ε ≈ 5×10−4.Wenote that the higher
coefficients of Pm(ε) with increasing m become extremely large,
but as function of ε, Pm(ε) oscillates around zerowith an amplitude
that for large m becomes extremely small in the range of interest
0 < m − 1/ε = O(1). For m = 2000 this amplitude is of the
order 10−1000. Nevertheless the zeros of Pm(ε) can be determined
with arbitrary precision since the coefficients of Pm(ε) are integers,
exactly determined from the recursion relation (78). Our results are
shown in Fig. 1 in a double logarithmic plot. For n fixed, |λn(ε)| is
seen to decrease with decreasing ε. For ε ↓ 0, the results suggest
the behavior

λn(ε) = −αn ε
1/2
(
1+ O (ε)

)
, (79)

reflecting the fact that the terms in Lε (29) that involve second
derivatives, for ε ↓ 0 play the role of singular perturbations. The
coefficients αn extracted from our data are collected in the middle
column of Table 1. In the next section we consider the limit ε ↓ 0
more closely.
Fig. 1. Double logarithmic plot of the eigenvalues λn(ε), n = 1, . . . , 11 (from
bottom to top) as a function of ε in the range 5 × 10−4 ≤ ε ≤ 1. The black
dots indicate discrete eigenvalues of the form (73), gray (online: red) dots give
eigenvalues calculated from theWronskian. The lines are interpolations of the form
(79). The coefficients αn determined from these lines can be found in Table 1.

Table 1
The coefficients αn for n = 1, . . . , 11 in the eigenvalue presentation λn(ε) =
−αn ε

1/2 (1+O(ε)) fromEq. (79). Themiddle column is extrapolated fromSection 5
and Fig. 1. The right column is from Section 6.1.

n αn from Section 5 αn from Section 6.1

1 1.9131 1.91
2 4.3516 4.35
3 7.3107 7.31
4 10.7188 10.72
5 14.5249 14.5
6 18.6916
7 23.1907
8 27.9992
9 33.0985
10 38.4732
11 44.1103

6. The eigenvalues for ε ↓ 0

6.1. Eigenvalues with low indices

According to Eq. (31), the general solution of the ODE (28) at
ω = 1 develops a singularity that becomes arbitrarily weak if ε
tends to zero. As a consequence, representing the special solution
βreg(ω) regular at ω = 0 as a power series in ε and imposing
regularity at ω = 1 does not put any constraint on the eigenvalue
λ. To show this we write βreg(ω) in the form

βreg(ω) = eλω
∞∑
j=0

ε jfj(ω), (80)

imposing the normalization condition

βreg(0) = 1,

i.e.

f0(0) = 1, fj(0) = 0, j ≥ 1. (81)

Substituting this ansatz into Eq. (28) we find

f0(ω) ≡ 1 (82)
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fj(ω) = −
1
2
(1− ω2) ω ∂ωfj−1(ω)+ λω3fj−1(ω)

+
λ

2

∫ ω

0
dx (1+ λx− 3x2 + λx3) fj−1(x) for j ≥ 1. (83)

Evidently fj(ω) is a polynomial in ω of degree 4j. Thus βreg(ω),
Eq. (80), evaluated to arbitrary finite order in ε, is analytic atω = 1
for arbitrary λ. This breakdown of an approach based on a simple
expansion in the regularizing parameter ε is a well known feature
of such moving boundary problems, both in steady state (see for
instance [8]) and linear stability analysis (see for instance [12]).
For later use we note the expression for the low order terms:

f1(ω) =
λω

2

(
1+ ω2

)
+
λ2ω2

4

(
1+

1
2
ω2
)
,

f2(ω) = −
λω

4

(
1+ 2ω2 − 3ω4

)
+
λ2ω2

8

(
−1+ 3ω2 + 5ω4

)
+
λ3ω3

16

(
2+

23
5
ω3 +

15
7
ω4
)

+
λ4ω4

32

(
1+ ω2 +

ω4

4

)
. (84)

We also note the singular solution of Eq. (28), resulting from a
WKB-analysis

βsing(ω) =

(
1−

1
ω2

)1/ε (1+ ω
1− ω

)λ
e−λω (1+ O(ε)) . (85)

This solution picks up the singularities both at ω = 0 and at
ω = ±1.
The above analysis demonstrates that for ε ↓ 0 the eigenvalues

λ can be determined only by an analysis going beyond all orders in
ε. Indeed, taking into account the behavior λ ∼ ε1/2 suggested
by Section 5, it is evident that the individual terms of the
asymptotic expansion (80) become of order 1 for |ω| ∼ ε−1/2 and
consequently the expansion becomes invalid. Since, however, the
eigenfunctions β(ε)λ (ω) by definition are holomorphic in the right
half ω plane, this suggests to analyze the region |ω| ∼ ε−1/2 more
closely.
We therefore introduce the scaled variable

γ =
1

ε1/2 ω
(86)

and the notation

λ = −α ε1/2, (87)

β
(ε)
λ (ω(γ )) = g(γ ). (88)

With these substitutions, the operator L(ε, λ) from (29) takes the
form

L(ε, λ) =
ε1/2

2
γ
(
L0(α)− ε L1(α)

)
, (89)

L0(α) = ∂2γ +
(
2γ −

1
γ

)
∂γ −

2α
γ
, (90)

L1(α) = γ 2∂2γ + (γ − 2α) ∂γ +
2α
γ
. (91)

To leading order in ε we have to discuss the ODE

L0(α) g(γ ) = 0. (92)

An asymptotic expansion in powers of 1
γ
yields the solution

g1(γ ) ∼ 1−
α

γ
+
α2

2γ 2
−

α

2γ 3

(
1+

α2

3

)
+ O

(
1
γ 4

)
. (93)
Fig. 2. Im g(b) as a function of α for two different choices of the starting point
γ0 = b+ iL, b = 0.1 and 0.3; the zeros of the function determine αn .

The second solution, found by balancing the terms ∂2γ and (2γ −
1
γ
) ∂γ , takes the form

g2(γ ) ∼ e−γ
2
(
1+ O

(
1
γ

))
. (94)

It is easily seen that in the range

ε−1/2 � |γ | � 1, i.e., 1� |ω| � ε−1/2,

g1(γ )matches the regular solution βreg(ω) given in (80) and (84),
whereas g2(γ )matches the singular solutionβsing(ω) given in (85).
Evidently g2(γ ) dominates over g1(γ ) in the two sectors π4 <

| arg γ | < 3
4π for both signs of arg γ . We search for eigenfunctions

β(ω) matching g1(γ ) in the complete range | arg γ | < π
2 . Now it

is well known that starting deep in the region π
4 < arg γ < π

2
with initial conditions taken from the asymptotic expansion (93)
and integrating Eq. (92) down into the region−π

2 < arg γ < −
π
4 ,

we in general will pick up a dominant contribution proportional
to g2(γ ). If, however, g(γ ) ∈ R for γ ∈ R, the Schwarz
reflection principle guarantees the absence of such a contribution.
Equivalently, we may state that by definition the eigenfunctions
β(ω) are real forω ∈ (0, 1), and that the absence of the singularity
induced cut for ω > 1 implies β(ω) ∈ R for ω > 0. Thus the
eigenvalues λ(ε)n = −αn ε1/2(1 + O(ε)) are selected by imposing
the constraint g(γ ) ∈ R for γ > 0.
To evaluate this criterion we started at points γ0 = b + iL,

b = 0.1, 0.2, 0.3, L = 20, 25, 30 and integrated Eq. (92) down to
the real axis along lines b = const. The results for the first 5 positive
zeros αn of Im[g(b)] are given in the right column of Table 1.
They clearly are consistent with the asymptotic results found in
Section 5 and presented in the middle column of the same table.
We did check that the quoted values to the precision given are
insensitive to the starting value γ0 as long as L is chosen sufficiently
large and b > 0 is not too large or too small. The former causes
Im[g(b)] to be rather small and zeros are harder to detect, while
the latter causes numerical inaccuracies due to the singularity of
L0(α) at γ = 0. Fig. 2 shows that with different b, while Im[g(b)]
itself is different, the zeros match as expected from theory.

6.2. Eigenvalues with large indices n

Both the approach of the last section and that of Section 5within
reasonable numerical effort yield the asymptotic coefficients αn
only for the first few eigenvalues, αn = O(1). However, in the
complementary region αn � 1, a fully analytical analysis is
possible, similar to that performed earlier in the surface tension
selection problem for steady Hele–Shaw fingers [8,11,13]. We first
introduce a Liouville transformation to eliminate the first order
derivative in the operator L0(α). With

g(γ ) = γ 1/2 e−γ
2/2 h(γ ), (95)
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Eq. (92) takes the form

∂2γ h−
(
γ 2 +

2α
γ
+
3
4γ 2

)
h = 0. (96)

We now rescale γ according to

γ = α1/3χ, h(γ (χ)) = q(χ) (97)

to find

∂2χq− α
4/3
(
χ2 +

2
χ
+

3
4α4/3χ2

)
q = 0. (98)

For α→∞, a WKB-analysis yields the asymptotic relation

q(χ) ∼ C1 q1(χ)+ C2 q2(χ), (99)

q1,2(χ) = Q−1/4(χ) exp
[
±α2/3

∫ χ

0
dχ ′ Q 1/2(χ ′)

]
, (100)

where

Q (χ) = χ2 +
2
χ
. (101)

q2(χ) dominates in the sectors π
4 < | argχ | < π

2 , but is
subdominant on the real axis. Recalling Eqs. (95) and (97), it is
easily seen that for large |χ |, q1(χ) yields g1(γ ), Eq. (93), whereas
q2(χ) yields g2(γ ), Eq. (94). Since the eigenfunctions in the limit
ε ↓ 0 in all the right half plane Re[γ ] > 0 must reduce to g1(γ ),
this implies that C1 is real whereas C2 has to vanish in both sectors
π
4 < | argχ | <

π
2 .

Now the WKB-analysis breaks down at the turning points χs
defined by Q (χs) = 0, which in the relevant region Re[χ ] > 0
yields the two solutions

χs = 21/3 e±iπ/3. (102)

As is well known in asymptotics [48] the coefficients in the
asymptotic relation (99) may jump when χ crosses a Stokes line
emerging from a turning point. Thus a vanishing C2 in the sector
π
4 < argχ < π

2 does not imply that C2 vanishes on the positive
real axis as well. Since, however, the eigenfunctions are real on the
real axis, we get the relation

Im[C2] = 0 for χ ∈ R+ (103)

as a necessary condition fixing the eigenvalues. To evaluate
this condition we determine the jump of C2 by analyzing the
neighborhood of the turning point χs = 21/3e+iπ/3.
Expanding Q (χ) about χs,

Q (χ) = Q ′(χs)
(
χ − χs

)
+ O

(
χ − χs

)2
, (104)

Q ′(χs) =
6
22/3

eiπ/3 (105)

and rescaling χ − χs according to

ξ = α4/9
(
6
22/3

)1/3
e−i5π/9

(
χ − χs

)
, (106)

q(χ(ξ)) = m(ξ), (107)

we find that Eq. (98) to leading order in α reduces to the Airy
equation(
∂2ξ − ξ

)
m(ξ) = 0. (108)

The phase in Eq. (106) has been chosen such that for ξ > 0 we
enter the region where C2 = 0 in the asymptotic relation (99). This
analysis is valid for |χ − χs| � α−4/9, and using Eq. (104), we find
for small |χ − χs| along the line ξ > 0

q(χ) ∼ a ξ−1/4 exp
[
−
2
3
ξ 3/2

]
, (109)
where the constant a is given by

a = α1/9 C1

(
22/3

6

)1/6
e−i2π/9

× exp
[
α2/3

∫ χs

0
dχ ′

√
Q (χ ′)

]
. (110)

This result is valid for α4/9 � ξ � 1, where it must match the
solution of the Airy equation (108). This yields

m(ξ) = 2
√
π a Ai(ξ). (111)

Continuing this result clockwise around the turning point to
negative ξ , we find

m(ξ) ∼ a |ξ |−1/4 eiπ/4
(
exp

[
−
2
3
i|ξ |3/2

]
− i exp

[
2
3
i|ξ |3/2

])
for − ξ � 1. (112)

For α4/9 � −ξ � 1, this again has to match with Eq. (99),
which in this region reduces to

q(χ) ∼ a |ξ |−1/4 eiπ/4
(
exp

[
−
2
3
i |ξ |3/2

]
+
C2
C1
exp

[
−2α2/3

∫ χs

0
dχ ′

√
Q (χ ′)

]
× exp

[
2
3
i |ξ |3/2

])
. (113)

We thus find

C2 = −iC1 exp
[
2α2/3

∫ χs

0
dχ ′

√
Q (χ ′)

]
. (114)

Since both C1 and C2 have to be real, this leads to the eigenvalue
condition

Im
[
2α2/3

∫ χs

0
dχ ′

√
Q (χ ′)

]
=

(
n+

1
2

)
π, n ∈ Z. (115)

The integral is easily evaluated to yield∫ χs

0
dχ ′

√
Q (χ ′) = 22/3 eiπ/6

∫ 1

0
ds

√
1
s
− s2

= 22/3
√
π

8
Γ
( 1
6

)
Γ
( 2
3

) (√3+ i). (116)

Eq. (115) yields the final result

αn = 4

(
Γ
( 2
3

)
Γ
( 1
6

) √π (
n+

1
2

))3/2
(117)

= 1.13254 . . .
(
n+

1
2

)3/2
for n ∈ N0. (118)

By construction this result is valid in the limit αn → ∞, i.e., for
n → ∞. However, it turns out to be a good approximation for
small n as well. This is illustrated in Fig. 3 where we plot

ᾱn =
αn

4

(
Γ
( 2
3

)
Γ
( 1
6

) √π (
n+

1
2

))−3/2
, (119)

with αn, n = 1, . . . , 11 taken from the second column of Table 1.
Even for n = 2 the asymptotic result (117) differs from the true
eigenvalue by less than 3%. The interpolating curve included in
Fig. 3 is given by

ᾱn = 1− 0.18
(
n+

1
2

)−2
, (120)

indicating that the asymptotic limit (117) is rapidly approached.
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Fig. 3. ᾱn from Eq. (119) as a function of n, together with the interpolating formula
(120). The plot demonstrates the accuracy of the asymptote (117) even for small n.

7. Behavior of low order eigenfunctions for |ω| ≤ 1

As is evident from Eq. (31), for ω→ −1 the eigenfunctions are
singular,

β
(ε)
λ (ω) ∼ (1+ ω)

1
ε+λ.

For small ε and |λ| � 1/ε, this singularity will show up only
in derivatives of high order, and the Taylor expansion (49) will
converge in the whole physical domain |ω| ≤ 1. We therefore can
use this expansion together with the recursion relation (50) and
(51) to evaluate β(ε)λ (ω) for the first few eigenvalues. Outside some
neighborhood of ω = −1 these functions are expected to govern
the large time behavior of analytic perturbations.
From the discussion of βreg(ω) in Section 6.1 we expect that

in the physical domain |ω| ≤ 1 the eigenfunctions for small
ε are well approximated by simple exponentials. This indeed
is true as illustrated in Fig. 4. Panel 4(a) shows the absolute
value |β(ε)λ1 (ω) e

−λ1ω| evaluated on the unit circle ω = eiα for a
decreasing set of values of ε. Evidently this ratio tends to 1 and
is not very different from 1 even for ε = 0.1. Panel 4(b) shows
the corresponding phase differencewhich is found to be very small
and to tend to zero with decreasing ε. All curves in Fig. 4 are well
represented by the expansion (80) evaluated up to order ε2. As
expected, for fixed ε the approximation

β
(ε)
λ (e

iα) ∼ exp (λ cosα + iλ sinα) (121)

becomes worse with increasing λ. This is illustrated in Fig. 5 for
ε = 0.1, λ1 = −0.5462, λ6 = −4.6086. Panel 5(a) compares
Re
(
ln β(ε)λ (e

iα)
)
/λ with cosα. In the neighborhood of α = π

the deviation from cosα increases with increasing λ, which is a
consequence of the singularity of ω = −1. But outside that range
the approximation (121) is quite accurate even for β(1)λ6 . Panel 5(b)

shows the corresponding results for Im
(
ln β(ε)λ (e

iα)
)
/λ.

As pointed out in Section 2.4, we expect that the initial
conditionβ(ω, 0) in someneighborhoodofω = 1 canbe expanded
in terms of eigenfunctions as

β(ω, 0) =
∞∑
k=0

gn β
(ε)
λn
(ω), (122)

and that the domain of convergence of this expansion increases
with time to ultimately cover Uω \ {−1}. For small ε and
not too large |λ|, β(ε)λ (ω) is well approximated by e

λω , and all
eigenvalues vanish for ε → 0. Thus for fixed ω and ε → 0,
all eigenfunctions tend to 1. This suggests that for small ε many
termsmust contribute non-negligibly to the expansion of a generic
initial condition. Furthermore the phase of the coefficients gnmust
vary strongly. With decreasing ε it will need more and larger
coefficients to describe a non-trivial general initial condition. These
large coefficients imply large transient growth, because in the
representation

β(ω, t) =
∞∑
k=0

gn β
(ε)
λn
(ω)eλnt , (123)

the factor eλnt is substantially different for each n when t =
O(ε−1/2). The large transient growth restricts the validity of linear
stability analysis to a small ball of initial conditions. This is
confirmed in part II in the study of the initial value problem.

8. Conclusion and outlook

In the introduction we raised the question: Can a kinetic
undercooling boundary condition regularize the evolution of a
curved interface in a Laplacian growth model? This problem is
motivated by the physics of streamer discharges which determine
the early evolution of sparks and lightning. We here gave a
first answer by analyzing the spectrum of linear perturbations
of uniformly translating circles. We proved that for all ε >
0 the spectrum is discrete and that all eigenvalues λn, except
for λ0 = 0, have a negative real part. Thus any infinitesimal
perturbation tends to a constant exponentially in time for large
time, and asymptotically the circular shape is recovered. For
arbitrary regularization parameter ε > 0 we found an infinite
set of negative real eigenvalues λn(ε); they smoothly continue the
exact result λn(1) = −n, n ∈ N, found previously for ε = 1 [36].
In formulating the eigenvalue problem we had to allow for a

singularity of the eigenfunctions at the pointω = −1 at the back of
the circle. Therefore an expansion of a regular initial perturbation
in terms of eigenfunctions must break down in a neighborhood
of ω = −1. For ε = 1, it was found [36] that the size of this
neighborhood with increasing time τ decreases as e−τ , and that
all the structure of the initial perturbation is convected into this
region. In part II [43] of this series of papers wewill argue that such
behavior is found for all ε > 0.
Our results suggest that in the framework of linear perturbation

theory the evolution of a curved front can be regularized by
a kinetic undercooling boundary condition. Linear perturbation
theorymust break down in the limit ε ↓ 0. In our results this shows
up in the asymptotic behavior of the eigenvaluesλn(ε) = −αn ε1/2,
where αn ∼ const n3/2 for large n, and in the associated behavior
β
(ε)
λn
(ω)→ eλnω → 1 of the eigenfunctions. This indicates that for

small ε, the eigenfunction expansion of even a very smooth initial
perturbation of small but finite amplitudewill containmany terms
with large coefficients. Initially these terms almost compensate,
but the balance is destroyed by the temporal evolution. Generically
thiswill lead to a strong transient growthof theperturbationwhich
may drive the evolution into the regime where nonlinear effects
have to be included. Examples supporting this scenario will be
given in part II [43]. For ε � 1 this mechanism can lead to an
instability of the circular shape also against quite small and smooth
perturbations.
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Fig. 4. The ratio F = β
(ε)
λ1
(ω)/eλ1ω evaluated on the unit circle ω = eiα for ε = 0.1, 0.05, 0.025 as indicated. (a) Absolute value |F | and (b) argument Arg(F )/π as a

function of α/π .
Fig. 5. Real part (a) and imaginary part (b) of the function G = ln
[
β
(ε)
λ (e

iα)
]
/λ for ε = 0.1 for λ1 (black solid line) and λ6 (blue or gray solid line) as a function of α/π . The

dashed lines show cosα in (a) or sinα in (b) for comparison.
Appendix. Asymptotics of Taylor series coefficients and rela-
tion to the singularity at ω = ωs

Here we prove the following standard results for the sake of
completeness.

Theorem. Assume f (ω) is analytic in |ω| < R, except for a singularity
at ω = ωs 6= 0 (with |ωs| < R), where

f (ω) = fs(ω) (ω − ωs)α + fa(ω) as ω→ ωs.

Here α is not a positive integer, and fs and fa are locally analytic at
ω = ωs with fs(ωs) ≡ C 6= 0. Then the Taylor series coefficient bk in
the representation

f (ω) =
∞∑
k=0

bkωk

has the leading order asymptotic behavior

bk ∼ −
Ceiπα

π
sin(πα)ω−k+αs

Γ (α + 1)
kα+1

.

Proof. We will first assume α > −1. We recall the contour
integral representation of bk

bk =
1
2π i

∮
|ω|=δ

f (ω)
ωk+1

dω,
where δ is chosen sufficiently small so that |ω| = δ contains no
singularity of f (ω) and |ωs| + δ < R. We deform the contour
into

∫
C0
+
∫
L1
+
∫
L2
as shown in Fig. 6. The contribution from

∫
C0
is

easily bounded byM [|ωs| + δ]−k, whereM = sup|ω|=|ωs|+δ |f (ω)|.
Now consider the contribution from

∫
L1
+
∫
L2
. It is convenient to

introduce a change of variable

ζ = log
ω

ωs
.

Then it is readily checked that we have

∫
L1
+

∫
L2
=
ω−ks

2π i

{∫ δ1

0
−

∫ δ1e2iπ

0e2iπ

}
f (ω(ζ ))e−kζdζ , (124)

where δ1 = log
[
1+ δ

|ωs|

]
. Noting that the contribution from fa

cancels out between L1 and L2, we obtain∫
L1
+

∫
L2
=
ω−k+αs

2π i

[
1− e2iπα

] ∫ δ1

0

[
eζ − 1

]α
fs(ω(ζ ))e−kζdζ .

We note that in the neighborhood of ζ = 0,[
eζ − 1

]α
fs(ω(ζ )) ∼ Cζ α.



900 S. Tanveer et al. / Physica D 238 (2009) 888–901
Fig. 6. Contour
∮
|ω|=δ

deformed to
∫
C0
+
∫
L1
+
∫
L2
for evaluation of bk .

So, using Watson’s Lemma, we obtain∫
L1
+

∫
L2
∼
C
2π i

ω−k+αs

[
1− e2π iα

]
k−1−αΓ (1+ α),

from which the Lemma follows since the contribution from
∫
C0
is

evidently exponentially small relatively for large k.
If α < −1, we consider n-th iterated integral Inf , where

[I1f ](ω) =
∫ ω
0 f (ω

′)dω′, I2f = I1 (I1f ) and so on. Then, it is clear
that the singularity of Inf atω = ωs will be of the type (ω−ωs)α+n,
and we can arrange α + n > −1. The argument above can then be
repeated for power series coefficients of Inf . The Theorem follows
on differentiating n-times the power series of Inf . �

Remark. The previous theorem remains valid even when α is
a negative integer, provided the product of sin(πα)Γ (1 + α)
is replaced by its finite nonzero limit limα→−n. The validity of
the result is easily checked from Taylor expansion of 1

(ω−ωs)
and

its derivatives in terms of a geometric series and its derivatives.
Further, since the asymptotic result relies on Watson’s Lemma,
the condition on analyticity of fs at ω = ωs can be weakened to
fs(ω) = C + O

(
(ω − ωs)

β
)
for β > 0.

Theorem. If the k-th Taylor series coefficient bk of an analytic
function f at ω = 0 satisfies the following

bk ∼ −
C
π
eiπα sin(πα)ω−k+αs

Γ (α + 1)
kα+1

(1+ O(1/k)) (125)

for non-integer α, then

f (ω) ∼ C(ω − ωs)α + fa(ω), (126)

where fa(ω) is regular at ω = ωs. The same conclusion is valid for
α = −n, a negative integer, provided Γ (1 + α) sin(πα) is replaced
by its limit as α→−n, On the other hand, if

bk ∼ −Cω−ks k
−1 (1+ O(1/k)) ,

then

f (ω) ∼ C log
(
1−

ω

ωs

)
.

Proof. We will assume for now that α ∈ (−1, 0). Then using
the previous Theorem to determine the Taylor series coefficient of
C(ω − ωs)α , it follows on subtraction that

g(ω) ≡ f (ω)− C(ω − ωs)α =
∞∑
k=0

bkωk
will have a Taylor series coefficient bk ∼ Const. ω−ks k
−α−2 for large

k implying that the series is absolutely convergent on |ω| = |ωs|.
In particular, g is continuous atω = ωs, which proves the theorem
for α ∈ (−1, 0). If α takes on other ranges of values, we obtain
this result by either n-times iterative integration from the origin
of the power series for f , or by differentiating it n times so as
to ensure that for non-integer α, α + n ∈ (−1, 0) or α − n ∈
(−1, 0). The result quoted in the Theorem follows by noting that
the asymptotics is differentiable as it is valid forω−ωs in a complex
sector. The second result follows from noting the explicit Taylor
expansion of log

(
1− ω

ωs

)
and from noting that the difference has

a series that is absolutely summable and hence the remainder is
continuous at ω = ωs. By using explicit derivatives or integrals of
Geometric series, the conclusion (126) holds for negative integer
α = −n as well. �

References

[1] D. Kessler, J. Koplik, H. Levine, Patterned selection in fingered growth
phenomena, Adv. Phys. 37 (1988) 255.

[2] P. Pelcé, Dynamics of Curved Fronts, Academic, Boston, 1988.
[3] S. Tanveer, The effect of surface tension on the shape of a Hele–Shaw cell
bubble, Phys. Fluids 29 (1986) 3537.

[4] D. Bensimon, Stability of viscous fingering, Phys. Rev. A 33 (1986) 1302.
[5] D. Bensimon, L.P. Kadanoff, S. Liang, B.I. Shraiman, C. Tang, Viscous flows in
two dimensions, Rev. Modern Phys. 58 (1986) 977.

[6] A.J. DeGregoria, L.W. Schwartz, A boundary integral method for two-phase
displacement in Hele–Shaw cells, J. Fluid Mech. 164 (1986) 164.

[7] D. Kessler, H. Levine, Stability of finger patterns in Hele–Shaw cells, Phys. Rev.
A 33 (1986) 2632.

[8] R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, A. Pumir, Shape selection for
Saffman Taylor fingers, Phys. Rev. Lett. 56 (1986) 2036.

[9] S. Howison, Fingering in Hele–Shaw cells, J. Fluid Mech. 167 (1986) 439.
[10] S. Tanveer, P.G. Saffman, Stability of bubbles in a Hele–Shaw cell, Phys. Fluids

30 (1987) 2624.
[11] S. Tanveer, Analytic theory for the selection of symmetric Saffman–Taylor

finger in a Hele–Shaw cell, Phys. Fluids 30 (1987) 1589.
[12] S. Tanveer, Analytic theory for the linear stability of Saffman–Taylor finger,

Phys. Fluids 30 (1987) 2318.
[13] A.T. Dorsey, O.Martin, Saffman Taylor fingerswith anisotropic surface tension,

Phys. Rev. A 35 (1987) 3989.
[14] S. Tanveer, P.G. Saffman, The effect of finite viscosity ratio on the stability of

fingers and bubbles in a Hele–Shaw cell, Phys. Fluids 31 (1988) 3188.
[15] S. Tanveer, Surprises in viscous fingering, J. Fluid Mech. 409 (2000) 273.
[16] S.D. Howison, Complex variable methods in Hele–Shaw moving boundary

problems, European J. Appl. Math. 3 (1992) 209.
[17] T. Dombre, V. Hakim, Saffman–Taylor fingers and directional solidification at

low velocity, Phys. Rev. A 36 (1987) 2811.
[18] E. Brener, V.I. Melnikov, Pattern selection in two-dimensional dendritic

growth, Adv. Phys. 40 (1991) 53.
[19] J.J. Xu, Interfacial wave theory of solidification: Dendritic pattern formation

and selection of growth, Phys. Rev. A 43 (1991) 930.
[20] M.D. Kunka, M.R. Foster, S. Tanveer, Dendritic crystal growth for weak

undercooling, Phys. Rev. E 56 (1997) 3068.
[21] P.S. Ho, Motion of inclusion induced by a direct current and a temperature

gradient, J. Appl. Phys. 41 (1970) 64.
[22] M.Mahadevan, R.M. Bradley, Stability of a circular void in a passivated current-

carrying metal film, J. Appl. Phys. 79 (1996) 6840.
[23] M. BenAmar, Void electromigration as amoving free-boundary value problem,

Physica D 134 (1999) 275.
[24] L.J. Cummings, G. Richardson, M. Ben-Amar, Models of void electro-migration,

European J. Appl. Math. 12 (2001) 97.
[25] P. Kuhn, J. Krug, F. Hausser, A. Voigt, Complex shape evolution of

electromigration-driven Single-Layer Islands, Phys. Rev. Lett. 94 (2005)
166105.

[26] J. Müller, W. van Sarloos, Morphological instability and dynamics of fronts
in bacterial growth models with nonlinear diffusion, Phys. Rev. E 65 (2002)
061111.

[27] E.D. Lozansky, O.B. Firsov, Theory of the initial stage of streamer propagation,
J. Phys. D Appl. Phys. 6 (1973) 976.

[28] S.K. Dhali, P.F. Williams, Two-dimensional studies of streamers in gases,
J. Appl. Phys. 62 (1987) 4696.

[29] P.A. Vitello, B.M. Penetrante, J.N. Bardsley, Simulation of negative-streamer
dynamics in nitrogen, Phys. Rev. E 49 (1994) 5574.

[30] Yu.P. Raizer, Gas Discharge Physics, Springer, Berlin, 1991.
[31] E.M. Bazelyan, Yu.P. Raizer, Spark Discharge, CRC Press, Boca Raton, FL, 1998.
[32] U. Ebert, W. van Saarloos, C. Caroli, Propagation and structure of planar

streamer fronts, Phys. Rev. E 55 (1997) 1530.
[33] U. Ebert, C. Montijn, T.M.P. Briels, W. Hundsdorfer, B. Meulenbroek, A. Rocco,

E.M. van Veldhuizen, The multiscale nature of streamers, Plasma Sources Sci.
Technol. 15 (2006) S118.



S. Tanveer et al. / Physica D 238 (2009) 888–901 901
[34] F. Brau, A. Luque, B. Meulenbroek, U. Ebert, L. Schäfer, Construction and test
of a moving boundary model for negative streamer discharges, Phys. Rev. E 77
(2008) 026219.

[35] B. Meulenbroek, U. Ebert, L. Schäfer, Regularization of moving boundaries in
a Laplacian field by a mixed Dirichlet-Neumann boundary condition: Exact
results, Phys. Rev. Lett. 95 (2005) 195004.

[36] U. Ebert, B. Meulenbroek, L. Schäfer, Convective stabilization of a Laplacian
moving boundary problem with kinetic undercooling, SIAM J. Appl. Math. 68
(2007) 292.

[37] S.J. Chapman, J.R. King, The selection of Saffman–Taylor fingers by kinetic
undercooling, J. Eng. Math. 46 (2003) 1.

[38] A. Luque, F. Brau, U. Ebert, Saffman–Taylor streamers: Mutual finger
interaction in spark formation, Phys. Rev. E 78 (2008) 016206.

[39] M. Arrayás, U. Ebert, W. Hundsdorfer, Spontaneous branching of anode-
directed streamers between planar electrodes, Phys. Rev. Lett. 88 (2002)
174502.

[40] C. Montijn, U. Ebert,W. Hundsdorfer, Numerical convergence of the branching
time of negative streamers, Phys. Rev. E 73 (2006) 065401.
[41] M. Arrayás, U. Ebert, Stability of negative ionization fronts: regularization by
electric screening? Phys. Rev. E 69 (2004) 056220.

[42] G. Derks, U. Ebert, B. Meulenbroek, Laplacian instability of planar streamer
ionization fronts — An example of pulled front analysis, J. Nonlinear Sci. 18
(2008) 551.

[43] C.-Y. Kao, F. Brau, U. Ebert, L. Schäfer, S. Tanveer, A moving boundary
problemmotivated by electric breakdown: II. Initial value problem, Physica D
(in preparation).

[44] P.Ya. Polubarinova-Kochina, On the motion of the oil contour, Dokl. Akad.
Nauk. SSSR 47 (1945) 254 (in Russian).

[45] L.A. Galin, Unsteady filtration with a free surface, Dokl. Akad. Nauk. SSSR 47
(1945) 246 (in Russian).

[46] M. Günther, G. Prokert, On travelling wave solutions for a moving boundary
problem of Hele–Shaw type, IMA J. Appl. Math. 74 (2009) 107.

[47] E.T. Whittaker, G.N. Watson, A course of modern analysis, fourth edition,
Cambridge Univ., 1927.

[48] F. Olver, Asymptotics and Special Functions, AK Peters, Wellesley, MA, 1997.


	A moving boundary problem motivated by electric breakdown, I: Spectrum of linear perturbations
	Introduction
	Reformulation by conformal mapping
	Problem formulation and rescaling
	Conformal mapping
	Linear perturbation of moving circles
	Formulation of the eigenvalue problem

	Discreteness of the spectrum
	Absence of eigenvalues with positive real part and of purely imaginary eigenvalues
	Purely positive eigenvalues
	Eigenvalues with positive real part
	Purely imaginary eigenvalues

	Calculation of negative eigenvalues for  ε >0 
	The eigenvalues for  ε downarrow 0 
	Eigenvalues with low indices
	Eigenvalues with large indices  n 

	Behavior of low order eigenfunctions for  |ω |leq 1 
	Conclusion and outlook
	Acknowledgments
	Asymptotics of Taylor series coefficients and relation to the singularity at  ω = ωs 
	References


