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a b s t r a c t

An interfacial approximation of the streamer stage in the evolution of sparks and lightning can be
formulated as a Laplacian growth model regularized by a ‘kinetic undercooling’ boundary condition.
Using this model we study both the linearized and the full nonlinear evolution of small perturbations
of a uniformly translating circle. Within the linear approximation analytical and numerical results show
that perturbations are advected to the back of the circle, where they decay. An initially analytic interface
stays analytic for all finite times, but singularities from outside the physical region approach the interface
for t → ∞, which results in some anomalous relaxation at the back of the circle. For the nonlinear
evolution numerical results indicate that the circle is the asymptotic attractor for small perturbations, but
larger perturbationsmay lead to branching.We also present results formore general initial shapes, which
demonstrate that regularization by kinetic undercooling cannot guarantee smooth interfaces globally in
time.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Propagating fronts in Laplacian growth occur naturally in quite
a number of physical problems including viscous fingering [1–5],
electro-chemical growth, dendritic crystal growth for small un-
dercooling [6–8], and void migration in a conductor [9–11]. More
recently, it has been shown that this class of problems includes
the ‘streamer’ stage of electric breakdown [12–19], which will be
described below. A central issue in these problems is the stabil-
ity of curved fronts. In a limiting case, most of these models re-
duce to the classic Saffman–Taylor problem [1], which is known
to be ill-posed [20,21]. Numerical as well as formal asymptotic re-
sults [4,8,5,22] suggest that one branch of steadily propagating fin-
ger or bubble solutions in a Hele–Shaw cell is stabilized by surface
tension regularization, though only recently some mathematically
rigorous results [23,24] are available to justify nonlinear stability
to small disturbances in the special case of a nearly circular
bubble. Besides surface tension, other regularizations [9–11,25]
have also been analyzed. In the present paper we study both the
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linear and the nonlinear initial value problem for one such regular-
ization, in particular, the stability of a steadily propagating circular
shape. This regularization is called kinetic undercooling in the crys-
tal growth context,1 but has a different physical interpretation for
streamers.
During the streamer stage of electric breakdown the discharge

paves its way through a nonconducting medium, leaving behind a
weakly ionized conducting channel. The basic growth mechanism
is impact ionization due to electrons strongly accelerated in the
local electric field. In a sufficiently strong field, a thin space charge
layer forms around the head of the streamer. This layer screens the
field in the inner ionized region to a very low level, and the growth
of the streamer is driven by the electrons moving and multiplying
in the strong self-enhanced field ahead of the curved ionization
front.
For sufficiently strong external fields, the thickness ` of the

electron layer is small compared to the radius R of the streamer

1 In crystal growth, kinetic undercooling is likely to be the more important
regularization compared to the Gibbs–Thompson effect for large undercooling
where the Laplacian growth model becomes questionable. This happens when the
time scale over which the interface evolves becomes comparable to the time scale
of heat diffusion.
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Fig. 1. Illustration of the model problem in terms of the Laplace field ϕ.

head. Therefore Lozansky and Firsov suggested (mainly in the
Russian literature, but also in [26]) that this layer can be modeled
as an interface separating the ionized from the non-ionized region.
Probably, the idea is even older, since a similar concept was
already proposed by Sämmer in theGerman literature in 1933 [27].
However, a deeper study of the implications of this concept started
only later [12–14,28–30] where the problem is placed in the
context of other Laplacianmoving boundary problems. The validity
of the moving boundary approximation for negative streamers is
discussed in [15] for simple gases like pure nitrogen or argon,
and in [31] for air. The dimensional analysis and the proposed
regularization mechanism of the moving boundary problem for
negative streamer ionization fronts are discussed in detail in our
previous papers [16–19].
In dimensionless form, themodel is defined as follows, see Fig. 1

for an illustration. The normal velocity vn of the interface is given
by the drift velocity v of the electrons, which is proportional to the
local electrostatic field E = −∇ϕ. In appropriate units it takes the
dimensionless form:

vn = −n̂ · E+, (1)

where the superscript + denotes the limiting value as the interface
is approached from the exterior (the non-ionized region) and n̂
is the outward normal on the interface. Outside the streamer the
electric potential ϕ obeys the Laplace equation:

∆ϕ = 0. (2)

An analytical and numerical analysis of the underlying physical
model formulated in terms of partial differential equations for the
charged densities and the field suggests the interfacial condition

ϕ+ = εn̂ · (∇ϕ)+, (3)

where

ε =
`

R
. (4)

Far from the streamer, the electric field tends to a constant2

E = −∇ϕ→−x̂+ o(1/|x|), (5)

where x̂ is the unit vector in the x-direction. Eqs. (1)–(5) define our
model.
In two dimensions, a simple solution to the free boundary

problem posed by this model takes the form of a uniformly
translating circle. Our previous work in [17–19] and the present

2 A correction of order O(1/|x|) to the electric field E can occur only if the
streamer carries a net electric charge. We here concentrate on the analysis of
streamers that are globally electrically neutral.
paper are primarily concerned with the linear and nonlinear
stability of this solution to small perturbations. It is to be noted that
the circular shape differs from an actual streamer shape. However,
the front half of a circle roughly resembles the shape of the front
part of a streamer. Since growth of disturbances is found to be
most pronounced in this advancing part of the interface, we expect
stability features found here to be qualitatively relevant for an
actual streamer and more generally for curved fronts.
In the special case ε = 1, the linearized evolution of small

perturbations can be determined exactly in our model [17,18].
The case of general ε > 0 is treated in part I [19] of this series
of papers and in the present manuscript. In [19], we discussed
the spectrum of the linear operator which results from the linear
stability analysis of the circular solution. Restricting ourselves to an
appropriate space of analytic perturbations we found a pure point
spectrum. Asymptotically in time, except for the trivial translation
mode, all eigenmodes were found to decay exponentially in
time. These eigenmodes are singular at the back of the bubble;
nonetheless, as evidenced in the present paper, this singularity is
not reflected by the actual linear evolution near the bubble back.
The usual asymptotic form of the solution for large time:

∑
λ e

λtβλ,
where βλ is the eigenfunction corresponding to the eigenvalue λ,
fails in a neighborhood of the rear of the bubble, though it holds
elsewhere.
In the present paper, we consider the initial value problem.

For the linearized evolution, analytical results are obtained in the
limit of strongly localized disturbances of the circle. Also the large
time behavior of general perturbations can be studied analytically.
Numerical calculations confirm these results. Together with the
eigenvalue analysis of the first paper [19], clear evidence of linear
stability is presented. The full nonlinear evolution of a perturbed
interface is calculated numerically. Our results suggest that, similar
to linear evolution, small enough perturbations of a circular bubble
grow in the front part of the bubble, but eventually decay as
interfacial distortions advect to the bubble rear. Nonetheless,when
ε is small but nonzero, the large transients in the linear regime
make nonlinearity important even when the initial perturbation
is exponentially small in ε. Furthermore, when the perturbations
are larger, the circle is no longer an attractor of the dynamics and
the propagating structure branches. For general initial shapes, we
give somenumerical evidence that the undercooling regularization
condition cannot guarantee a smooth interface globally in time.
For some initial conditions, the interface tends to develop a sharp
corner in the back. Other initial conditions lead to the separation
of the moving body into two parts.
This paper is organized as follows. In Section 2 we present

equations derived earlier in a conformal map setting. Section 3
is devoted to the linear evolution of perturbations of the circle.
Section 3.1 recalls previous results, and in Section 3.2 we present
rigorous results on the growth of a strongly localized perturba-
tion. We continue the discussion of localized perturbations in
Section 3.3 and explain at an intuitive level how strongly local-
ized perturbations are generically advected to the rear of the cir-
cle, increasing in amplitude in the front half before decreasing
in the back half. Mathematically, the advection is described by a
one-parameter family of conformal maps which is a subgroup of
the automorphisms of the unit disk. The important role of this
subgroup has been previously established for the exactly solvable
case ε = 1 [17,18]. In Section 3.4 we discuss the anomalous be-
havior found at the back of the circle in the large time limit. In
Section 3.5 we give arguments indicating that an initially analytic
interface stays analytic for all finite times, but singularities initially
outside the physical region of interest approach the back of the cir-
cle for t →∞. Provided the perturbation for t →∞ stays analytic
in the closed unit disk, except for the point −1, we in Section 3.6
prove that it asymptotically reduces to a constant. This implies that
the perturbation just leads to a shift in space with respect to the
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unperturbed propagating circle. In Section 3.7, we present numer-
ical solutions of the linear evolution equations. These calculations
support the asymptotic results derived in the previous subsections.
For disturbances, not necessarily localized, we present evidence
that on any part of the interface not containing a neighborhood of
the bubble rear, the decay rate of the disturbance matches what is
expected from the prior spectral analysis [19].
Section 4 presents a numerical study of the nonlinear evolution

for different perturbations. We first consider perturbations of
a circular bubble. It is shown that the circular bubble can be
nonlinearly stable if the perturbation is small. However, when
the perturbation is large enough, the front may start to branch.
Furthermore, we study the nonlinear evolution for more general
initial configurations. It is shown that the formation of a cusp
precisely on the back side of the moving body cannot be excluded.
We also observe that the body might split into two parts.

2. Equations resulting from conformal mapping

As already explained repeatedly [16–19], we assume the
streamer to be a simply connected compact domainD in the (x, y)-
plane. The area ofD is conserved under the dynamics and equalsπ
in dimensionless units. Identifying the (x, y)-plane with the closed
complex plane z = x + iy, we introduce a conformal map f (ω, t)
that maps the unit diskUω in theω-plane to the complement ofD
in the z-plane

z = f (ω, t) =
a−1(t)
ω
+ f̂ (ω, t), a−1(t) > 0. (6)

The Laplace equation (2) and the boundary condition (5) are
incorporated in the definition of a complex potentialΦ(ω, t).

Φ(ω, t) =
a−1(t)
ω
+ Φ̂(ω, t). (7)

Both functions f̂ (ω, t) and Φ̂(ω, t) are analytic for ω ∈ Uω . The
physical potential ϕ(z, t) is related toΦ(ω, t) as

ReΦ(ω, t) = ϕ(f (ω, t), t). (8)

The remaining boundary conditions (1), (3) take the form

Re
[
∂t f
ω∂ωf

]
= Re

[
ω∂ωΦ

|∂ωf |2

]
, ω ∈ ∂Uω (9)

|∂ωf |ReΦ = −ε Re [ω∂ωΦ] , ω ∈ ∂Uω. (10)

Theproblem reduces to solving these twoequations, respecting the
analyticity properties of f andΦ .
A simple solution corresponding to a steadily translating circle

is given by

f (0)(ω, t) =
1
ω
+

2t
1+ ε

Φ(0)(ω, t) =
1
ω
−
1− ε
1+ ε

ω.

(11)

In physical space it describes a unit circle moving with constant
velocity 2/(1 + ε) in the x-direction. For small and smooth
distortions of this circle, it is appropriate to look for solutions of
the form

f (ω, t) = f (0)(ω, t)+ ηβ(ω, t)

Φ(ω, t) = Φ(0)(ω, t)+ η
2
1+ ε

χ(ω, t),
(12)

where β(ω, t) and χ(ω, t) are analytic in Uω and η is a small
parameter. Since the area is conserved, it can be shown that the
residue 1 of the pole in (11) remains unchanged to first order in
η. Substituting (12) into Eqs. (9), (10) we find in first order in η a
system of two partial differential equations, from which χ can be
eliminated. The final equation for β takes the form

Lεβ = 0 (13)

Lε =
ε

2
∂ω(ω

2
− 1)ω∂ω + ε∂ωω∂τ + ∂τ − ∂ω, (14)

where we introduced the rescaled time variable

τ =
2
1+ ε

t. (15)

Eqs. (13), (14) determine the linearized evolution that will be
discussed in Section 3. We will assume that the initial interface is
analytic, i.e., that all singularities of β(ω, 0) are outside the closed
unit diskUω , though much of the analysis is valid for a sufficiently
smooth interface as well.3

3. Analysis of infinitesimal perturbations

3.1. Summary of previous results

In part I [19] we have analyzed the eigenvalue problem,
resulting from Eqs. (13), (14) via the ansatz β(ω, τ) = eλτβλ(ω).
We have shown that the spectrum is purely discrete and that the
real part of all eigenvaluesλn is negative, except for the trivial value
λ0 = 0,which corresponds to a simple shift of the circle. An infinite
set of real negative eigenvalues was found. All eigenfunctions,
except for βλ0(ω) = const, are singular at ω = −1 at the back
of the circle. Thus the expansion of a regular initial condition in
terms of eigenfunctions has to break down in the neighborhood
of ω = −1, which indicates that in that neighborhood some
anomalous relaxation shows up. Furthermore, we found that as
ε ↓ 0, any eigenvalue λn tends to zero and the corresponding
eigenvector βλ(ω) tends to a constant. A similar behavior of the
spectrum was found for a steadily moving circle in a Hele–Shaw
cell with surface tension regularization [22] and this degeneracy
is not unexpected since the unregularized problem (ε = 0) is
mathematically ill-posed [20,21].
Here, we consider the initial value problem defined by Eqs.

(13), (14). Our analysis is guided by previous results [17,18] on the
special case ε = 1 where the general time dependent solution is
known analytically; it is

β(ω, τ) =
1
ω2

∫ ω

0
ω′G

(
ω′ + T
1+ ω′T

)
dω′, (16)

where the function G(ω) is given by the initial condition,

G(ω) = (2+ ω∂ω)β(ω, 0), (17)

and T (τ ) is defined as

T (τ ) = tanh
τ

2
. (18)

The properties of these solutions are discussed and visualized in
detail in [17,18]. Here we in particular note that the essential time
dependence of β(ω, τ) is contained in the transformation

ζ =
ω + T (τ )
1+ ωT (τ )

. (19)

ζ (ω, T ), 0 ≤ T ≤ 1, defines a one-parameter family of
automorphisms of the unit disk, with fixed points ω = ±1. The
pointω = 1 is stable, whereasω = −1 is unstable in the following
sense: as τ → ∞, i.e. T → 1, all the complex ω-plane, except
for ω = −1, is mapped into a neighborhood of ζ = +1. This

3 Analyticity is not crucial, except in Sections 3.5 and 3.6.
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results in an advective dynamics. Any perturbation not centered
precisely at ω = 1 is advected towards ω = −1, where it vanishes
asymptotically. As τ →∞, only a shift of the circle is left:

lim
τ→∞

β(ω, τ) =
G(1)
2
. (20)

However, it is to be noted that the limit is not uniform, and no
matter how large τ is, there is a neighborhood of ω = −1,
whereβ(ω, τ)may change dramatically.Wenote that advection of
distortions from the front to the sides has been observed in viscous
fingering and crystal growth models with surface tension and
has been derived from somewhat heuristically simplified models
[4,32]. We further note that in the limit ε →∞ a purely advective
dynamics results [18]:

β(ω, τ) = β̃(ζ (ω, T (τ ))), ε = ∞.

Expecting the automorphism ζ (ω, T ) and the resulting advective
dynamics to play an important role also for ε 6= 1we transform the
PDE (13), (14) from variables (ω, τ) to variables (ζ , T ), introducing
the notation

β(ω, τ) = β̃(ζ (ω, T (τ )), T (τ )). (21)
This results in the normal form of a hyperbolic PDE:{
εh(ζ , T )∂T∂ζ +

∂h(ζ , T )
∂T

∂ζ + (1+ ε)∂T

}
β̃(ζ , T ) = 0, (22)

where

h(ζ , T ) =
(ζ − T )(1− Tζ )

1− T 2
= ω(ζ , T )

[
∂ζω(ζ , T )

]−1
. (23)

3.2. Localized perturbations; rigorous results

We now consider some initial perturbation β̃(ζ , 0) localized in
some small region of the unit circle and derive a rigorous result on
its time dependence, Eq. (32). The detailed discussion of this result
is given in Section 3.3. The analysis is limited to the unit ζ -circle
which corresponds to the free boundary.
Consider for general ε > 0 an initial perturbation that is

centered at ζ = ζc = eiψc for ψc 6= 0 and has ‘width’ γ in the
sense that β̃(eiψc+iγχ , 0) decays rapidly with |χ | when |χ | � 1.
The decay rate will be specified more precisely below Eq. (30). To
study this problem, we first write (22) as an integral equation:

β̃ζ (ζ , T ) = ζ 1/εh−1/ε(ζ , T )β̃ζ (ζ , 0)

−
(1+ ε)

εh1/ε(ζ , T )

∫ T

0
β̃s(ζ , s)h−1+1/ε(ζ , s)ds, (24)

where β̃ζ and β̃s denote derivatives of β̃ . Then integration by parts
in s replaces β̃s by β̃ which is written as

β̃(ζ , T ) =
∫ ζ

ζ0

β̃ζ (ζ
′, T )dζ ′ + β̃(ζ0, T ).

Here ζ0 = eiψ0 is a reference point in the tail of the perturbation
chosen such that 0 < ψ0 < ψc ≤ π . We assume that

ψc−ψ0
γ
is so

large that β̃(ζ0, 0) is negligible.
Then, after some algebraic manipulation, we are able to rewrite

(24) as the following equation for

Ĝ(χ, T ) ≡ β̃ζ
(
eiψc+iγχ , T

)
(25)

Ĝ(χ, T ) = Ĝ(0)(χ, T )+
∫ T

0

∫ χ

−
ψc−ψ0
γ

K1(χ, χ
′, T , s)

× Ĝ(χ ′, s)dχ ′ds+
∫ χ

−
ψc−ψ0
γ

K2(χ, χ
′, T )Ĝ(χ ′, T )dχ ′

≡ Ĝ(0)(χ, T )+L
[
Ĝ
]
(χ, T ), (26)
where, with the understanding that ζ = eiψc+iγχ , ζ ′ = eiψc+iγχ
′

,

K1(χ, χ
′, T , s) =

iγ ζ ′(1− ε2)(1− T 2)1/ε

ε2 {(ζ − s)(1− ζ s)}1/ε

×

(
(ζ − s)(1− sζ )

(1− s2)

)−1+1/ε
×

[
1
s− ζ

+
ζ

sζ − 1
−

2s
s2 − 1

]
, (27)

K2(χ, χ
′, T ) = −iγ ζ ′

(1+ ε)(1− T 2)
ε(ζ − T )(1− Tζ )

, (28)

and

Ĝ(0)(χ, T ) = h−1/ε(ζ , T )ζ 1/ε β̃ζ (ζ , 0)

−
(1+ ε)β̃(ζ0, T )

εh(ζ , T )
+
(1+ ε)β̃(ζ , 0)ζ 1/ε

εζh1/ε(ζ , T )

+
(1− ε2)

ε2h1/ε(ζ , T )

∫ T

0
h−2+1/ε(ζ , s)hT (ζ , s)β̃(ζ0, s)ds. (29)

With Ĝ(0)(χ, T ) considered known4 we determine the solution
Ĝ(χ, T ) to the integral equation (26) for χ ∈

[
−
ψc−ψ0
γ

, χR

]
, T ∈

[0, T0], where χR and T0 < 1 are some suitably chosen positive
values independent of γ . Now it is clear from the expression for
K1 andK2 that they are uniformly small in the ‖.‖∞ norm when
γ

ε2
is sufficiently small. We now choose the norm

‖Ĝ‖ ≡ sup
T∈[0,T0]

sup
χ∈
[
−
ψc−ψ0
γ ,χR

]W (χ)|Ĝ(χ, T )|, (30)

where the positive weight functionW (χ) obeys

W (χ)
∫ χR

−∞

W−1(χ ′)dχ ′ < C <∞ χ ≤ χR.

For example, W (χ) = e−χ for χ ≤ 0 and 1 for χ > 0 would
suffice for our analysis. We define Ĝ to be localized if ‖Ĝ‖ is finite,
and ζ0, T0 can be chosen such that β̃(ζ0, T ) is negligibly small for
T ∈ [0, T0]. Now it is clear from (26) that the linear operatorL has
the contracting property

‖L[Ĝ1 − Ĝ2]‖ ≤ C
γ

ε2
‖Ĝ1 − Ĝ2‖. (31)

It follows that there exists a unique solution to the integral
equation (26) if γ /ε2 is small enough and that for γ /ε2 � 1

Ĝ(χ, T ) ∼ Ĝ(0)(χ, T ),

provided χ and T are in the above specified range. For a
perturbation localized in the sense given above, our result reduces
to

Ĝ(χ, T ) ∼ h−1/ε
(
eiψ0 , T

)
β̃ζ
(
ei(ψ0+γχ), 0

)
. (32)

We note that L[Ĝ](χ, T ) in general will not vanish for χ → ∞.
This is the reason for restricting χ to the interval given above and
indicates that for T > 0 the localized perturbation will sit on top
of a dynamically generated delocalized background of amplitude
∼ γ /ε2.
A detailed discussion of the result (32) will be presented in the

next subsection.

4 Since β̃(ζ0, T ) cannot be determined without considering the full non-local
problem on |ζ | = 1, part of the expression (29) for Ĝ(0) is not known. Nonetheless,
if a disturbance is localized, the contribution to Ĝ(0) from β̃(ζ0, T )will be relatively
small. In any case, in order to study the evolution in the χ-scale, we are not
prevented from considering Ĝ(0) as known.
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3.3. Localized perturbations; formal intuitive arguments

It is useful to obtain the result (32) through a more formal, yet
intuitive, reasoning. This will also be helpful in our subsequent
treatment of the long-time asymptotics in the anomalous region
near the back of the bubble. We again restrict the analysis to the
unit circle ω = eiα, α ∈ R, or correspondingly to ζ = eiψ , ψ ∈ R.
According to Eq. (19), the two angular coordinates α and ψ are
related through

α = arctan

(
1− T 2

)
sinψ(

1+ T 2
)
cosψ − 2T

. (33)

Initially (at T = 0), α and ψ obviously are identical. In terms of ψ ,
the PDE (22) takes the form{
εĥ(ψ, T )∂T∂ψ +

∂ ĥ(ψ, T )
∂T

∂ψ + i(1+ ε)∂T

}
× β̃

(
eiψ , T

)
= 0, (34)

where

ĥ(ψ, T ) =
(
∂ψα

)−1
=
(1− T )2 + 4T sin2 ψ/2

1− T 2
. (35)

We now search for a solution that during its evolution stays local-
ized near a fixed angle ψc , with an angular width γ � π . We use
the ansatz

β̃
(
eiψ , T

)
= β̃loc(χ, T ), (36)

where again

χ =
ψ − ψc

γ
, (37)

and β̃loc(χ, T ) is assumed to vanish rapidly for |χ | > 1. With this
ansatz, Eq. (34) takes the form[
εĥ(ψc + γχ, T )∂T∂χ +

(
∂T ĥ(ψc + γχ, T )

)
∂χ

+ iγ (1+ ε)∂T
]
· β̃loc(χ, T ) = 0. (38)

For γ � π we neglect the term iγ (1 + ε)∂T and the χ-
dependence in the argument of ĥ to find an approximate solution
of the form

β̃loc(χ, T ) = ĥ−1/ε(ψc, T )β̃loc(χ, 0), (39)

which is the same as (32).
Before we evaluate this result we briefly discuss its limitations

that result from the present derivation. In view of the assumptions
γ � π , and |χ | . 1, the use of the zero order result ĥ(ψ) ≈ ĥ(ψc)
is justified provided

(1− T )2 + 4T sin2
ψc

2
� 2Tγχ sinψc + T (γ χ)2 cosψc . (40)

This is valid for all times provided |ψc | � γ , i.e., for initial
conditions β̃loc(χ, 0) which essentially vanish in the forward
direction ψ = 0. For ψc ≈ 0 the condition (40) is violated if
(1 − T ) becomes of the order γ , and therefore the approximation
becomes invalid in the large-time limit T (τ )→ 1. This special role
of perturbations in the forward direction is not unexpected since
for such perturbations advection is ineffective.
Neglecting the term ∼iγ (1 + ε)∂T has more serious conse-

quences. Substituting into Eq. (38) an ansatz of the form

β̃loc(χ, T ) = β̃(0)(χ, T )+ γ β̃(1)(χ, T )+ O(γ 2)

one finds that the result for β̃(1) violates the condition β̃(1)(χ, T ) ≈
0 for |χ | � 1. A localized initial condition dynamically generates a
delocalized contribution, with an amplitude proportional to γ /ε2,
in full accord with the rigorous discussion of the previous subsec-
tion. Again this result is not unexpected since the eigenfunctions
of the operatorLε , Eq. (14), are delocalized. Assuming that we can
expand an initially localized perturbation in terms of eigenfunc-
tionswemust expect that the balance of the expansion coefficients
an eλnτ , which for τ = 0 leads to localization, is destroyed by the
time evolution.With these limitations inmind, we nowdiscuss the
result (39).
According to Eq. (39), if expressed in the variable ζ = exp

(i(ψc + γχ)) the evolution of the perturbation is most simple.
Neither its position ψc nor its shape β̂loc(χ, 0) change. Only the
overall amplitude ĥ−1/ε varies with time. For 0 < |ψc | < π/2, i.e.,
ifψc is at the front half of the circle, ĥ−1/ε increases up to a time τm
given by(
T 2(τm)+ 1

)
cosψc − 2T (τm) = 0, (41)

and then decreases again. For |ψc | > π/2, ĥ−1/ε decreases mono-
tonically. For any ψc 6= 0, we find the asymptotic behavior

ĥ−1/ε (ψc, T (τ )) ∼
e−τ/ε

sin2 ψc/2
for τ →∞. (42)

For a perturbation centered precisely at the back of the circle (ψc =
π), exponential relaxation

ĥ−1/ε (π, T (τ )) =
(
1− T
1+ T

)1/ε
= e−τ/ε (43)

holds for all τ . We recall that the localized approximation must
break down if ĥ−1/ε becomes of the order of the amplitude of the
delocalized background. Nevertheless we will argue in Section 3.4
that a contribution with asymptotic time behavior e−τ/ε generally
shows up.
Using Eq. (33) to transform back to ω = eiα we see that the

center αc(T (τ )) is convected along the circle, reaching ±π for
τ →∞. A little calculation yields the velocity of this advection

d
dτ
αc (T (τ )) = sinαc (T (τ )) . (44)

This result has a simple interpretation. Recalling that we are
working in a frame moving with the velocity v = x̂ of the
unperturbed circle, we identify the velocity (44) as the projection
of v onto the tangent to the circle at the instantaneous location of
the perturbation.
In terms of αc the overall amplitude of the perturbation takes

the simple form

ĥ−1/ε =
(
sinαc (T (τ ))
sinαc(0)

)1/ε
. (45)

It increases as long as the perturbation is on the front half of
the circle and decreases on the back side. The maximum, reached
for αc(T (τ )) = ±π/2, strongly depends on the initial position
αc(0) ≡ ψc .
Defining the scale factor of the width of the perturbation as

Γ =
∂α

∂ψ

∣∣∣∣
ψ=ψc

(46)

we find

Γ = ĥ−1 (ψc, T (τ )) =
sinαc (T (τ ))
sinαc(0)

. (47)

Thus the width behaves similarly to the amplitude, except that for
ε � 1 it varies much less. For τ →∞ it vanishes like e−τ .
So far we considered perturbations localized away from the tip

ψc = 0 = αc(0) of the circle. For ψc = 0, Eq. (39) still holds for
times such that
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Fig. 2. Evolution of a strongly localized perturbation for ε = 1. Curves 1, 2 and 3 correspond to times τ = 0, 1.84 and 4.59, respectively. (a) Re β̃ as function of the comoving
angular coordinate χ = (ψ −ψc)/γ . Broken lines: local approximation. Full lines: exact result with the shift of the circle subtracted. (b) Perturbed interface in the physical
plane in the system of local tangential and normal coordinates as explained in the text.
1− T (τ )� γ ,

cf. Eq. (40). It describes the initial increase and broadening of the
perturbation. Advection, of course, is absent. For 1 − T ≈ γ
the width becomes of order 1 and the local approximation clearly
becomes invalid.
On the qualitative level these results are most similar to the ex-

act results found for ε = 1 [17,18] and resemble the dynamics
of a localized perturbation found in the context of viscous finger-
ing [32].
The quantitative performance of the local approximation is

illustrated in Fig. 2, where for ε = 1 the exact evolution of a
localized perturbation is compared to our approximation. From the
exact result (16) the contribution G(T )/2 representing a simple
shift of the circle, has been subtracted. The initial condition is
chosen as

β̃(eiψ , 0) =
γ 2(

eiψ − (1+ γ ) eiψc
)2

with

ψc = −
π

10
, γ =

1
200

.

Fig. 2(a) shows Re β̃ as a function of χ = (ψ − ψc)/γ for
three different times. Curve 1 shows the initial condition, where
by construction the exact form and the approximation coincide.
Curve 2 shows the perturbationwhen it is largest, inω-space being
located nearω = −i. Curve 3 is taken at some later time. Evidently
in this example the local approximation (broken lines) is quite
accurate. Very similar results are found for Im β̃ , which therefore
is not shown. Fig. 2(b) shows the effect of this perturbation in
physical space. In evaluating z = f (ω, t), Eq. (12), we choose the
amplitude η = 0.007e−iψc . To combine the three curves into one
plot, we introduced a time-dependent rotation of the coordinate
system such that y′ or x′ are measured along the normal or the
tangent to the unperturbed circle at the center of the perturbation,
(i.e., at angle −αc(T (τ )), since the inversion contained in the
conformal map induces a sign change of the angles). In this
representation the exact solution and the approximation cannot
be distinguished within the resolution of the plot. We note that
in physical space the shape of the perturbation varies due to
interference with the unperturbed circle.

3.4. Asymptotic relaxation near ω = −1

The analysis presented in Sections 3.2 and 3.3 clearly demon-
strates the advection of an initially localized disturbance towards
ω = −1, corresponding to the rear of the bubble. Note that
Eqs. (18) and (19) mean that any fixed ζ 6= 1 maps to ω = −1
as τ → +∞, i.e., as T → 1−. We now consider the relaxation
process at ω = −1 for large time τ .
In discussing the asymptotic relaxation we prefer to rewrite

(22) in terms of τ , using (1 − T 2)∂T = 2∂τ . Inserting the explicit
form (23) of h(ζ , T ) and multiplying by (1− T 2)2/2 we find[
ε(ζ − T )(1− Tζ )∂τ∂ζ +

(
2Tζ −

1
2
(1+ T 2)(1+ ζ 2)

)
∂ζ

+ (1+ ε)(1− T 2)∂τ
]
β̃(ζ , T ) = 0. (48)

Here T stands for

T = T (τ ) = tanh τ/2 = 1− 2e−τ + O
(
e−2τ

)
,

cf. Eq. (18). Keeping only the leading τ -dependence in the
coefficients of the derivatives, we reduce Eq. (48) to[
−(ε∂τ + 1)(1− ζ )2∂ζ + 4(1+ ε) e−τ∂τ

]
β̃(ζ , T (τ )) = 0. (49)

For τ � 1 we neglect the term e−τ∂τ β̃ to find

β̃(ζ , T (τ )) ∼ e−τ/ε β̂0(ζ )+ γ0, (50)

where β̂0(ζ ) and γ0 depend on the initial condition β̃(ζ , 0) and of
course cannot be fixed by this asymptotic argument.
Since the derivative ∂ζ in Eq. (49) is multiplied by (1 − ζ )2,

the neglect of the term involving e−τ∂τ can be justified only for
ζ 6= +1. In terms of

ω =
ζ − T
1− Tζ

= −1+ 2
1+ ζ
1− ζ

e−τ + O
(
e−2τ

)
(51)

this implies that we deal with a neighborhood of ω = −1 that is
contracted to this point like e−τ . This range ofω is complementary
to the region where an expansion in terms of eigenfunctions can
be expected to be valid asymptotically.
In the result (50) the ζ -dependence is suppressed by a factor

e−τ/ε , which for ε � 1, τ → ∞, vanishes much faster than
e−τ . Thus ζ -dependent corrections of order e−τ will dominate the
asymptotic relaxation at the back of the circle. Noting the presence
of e−τ in the coefficients of the differential equation, it is natural to
determine the structure of these terms with the ansatz

β̃ (ζ , T (τ )) = e−τ/ε β̂(ζ , τ )+ γ̂ (ζ , τ ), (52)

where

γ̂ (ζ , τ ) =

∞∑
k=0

γ̂k(ζ ) e−kτ . (53)
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Fig. 3. Time evolution of the initial condition (59). (a) |B(ψ̂, τ )| as a function of ψ̂/π for times τ as given and for ε = 0.1. (b) Phase of B for the same values of τ and ε.
(c) Again |B(ψ̂, τ )| as a function of ψ̂/π , but now for ε = 0.8.
From Eq. (48) with β̃(ζ , T (τ )) replaced by γ̂ (ζ , τ )we find

γ̂ (ζ , τ ) = ĉ0 + ĉ1 e−τ +
(
ĉ2 −

1+ ε
1− 2ε

4ĉ1
1− ζ

)
e−2τ

+

(
ĉ3 −

1+ ε
1− 3ε

8ĉ2
1− ζ

+
(1+ ε)2

(1− 2ε)(1− 3ε)

×
16ĉ1

(1− ζ )2

)
e−3τ + O

(
e−4τ

)
, (54)

where the ĉk are integration constants. Generally γ̂k(ζ ) is found to
be a polynomial in (1 − ζ )−1 of degree k − 1. In this analysis we
assumed ε 6= 1/n. For ε = 1/n the ansatz (53) has to be modified.
In particular a term proportional to τe−nτ has to be included. We
note that the exact result for ε = 1 shows such a contribution [18].
To transform our result back to ω-space we introduce

δω = (1+ ω) eτ , (55)

γ (δω, τ) = γ̂ (ζ (δω), τ )− γ̂ (−1, τ ). (56)

Eq. (19) yields

1
1− ζ

=
1+ T

1+T δω

2− δωe−τ
=
1
2
+
1
4
δω + O(e−τ ). (57)

Thus γ (δω, τ) has an expansion of the form

γ (δω, τ) = e−τ
∞∑
k=1

ck
(
δωe−τ

)k [1+ O
(
e−τ

)]
, (58)

where the ck again depend on the initial condition. For ε � 1 the
terms of order k < 1/ε−1 dominate over the contribution e−τ/ε β̂ .
For ε < 1/2 we therefore in a region of size |1 + ω| = O (e−τ )
near ω = −1 expect to see a very smooth asymptotic relaxation
of the interface, with only a few coefficients depending on the
initial condition. In contrast, for ε > 1/2 the asymptotic relaxation
is determined by the term e−τ/ε β̂0(ζ ), which will depend on the
initial condition in a complicated way. For ε = 1 this is illustrated
in Fig. 5.2 of Ref. [18]. In the next subsection we will argue that
the function β̂0(ζ ) picks up contributions due to singularities of
the initial condition, which for τ → ∞ are driven towards ω =
−1. We finally note that the results discussed here resemble the
behavior of the low order eigenfunctions βλ(ω). As shown in part I
[19] of this series of papers, these functions near ω = −1 develop
a singularity of the form (1+ω)1/ε+λ, implying that the derivatives
at ω = −1 exist for all orders k < 1/ε + λ.
To illustrate our results we consider a perturbation centered at

ω = −1. As the initial condition we choose

β̃(ζ , 0) =
γ

γ − ζ
, γ = 1.05, (59)

and we calculate the function
B(ψ̂, τ ) =
β̃(−eiψ̂ , T (τ ))− β̃(0, T (τ ))

β̃(−1, T (τ ))− β̃(0, T (τ ))
. (60)

We expect to find the limiting behavior

B(ψ̂, τ ) −−−→
τ→∞

1

1+ eiψ̂
− 1 =

eiψ̂/2

cos ψ̂/2
, ε <

1
2
, (61)

or

B(ψ̂, τ ) −−−→
τ→∞

β̂0(−eiψ̂ )− β̂0(0)

β̂0(−1)− β̂0(0)
, ε >

1
2
, (62)

respectively. Whereas β̂0(ζ ) depends on the initial condition, the
limit (61) is universal. The results shown in Fig. 3 conform to these
expectations.
Fig. 3(a) shows |B(ψ̂, τ )| for several values of τ and for ε = 0.1.

It illustrates the approach to the limiting form 1/ cos(ψ̂/2), which
within the accuracy of the plot is in fact reached for τ ≈ 4. Fig. 3(b)
shows the corresponding phase of B(ψ̂, τ ). Here the approach to
the limit is slower, but is definitely visible. Fig. 3(c) shows results
for |B(ψ̂, τ )|, ε = 0.8. Here |B(ψ̂, τ )| seems to approach a limiting
curve which clearly shows remainders of the initial peak. (We
should note that B(ψ̂, τ ) is symmetric: B(−ψ̂, τ ) = B∗(ψ̂, τ ), and
that the peak at ψ̂ = 0, of course, is rounded, which however is not
visible on the scale of the plot.) We finally recall that the ψ̂-range
shown here in terms ofω = eiα corresponds to a small region near
α = π . Specifically for τ = 4 it corresponds to π ≤ α ≤ 1.08π .
For the asymptotic relaxation our results predict

β̃(ζ , T (τ )) ∼


e−2τ , ε <

1
2

e−τ/ε, ε >
1
2

for τ →∞. (63)

This prediction is tested in Fig. 4 by plotting results for
ln[β̃(−1, T (τ ))− β̃(0, T (τ ))] as a function of τ for several values
of ε. The expected behavior is reasonably well observed.

3.5. Analyticity of the interface

If we assume the initial interface to be analytic, all singularities
of the initial perturbationβ(ω, 0)have to be outside the closedunit
disk, Uω . We here argue that under the linearized dynamics the
singularities stay outsideUω for all finite times τ . For τ →∞ they
approach ω = −1, and contribute to the anomalous e−τ/ε β̂(ζ )
behavior found in Section 3.4.
This argument is based on the recurrence relation for the

coefficients bk(τ ) in the Taylor expansion

β(ω, τ) =

∞∑
k=0

bk(τ )ωk. (64)
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The evolution equation (13), (14) yields

2∂τb0 =
2+ ε
1+ ε

b1, (65)

2∂τbk =
k+ 1

1+ ε + εk

[
(2+ ε + εk)bk+1

− ε(k− 1)bk−1
]
for k ≥ 1.

The singularities of β(ω, τ) are determined by the behavior of
the bk(τ ) in the limit k → ∞. For simplicity, we consider an
initial condition β(ω, 0) whose singularity closest to |ω| = 1 is a
branch point at ω0 with behavior β(ω, 0) ∼ const(ω0 − ω)α−1 for
nonintegral α or a pole with α a non-positive integer. Then bk(0)
for k� 1 behaves as

bk(0) = const ω−k0 k
−α

(
1+ O

(
1
k

))
.

We therefore make the ansatz

bk(τ ) = (−1)k e−kf (τ )g(τ )k−α
[
1+

1
k
∆(τ )+ O

(
1
k2

)]
, (66)

where the factor (−1)k is introduced since we expect the point
ω = −1 to play a special role. Wewill find that this ansatz is inter-
nally consistent provided k � k0, where k0 increases with τ . We
shall conclude that for any τ > 0,

| e−f (τ )| < 1, (67)

if this condition is satisfied initially. This implies that the singular-
ity remains outside the unit disk for all times and suggests that at
least for initial conditions with a branch point, the interface will
remain analytic.
Substituting the ansatz (66) into the recurrence relation (65),

we find(
−2∂τ f + e−f − ef

) (
1+

∆

k

)
+
1
k

[
2∂τ ln g +

(
1
ε
+ 1− α

) (
ef + e−f

)]
= O

(
1
k2

)
. (68)

The leading order yields

2∂τ f = e−f − ef ,

with the solution

f (τ ) = ln
1− Ce−τ

1+ Ce−τ
, (69)

where C is some integration constant. g(τ ) is determined by the
next order:
g(τ ) = g(0) e
(
α−1− 1ε

)
τ (1− C2 e−2τ )α−1− 1ε . (70)

Checking higher orders in an expansion in powers of 1/k, one finds
that neglecting such terms assumes k � eτ

ε
= k0. Combining our

results we find the asymptotic behavior

bk(τ ) ∼ (−1)k
(
1+ C e−τ

1− C e−τ

)k
g(0) e

(
α−1− 1ε

)
τ

×
(
1− C2 e−2τ

)α−1− 1ε k−α. (71)
Regularity of the initial condition enforces∣∣ e−f (0)∣∣ = ∣∣∣∣1+ C1− C

∣∣∣∣ < 1,
equivalent to Re C < 0. With the form (69) of f (τ ) this guarantees
that condition (67), |e−f (τ )| < 1, is fulfilled for all finite τ . Thus
for τ <∞ the singularities of β(ω, τ) stay at some finite distance
from the unit disk and the interface stays smooth. f (τ ) vanishes for
τ →∞, indicating that a singularity reaches ω = −1.
In the above ansatz (66), we assumed a particular type of branch

point or a pole for β(ω, 0) as the nearest singularity. Multiple
singularities of this type can be accommodated in this linear
analysis using the superposition principle. Other singularities can
be accommodated as well by replacing k−α by a more general k
dependence.
We now consider the limiting behavior of bk(τ ) for τ → ∞

more closely. Eq. (71) yields

bk(τ ) ∼ (−1)k exp
[
2Ck e−τ

]
g(0)

(
k e−τ

)1+ 1ε−α k1− 1ε . (72)
This result, however, for τ →∞ is only valid for

η = k e−τ � 1, (73)
i.e., for extremely large k. To extend the analysis to values η =
k e−τ = O(1)we make the ansatz

bk(τ ) ∼ (−1)kk−
1
ε−1g̃(η, τ ), (74)

which is motivated by Eq. (72). The recurrence relation (65) takes
the form

(2∂τ − 2η∂η)g̃(η, τ ) =
(
k+ O

(
1
k

))
g̃
(
η − e−τ , τ

)
−

(
k+ O

(
1
k

))
g̃
(
η + e−τ , τ

)
= −2k e−τ∂ηg̃(η, τ )+ O

(
1
k

)
= −2η∂ηg̃(η, τ )+ O

(
1
k

)
,

or

2∂τ g̃(η, τ ) = O

(
1
k

)
, (75)

equivalently. Thus to leading order in 1/k, g̃(η, τ ) is independent
of τ and Eq. (61) reduces to

bk(τ ) ∼ (−1)kk−
1
ε−1g̃0

(
k e−τ

)
. (76)

Inspecting the terms of order 1/k one finds that this result asymp-
totically should be valid for e−τ � 1 and k & eτ/ε2.
The bk(τ ), Eq. (76), can be interpreted as coefficients of a Taylor

expansionwith respect toω of the function β̂0(ζ (ω, T )) introduced
in the previous subsection, cf. Eq. (50). To show this we again
introduce δω
ω = −1+ δω e−τ

as defined in Eq. (55), and we approximately resum the Taylor
expansion from k = η0eτ to infinity, using the result (76).
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∞∑
k=η0eτ

bk(τ )
(
−1+ δω e−τ

)k
≈

∫
∞

η0eτ
dk k−

1
ε−1g̃0(k e−τ ) exp

[
−k e−τ δω

]
= e−τ/ε

∫
∞

η0

dη η−
1
ε−1g̃0(η) e−ηδω.

This clearly is of the same form as the anomalous contribution
in our previous result (50). The (unknown) function β̂0(ζ ) is
given by the integral involving the (unknown) function g̃0(η). By
construction the result (76) is valid for large k and large τ and
therefore picks up the structure of the singularities for τ � 1. We
conclude that the anomalous contribution e−τ/ε β̂0(ζ ) is due to the
singularities which approach ω = −1, as claimed above.
We finally note that the leading singularity ∼(1 − ω)1/ε+λ

of the eigenfunction βλ(ω) implies that the Taylor coefficients of
eλτβλ(ω) for large k behave as

bk(τ ) ∼ (−1)kk−
1
ε−1

(
eτ

k

)λ
C1

(
1+ O

(
1
k

))
,

where C1 is some constant. We thus recover the form (76) with
g̃0(η) = η−λ.

3.6. Rigorous analysis of the limit τ →∞

In the previous subsectionwehave argued thatβ(ω, τ) for τ →
∞ tends to a functionβ∞(ω) that is analytic in any compact subset
K ofUω \ {−1}. Furthermore, the eigenvalue analysis [19] as well
as the results of Sections 3.2–3.4 suggest that within the linearized
theory a perturbation for τ → ∞ only leads to a constant shift
of the circle. Assuming the existence of β∞(ω), this can be proved
rigorously.
We start from Eq. (13):Lεβ = 0, rewritten as[(
1− T 2

)
∂T −

(
1− ω2

)
∂ω
]
(1+ ε + εω∂ω) β (ω, τ(T ))

= (1− ε)
(
1+ ω2

)
∂ωβ (ω, τ(T )) , (77)

where T = tanh τ/2, (Eq. (18)), and we introduce the function

G(ω, T ) = (1+ ε + εω∂ω) β (ω, τ(T )) . (78)

In terms of G(ω, T ) the solution β(ω, τ) regular at ω = 0 is given
by

β(ω, τ) =
1
ε
ω−1/ε−1

∫ ω

0
ω′1/εG(ω′, T (τ ))dω′ (79)

which generalizes Eq. (16) to ε 6= 1. We now write Eq. (77) as[(
1− T 2

)
∂T −

(
1− ω2

)
∂ω
]
G(ω, T ) = H (ω, T ) , (80)

where

H(ω, T ) =
1− ε
ε

1+ ω2

ω

[
G(ω, T )

−
1+ ε
ε

∫ 1

0
x1/εG(xω, T )dx

]
. (81)

Noting that G(ω, T ) ≡ ζ = (ω + T )/(1 + ωT ) solves Eq. (80)
for H ≡ 0 it is easily found that (80) is equivalent to the integral
equation

G(ω, T ) = G(0, ζ )−
∫ ω

0

1
1− ω′2

H
(
ω′,

ζ − ω′

1− ω′ζ

)
dω′. (82)

We now define

∆(ω, T ) = G(ω, T )− G(0, T ). (83)

Eq. (82) yields
∆(ω, T ) = G(0, ζ )− G(0, T )

−
1− ε
ε

∫ ω

0

1
ω′

1+ ω′2

1− ω′2

[
∆

(
ω′,

ζ − ω′

1− ω′ζ

)
−
1+ ε
ε

∫ 1

0
x1/ε∆

(
xω′,

ζ − ω′

1− ω′ζ

)
dx
]
dω′, (84)

where we have written out H explicitly. In view of the results of
Section 3.5 we now assume that limT→1 G(ω, T ) exists for ω ∈ K .
We further note that for T → 1 and ω 6= −1, both ζ and
(ζ −ω′)/(1−ω′ζ ) tend to 1. Eq. (84) reduces to the homogeneous
integral equation

∆(ω, 1) = −
1− ε
ε

∫ ω

0

1
ω′

1+ ω′2

1− ω′2

[
∆(ω′, 1)

−
1+ ε
ε

∫ 1

0
x1/ε∆

(
xω′, 1

)
dx
]
dω′. (85)

It is easily checked that for all ε > 0 the only solution of (85)
analytic in a neighborhood of ω = 0 is the trivial one:

∆(ω, 1) ≡ 0. (86)

To see this, we assume that the Taylor expansion of∆(ω, 1) starts
with a lowest order term akωk, k ≥ 1, ak 6= 0. Eq. (85) yields
ak = 0, contradicting our assumption.
We thus have shown that providedG(ω, 1) exists and is analytic

for ω ∈ K , the only solution to our problem is

G(ω, 1) ≡ G(0, 1), (87)

implying

β∞(ω) =
G(0, 1)
1+ ε

, (88)

which for ε = 1 reduces to Eq. (20).

3.7. Numerical illustration

In this section, we show numerical results of the linear
evolution. We approximately solve the PDE (14) by truncating the
series expansion (64),

β =

∞∑
k=0

bkωk,

at k = N . The ODE system for bk(τ ) has been given in Eq. (65)

2∂τb0 =
2+ ε
1+ ε

b1,

2∂τbk =
k+ 1

1+ ε + εk
× [(2+ ε + εk)bk+1 − ε(k− 1)bk−1] for k ≥ 1.

With the bk(0) given by the initial condition, the bk(τ ) can be
determined recursively by the Runge–Kutta time steppingmethod.
We choose the cut-off N = 2000 in the simulation. Adaptive time
steps are chosen which ensure that the difference between 4-th
order and 5-th order Runge–Kutta methods is within 10−15. In the
following we present results for

δβ(ω, τ) = β(ω, τ)− β(0, τ ). (89)

The subtraction eliminates the overall shift of the evolving body.
We first present results typical for a delocalized initial condi-

tion, choosing

β(ω, 0) = ω5. (90)

Fig. 5 shows the evolution of Re[ωδβ(ω, τ)], ω = eiα , with ε =
1/10 or ε = 1/2, respectively. In physical space, Re[ωδβ] is the
component of the perturbation normal to the unperturbed but
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(a) ε = 1/10. (b) ε = 1/2.
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(c) Times 0, 0.5, 2, 6 for ε = 1/10. (d) Same time steps for ε = 1/2.

Fig. 5. Evolution of Re[ωδβ(ω, τ)] for ω = eiα for the initial condition (90). (a) Overview plot for ε = 1/10 and times 0 ≤ τ ≤ 11. (b) The same for ε = 1/2 and times
0 ≤ τ ≤ 11. (c) Detailed data for time steps 0, 0.5, 2, 6, 11 for ε = 1/10; the angle is normalized as α/π ; orange areas are overlap regions plotted to make the structure at
the back visible. (d) The same for ε = 1/2.
– –

(a) ε = 1/10. (b) ε = 1/2.

Fig. 6. Evolution of |δβ(ω, τ)| for the initial condition (90) with (a) ε = 1/10 and (b) ε = 1/2.
shifted circle at angle−α. Panels (a) and (b) show that the qualita-
tive behavior is quite similar for both values of ε shown. Panels (c)
and (d) give a detailed view on the state for several time steps; here
an extended range ofα is shown, so that the behavior both atα = 0
and |α| = π is clearly seen. For small times the perturbations in-
crease in the front half |α| < π/2 of the circle and decrease in the
back half. Themaximumatα = 0 increases and broadens strongly,
whereas the other perturbations are shifted towards α = ±π . At
later times the perturbations decrease at the front half, while at the
back a transient increase is observed which is due to the advection
of the dynamically generated large amplitude of the perturbation
towards α = π . The results for ε = 1/10 or ε = 1/2 essentially
differ only in two respects. First, for ε = 1/10 the perturbation
at intermediate times is amplified much more than for ε = 1/2.
Second, for τ = 2 and ε = 1/2, the remainders of individual
maxima that initially are located at α 6= 0, still can be seen near
α = ±π (this structure was very pronounced for ε = 1 as dis-
cussed in [18]), whereas for ε = 1/10 this structure is completely
damped out and yields a broad maximum.
Fig. 6 shows |δβ| as a function of α and τ . It illustrates how

themaximum of the absolute value of the perturbation is advected
towards α = π , where it decays. For ε = 1/10 the behavior of |δβ|
is quite smooth, whereas for ε = 1/2 some small scale structure is
observed near α = ±π .
Outside a neighborhood of α = π we expect to see

asymptotically exponential relaxation: δβ ∼ eλ1τ . From the results
given in paper I [19] in Fig. 2, we expectλ1 ≈ −0.546 for ε = 1/10,
and λ1 ≈ −0.905 for ε = 1/2, respectively. These predictions are
tested in Fig. 7. Since themaximumof |δβ| advects along the circle,
we plot ln |δβmax(τ )| as a function of τ , where
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(a) ε = 1/10. (b) ε = 1/2.

Fig. 7. log supα∈[−π+δ1,π−δ1] |δβ(α, τ )|, δ1 = π/8 as a function of τ for the data presented in Fig. 6. (a) ε = 1/10, the line has slope λ1(1/10) = −0.54. (b) ε = 1/2, the
line has slope λ1(1/2) = −0.90.
(a) ε = 1/10. (b) ε = 1/2.
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(c) ε = 1/10. (d) ε = 1/2.

Fig. 8. Evolution of Re[ωδβ(ω, τ)] for the initial condition (91) with γ = 1.1 e−iπ/10 for ε = 1/10 and ε = 1/2. In panel (c), Re(ωδβ) is scaled by factors α0(τ ), where
α0(0) = 1, α0(1) = 0.03, α0(2) = 0.007, α0(4) = 0.025, α0(6) = 0.05.
|δβmax(τ )| = sup
αε[π+δ1,π−δ1]

|δβ(eiα, τ )|.

We choose δ1 = π/8. For smaller values of δ1 it needs larger values
of τ to reach the asymptotic behavior. We fit the curve for data
at 10 ≤ τ ≤ 11. As Fig. 7 illustrates, the expected asymptotic
behavior is observed.
We now consider a more localized initial condition:

β(ω, 0) =
1
2

(
γ

γ − ω
+

γ ∗

γ ∗ − ω

)

=
1
2

∞∑
j=0

[(
ω

γ

)j
+

(
ω

γ ∗

)j]
. (91)

With the choice γ = 1.1eiπ/10 it shows two fairly sharp peaks
centered symmetrically close to α = 0. Similar to Fig. 5, Fig. 8
shows Re(ωδβ(ω, τ)) for ε = 1/10 and ε = 1/2. For ε = 1/10
we rescaled the amplitude in panel (c) by a time dependent factor
a0(τ ) in order to show all curves in the same plot. Panels (a) and (b)
show that the time dependent shift of the structure is essentially
independent of ε, implying that advection is determined by the
automorphism ζ = ζ (ω, T (τ )). Panels (c) and (d) illustrate that
also the detailed structure at given time τ is fairly independent of ε,
but for ε = 1/10 the amplitude at intermediate times is enhanced
much more than for ε = 1/2 (cf. the rescaling factors a0(τ ) given
in the figure caption). Fig. 9 shows |δβ| as a function of α and τ ,
similarly to Fig. 6. Again the advection of the maximum towards
α = π , its increase as long as it is in the front half, and its final
decay in the back half are clearly seen.
In summary, all numerical results presented here and in

previous subsections support our analysis.
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(a) ε = 1/10. (b) ε = 1/2.

Fig. 9. The same evolution as in Fig. 8; now |δβ(α, τ )| is plotted as a function of α and τ . Left column: ε = 1/10, right column: ε = 1/2. Note the large difference in the
scale of |δβ|, reflecting the strong ε dependence of the amplitude.
4. Nonlinear evolution

In Section 3 we discussed the solution of the linearized evolu-
tion equation. Here we seek to determine the effect of the nonlin-
earity. In Section 4.1 we consider small perturbations of the circle.
Section 4.2 presents examples of the evolution ofmore general ini-
tial shapes.
To calculate the nonlinear evolution in a large range of time is

difficult. Using a Fourier representation of the interface it needs
wavenumbers of order eτ � 1 for large τ to resolve the collapsing
region near ω = −1. Modes of large wavenumber can also be
expected to play an important role at the front part of the bubble.
Approximating a small region near ω = +1 as planar, we may
invoke well known results [28,29,33] on the instability of a planar
interface: in linear approximation the amplitude of a Fourier mode
of wavenumber k increases like es(k)τ , where

s(k) =
k

1+ εk
.

Thus with the present regularization all Fourier modes are unsta-
ble, whereas with curvature regularization only a finite unstable
band exists. The strong increase of a perturbation localized near
ω = +1, as discussed in Section 3.3, can be considered to result
from this instability of modes k� 1/ε. Nonetheless, despite strin-
gent demands on resolution and time steps, we believe that the
results presented here exemplify the nonlinear effects. The numer-
ical methods used to solve the nonlinear equations (9) and (10) are
summarized in theAppendix.Weuse a Fourier representationwith
cutoff kmax = N , and we solve the resulting system of ordinary
differential equations with a 4th order Runge–Kutta method with
time step ∆t . (N and ∆t are given in the figure captions.) The nu-
merics abruptly breaks down at some time tmax(ε). The time range
shown in the figures therefore depends both on ε and on the initial
condition.

4.1. Small perturbations of the circle

We here consider perturbations ηβ(ω, 0) of the circle, with
η � 1. In order to compare with the linear evolution we define
the nonlinear counterpart to δβ(ω, τ) = β(ω, τ)− β(0, τ ) as

δβnl(ω, τ) =
f̂ (ω, t)− f̂ (0, t)

η
, (92)

where t = 1+ε
2 τ , Eq. (15), and f̂ (ω, t) is defined in Eq. (6). For

η→ 0, δβnl reduces to δβ .
We first consider the delocalized initial condition (90):

f̂ (ω, 0) = ηω5. Even for very small η it is not obvious a priori that
the nonlinearity is unimportant. As recalled above, perturbations
at the front may increase dramatically, and the collapsing region
at the back, where an eigenmode expansion is bound to fail, also
might be quite sensitive to nonlinear effects.We therefore in Fig. 10
show δβnl(+1, τ ) and δβnl(−1, τ ) for ε = 1

10 or
1
2 and several

values of η. It is seen that for very small values of η the nonlinear
theory essentially reproduces the results of the linear approxima-
tion. Deviations outside some initial time range become visible for
η ≥ 10−4,

(
ε = 1

10

)
, or η ≥ 10−3,

(
ε = 1

2

)
, respectively, but even

then the shape of the curves is similar to the linear approximation.
This suggests that also in the forward and backward regions the
nonlinearity for small perturbations does not qualitatively change
the results of the linear approximation.
The results shown in Fig. 11 support this conclusion. We here

plot Re(eiαδβnl(eiα, τ )) as a function of α/π , for values of τ where
a deviation from the linear approximation is visible. We observe
that the nonlinearity essentially influences the amplitude but not
the shift of the perturbation. The overall structure is most similar
to the linear approximation.
Such results are also found for other delocalized perturbations

of type ηωn. Also more localized perturbations behave similar.
For the initial condition (91), β(ω, 0) = 1

2
γ

γ−ω
+

1
2

γ ∗

γ ∗−ω
this

is illustrated in Fig. 12. We again observe that the nonlinearity
essentially influences only the amplitude of the perturbation,
but leaves the qualitative structure almost unchanged. All these
results suggest that the circle is the asymptotic attractor for weak
perturbations.
For larger initial perturbations it is unlikely that the circle

is recovered asymptotically. Rather we may observe branching.
This is illustrated in Fig. 13 with the initial condition β(ω, 0) =
−0.03ω5. Panel (a) shows snapshots of the interface in physical
space z = x + iy = f (ω, t), with ε = 1

10 , as resulting from the
nonlinear evolution. For comparison panel (b) shows the linearized
evolution, and panel (c) shows the result of the unregularized
model ε = 0. Snapshots are taken at times t = 0.05n, where
n = 0, 1, . . . , 12 in panels (a) and (b), and n = 0, 1, . . . , 5
in panel (c). Clearly the cusps that in the unregularized model
occur for t ≈ 0.25 are suppressed for ε = 1

10 both according
to the linear and to the nonlinear evolution. A qualitative effect
of the nonlinearity is observed for t > 0.1. Whereas the linear
approximation develops shoulders connected by some flat part
of the interface, the nonlinear evolution results in two branches
separated by a valley. Since the bottom of the valley moves slower
than the tips of the branches, the valley is likely to evolve into a
deep fjord.
To close this subsectionwe briefly consider the range of validity

of the linear approximation. As is evident from Fig. 10, for a
given initial condition this range strongly depends on ε. The
results of Section 3.3 suggest that it might decrease exponentially:
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(a) ε = 1/10, ω = 1. (b) ε = 1/10, ω = −1.

(c) ε = 1/2, ω = 1. (d) ε = 1/2, ω = −1.

Fig. 10. Initial condition: βnl(ω, 0) = ω5 , plotted are δβ(1, τ ) and δβ(−1, τ ) as a function of τ for ε = 1/10 and ε = 1/2 for different η (N = 256,∆t = 0.001).
(a) ε = 1/10, η = 10−3 . (b) ε = 1/2, η = 10−2 .

Fig. 11. Evolution of Re[ωδβ(ω, τ)] for ω = eiα for the initial condition (90) for ε = 1/10 and ε = 1/2 at different τ (N = 256, ∆t = 0.001). The solid lines show the
linear evolution and the dashed lines the nonlinear evolution for η = 10−3 in (a) or 10−2 in (b).
η < const e−const/ε , where the constants might depend on the
initial condition. To test this hypothesis, we compared for the
initial condition β(ω, 0) = ηω10 the linearized and the nonlinear
evolution for values η = 0.001 · 2−n, n = 0, 1, . . . , 4 and ε
in the range 0.12 ≤ ε ≤ 0.24. We specifically calculated the
absolute value of the difference ∂ωβnl − ∂ωβ in forward direction
ω = 1. We choose the derivative since it prominently shows up
in the nonlinear equations (9) and (10). The results for ε = 0.2
are shown in Fig. 14(a). We observe that after some initial rise
this difference saturates at some η-dependent plateau, where the
plateau value strongly increases with η. Eventually it decreases
again, in agreement with the expectation that for the small
perturbations η, the circle is the asymptotic attractor. Interpolating
among the plateau values we now for each ε determined a
value η∗(ε) where the plateau value equals 0.02 at τ = 4.
Fig. 14(b) shows ln η∗ as a function of 1/ε. As expected, it shows
an essentially linear decrease. This supports thehypothesis that the
range of validity of the linear approximation, and presumably also
the basin of attraction of the circle, decrease exponentially with
increasing 1/ε.

4.2. Examples of the evolution of general shapes

For general initial conditions the time evolution may lead to
a breakdown of the model by two different mechanisms. First, a
global breakdown occurs at time tc where the mapping loses the
property of being one-to-one: f (eiα1 , tc) = f (eiα2 , tc) for some
α1 6= α2. Clearly for t > tc the model becomes invalid. Physically
we might suspect that the bubble splits into two disjoint parts.
Second, the model can break down locally if a zero of ∂ωf (ω, t)
reaches the unit circle, which results in a cusp of the interface. It
is well known that this is a common mechanism for breakdown in
the unregularized model, (ε = 0).
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(a) ε = 1/10. (b) ε = 1/2.

(c) ε = 1/10, η = 10−3 . (d) ε = 1/2, η = 10−3 .

Fig. 12. Initial condition: β(ω, 0) = 1
2

γ

γ−ω
+
1
2

γ ∗

γ ∗−ω
. Plotted are supα∈[−π+δ1,π−δ1] |δβ(α, τ )|, δ1 = π/8 as a function of τ for (a) ε = 1/10 and (b) ε = 1/2 for different

η as indicated in the panels. Evolution of Re[ωδβ(ω, τ)] for ω = eiα for (c) ε = 1/10 and (d) ε = 1/2 at different τ (N = 256,∆t = 0.001). The solid lines again show the
linear evolution and the dashed lines the nonlinear evolution for η = 10−3 .
(a) ε = 1/10, nonlinear. (b) ε = 1/10, linear. (c) ε = 0, nonlinear.

Fig. 13. Initial condition: β(ω, 0) = −0.03ω5 . (a) and (b) show the nonlinear and the linear evolution respectively for ε = 1/10. (c) shows the nonlinear evolution for
ε = 0. (N = 512,∆t = 0.00025.)
a b

Fig. 14. (a) η|∂ωβnl − ∂ωβ| as a function of τ for η = 0.001 · 2−n , n = 0, 1, . . . , 4 (N = 256, ∆t = 0.001). (b) ln(η) as a linear function of 1/ε. The fitting curve is
ln(η) = −0.5/ε − 4.66.
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(a) ε = 0, n = 0 : 7. (b) ε = 0.01, n = 0 : 5.

(c) ε = 0.1, n = 0 : 10. (d) ε = 1, n = 0 : 16.

Fig. 15. f (ω, 0) = 1
ω
− 2ω + 0.5ω2 (N = 512, ∆t = 0.0005). The solutions are

shown at t = 0.2n.

Global breakdown has been observed with curvature regular-
ization (see, e.g., [34]), and is also observed in our model. Figs. 15
and 16 show examples, where each figure shows the evolution of
a given initial condition for several values of ε. For ε = 0 cusps
do form, as is particularly obvious in Fig. 16(a). The regularization
ε > 0 suppresses the cusps, but does not change the tendency to
split into two parts.
Whether local breakdown by cusp formation can occur in the

regularized model is a more difficult question. We recall that the
neighborhood ofω = −1 shows a special dynamics. The linearized
evolution of the interface can lead to a very complicated shape
near ω = −1 since with increasing time singularities of f (ω, 0)
are gathered in this neighborhood. According to Section 3.4 these
singularities for ε ≥ 1/2 dominate the local structure of the
interface. We also note that for ε = ∞ even the linearized
evolution is singular at ω = −1, where it produces a spike. It thus
is conceivable that the nonlinear evolution yields a cusp or some
other type of singularity at ω = −1.
We studied this problem with the initial condition f (ω, 0) =
1/ω − 0.1ω2. The results of the nonlinear evolution are shown in
Fig. 17. Clearly the cusps forming for ε = 0 in the front part are
suppressed for ε > 0. We further observe that for ε = 1/100 or
1/10, the curvature near ω = −1 decreases, whereas it increases
for ε = 1. This suggests that for ε = 1 a cusp may be formed.

5. Summary and conclusion

Consistent with the eigenvalue analysis presented in [19], the
results of the present paper strongly suggest that a uniformly
translating circle is a linearly stable solution of a Laplacian
interface model regularized by a kinetic undercooling boundary
condition. Furthermore, numerical results of the full nonlinear
evolution indicate that the circle has a finite basin of attraction
in a space of analytic functions. An important feature of the
stabilizing mechanism is the advection of perturbations towards
the back of the circle. Except for a small region at the back that
asymptotically contracts to a point, the final relaxation to the
circle is exponential. With decreasing regularization parameter
ε > 0 the anomalous behavior at the back is suppressed. However,
perturbations increase as long as they are in the front half of the
circle, and this effect is strongly enhanced by lowering ε. Since
larger perturbations may lead to branching, this indicates that
the basin of attraction of the circle shrinks exponentially with
decreasing ε.
The interfacemodel considered here is a reduced form of a PDE-

model describing the streamer stage of electric breakdown in the
simplest physically relevant situation. It ignores the physics inside
the streamer and the internal structure of the screening layer; the
layer is approximated by the interface together with the boundary
condition (3) which introduces the regularization. Numerical
solutions of the PDE-model indicate that these approximations
for sufficiently strong externally applied fields are justified in the
dynamically active front part of the streamer. The back of the
streamer is not represented adequately by the interface model.
However, the evolution of the streamer and in particular stability
or instability against branching is determined by the active head
region, which corresponds to the front half of the circle in our
analysis. Indeed, numerical solutions of the PDE-model in two
dimensions show a behavior quite similar to the evolution of the
front half of weakly disturbed circles in the interface model. After
reaching the streamer stage the streamer head is of nearly circular
shape and moves with constant velocity. It slowly flattens at the
tip and branches. Compared to the results of the interface model
as illustrated in Fig. 13, the main difference is a slow increase of
(a) ε = 0, n = 0 : 5. (b) ε = 0.01, n = 0 : 4.

(c) ε = 0.1, n = 0 : 10. (d) ε = 1, n = 0 : 5.

Fig. 16. f (ω, 0) = 1
ω
+ 0.75ω − 0.2ω3 (N = 512,∆t = 0.0005). The solutions are shown at t = 0.01n for (a), (b), (c) and at t = 0.05n for (d).
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(a) ε = 0, n = 0 : 25. (b) ε = 0.01, n = 0 : 6. (c) ε = 0.1, n = 0 : 12. (d) ε = 1, n = 0 : 9.

Fig. 17. Ice-cone: f (ω, 0) = 1
ω
− 0.1ω2 (N = 512,∆t = 0.0005). The solutions are shown at t = 0.1n.
the head radius due to weak currents flowing into the head from
the interior of the streamer.
In summary, we believe that our results not only are of some

interest in the context of interface models but also shed some light
on the problem of streamer branching.
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Appendix. Numerical calculation of the nonlinear evolution

As explained in Section 2 the shape of the interface is given by

z = x+ iy = f
(
eiα, t

)
, −π < α ≤ π.

We restrict ourselves to interfaces symmetric with respect to the
real axis, so that

f ∗
(
eiα, t

)
= f

(
e−iα, t

)
,

with the corresponding equation holding for the potential
Φ(eiα, t). We use the Fourier representation

f =
∞∑
k=−1

ak(t)eikα, (93)

Φ =

∞∑
k=−1

ck(t)eikα, (94)

with a cutoff at high wavenumber k = N . Due to the symmetry,
ak(t) and ck(t) are real, and the boundary condition at infinity (5)
enforces c−1(t) ≡ a−1(t).
For a given shape of the interface the potential is determined by

Eq. (10):

|∂α f
(
eiα, t

)
| Re

[
Φ
(
eiα, t

)]
= ε Re

[
i∂αΦ

(
eiα, t

)]
. (95)

We represent |∂α f | as

|∂α f | =
∞∑

k=−∞

dk(t)eikα, (96)

where the symmetry enforces dk = d−k ∈ R. For a given f in
Fourier representation (93),

∂α f =
∞∑
k=−1

ikak(t)eikα. (97)
The nonlinear term |∂α f | is computed via the standard pseudo-
spectral approach, i.e. |∂α f | is obtained in the physical domain
via inverse Fourier transform of Fourier coefficients in (97) and
taking the absolute value and then dk is determined by the Fourier
transform of |∂α f |. Substituting Eqs. (94) and (96) into Eq. (95), we
find a system of linear equations for ck, k ≥ 0, which can bewritten
as
∞∑
k=0

(dm−k + dm+k + εmδm,k)ck

= (εδm,1 − dm+1 − dm−1)a−1, m ≥ 0. (98)

Here δm,k denotes Kronnecker’s symbol, and we used the identity
c−1 ≡ a−1. We solve these equations with a cutoff k,m ≤ N . Note
that dk is needed up to k = 2N .
The evolution of the interface is determined by Eq. (9), which

can be written as

Re
[
∂t f
ω∂ωf

]
=
Re
[
−i∂αΦ

(
eiα
)]

|∂α f |2
= R(α). (99)

∂t f
ω∂ω f

is analytic for ω ∈ Uω and is real for ω = 0 by construction.
Eq. (99) therefore implies

∂t f (ω, t)
ω∂ωf (ω, t)

∣∣∣∣
ω=eiα
=
1
2π

∫ π

−π

eiα
′

+ ω

eiα′ − ω
R(α′) dα′,

which for ω→ eiα reduces to

∂t f
ω∂ωf

∣∣∣∣
ω=eiα
= R(α)−

i
2π
P
∫ π

−π

cot
α′

2
R(α + α′) dα′, (100)

where P denotes the principal value. Symmetry enforces R(α) =
R(−α), so that R(α) can be represented as

R(α) =
∞∑
k=0

rk cos(kα), rk ∈ R, (101)

where the rk again are determined by the Fourier-cosine transform
numerically. Substituting the expansions (93) and (101) into
Eq. (100), we get

dak
dt
=

k+1∑
n=0

(k− n)ak−nrn, k ≥ −1. (102)

We again truncate this system of ODEs at k = N and solve it via
the 4-th order Runge–Kuttamethod (RK4) [35]. Let the initial value
problem (102) be specified as follows.

dy
dt
= f (t, y), y(t0) = y0, (103)
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Fig. 18. Numerical estimation of the order of accuracy p (113) for the initial
condition f (ω, 0) = 1

ω
− 0.1ω2 with (a) ε = 0, (b) ε = 0.01, (c) ε = 0.1, and

(d) ε = 1 (N = 64).

where y denotes the vector function (a−1, a0, a1, . . . , aN). Then,
the RK4 method for this problem is given by the following
equations

yn+1 = yn +
1
6
h(k1 + 2k2 + 3k3 + k4), (104)

tn+1 = tn + h, (105)

where yn+1 is the RK4 approximation of y(tn+1),

k1 = f (tn, yn), (106)

k2 = f
(
tn +

1
2
h, yn +

1
2
hk1

)
, (107)

k3 = f
(
tn +

1
2
h, yn +

1
2
hk2

)
, (108)

k4 = f (tn + h, yn + hk3), (109)

and h is the time step. In the numerical implementation, h needs
to be chosen small enough to ensure numerical stability and it is
usually inversely proportional to the cut-off N . The cut-off N needs
to be chosen large enough so that the interface can be smoothly
represented, i.e. the Fourier coefficients decay exponentially for
large k. For most of the initial conditions we used, there are
only a few Fourier coefficients that are not zero. As time evolves,
the number of nonzero Fourier coefficients will increase. When
the high frequency mode is no longer exponentially small, the
algorithm needs to be terminated or more Fourier modes need
to be used. Adaptive Fourier modes are beyond the scope of this
paper. Here we only use a fixed cut-off N and make sure that
the high frequency modes are exponentially small at later times.
In the numerical simulations, we use both double and quadruple
precision to compute solutions for large enough N . To prevent the
spurious growth of the high-wavenumber coefficient generated
by run-off error, we filter out the coefficient which is below
the chosen threshold. If the threshold is chosen to be too large,
aliasing may occur. If the threshold is chosen to be too small, it
cannot effectively reduce the run-off error. The reasonable choice
from experience is about 1000 bigger than the run-off error. We
choose the threshold to be 10−13 for double precision and 10−29
for quadruple precision. We can compare the results from both
precisions to ensure the results we obtained are not spurious.
Fig. 19. Estimation of area A (114) for the initial condition f (ω, 0) = 1
ω
− 0.1ω2

with (a) ε = 0, (b) ε = 0.01, (c) ε = 0.1, and (d) ε = 1 (N = 64).

Notice that the numerical simulation needs to stop at some
finite time because of singularities. When a singularity develops,
the numerical results become unreliable. There is a way to test the
accuracy of numerical results without knowing the exact solution.
Suppose the numerical method is of p-th order, we expect that

yhn − y(nh) = O(h)p. (110)

This implies that

yhn − y
h/2
2n = O(1− (1/2)p)(h)p, (111)

yh/22n − y
h/4
4n = O(1− (1/2)p)(h/2)p. (112)

Thus the order p can be estimated by using the formula

p ≈ log2

∣∣∣∣∣ yhn − yh/22nyh/22n − y
h/4
4n

∣∣∣∣∣ . (113)

We choose the initial condition f (ω, 0) = 1
ω
−0.1ω2 and compute

solutions for step size 0.001, 0.0005, and 0.00025 with N = 64.
In Fig. 18, we can see that the order stays close to 4 up to the time
equals to 2.5, 0.7, 1.25, and 0.9 for (a) ε = 0 (b) ε = 0.01 (c) ε = 0.1
and (d) ε = 1 respectively. Another way to test the accuracy is to
check whether the area conservation holds or breaks down. The
area enclosed by the interface should remain constant and it can
be estimated by

A = −
N∑

k=−1

kak(t)2. (114)

In Fig. 19, the area A as a function of time is shown for step size
0.00025. It can be seen that area conservation (Fig. 19) and order
of accuracy (Fig. 18) break down at similar time for (a) ε = 0, (b)
ε = 0.01, and (c) ε = 0.1. Notice that in an accuracy test the
order drops to first order at t ≈ 1 and the area conservation still
holds up to t ≈ 1.3. Similar behavior is observed for other initial
conditions and different Fourier modes N . For the computational
results shown in the manuscript, we show the solutions up to the
time that accuracy of the solutions can be assured.
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