
Solutions to Exercise Set 3

Solution 3.1 Working out H|xi⌦H|yi = 1p
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H|x� yi ⌦ |0i+ (�1)yH|x� yi ⌦ |1i

�

= H|x� yi ⌦H|yi .

In words, on the Hadamard basis CNOT acts as a control-NOT but with the second qubit as
the control qubit.

An alternative (and more insightful) solution is to recall from Exercise 1 that HXH = Z
(and of course HIH = I), and thus H2CNOT12H2 = H2C1(X2)H2 = C1(Z2), where we use the
convention to write H2 for I⌦H, etc. Furthermore, C(Z) is symmetric in that C1(Z2) = C2(Z1);
indeed, C1(Z2)|xi|yi = |xi ⌦ Zx|yi = (�1)xy|xi|yi = Zy|xi ⌦ |yi = C2(Z1)|xi|yi. Thus,

CNOT12H1H2 = H2H2CNOT12H2H1 = H2C1(Z2)H1

= H2C2(Z1)H1 = H2H1CNOT21H1H1 = H1H2CNOT21 .

Solution 3.2 Straightforward calculations show that

V †V = (1 + i)(I� iX)(1� i)(I+ iX)/4 = 2(I+X2)/4 = 2(I+ I)/4 = I and

V 2 = (1� i)(I+ iX)(1� i)(I+ iX)/4 = �2i(I+ 2iX �X2)/4 = X .

Solution 3.3 For x, y 2 {0, 1} and |'i 2 H, the vector |xi|yi|'i indeed gets mapped to

|xi|yi|'i 7! |xi|yiV y|'i 7! |xi|x� yiV y|'i 7! |xi|x� yi(V †)x�yV y|'i
7! |xi|yi(V †)x�yV y|'i 7! |xi|yiV x(V †)x�yV y|'i = |xi|yiUxy|'i ,

where the final equality is verified by checking the di↵erent cases for x and y, and using that
V †V = I = V V † and V 2 = U .

Solution 3.4 For n = 1 and x 2 {0, 1}, we have

H|xi = 1p
2
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|0i+ (�1)x|1i

�
=

1p
2

X

y2{0,1}

(�1)x·y|yi

by definition. For the general case with x = (x1, . . . , xn) 2 {0, 1}n, we then have

H⌦n|xi =
nO

i=1

H|xii =
nO
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(�1)xi·yi |yii
!

=
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y1,...,yn

(�1)x1·y1 · · · (�1)xn·yn |y1i · · · |yni =
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(�1)x·y|yi ,



Solution 3.5 Exploiting that H|zi = 1p
2
(|0i+ (�1)z|1i) and using linearity, we obtain

Uf (|xi ⌦H|zi) = 1p
2
Uf |xi|0i+ (�1)z

1p
2
Uf |xi|1i =

1p
2
|xi|f(x)i+ (�1)z

1p
2
|xi|1� f(x)i

= |xi ⌦ 1p
2
(|f(x)i+ (�1)z|1� f(x)i) = (�1)zf(x)|xi ⌦H|zi

where the last equality is by a case-by-case analysis: first the case z = 0, and then the cases
z = 1 ^ f(x)=0 and z = 1 ^ f(x)=1. More elegantly, but less straightforward, one can observe
that Uf (|xi ⌦ | i) = |xi ⌦Xf(x)| i for any | i 2 S(C2) and recycle that X = HZH to then
conclude that

Uf (|xi ⌦H|zi) = |xi ⌦Hf(x)Zf(x)Hf(x)H|zi = |xi ⌦HZf(x)|zi = (�1)zf(x)|xi ⌦H|zi ,

where the second equality is by considering the cases f(x) = 0 and f(x) = 1 separately.

Vice versa,

Vf (|xi ⌦H|yi) = 1p
2
Vf |xi|0i+ (�1)y

1p
2
Vf |xi|1i =

1p
2
|xi|0i+ (�1)y(�1)f(x)

1p
2
|xi|1i

= |xi ⌦ 1p
2
(|0i+ (�1)y+f(x)|1i) = |xi ⌦H|y � f(x)i .

Alternatively, and somewhat more directly, from the first derivation we can read out that
(I⌦H)Uf (I⌦H) = Vf . Hence

Vf (|xi ⌦H|yi) = (I⌦H)Uf |xi|yi = |xi ⌦H|y � f(x)i .

Solution 3.6 Applying XxZz to the first qubit turns |�+i into

(XxZz ⌦ I)|�+i = 1p
2

�
XxZz|0i ⌦ |0i+XxZz|1i ⌦ |1i

�
=

1p
2

�
|xi|0i+ (�1)z|x� 1i|1i

�
.

Applying CNOT, controlled by the second qubit, results in the state

1p
2

�
|xi|0i+ (�1)z|xi|1i

�
= |xi ⌦ 1p

2
(|0i+ (�1)z|1i) = |xi ⌦H|zi ,

and thus by measuring the first qubit in the computational and the second qubit in the
Hadamard basis, Bob recovers x and z.


