Solutions to Exercise Set 3

Solution 3.1 Working out H|z)® H|y) = %(\O)—i—(—l)ﬂl))®%(|0>+(—1)y|1>) and applying
CNOT yields
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In words, on the Hadamard basis CNOT acts as a control-NOT but with the second qubit as
the control qubit.

An alternative (and more insightful) solution is to recall from Exercise 1 that HXH = Z
(and of course HIH =1), and thus HoCNOT2Hy = HoC1(X2)Hs = C1(Z3), where we use the
convention to write Hy for I® H, etc. Furthermore, C(Z) is symmetric in that C1(Z2) = Ca2(Z21);
indeed, C1(Z2)[x)]y) = [x) @ Z7[y) = (=1)"|z)|y) = 2¥|z) @ |y) = Ca(Z1)|x)]y). Thus,

CNOT12H1H2 = HQHQ CNOT12H2H1 = Hzcl(ZQ)Hl
= HQCQ(Zl)Hl = H2H1 CNOTQlHlHl = H1H2 CNOT21 .

Solution 3.2 Straightforward calculations show that

VIV =04)1-iX)1-i)(I+iX)/4=20+ X?)/4=2(1+1)/4=1 and
VEi=(1—d)I+iX)1 —i)T+iX)/4=—2i(T+2iX —X?)/4=X.

Solution 3.3 For z,y € {0,1} and |p) € H, the vector |z)|y)|p) indeed gets mapped to
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where the final equality is verified by checking the different cases for x and y, and using that
VIV =1=VVTand V2 =U.

Solution 3.4 For n =1 and x € {0,1}, we have
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by definition. For the general case with = (z1,...,2,) € {0,1}", we then have
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Solution 3.5 Exploiting that H|z) = -(|0) + (—~1)?|1)) and using linearity, we obtain

.
Up(lz) ® H|z)) = \}QUf|x>|o> + <—1>Z%Uf|x>rl> - %I@If(@) + (_1>z\}§|x>,1 ® f(2))
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where the last equality is by a case-by-case analysis: first the case z = 0, and then the cases
z=1A f(z)=0and z =1 A f(x)=1. More elegantly, but less straightforward, one can observe
that Up(|z) @ |¢)) = |z) @ X @) for any 1) € S(C?) and recycle that X = HZH to then
conclude that

Up(le) @ H2) = |2) © B/ D2/ OB H|2) = [2) © HZI®)|z) = (1)@ |2) © H]z),

where the second equality is by considering the cases f(z) = 0 and f(z) = 1 separately.

Vice versa,
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Alternatively, and somewhat more directly, from the first derivation we can read out that
(I H)Uy(I® H) =V;. Hence

Vi(lz) @ Hly)) = (L@ H)Uglz)y) = [2) ® Hly © f(x)) .

Solution 3.6 Applying X*Z* to the first qubit turns |®*) into
1
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Applying CNOT, controlled by the second qubit, results in the state

(X*Z7 @I)|@t) = —=(X"Z*|0) ® |0) + X" Z%|1) @ 1)) = —=(|z)[0) + (—1)*|z ® 1)|1)) .
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and thus by measuring the first qubit in the computational and the second qubit in the
Hadamard basis, Bob recovers z and z.
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