
Solutions to Exercise Set 5

Solution 5.1 We easily see that
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where the second equality is obtained by a simple variable transformation: y  y+f(x). Thus,
the claimed vector is indeed an eigenvector, and the corresponding eigenvalue is !�f(x). This
obviously generalizes the phase kickback.

Solution 5.2 Applying F to both wires maps |0i ⌦ |1i to
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where x and y both range over all elements in Z/NZ. Applying Uf maps this to
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by the observation from Exercise 5.1 above. We can now ignore the second part of the state.
Applying F to the first yields
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and so the probability that the measurement outcome is k = 0 is p0 =
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is 1 if f is constant, and 0 if f is surjective. The latter follows from the fact that if f is surjective

then it is bijective, and then
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Solution 5.3 As for the claim of � being a group, we argue that � = {!j
n | 0  j < n},

where n is the exponent of G, i.e., the smallest positive integer such that gn = 1 for all g 2 G.
Indeed, ✓ follows from the fact that �(g)n = �(gn) = �(1) = 1 for all g 2 G and � 2 Ĝ, and ◆
follows from the observation that we can define a character for a subgoup of order n that maps
surjectively into {!j

n | 0  j < n}, and extend it to a character in Ĝ by means of Lemma 4.5.

As for the actual question, applying F †
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where g and � respectively range over g 2 G and � 2 �. Applying Uf maps this to
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where the first equality is by substituting the summation variable � 2 � by �f(g)�1. We can
now ignore the second part of the state. Applying FG gives
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Thus, the measurement recovers f̄ , and hence f , with certainty.



Solution 5.4 The first controlled U maps the state H|0i ⌦ |'i of the last two wires to
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Similarly, the second controlled (power of) U maps the state of the third-to and last wires to
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etc. Thus, the state before F †
n is applied is given by
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which equals Fn|m1i · · · |mni ⌦ |'i, and so applying F †
n and measuring the resulting qubits

means that m1, . . . ,mn is observed with certainty. Thus, (the binary representation of) µ is
recovered.

This procedure is referred to as phase estimation. If µ does not have a binary represen-
tation of length (at most) n then the procedure still works, but then µ is obtained only up to
a certain precision and with a certain probability.


