
Appendix A

Probability and Information Theory

A.1 Random Variables and Distributions

A finite probability space is given by a non-empty finite set ⌦ and a probability function
P : ⌦ ! [0, 1] with

P
!2⌦ P (!) = 1. The subsets of ⌦ are called events. The probability of

an event ⇤ ✓ ⌦ is given by P [⇤] :=
P

!2⇤ P (!), and for two events ⇤ and � with P [�] > 0, the
conditional probability P [⇤ |�] is defined as P [⇤ |�] := P [⇤ \ �]/P [�].

A random variable is a function X : ⌦ ! X , where we may assume the range X to be
finite. The distribution of X is the function PX : X ! [0, 1] defined as PX(x) = P [X = x],
where X = x is a shorthand for the event {! 2 ⌦ |X(!) = x}. We write PXY for the joint
distribution of two random variables X and Y , i.e. PXY (x, y) = P [X = x \ Y = y], and
similarly for more than two random variables. Also, we write PX|�(x) = P [X = x |�] and
PX|Y (x|y) = PX|Y=y(x) = P [X = x |Y = y] for the respective conditional distributions
(conditioned on an event �, and a random variable Y ).

Two random variables X and Y are independent if PXY = PX · PY , in the sense that
PXY (x, y) = PX(x) · PY (y) for all x and y’s in the corresponding ranges of X and Y .

The expectation of a real-valued random variable Y is defined as E[Y ] :=
P

y
PY (y) · y.

If Y is of the form Y = f(X) for a random variable X and a real-valued function f , then this
equals E[f(X)] =

P
x
PX(x) · f(x), which we also write as Ex X [f(x)] in some occasions.

Throughout, we leave the probability space (⌦, P ) implicit. Whenever we consider a random
variable (or several random variables), we understand an underlying finite probability space
(⌦, P ) to be given; as such, the (joint) distribution of the random variable(s) is assumed to be
given as well. We may also specify a random variable (or several random variables) by means of
an “experiment”, which uniquely determines the (joint) distribution of the random variable(s).

Finally, in a general context, i.e., when not necessarily associated to any particular random
variable, a distribution is simply an arbitrary function Q : X ! [0, 1] on a finite set X with
the property that

P
x
Q(x) = 1.

Definition A.1. The statistical distance between two distributions P and Q with common
domain X is defined as

�(P,Q) :=
1

2

X

x2X

��P (x)�Q(x)
��

If the distributions describing two experiments have small statistical distance, then this can be
interpreted as that the experiments behave in exactly the same way except with small “error”
probability. This is formalized as follows.
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Lemma A.1. Let Q and Q0 be two distributions with common domain X . Then there exists a
joint distribution PXX0 for random variables X and X 0 such that PX = Q and PX0 = Q0, and
such that P [X 6=X 0] = �(Q,Q0).

Corollary A.2. Let Q and Q0 be two distributions with common domain X , and let T ✓ X be
an arbitrary subset. Then, |Q(T )�Q0(T )|  �(Q,Q0).

The latter means that for any test to decide whether a sample x was chosen according to Q or
according to Q0, if its probability to give the correct answer when x was chosen according to Q
is p, then its probability to give the wrong answer when x was chosen according to Q0 is at least
p� �(Q,Q0). Thus, if p is large then so is p� �(Q,Q0) if �(Q,Q0) is small.

A.2 Shannon Entropy

Let X and Y be random variables with respective ranges X and Y. Throughout, log denotes
the binary logarithm.

Definition A.2. The (Shannon) entropy of X is defined as

H(X) := �

X

x

PX(x) logPX(x) ,

where the sum is over all x 2 X with PX(x) > 0.

It is not hard to see that 0  H(X)  log |X |, with equality on the left if and only if X is
constant, i.e. if there is no uncertainty at all in X, and with equality on the right if and only if
X is uniform over X , i.e. has maximal uncertainty.

Note that H(X) is actually a function of the distribution PX of X, and thus we may also
write H(Q) for any distribution Q. Thus, the notion naturally extends to

H(XY ) := H(PXY ) = �

X

x,y

PXY (x, y) logPXY (x, y) ,

H(X|Y =y) := H(PX|Y=y) = �

X

x

PX|Y (x|y) logPX|Y (x|y) ,

etc.

Definition A.3. The conditional (Shannon) entropy of X given Y is defined as

H(X|Y ) :=
X

y

PY (y)H(X|Y =y) ,

where the sum is over all y 2 Y with PY (y) > 0.

The following rules hold; the first two rules are called monotonicity and strong subadditiv-
ity, respectively, and the third rule is called chain rule.

Lemma A.3. For any random variables X, Y and Z:

1. H(XY |Z) � H(X|Z),

2. H(X|Z) � H(X|Y Z), and

3. H(X|Y Z) = H(XY |Z)�H(Y |Z).

The Shannon entropy has proven to be the right measure for “uncertainty” in communication
theory. For instance, it captures to what extent data can be compressed, but also tells us how
much information can be reliably communicated over a noisy communication channel.
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A.3 Beyond Shannon Entropy

The Shannon entropy is mainly useful in the context of average-case properties of information,
like how much can data be compressed on average. On case of one-shot properties, other
measures typically take over. We discuss some here, most notably the min-entropy.

As above, let X and Y be random variables with respective ranges X and Y.

Definition A.4. The guessing probability and the min-entropy of X are respectively de-
fined as

Guess(X) := max
x

PX(x) and H1(X) := � log
�
Guess(X)

�
= � log

�
max
x

PX(x)
�
.

Like the Shannon entropy, the min-entropy is 0 if and only if X is constant, and maximal, i.e.,
log |X | if and only if X is uniform on X , but in-between these two extremes, the min-entropy
behaves di↵erently (actually: more conservatively).

Also here, Guess(X) and H1(X) are actually functions of the distribution PX of X, and
thus we may also write Guess(Q) and H1(Q) for any distribution Q, and, as such, Guess(XY ),
H1(X|Y =y), etc. are naturally defined.

Definition A.5. The conditional guessing probability and the conditional min-entropy
of X given Y are respectively defined as

Guess(X|Y ) :=
X

y

PY (y)Guess(X|Y =y) and H1(X|Y ) := � log
�
Guess(X|Y )

�
.

Warning: Di↵erent notions of conditional min-entropy can be found in the literature. The one
we are using here is nowadays considered to be “the right one”.

By replacing the guessing probability by the collision probability, we obtain the notion of
(conditional) collision entropy as follows.

Definition A.6. The collision probability and the collision entropy of X are respectively
defined as

Col(X) :=
X

x

PX(x)2 and H2(X) := � log
�
Col(X)

�
= � log

✓X

x

PX(x)2
◆
,

and the conditional collision probability and entropy of X given Y as

Col(X|Y ) :=
⇣X

y

PY (y)
p
Col(X|Y =y)

⌘
2

and H2(X|Y ) := � log
�
Col(X|Y )

�
,

where naturally Col(X|Y =y) :=
P

x
PX|Y (x|y)

2.

Monotonicity and strong subadditivity still hold, plus a weak form of chain rule.

Lemma A.4. For any random variables X, Y and Z, and for ↵ 2 {2,1}:

1. H↵(XY |Z) � H↵(X|Z),

2. H↵(X|Z) � H↵(X|Y Z), and

3. H↵(X|Y Z) � H↵(XY |Z)� log(|Y|) � H↵(X|Z)� log(|Y|).

Finally, the di↵erent entropy notions compare to each other as follows.

iii



Lemma A.5. For any random variables X and Z: H1(X|Z)  H2(X|Z)  H(X|Z).

The Shannon entropy, the min-entropy and the collision entropy are all special cases of the so-
calledRényi entropy of order ↵, where 0  ↵  1. It is defined as H↵(X) := � log(Ren↵(X)),
respectively as H↵(X|Y ) := � log(Ren↵(X|Y )) for the conditional version, where

Ren↵(X) :=
⇣X

x

PX(x)↵
⌘ 1

↵�1
and Ren↵(X|Y ) :=

⇣X

y

PY (y)Ren↵(X|Y =y)
↵�1
↵

⌘ ↵
↵�1

for any ↵ for which the expressions are well-defined. It is easy to see that for ↵ = 2 the Rényi
entropy H↵ coincides with the collision entropy, and one can show that H↵(X) ! H1(X) for
↵ ! 1 and H↵(X) ! H(X) for ↵ ! 1, and similarly for the conditional versions. In the limit
↵ ! 0 we obtain H0(X) := log |supp(PX)|. Furthermore, Lemma A.4 above holds for the Rényi
entropy H↵ of any order ↵, and the Rényi entropy is monotonically decreasing in ↵, generalizing
Lemma A.5 above.

Using the standard notion of the the p-norm k · kp for real-valued functions with finite
domain, Ren↵(X) and Ren↵(X|Y ) can be nicely written as

Ren↵(X) = kPXk

↵
↵�1
↵ and Ren↵(X|Y ) :=

⇣X

y

PY (y) kPX|Y=yk↵

⌘ ↵
↵�1

for 0 < ↵ 6= 1. Finally, with respect to the quantum generalization, it is useful to observe that

H↵(X|Y ) = max
QY

1

1� ↵
log

X

x,y

PXY (x, y)↵

Q(y)↵�1
,

where the max is over all distributions QY : Y ! [0, 1]. The equality can be shown by solving
the optimization problem, e.g. using Lagrange multipliers.
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