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Chapter 6

The Density-Operator Formalism

6.1 Introduction

We introduce here the density-operator formalism, where quantum states are described by
operators (of a certain form), rather than by vectors as in the state-vector formalism introduced
in Chapter 1 and considered so far. To motivate the density operator formalism, we illustrate
a couple of limitations of the state vector formalism.

The first one is in the context of randomized states. Consider a quantum system with a state
that is given by a certain state vector with a certain probability. This could be in the context of
an experiment where a quantum system is prepared in a way that depends on the outcome of a
classical experiment, e.g. a coin toss. Or, we want to consider the postmeasurement state when
we do not have access to the classical measurement outcome. How should we capture such a
randomized state? The straightforward way is by means of a probability distribution over state
vectors, i.e., by a list {("1, |'1i), . . . , ("n, |'ni)} that indicates that the the state of the considered
quantum system is |'`i with probability "`. The caveat with this representation is that it is
not unique. For example, it is not too hard to see that the two randomized states respectively
described by {(1

2
, |0i), (1

2
, |1i)} and {(1

2
, |+i), (1

2
, |�i)} behave identically under any quantum

operation, and thus they represent the same (randomized) quantum state. For instance, in
both cases, a measurement in the computational basis produces a random bit as outcome.

The other limitation of the state vector formalism is that it does not allow us (in an obvious
way) to express the state of a subsystem of an bipartite system. For example, what is the state
of subsystem A given that the state of AB is |�i = (|0i|0i + |1i|1i)/

p
2 ? Note that it is not

|+i = (|0i + |1i)/
p
2: measuring one qubit of an EPR pair in the Hadamard basis produced a

random measurement outcome, measuring |+i produces a deterministic outcome.

The density-operator formalism allows us to conveniently deal with the above issues. Given
that in the density-operator formalism quantum states are described by operators, actions on
quantum states are then described by superoperators. An additionaly nice property is that we
will find a unifying notion for the possible actions that can be applied to a quantum system— in
contrast to the state-vector formalism, where measurements and unitary operations appear to
be two very di↵erent kind of actions, captured by di↵erent mathematical objects.

6.2 Density Operators

Let H be a Hilbert space. Recall that in Section 1.7, we have already seen that the map

S(H) ! L(H), |'i 7! |'ih'|

73



is an injection modulo the equivalence relation ⌘, which identifies state vectors that are equal
up to the phase, and thus behave identically as quantum states. Thus, |'ih'| is a faithful
representation of the state |'i, and it avoids the ambiguity caused by the phase.

Consider now a randomized state, given by a list {("1, |'1i), . . . , ("L, |'Li)} as discussed
above, where |'1i, . . . , |'Li 2 S(H) and "1, . . . , "L � 0 with

P
`
"` = 1, with the understanding

that the state of the considered quantum system is |'`i with probability "`. Furthermore, let
M = {Mi}i2I be a measurement in MeasI(H). By Born’s rule, conditioned on the state being
|'`i for a particular `, the probability to observe outcome i 2 I is pi|` := h'`|M

†
i
Mi|'ii. Hence,

by basic probability theory, the (average) probability to observe i 2 I is

pi =
nX

`=1

"` pi|` =
LX

`=1

"` h'`|M
†
i
Mi|'ii =

nX

`=1

"` tr
�
M †

i
Mi|'`ih'`|

�
= tr

✓
M †

i
Mi

nX

`=1

"`|'`ih'`|

◆
.

This suggests to introduce

⇢ :=
LX

`=1

"`|'`ih'`|

as a description of the randomized state. By the properties

h |⇢| i =
X

`

"` h ||'`ih'`|| i =
X

`

"` |h'`| i|
2
� 0 8 | i 2 H

and
tr(⇢) =

X

`

"` tr(|'`ih'`|) =
X

`

"` = 1

this motivates the following.

Definition 6.1. An operator ⇢ 2 L(H) is called a density operator (or matrix) if ⇢ � 0
and tr(⇢) = 1. D(H) denotes the set of density operators in L(H).

We have seen that every (possibly randomized) state gives rise to a density operator. Vice
versa, every density operator represents a (possibly randomized) state. Indeed, it follows from
spectral decomposition (Theorem 0.3) that every ⇢ 2 D(H) decomposes into ⇢ =

P
`
"`|'`ih'`|

for orthonormal vectors |'1i, . . . , |'di, where d = dim(H). From positivity it then follows that
"` = h'`|⇢|'`i � 0, and from the trace condition and noting that tr(|'`ih'`|) = h'`|'`i = 1, we
get that

P
`
"` = tr(⇢) = 1.

A special role play the density operators that correspond to a (deterministic) state vector.

Definition 6.2. A density operator ⇢ 2 D(H) is said to be pure if its rank is rank(⇢) = 1. A
density operator is called mixed if it is not (necessarily) pure.

By elementary properties, ⇢ 2 D(H) is pure if and only if there exists |'i 2 S(H) with

⇢ = |'ih'| .

Indeed, having rank 1 and being Hermitian implies that ⇢ = |'ih'| for some vector |'i 2 H (see
the corresponding discussion in Section 0.2), and the requirement on the trace them implies
that k|'ik2 = h'|'i = tr(|'ih'|) = tr(⇢) = 1.

As should be clear from the above, in the density-operator formalism Born’s rule becomes

pi = tr(M †
i
Mi⇢) = tr(Mi⇢M

†
i
) and ⇢i =

1

pi
Mi⇢M

†
i
.
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Also, a unitary U 2 U(H) acts on a density operator ⇢ 2 D(H) as

⇢ 7! U⇢U † .

This obviously extends to isometries. In particular, the isometry IA ⌦ |0iB : HA ! HA ⌦HB,
|'iA 7! |'iA ⌦ |0iB, which adds an ancilla to a given state, acts as

⇢A 7! ⇢A ⌦ |0ih0|B .

Thus, “quantum operations” are now described by superoperators acting on L(H). The following
convention on the notation will be useful.

Remark 6.1. For any L 2 L(H,H0), by abuse of notation we identify the operator L with the
superoperator L 2 L(L(H),L(H0)) given by

L(R) := LRL† .

6.3 Partial Trace

Consider a density operator ⇢AB 2 D(HA ⌦ HB), describing the state of a bipartite quantum
system AB. How can one then describe the subsystem B when considered as a stand-alone
system? We answer this question here.

Definition 6.3. For any Hilbert spaces HA and HB, the partial trace trA is the superoperator

trA := tr⌦ idB : L(AB) ! C⌦ L(B) = L(B) ,

where tr : L(A) ! C is the standard trace on L(A). trB is defined accordingly.

The following is a useful alternative characterization.

Proposition 6.1. The partial trace trA coincides with the adjoint (w.r.t. the Hilbert-Schmidt
inner product) of the superoperator L(B) ! L(AB), L 7! IA⌦L; in other words, it is the unique
superoperator trA : L(AB) ! L(B) that satisfies

tr
�
L · trA(R)

�
= tr

�
(IA ⌦ L)R

�

for all L 2 L(B) and R 2 L(AB).

Proof. For every LB 2 L(B) and for RAB 2 L(AB) of the form RAB = RA ⌦RB, we have

tr
�
LB · trA(RAB)

�
= tr(RA) · tr(LB ·RB) = tr

�
RA ⌦ (LB ·RB)

�
= tr

�
(IA ⌦ LB) ·RAB

�
,

and by linearity it follows that the equality holds for every RAB 2 L(HA ⌦HB).

Note that Proposition 6.1 in particular implies that tr � trA(R) = tr(R) for any R 2 L(AB), i.e.,
the partial trace preserves the (standard) trace. It can also be used to show that the partial
trace preserves positivity.

Lemma 6.2. For any R 2 L(AB): if R � 0 then trA(R) � 0.

Proof. For any |'i 2 HB we have

h'|trA(R)|'i = tr
�
|'ih'|trA(R)

�
= tr

�
(IA ⌦ |'ih'|)R

�
=

X

i

tr
�
(|iihi|⌦ |'ih'|)R

�

=
X

i

tr
�
|ii|'ihi|h'|R

�
=

X

i

hi|h'|R|ii|'i � 0

where {|ii}i2I is an arbitrary orthonormal basis of HA.
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It thus follows that the partial trace trA maps a density operator ⇢AB 2 D(AB) into a density
operator ⇢B = trA(⇢AB) 2 D(B), called the reduced density operator. We also say that we
trace out system A as synonym for applying trA. When ⇢AB is clear from the context, we
may simply write ⇢B for trA(⇢AB). Proposition 6.1 ensures that the reduced density operator
is indeed the proper description of the state of a subsystem, in that it uniquely determines the
behavior of the subsystem under any measurement.

We conclude with working out the reduced density operator of a pure state. If {|ii}i2I is an
orthonormal basis of HA and |⌦i =

P
i
↵i|ii| ii 2 S(AB) then

|⌦ih⌦| =
X

ij

↵̄i↵j |iihj|⌦ | iih j |

and thus

trA(|⌦ih⌦|) =
X

ij

↵̄i↵j trA(|iihj|⌦ | iih j |) =
X

i

|↵i|
2
| iih i| .

6.4 Purification

As we have just seen, tracing out part of a pure state typically leads to a mixed state. We now
look at the question if every mixed state can be obtained by tracing out part of a pure state,
and we answer it in the a�rmative. Such a pure state is called a purification of the given
mixed state.

Theorem 6.3 (Purification theorem). Let ⇢B 2 D(HB) be an arbitrary density operator. Then
there exists a state vector |'i 2 S(HA ⌦HB), where HA = HB, so that ⇢B = trA(|'ih'|).

Proof. By spectral decomposition, ⇢B can be written as ⇢B =
P

d

`=1
"`| `ih `| with d = dim(HB).

Let {|1i, . . . , |di} be an orthonormal basis of HA = HB, and consider the pure state

|'i =
X

`

p
"` |`i| `i 2 S(HA ⌦HB) .

Tracing out A yields

trA(|'ih'|) =
X

`,m

p
"`
p
"m trB

�
|`ihm|⌦ | `ih m|

�
=

X

`,m

p
"`"m hm|`i| `ih m| =

dX

`=1

"`| `ih `| ,

which is ⇢B.

By the freedom of the choice of the basis, it follows immediately that a purification is not unique:
di↵erent purifications can be obtained by acting with a unitary on the purifying system. The
theorem below shows that this is the only freedom in the purification.

Theorem 6.4 (Uniqueness of purification). Let two state vectors |'i, |'0
i 2 S(AB) be so that

trA(|'ih'|) = trA(|'0
ih'0

|). Then, there exists U 2 U(A) such that |'i = (U ⌦ IB)|'0
i.

Remark 6.2. It is easy to see that the above extends to purifications |'i and |'0
i that have

di↵erent respective “purifying systems” HA. The unitary U then gets replaced by an isometry
that maps the “smaller” purification into the “bigger” one (in terms of dimension).
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Proof. Let ⇢B = trA(|'ih'|) = trA(|'0
ih'0

|) 2 D(B). By spectral decomposition, we can write
⇢B =

P
i
�i|iihi| for some orthonormal basis {|ii}i2I of HB. We can now write |'i =

P
i
↵i|'ii|ii

where
P

i
|↵i|

2 = 1 and |'ii 2 S(A) for all i 2 I. Furthermore, by adjusting the |'ii’s appro-
priately, we may assume that ↵i � 0 for all i 2 I. From

X

i

�i|iihi| = trA(|'ih'|) =
X

i,j

↵i↵jh'j |'ii|iihj|

it follows that ↵2

i
= �i for all i 2 I, and ↵i↵jh'j |'ii = 0 for all i 6= j 2 I. Therefore, for i 6= j,

h'j |'ii = 0 unless ↵i = 0 or ↵j = 0, and thus the corresponding �i or �j vanishes as well.
Hence, |'i =

P
i

p
�i|'ii|ii, where the |'ii’s with �i 6= 0 are orthonormal. The same holds for

|'0
i, namely |'0

i =
P

i

p
�i|'0

i
i|ii, where the |'0

i
i’s with �i 6= 0 are orthonormal. It thus follows

that indeed |'i = (U ⌦ IB)|'0
i, where U 2 U(A) is a unitary that satisfies |'ii = U |'0

i
i for every

i 2 I with �i 6= 0; the existence of such a U follows from the orthonormality.

From this proof, we can also extract the following result.

Theorem 6.5 (Schmidt decomposition). For any |'i 2 S(AB) there exist respective orthonor-
mal bases {|e1i, . . . , |edAi} and {|f1i, . . . , |fdBi} of HA and HB such that

|'i =
dminX

i=1

µi|eii|fii ,

where dmin = min{dA, dB}, and µ1, . . . , µdmin
� 0 and

P
i
µ2

i
= 1.

What is crucial is that both, the |eii’s as well as the |fii’s are mutually orthogonal, and there
are no “cross products” |eii|fji.

6.5 Incorporating Classical Information

As discussed in Section 2.4, “classical information” is captured by an element x that is selected
from a finite non-empty set X , and it can be embedded into “quantum information” by fixing an
orthonormal basis {|xi}x2X of H = C|X | and by associating x 2 X with the state |xi 2 S(H),
respectively |xihx| 2 D(H) when using the density-operator formalism.

Given that we can now deal with randomized states, it is now natural to also consider
randomized “classical information”, which is formally captured by a random variable X with
range X , where here and most of the time, we leave the (always finite) probability space implicit
and understand X to be described by its distribution PX : X ! [0, 1]. This motivates the
following.

Definition 6.4. Let X be a random variable with finite range X , and let PX : X ! [0, 1] be its
distribution. Furthermore, let {|xi}x2X be an orthonormal basis of HX = C|X |. Then,

⇢X =
X

x

PX(x)|xihx| 2 D(HX)

is called the density operator representation of PX (or of X) w.r.t. {|xi}x2X .

Vice versa, an arbitrary density operator ⇢X 2 D(HX) is called classical w.r.t. {|xi}x2X if
it is of the above form for some distribution PX . We express this by writing ⇢X 2 D(X ).
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We often leave the basis {|xi}x2X implicit, but take it as understood that the statements are
with respect to some fixed choice of {|xi}x2X .

Note that the density operator representation of the uniform distribution over X is given by

1

|X |

X

x

|xihx| =
1

|X |
IX 2 D(X ) .

This is also called the completely (or fully) mixed state and denoted by µX .

We also want to capture a situation where (randomized) classical information X is correlated
with quantum information, in the sense that the state of a system E depends on the value that
X takes on, i.e., its state is given by ⇢E|X=x if X = x. For instance, think of an “experimenter”
that first tosses a coin and then prepares a state depending on the outcome of the coin toss, or
think of the post-measurement state that depends on the classical measurement outcome.

This is done as follows.

Definition 6.5. Let HX and HE be Hilbert spaces and {|xi}x2X an orthonormal basis on HX .
A density operator ⇢XE 2 D(HX ⌦ HE) is said to be a hybrid state with classical X in X

(w.r.t. {|xi}x2X ) if it is of the form

⇢XE =
X

x

PX(x)|xihx|⌦ ⇢E|X=x

for a distribution PX and density operator ⇢E|X=x 2 D(HE) for every x 2 X . We express this
by writing ⇢XE 2 D(X ⌦HE).

Recall that the state of system E alone is then described by the reduced density operator

⇢E = trX(⇢XE) =
X

x

PX(x)⇢E|X=x .

Furthermore, if ⇢XE 2 D(X ⌦HE) is a hybrid state with classical X in X (and as such we
can also understand X as a random variable), and if � : X ! {true, false} is a predicate on
X , then we can consider the event ⇤ = �(X) and the states1

⇢XE|⇤ =
X

x

PX|⇤(x)|xihx|⌦ ⇢E|X=x and ⇢E|⇤ = trX(⇢XE|⇤) =
X

x

PX|⇤(x)⇢E|X=x ,

where PX|⇤ is the naturally given conditional probability distribution of X conditioned on ⇤.2

These two density operators describe the joint and the single quantum system given that ⇤
occurs; we sometimes refer to such density operators as conditional states. Finally, if ⇢XE in
D(X ⌦HE) and f : X ! Y is a function then ⇢Xf(X)E is naturally understood as

⇢Xf(X)E =
X

x

PX(x)|xihx|⌦ |f(x)ihf(x)|⌦ ⇢E|X=x ,

where {|yi}y2Y is some fixed orthonormal basis of HY = C|Y|, and therefore

⇢f(X)E =
X

x

PX(x)|f(x)ihf(x)|⌦ ⇢E|X=x =
X

y

Pf(X)(y)|yihy|⌦ ⇢E|f(X)=y ,

as can easily be verified.

1Note that this notation is consistent when considering the event ⇤ = [X = x].
2I.e., PX|⇤(x) = PX(x)/P [⇤] if �(x), where P [⇤] =

P
x:�(x) PX(x), and PX|⇤(x) = 0 otherwise.
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By treating pairs (and triples etc.) of random variables as a single random variable, this
formalism naturally extends to states that depend on several, possibly dependent, random
variables X, Y etc. To simplify notation, we often write ⇢xE instead of ⇢E|X=x.

3

We quickly discuss a concrete but important example. Let |'ih'| 2 D(HE) be a density oper-
ator (which we assume to be pure for simplicity), and consider a measurement M = {Mx}x2X in
MeasX (HE). By Born’s rule, the result of the measurement consists of a classical measurement
outcome x 2 X , occurring with probability PX(x) = px = h'|M †

xMx|'i = tr
�
M †

xMx|'ih'|
�
, and

of the post-measurement state ⇢E|X=x = |'x
ih'x

| given by |'x
i = Mx|'i/

p
px. The above no-

tation allows us now to very cleanly and compactly write the action of a measurement in terms
of a superoperator that maps |'ih'| 2 D(HE) to

⇢XE =
X

x

PX(x)|xihx|⌦ ⇢E|X=x =
X

x

|xihx|⌦Mx|'ih'|M
†
x =

X

x

�
|xi⌦Mx

�
|'ih'|

�
hx|⌦M †

x

�

in D(X ⌦HE).

6.6 General Quantum Operations

Let T be a superoperator L(A) ! L(A0), which we may also write as TA (or as TA!A0) in order
to emphasize its doman (and range). In order for such a superoperator to be a meaningful
quantum operation, we want that it maps density operators to density operators. Thus, it
should be positive and trace-preserving. However, it is also possible to act on a subsystem
of a bipartite system, and thus we actually need to require that TA(⇢AE) 2 D(A0E) for any
Hilbert space HE and any ⇢AE 2 D(AE), where TA(⇢AE) is understood as (TA ⌦ idE)(⇢AE). This
motivates the following.

Definition 6.6. A superoperator T : L(A) ! L(A0) is a CPTP map, if it is completely
positive, meaning that for any Hilbert space HE and any R 2 L(AE):

RAE � 0 ) TA(RAE) � 0 ,

and it is trace preserving, meaning that for all R 2 L(A): tr � TA(R) = tr(R) .

The canonical example of a superoperator that is positive but not completely positive is the
transposition map, as introduced in Definition 0.3. To show that the transpose is not com-
pletely positive, observe that for |⌦i :=

P
i
|ii|ii, we have

�
(·)T ⌦ id

�
(|⌦ih⌦|) =

X

i,j

|jihi|⌦ |iihj| =
X

i,j

|ji|iihi|hj|

which evaluates to �2 when hi|hj| � hj|hi| and |ii|ji � |ji|ii are applied. In order to argue
positivity, we recall that the transposition map preserves the eigenvalues of Hermitian operators
(and the property of being Hermitian).

Below, we will show di↵erent equivalent characterizations of CPTP maps; one of them will
in particular show that the CPTP property is not only necessary but also su�cient for a map
to be a quantum operation, i.e., to be “physically implementable”.

We start o↵ with the following concept.

3Formally, this may cause some ambiguity when E depends on several random variables X,Y etc; however,
the meaning should always be clear from the context: e.g., ⇢yE will always stand for ⇢E|Y =y, and not for ⇢E|X=y.
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Definition 6.7. Let HA and HA0 be Hilbert spaces and {|ii}i2I an orthonormal basis of HA.
Then, the Choi-Jamio lkowski isomorphism (w.r.t. {|ii}i2I) is the map

J : L
�
L(A),L(A0)

�
! L(A0A) , T 7! (T⌦ id)(|⌦ih⌦|) ,

where |⌦i :=
P

i
|ii|ii.

At first glance it may be surprising that J(T), which, in a sense, is obtained by applying T to
one input, still contains all information on T. But then, writing out |⌦ih⌦|, we see that

J(T) =
X

i,j

T(|iihj|)⌦ |iihj|

encodes the action of T on a basis of L(HA), and thus on all of L(HA).

Theorem 6.6. For any T 2 L
�
L(A),L(A0)

�
the following statements are equivalent.

1. T is a CPTP map.

2. J(T) � 0 and trA0
�
J(T)

�
= I (for any/some choice of basis).

3. 9 T1, . . . , Td 2 L(HA,HA0) :
P

`
T †
`
T` = I and T(R) =

P
`
T`RT †

`
for all R 2 L(A).

4. There exists a Hilbert space HE and an isometry V 2 L(A,EA0) such that

T(R) = trAE � V (R)

for all R 2 L(A).

The operator J(T) is called the Choi-Jamio lkowski representation of a CPTP map T, the
family {T1, . . . , Td} of operators as in 3. is called the Kraus representation of T, and writing
T as in 4. is referred to as its Stinespring representation.

Remark 6.3. One could phrase (and prove) Theorem 6.6 in a more fine-grained manner. For
instance, the trace-preserving property of a CPTP map is related to the partial-trace condition
of the Choi-Jamio lkowski representation and to

P
`
T †
`
T` = I for the Kraus representation, etc.

However, Theorem 6.6 is good enough for our purposes in its current form.

Proof. We prove that 1. ) 2. ) 3. ) 4. ) 1.

1. ) 2. (CPTP ) Choi-Jamio lkowski):

J(T) � 0 follows immediately from the CP property, given that |⌦ih⌦| � 0. Furthermore,
by linearity of the trace and the TP property:

trA0
�
J(T)

�
=

X

i,j

tr
�
T(|iihj|)

�
⌦ |iihj| =

X

i,j

tr(|iihj|)⌦ |iihj| =
X

i,j

hj|ii ⌦ |iihj| =
X

i

|iihi| = I .

2. ) 3. (Choi-Jamio lkowski ) Kraus):

By assumption J(T) � 0, and thus it has a spectral decomposition J(T) =
P

`
�`|e`ihe`| with

�` � 0. Because of the latter, by rescaling the |e`i we can assume the �` to be 1, and invoking
the notation introduced in Section 0.7, we can thus write J(T) =

P
`
|T`ihT`| for operators

T` 2 L(A,A0). By construction of J(T) and by properties discussed in Section 0.7, we see that

T
�
|iihj|

�
= (I⌦ hi|)J(T)(I⌦ |ji) =

X

`

(I⌦ hi|)|T`ihT`|(I⌦ |ji) =
X

`

T`|iihj|T
†
`
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for any i, j 2 I. Furthermore, introducing I =
P

k
|kihk| 2 L(A0),

X

`

T †
`
T` =

X

`

T̄ †
`
T̄` =

X

k,`

T T

`
|kihk|T̄` =

X

k,`

(hk|⌦ I)|T`ihT`|(|ki ⌦ I)

=
X

k

(hk|⌦ I)J(T)(|ki ⌦ I) = trA
�
J(T)

�
= I ,

exploiting that
P

k
hk| · |ki = tr.

3. ) 4. (Kraus ) Stinespring):

We choose HE large enough so that we can select an orthonormal set of vectors {|1i, . . . , |di}
in HE with index set as for the Krauss operators T1, . . . , Td. Consider then the operator V in
L(A,EA0) given by

V |'i =
X

`

|`i ⌦ T`|'i .

Since for arbitrary |'i, | i 2 HA, we have that

h |V †V |'i =
X

i

h |T †
i
Ti|'i = h |'i ,

we see that V is an isometry, which proves the claim.

4.) 1. (Stinespring) CPTP): This holds trivially, given that any isometry V , when understood
as superoperator R 7! V (R) = VRV †, is CPTP, and so is the (partial) trace.
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