
Chapter 7

Norms and Distance Measures

7.1 Schatten Norm

We introduce the following family of “norms”.

Definition 7.1. For p 2 R \ {0} and R 2 L(H), we define the Schatten p-norm of R as

kRkp := tr
�
|R|

p
� 1

p .

This extends to
kRk1 := �max(|R|) ,

where �max(|R|) is the largest eigenvalue of |R|.

In other words, the Schatten p-norm equals the standard p-norm of the singular values of R,
i.e., the eigenvalues of |R|. In particular, for a normal or Hermitian R 2 L(H) with spectrum
{�1, . . . ,�d}, we have

kRkp =

✓X

i

|�i|
p

◆ 1
p

if p < 1, and kRk1 = max{|�1|, . . . , |�d|} .

The Schatten norm is a norm for p � 1, as we will see soon, and only for p � 1, but it will be
convenient to have the definition at hand also for 0 < p < 1, and even for (strictly) negative p;
we refer to Section 0.4 for the definition of |R|

p, in particular in case of a negative p where |R|
p

is then defined by means of the pseudo-inverse.

The Schatten 1-norm coincides with the operator norm, and k · k2 is the norm induced
by the Hilbert-Schmidt/Frobenius inner product, and thus known as Hilbert-Schmidt or
Frobenius norm. Most relevant for us is the case p = 1, in which case the norm is also called
the trace norm and denoted as k · ktr.

The following ofHölder inequality (and its reverse) for the Schatten p-norm is a generalization
of the corresponding inequality for the standard p-norm.

Theorem 7.1 (Hölder Inequality). Let L,R 2 L(H), and let p, q 2 R [ {1} with the property
that 1

p
+ 1

q
= 1. If p, q � 1 then

|tr(LR)|  kLkp · kRkq .

In reverse, if 0 < p < 1 and q < 0, and if L,R � 0 with supp(L) ✓ supp(R), then

tr(LR) � kLkp · kRkq .
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Proof. For simplicity, we restrict to normal L and R. Let R =
P

i
�i|eiihei| be the spectral

decomposition of R. Then, by Hölder inequality for the (standard) p-norm, we have

|tr(LR)| =

����
X

i

�ihei|L|eii

����
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|hei|L|eii|
p

◆ 1
p
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|�i|
q

◆ 1
q
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kRkq .

with obvious modifications if, say, p = 1 and q = 1. If, furthermore, L =
P

j
µj |fjihfj | is the

spectral decomposition of L, we see that
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X

j

|µj |
q = kLkpp ,

where the second inequality is Jensen’s inequality (Proposition B.5), noting that raising to
power p � 1 is a convex function, and that

P
j
|hei|fji|2 =

P
j
hei|fjihfj |eii = hei|eii = 1.

For the reverse part, since supp(L) ✓ supp(R), we may restrict H to supp(R). We first show
the reverse Hölder inequality for the (standard) p-norm, i.e., for commuting L and R. Noting
that p�1

p
= 1

q
, this follows from

kLkpp = tr(LpRpR�p)  kLpRp
k1/p kR

�p
k1/(1�p) = tr(LR)p kRk

�p

q .

Then, for non-commuting L and R, with the same spectral decompositions as above—but now
it is ensured that �i > 0 and µj � 0—we get
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now noting that raising to power p < 1 is a concave function.

The following in particular implies that the p-Schatten norm satisfies the triangle inequality
when p � 1, and so indeed is a norm in this range for p.

Proposition 7.2. For any L 2 L(H), and with p, q � 1 so that 1

p
+ 1

q
= 1,

kLkp = max
kRkq=1

|tr(LR)|

where the max is over R 2 L(H) with kRkq = 1, but may be restricted to R � 0 if L � 0.

We obtain a similar statement when p < 1 and L > 0, but then with a min instead of max.

Proof. Again, for simplicity, we assume L to be normal. Then, setting R := kLk1�p
p Lp�1, we

see that
kRk

q

q = kLk(1�p)q

p tr
�
L(p�1)q

�
= kLk�p

p tr(Lp) = 1

and
tr(LR) = kLk1�p

p tr
�
Lp) = kLkp .

Thus, Hölder inequality becomes an equality, and the claim follows.

Given that for L,R > 0: |tr(LR)| = |tr(R1/2LR1/2)| = tr(R1/2LR1/2), we obtain the following.
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Corollary 7.3. For any p 6= 1 and 0  L  M 2 L(H), it holds that kLkp  kMkp.

Applying the logarithm to Hölder’s inequality and using the concavity of the logarithm to argue
that 1

p
log tr(|L|p)+ 1

q
log tr(|R|

q)  log
�
1

p
tr(|L|p)+ 1

q
tr(|R|

q)
�
, we obtain the following “operator

trace version” of Young’s inequality.

Corollary 7.4 (Young’s inequality). Let p, q � 1 with 1

p
+ 1

q
= 1. Then, for any L,R 2 L(H):

|tr(LR)| 
tr(|L|p)

p
+

tr(|R|
q)

q
,

with equality if |L|p = |R|
q.

Again, we obtain a similar statement when 0 < p < 1 and L,R > 0 with supp(L) ✓ supp(R),
but with the inequality reversed.

7.2 Trace Distance

Since the density operator uniquely describes the behavior of a quantum system, two systems
whose respective states are given by the same density operator behave in exactly the same way.
Now we want to be able to say that if the density operators of two states are close then the
states behave similarly and are hard to distinguish. For measuring the closeness of two density
operators, the distance induced by the trace norm turns out the be the right choice.

Definition 7.2. The trace distance of ⇢,� 2 D(H) is defined as �(⇢,�) := 1

2
k⇢� �ktr.1

In case of classical density operators, the trace distance coincides with the statistical distance
(see Definition A.1) of the two distributions: if ⇢X =

P
x
PX(x)|xihx| and ⇢Y =

P
x
PY (x)|xihx|

in D(X ) are the respective density operator representations of random variables X and Y , then
�(⇢X , ⇢Y ) = �(PX , PY ).

The following, in combination with Lemma A.1 or Corollary A.2, implies that two states
that are close are hard to distinguish. In other words, if �(⇢,�) is small then the two states
behave very much the same way, i.e., they are hard to distinguish.

Theorem 7.5. Let ⇢,� 2 D(H), and let M = {Mi}i 2 MeasI(H) be a measurement. Also,

set P (i) = tr(Mi⇢M
†
i
) and Q(i) = tr(Mi�M

†
i
) for every i 2 I. Then:

�(P,Q)  �(⇢,�) .

Proof. Note that
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By considering the spectral decomposition ⇢� � =
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�j |jihj|, it follows that the above equals
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which shows the claimed inequality.

1The factor 1
2 is for normalization purposes: it ensures that �(⇢,�)  1.
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This is actually a special case of the following result, which states that the distance between
two states can only decrease when manipulating the states.

Theorem 7.6. For any CPTP map T 2 L
�
L(A),L(A0)

�
and for all �, ⇢ 2 D(A)

�
�
T(⇢),T(�)

�
 �(⇢,�) .

Proof. It is su�cient to show that �(⇢ ⌦ ⌧,� ⌦ ⌧) = �(⇢,�) for all ⇢,� 2 D(A) and ⌧ 2 D(B),
and that �(⇢,�) � �

�
trA(⇢), trA(�)

�
for all ⇢,� 2 D(AB); in combination with the Stinespring

representation (Theorem 6.6) and the obvious invariance of � under unitary transformations,
the claim then follows. The first claim is easy to verify, and we leave it as an exercise. For the
second claim, let us consider the spectral decomposition ⇢AB � �AB =

P
i
�i|iihi| of ⇢AB � �AB.

Then, we see that
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1
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where we used triangle inequality and the fact that trB(|iihi|) is a density operator and thus has
trace norm 1.

We conclude the section with a couple of useful results regarding the trace distance. In case
of pure states, the trace distance is determined by their inner product:

Lemma 7.7. For |'i, | i 2 S(H): �
�
|'ih'|, | ih |

�
=

p
1� |h'| i|2.

|h'| i| is referred to as the fidelity of the states |'i and | i. For general mixed states ⇢ and
�, the fidelity is given by F (⇢,�) = k

p
⇢
p
�ktr, and for classical states it coincides with the

so-called Bhattacharyya coe�cient.2

Proof. We can choose an orthonormal basis {|0i, |1i, · · · , |d� 1i} of H with |'i = !|0i and
| i = ↵0|0i+↵1|1i such that ↵0 and ↵1 are real (and |!| = 1 and |↵0|

2 + |↵1|
2 = ↵2

0
+↵2

1
= 1).

As both sides of the equation to be proven are invariant under multiplying |'i with !̄, we may
assume without loss of generality that ! = 1. It follows that 1 � |h'| i|2 = 1 � ↵2

0
= ↵2

1
and
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p
1� |h'| i|2 = |↵1|. On the other hand, when expressing |'ih'|� | ih | in this basis we

see that
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where the matrix in the right-hand-side expression has eigenvalues ±↵1 (which can easily be
seen by computing its characteristic polynomial). It follows that �

�
|'ih'|, | ih |

�
= |↵1|.

Finally, in case of two hybrid states with the same classical part, the trace distance coincides
with the expectation over the classical part; the proof is given as an exercise.

Lemma 7.8. Let ⇢
XE, ⇢̃XE 2 D(X⌦HE) be hybrid states with classical X (w.r.t. the same basis)

and such that ⇢
X

= ⇢̃X (i.e., PX = P 0
X). Then,

�
�
⇢
XE, ⇢̃XE

�
=

X

x

PX(x) �
�
⇢E|X=x

, ⇢̃E|X=x

�
.

2In some literature, the fidelity is defined as the square of the above, i.e., as kp⇢
p
�k2tr respectively |h'| i|2.
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7.3 The Gentle-Measurement Lemma

Performing a measurement on a state disturbs the state in general. For instance, measuring
the qubit |0i in the Hadamard basis results in the post-measurement state |+i or |�i. The
exception is when we measure the state in a basis that contains the state. Like, measuring
|0i in the computational basis results gives measurement outcome 0 with certainty, and the
post-measurement state is still |0i.

This suggests the following: if a measurement is such that one particular outcome occurs
with probability close to 1 then the corresponding post-measurement state must be close to the
original. The following shows that this intuition is indeed true, for arbitrary projective mea-
surements. It is not true for general measurements because a general measurement may “twist”
the state before or after the measurement. For example, {U |0ih0|, U |1ih1|} is a measurement for
any U 2 U(C2), as can easily be verified, and has a definite outcome when applied to the state
|0i, but the corresponding post-measurement state is U |0i.

Proposition 7.9. Let ⇢ 2 D(H), and let ⇧0 2 L(H) be a projection (which we think of being
part of a projective measurement). We set p0 = tr(⇧0⇢) and ⇢0 =

1

p0
⇧0⇢⇧0. Then

�(⇢, ⇢0) 
p
1� p0 ,

with equality if ⇢ is pure.

Proof. First, consider a pure ⇢ = |'ih'|. We then have that p0 = h'|⇧0|'i and ⇢0 = |'0
ih'0

|

with |'0
i = 1p

p0
⇧0|'i, and thus, by Lemma 7.7,
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q
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For a mixed state ⇢ =
P

`
"`|'`ih'`|, we can consider its purification |'i =

P
`

p
"`|'`i|`i.

We then have that p0 = h'|(⇧0 ⌦ I)|'i, and a straightforward calculation then shows that
|'0

i = 1p
p0
(⇧0 ⌦ I)|'i is a purification of ⇢0 = 1

p0
⇧0⇢⇧0, and therefore we have

�(⇢, ⇢0)  �
�
|'ih'|, |'0

ih'0
|
�
=

p
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which was to be proven.
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