Part IV

Quantum Information Theory

Chapter 8

Measures of Quantum Information

8.1 Quantum Min-Entropy

We define the quantum counterpart of the classical min-entropy (Definition A.4). By convention, here and throughout the rest of the notes, log denotes the *binary* logarithm, i.e., the logarithm to base 2.

Definition 8.1. For a given $\rho_A \in \mathcal{D}(A)$ the **min-entropy** of A is

$$\mathrm{H}_{\infty}(\mathcal{A}) := \mathrm{H}_{\infty}(\rho_{\mathcal{A}}) := -\log \lambda_{\max}(\rho_{\mathcal{A}}) = -\log \|\rho_{\mathcal{A}}\|_{\infty}.$$

Obviously, if ρ_X is classical, then the definition coincides with the classical notion. Also, we see that for any $\rho_A \in \mathcal{D}(A)$, its min-entropy is bounded by $0 \leq H_{\infty}(A) \leq \log \dim(\mathcal{H}_A)$, as for the classical counterpart. However, in certain other aspects, the quantum version behaves very differently. For instance, if AB is an EPR pair, i.e. $\rho_{AB} = |\Phi\rangle\langle\Phi|$ with $|\Phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle|0\rangle + |1\rangle|1\rangle)$, then $\rho_A = \frac{1}{2}|0\rangle\langle0| + \frac{1}{2}|1\rangle\langle1|$ and thus

$$\mathrm{H}_{\infty}(A) = 1 > 0 = \mathrm{H}_{\infty}(AB) \,,$$

meaning that the entropy can decrease when considering a larger system. In other words, the quantum version of H_{∞} violates **monotonicity** (see Lemma A.4). This is an artifact of entanglement.

How to define the quantum version of the *conditional* min-entropy is way less obvious. We start with the following auxiliary definition.

Definition 8.2. Let $\rho_{AE} \in \mathcal{D}(AE)$ and $\sigma_E \in \mathcal{D}(E)$. Then, the **min-entropy** of ρ_{AE} relative to σ_E is given by

$$\mathrm{H}_{\infty}(\rho_{AE}|\sigma_{E}) := -\log\min\{\lambda > 0 \mid \lambda \cdot \mathbb{I}_{A} \otimes \sigma_{E} \ge \rho_{AE}\}$$

with the understanding that $H_{\infty}(\rho_{AE}|\sigma_{E}) = -\infty$ if no such λ exists.

Remark 8.1. If $\operatorname{supp}(\rho_{AE}) \not\subseteq \operatorname{supp}(\mathbb{I}_A \otimes \sigma_E)$ then there is no λ satisfying the inequality. Indeed, if $|\Omega\rangle \in \ker(\mathbb{I}_A \otimes \sigma_E)$ but not in $\ker(\rho_{AE})$ then $\lambda \cdot \langle \Omega | (\mathbb{I}_A \otimes \sigma_E) | \Omega \rangle = 0 < \langle \Omega | \rho_{AE} | \Omega \rangle$ for any choice of λ (exploiting Remark 0.3). Below, we show that the necessary condition $\operatorname{supp}(\rho_{AE}) \subseteq$ $\operatorname{supp}(\mathbb{I}_A \otimes \sigma_E)$ for $\operatorname{H}_{\infty}(\rho_{AE} | \sigma_E)$ to be finite is equivalent to $\operatorname{supp}(\rho_E) \subseteq \operatorname{supp}(\sigma_E)$ (Corollary 8.2), and that this condition is also sufficient (Lemma 8.3).

Lemma 8.1. Let $0 \leq R_{AE} \in \mathcal{L}(\mathcal{H}_{AE})$, $R_E = \operatorname{tr}_A(R_{AE})$, and $|\varphi\rangle \in \mathcal{H}_E$. Then:

$$|\varphi\rangle \in \ker(R_E) \iff |\psi\rangle|\varphi\rangle \in \ker(R_{AE}) \ \forall |\psi\rangle \in \mathcal{H}_A.$$

Furthermore, $\ker(\mathbb{I}_A \otimes R_E) = \mathcal{H}_A \otimes \ker(R_E) \subseteq \ker(R_{AE}).$

Proof. Let $\{|i\rangle\}_{i\in I}$ be an arbitrary orthonormal basis of \mathcal{H}_A . The equivalence claim then follows from the observation that

$$\sum_{i} \langle i | \langle \varphi | R_{AE} | i \rangle | \varphi \rangle = \sum_{i} \operatorname{tr} \left(R_{AE} (|i\rangle \langle i| \otimes |\varphi\rangle \langle \varphi|) \right)$$
$$= \operatorname{tr} \left(R_{AE} (\mathbb{I} \otimes |\varphi\rangle \langle \varphi|) \right) = \operatorname{tr} \left(R_{E} |\varphi\rangle \langle \varphi| \right) = \langle \varphi | R_{E} | \varphi \rangle$$

together with Remark 0.3 and the positivity of both R_{AE} and R_{E} .

Regarding the second claim, we first note that the subset-claim follows directly from the proven \Rightarrow -implication. For the equality, consider $|\Phi\rangle \in \mathcal{H}_{AE}$, written as $|\Phi\rangle = \sum_{i} \alpha_{i} |i\rangle |\varphi_{i}\rangle$, and note that

$$\langle \Phi | (\mathbb{I}_{\mathcal{A}} \otimes R_{\mathcal{E}}) | \Phi \rangle = \sum_{i} |\alpha_{i}|^{2} \langle \varphi_{i} | R_{\mathcal{E}} | \varphi_{i} \rangle \,.$$

Thus, again exploiting Remark 0.3,

$$|\Phi\rangle \in \ker(\mathbb{I}_{\mathcal{A}} \otimes R_{\mathcal{E}}) \iff |\varphi_i\rangle \in \ker(R_{\mathcal{E}}) \ \forall \ i \ \text{with} \ \alpha_i \neq 0 \iff |\Phi\rangle \in \mathcal{H}_{\mathcal{A}} \otimes \ker(R_{\mathcal{E}}),$$

which then completes the proof.

Corollary 8.2. For any $0 \leq R_{AE} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_E)$ and $0 \leq L_E \in \mathcal{L}(H_E)$:

$$\operatorname{supp}(R_{AE}) \subseteq \operatorname{supp}(\mathbb{I}_A \otimes L_E) \iff \operatorname{supp}(R_E) \subseteq \operatorname{supp}(L_E).$$

Furthermore, $\operatorname{supp}(\mathbb{I}_{\mathcal{A}} \otimes L_{\mathcal{E}}) = \mathcal{H}_{\mathcal{A}} \otimes \operatorname{supp}(L_{\mathcal{E}}).$

Proof. We first show " \Rightarrow ". Consider $|\varphi\rangle \in \ker(L_E)$ and fix an arbitrary vector $|\psi\rangle \in \mathcal{H}_A$. Then, $(\mathbb{I}_A \otimes L_E) |\psi\rangle |\varphi\rangle = |\psi\rangle \otimes L_E |\varphi\rangle = 0$ and so $|\psi\rangle |\varphi\rangle \in \ker(\mathbb{I}_A \otimes L_E) \subseteq \ker(R_{AE})$, where the inclusion in $\ker(R_{AE})$ is by assumption. By the above lemma, $|\varphi\rangle \in \ker(R_E)$.

For " \Leftarrow ", exploiting again the above lemma, we conclude that indeed the assumption implies that $\ker(\mathbb{I}_A \otimes L_E) = \mathcal{H}_A \otimes \ker(L_E) \subseteq \mathcal{H}_A \otimes \ker(R_E) \subseteq \ker(R_{AE}).$

The final claims is obtained from $\mathcal{H}_A \otimes \ker(L_E) = \ker(\mathbb{I}_A \otimes L_E)$, taking orthogonal complements and noting that $(\mathcal{H}_A \otimes \ker(L_E))^{\perp} = \mathcal{H}_A \otimes \ker(L_E)^{\perp}$.

Lemma 8.3. For any $\rho_{AE} \in \mathcal{D}(AE)$ and $\sigma_E \in \mathcal{D}(E)$ with $\operatorname{supp}(\rho_E) \subseteq \operatorname{supp}(\sigma_E)$

$$\mathbf{H}_{\infty}(\rho_{AE}|\sigma_{E}) = -\log\lambda_{\max}\left(\sigma_{E}^{-1/2}\rho_{AE}\sigma_{E}^{-1/2}\right) = -\log\left\|\sigma_{E}^{-1/2}\rho_{AE}\sigma_{E}^{-1/2}\right\|_{\infty},$$

where the negative square root of σ_E is by means of its pseudo-inverse.

Proof. Since by assumption and Corollary 8.2, $\operatorname{supp}(\rho_{AE}) \subseteq \operatorname{supp}(\mathbb{I}_A \otimes \sigma_E) = \mathcal{H}_A \otimes \operatorname{supp}(\sigma_E)$, the definition of $\operatorname{H}_{\infty}(\rho_{AE}|\sigma_E)$ as well as the claimed value are not affected when replacing \mathcal{H}_E by $\operatorname{supp}(\sigma_E)$ and considering the corresponding restrictions of ρ_{AE} and σ_E . Therefore, we may assume without loss of generality that σ_E has full rank, and thus is invertible. Then, we see that

$$\lambda \cdot \mathbb{I}_{A} \otimes \sigma_{E} \ge \rho_{AE} \iff \lambda \cdot \mathbb{I}_{A} \otimes \mathbb{I}_{E} \ge \sigma_{E}^{-1/2} \rho_{AE} \sigma_{E}^{-1/2} \iff \lambda \ge \left\| \sigma_{E}^{-1/2} \rho_{AE} \sigma_{E}^{-1/2} \right\|_{\infty},$$

where the second equivalence is easily seem by bringing $\sigma_E^{-1/2} \rho_{AE} \sigma_E^{-1/2}$ into diagonal form. *Remark 8.2.* If $\lambda \cdot \mathbb{I}_A \otimes \sigma_E \ge \rho_{AE}$ for a $\sigma_E \in \mathcal{D}(E)$ with $\operatorname{supp}(\rho_E) \subsetneq \operatorname{supp}(\sigma_E)$ then we can consider

$$\tilde{\sigma}_{\boldsymbol{E}} := \frac{\rho_{\boldsymbol{E}}^0 \sigma_{\boldsymbol{E}} \rho_{\boldsymbol{E}}^0}{\operatorname{tr}(\rho_{\boldsymbol{E}}^0 \sigma_{\boldsymbol{E}} \rho_{\boldsymbol{E}}^0)} \in \mathcal{D}(\boldsymbol{E})\,,$$

which satisfies $\operatorname{supp}(\tilde{\sigma}_{E}) = \operatorname{supp}(\rho_{E})$. Furthermore, using Remark 0.2,

$$\lambda \cdot \operatorname{tr}(\rho_{\mathsf{E}}^{0} \sigma_{\mathsf{E}} \rho_{\mathsf{E}}^{0}) \cdot \mathbb{I}_{\mathsf{A}} \otimes \tilde{\sigma}_{\mathsf{E}} \geq \lambda \cdot \mathbb{I}_{\mathsf{A}} \otimes \rho_{\mathsf{E}}^{0} \sigma_{\mathsf{E}} \rho_{\mathsf{E}}^{0} \geq \rho_{\mathsf{E}}^{0} \rho_{\mathsf{A}\mathsf{E}} \rho_{\mathsf{E}}^{0} = \rho_{\mathsf{A}\mathsf{E}} \,.$$

Given that $\operatorname{tr}(\rho_E^0 \sigma_E \rho_E^0) \leq \|\rho_E^0\|_{\infty} \|\sigma_E\|_1 = 1$ we thus have that $\operatorname{H}_{\infty}(\rho_{AE}|\tilde{\sigma}_E) \geq \operatorname{H}_{\infty}(\rho_{AE}|\sigma_E)$.

Definition 8.3. For any $\rho_{AE} \in \mathcal{D}(AE)$, the conditional min-entropy of A given E is defined as

$$\mathrm{H}_{\infty}(A|E) := \sup_{\sigma_{E}} \mathrm{H}_{\infty}(\rho_{AE}|\sigma_{E}) = \max_{\sigma_{E}} \mathrm{H}_{\infty}(\rho_{AE}|\sigma_{E})$$

where the supremum/maximum is over all $\sigma_E \in \mathcal{D}(E)$.

Remark 8.3. By Remarks 8.1 and 8.2, the quantification can be restricted to $\sigma_E \in \mathcal{D}(E)$ with $\operatorname{supp}(\sigma_E) = \operatorname{supp}(\rho_E)$, and thus with $\operatorname{supp}(\sigma_E) \subseteq \operatorname{supp}(\rho_E)$. In other words, we may assume without loss of generality that $\mathcal{H}_E = \operatorname{supp}(\rho_E)$. Furthermore, given that the supremum is over a compact set and the objective function is continuous on that set (including the points where the function is $-\infty$), the supremum is attained; thus, writing max is justified.

In case $E = \emptyset$, i.e., $\mathcal{H}_E = \mathbb{C}$, we obviously have $H_{\infty}(A|E) = \lambda_{\max}(\rho_A) = H_{\infty}(A)$. Also, in case of a product state $\rho_{AE} = \rho_A \otimes \rho_E$, we see that $H_{\infty}(\rho_{AE}|\rho_E) = \lambda_{\max}(\rho_A) = H_{\infty}(A)$; furthermore, strong subadditivity below implies that $H_{\infty}(A|E) \leq H_{\infty}(A)$, and thus we have $H_{\infty}(A|E) = H_{\infty}(A)$. For an arbitrary $\rho_{AE} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_E)$, we note that strong subadditivity implies that $H_{\infty}(A|E)$ is still upper bounded by $\log \dim(\mathcal{H}_A)$, and the bound is attained for states of the form $\rho_{AE} = \mu_A \otimes \rho_E = \frac{1}{\dim(\mathcal{H}_A)} \mathbb{I}_A \otimes \rho_E$. On the other hand, looking at the lower bound, it turns out that $H_{\infty}(A|E)$ may be *negative*!—though not smaller than $-\log \dim(\mathcal{H}_A)$. This is again an artifact of entanglement. For instance, an EPR pair AE has $H_{\infty}(A|E) = -1$, as we will see later.

Considering the case of a *classical* system conditioned on a quantum system, it is easy to see that if $\rho_{XE} \in \mathcal{D}(\mathcal{X} \otimes \mathcal{H}_E)$ is a hybrid state with classical X then

$$\mathbb{I}_X \otimes \rho_{\mathsf{E}} = \sum_x |x\rangle \langle x| \otimes \rho_{\mathsf{E}} \geq \sum_x |x\rangle \langle x| \otimes P_X(x) \rho_{\mathsf{E}|X=x} = \rho_{X\mathsf{E}},$$

and thus $H_{\infty}(X|E) \geq 0$, so this strange behavior does not occur here — because there is no entanglement. Intuitively, if A and E are entangled then ρ_{AE} is not a block-diagonal matrix (and cannot be written as one), like in case of a hybrid state ρ_{XE} above, but it still needs to be "covered" by a block-diagonal matrix, namely by a multiple of $\mathbb{I}_A \otimes \sigma_E$, and thus the latter needs to be "raised higher up". Note that in the case of a hybrid state ρ_{XE} , we can also write

$$H_{\infty}(\rho_{XE}|\sigma_{E}) = -\log\max_{x} P_{X}(x) \ \lambda_{\max}\left(\sigma_{E}^{-1/2}\rho_{E|X=x} \ \sigma_{E}^{-1/2}\right)$$

The following shows that **monotonicity** is recovered for *classical* subsystems.

Proposition 8.4. Let $\rho_{XAE} \in \mathcal{D}(\mathcal{X} \otimes \mathcal{H}_A \otimes \mathcal{H}_E)$ and $\sigma_E \in \mathcal{D}(\mathcal{H}_E)$. Then

$$H_{\infty}(\rho_{XAE}|\sigma_E) \ge H_{\infty}(\rho_{AE}|\sigma_E)$$

Proof. Let $\lambda > 0$ be minimal such that $\lambda \cdot \mathbb{I}_A \otimes \sigma_E \ge \rho_{AE}$, and thus $\mathcal{H}_{\infty}(\rho_{AE}|\sigma_E) = -\log \lambda$. Note that $\rho_{AE} = \sum_x P_X(x)\rho_{AE|X=x}$, and thus $\rho_{AE} \ge P_X(x)\rho_{AE|X=x}$ for all x. It then follows that

$$\lambda \cdot |x\rangle \langle x| \otimes \mathbb{I}_{\mathcal{A}} \otimes \sigma_{\mathcal{E}} \geq P_X(x) |x\rangle \langle x| \otimes \rho_{\mathcal{A}\mathcal{E}|X=x} \,.$$

Summing over all x yields that $\lambda \cdot \mathbb{I}_X \otimes \mathbb{I}_A \otimes \sigma_E \geq \rho_{XAE}$, which proves the claim.

The following **data-processing inequality** is another natural property: acting on the given system can only make the entropy larger. This in particular implies **strong subadditivity** (as in point 2. of Lemma A.4): $H_{\infty}(A|BE) \leq H_{\infty}(A|E)$ for every $\rho_{ABE} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_E)$.

Proposition 8.5. Let $\rho_{AE} \in \mathcal{D}(AE)$, $\sigma_E \in \mathcal{D}(E)$ and $\mathfrak{T} \in \mathcal{L}(\mathcal{L}(E), \mathcal{L}(E'))$ a CPTP map. Then

$$\mathrm{H}_{\infty}(\mathfrak{T}_{E}(\rho_{AE})|\mathfrak{T}_{E}(\sigma_{E})) \geq \mathrm{H}_{\infty}(\rho_{AE}|\sigma_{E}).$$

Proof. Let $\lambda > 0$ be minimal such that $\lambda \cdot \mathbb{I}_{A} \otimes \sigma_{E} - \rho_{AE} \geq 0$, and thus $H_{\infty}(\rho_{AE}|\sigma_{E}) = -\log \lambda$. Because \mathfrak{T} is a CPTP map, also $\lambda \cdot \mathbb{I}_{A} \otimes \mathfrak{T}_{E}(\sigma_{E}) - \mathfrak{T}_{E}(\rho_{AE}) \geq 0$, which proves the claim. \Box

Motivated by the classical definition, let us also here write $\operatorname{Guess}(A|E)$ for $2^{-H_{\infty}(A|E)}$, keeping in mind though that $\operatorname{Guess}(A|E)$ may not be a probability: it may be greater than 1.

Lemma 8.6. For any hybrid state $\rho_{YAE} \in \mathcal{D}(\mathcal{Y} \otimes \mathcal{H}_A \otimes \mathcal{H}_E)$ with classical Y we have

$$\operatorname{Guess}(A|YE) = \sum_{y} P_{Y}(y) \operatorname{Guess}(A|E, Y=y),$$

with $\operatorname{Guess}(A|E, Y=y)$ defined by means of the state $\rho_{AE|Y=y}$.

In particular, choosing $E = \emptyset$ and a classical A (referred to as X then), we see that in case of a fully classical state ρ_{XY} , the quantum conditional min-entropy coincides with its classical counterpart. As a matter of fact, for a classical X but a (possibly) quantum E, Guess(X|E)does coincide with the (optimized) guessing probability of guessing X when given E, i.e.

Guess
$$(X|E) = \sup_{\{M_x\}} \sum_x P_X(x) \operatorname{tr}(M_x^{\dagger} M_x \rho_E^x)$$

where the supremum is over all measurements $\{M_x\}_{x \in \mathcal{X}}$. The proof is by means of the strong duality property of so-called semidefinite programs; we do not treat this here.

Proof (of Lemma 8.6). By Proposition 8.5, in $\operatorname{Guess}(A|YE) = \min_{\sigma_{YE}} \lambda_{\max}(\sigma_{YE}^{-1/2} \rho_{YAE} \sigma_{YE}^{-1/2})$ it is good enough minimize over all σ_{YE} with classical Y; indeed, if Y is not classical then we may measure Y, i.e., apply the CPTP map that captures a measurement in the considered basis, which does not affect the state of ρ_{YAE} as there Y is already classical. Thus,

$$\begin{aligned} \text{Guess}(A|YE) &= \min_{Q_Y} \min_{\{\sigma_{E|Y=y}\}} \max_{y} \frac{P_Y(y)}{Q_Y(y)} \lambda_{\max} \left(\sigma_{E|Y=y}^{-1/2} \rho_{AE|Y=y} \sigma_{E|Y=y}^{-1/2} \right) \\ &= \min_{Q_Y} \max_{y} \frac{P_Y(y)}{Q_Y(y)} \min_{\sigma_{E|Y=y}} \lambda_{\max} \left(\sigma_{E|Y=y}^{-1/2} \rho_{AE|Y=y} \sigma_{E|Y=y}^{-1/2} \right) \\ &= \min_{Q_Y} \max_{y} \frac{P_Y(y)}{Q_Y(y)} \text{Guess}(A|E, Y=y) \,. \end{aligned}$$

We now solve this optimization problem. For this, we observe that the choice of Q_Y for which \max_y is smallest is such that the values \max_y is over are all equal. As such, the minimum is achieved for

$$Q_Y(y) = \frac{P_Y(y) \operatorname{Guess}(A|E, Y=y)}{\sum_{y'} P_Y(y') \operatorname{Guess}(A|E, Y=y')}$$

and it results in the claimed expression.

Together with strong subadditivity, this implies the following.