Part IV

Quantum Information Theory

Chapter 8

Measures of Quantum Information

8.1 Quantum Min-Entropy

We define the quantum counterpart of the classical min-entropy (Definition A.4). By convention, here and throughout the rest of the notes, log denotes the binary logarithm, i.e., the logarithm to base 2 .

Definition 8.1. For a given $\rho_{A} \in \mathcal{D}(A)$ the min-entropy of A is

$$
\mathrm{H}_{\infty}(A):=\mathrm{H}_{\infty}\left(\rho_{A}\right):=-\log \lambda_{\max }\left(\rho_{A}\right)=-\log \left\|\rho_{A}\right\|_{\infty} .
$$

Obviously, if ρ_{X} is classical, then the definition coincides with the classical notion. Also, we see that for any $\rho_{A} \in \mathcal{D}(A)$, its min-entropy is bounded by $0 \leq \mathrm{H}_{\infty}(A) \leq \log \operatorname{dim}\left(\mathcal{H}_{A}\right)$, as for the classical counterpart. However, in certain other aspects, the quantum version behaves very differently. For instance, if $A B$ is an EPR pair, i.e. $\rho_{A B}=|\Phi\rangle\langle\Phi|$ with $|\Phi\rangle=\frac{1}{\sqrt{2}}(|0\rangle|0\rangle+|1\rangle|1\rangle)$, then $\rho_{A}=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|$ and thus

$$
\mathrm{H}_{\infty}(A)=1>0=\mathrm{H}_{\infty}(A B),
$$

meaning that the entropy can decrease when considering a larger system. In other words, the quantum version of H_{∞} violates monotonicity (see Lemma A.4). This is an artifact of entanglement.

How to define the quantum version of the conditional min-entropy is way less obvious. We start with the following auxiliary definition.
Definition 8.2. Let $\rho_{A E} \in \mathcal{D}(A E)$ and $\sigma_{E} \in \mathcal{D}(E)$. Then, the min-entropy of $\rho_{A E}$ relative to σ_{E} is given by

$$
\mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right):=-\log \min \left\{\lambda>0 \mid \lambda \cdot \mathbb{I}_{A} \otimes \sigma_{E} \geq \rho_{A E}\right\} .
$$

with the understanding that $\mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)=-\infty$ if no such λ exists.
Remark 8.1. If $\operatorname{supp}\left(\rho_{A E}\right) \nsubseteq \operatorname{supp}\left(\mathbb{I}_{A} \otimes \sigma_{E}\right)$ then there is no λ satisfying the inequality. Indeed, if $|\Omega\rangle \in \operatorname{ker}\left(\mathbb{I}_{A} \otimes \sigma_{E}\right)$ but not in $\operatorname{ker}\left(\rho_{A E}\right)$ then $\lambda \cdot\langle\Omega|\left(\mathbb{I}_{A} \otimes \sigma_{E}\right)|\Omega\rangle=0<\langle\Omega| \rho_{A E}|\Omega\rangle$ for any choice of λ (exploiting Remark 0.3). Below, we show that the necessary condition $\operatorname{supp}\left(\rho_{A E}\right) \subseteq$ $\operatorname{supp}\left(\mathbb{I}_{A} \otimes \sigma_{E}\right)$ for $\mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)$ to be finite is equivalent to $\operatorname{supp}\left(\rho_{E}\right) \subseteq \operatorname{supp}\left(\sigma_{E}\right)$ (Corollary 8.2), and that this condition is also sufficient (Lemma 8.3).
Lemma 8.1. Let $0 \leq R_{A E} \in \mathcal{L}\left(\mathcal{H}_{A E}\right), R_{E}=\operatorname{tr}_{A}\left(R_{A E}\right)$, and $|\varphi\rangle \in \mathcal{H}_{E}$. Then:

$$
|\varphi\rangle \in \operatorname{ker}\left(R_{E}\right) \Longleftrightarrow|\psi\rangle|\varphi\rangle \in \operatorname{ker}\left(R_{A E}\right) \forall|\psi\rangle \in \mathcal{H}_{A} .
$$

Furthermore, $\operatorname{ker}\left(\mathbb{I}_{\boldsymbol{A}} \otimes R_{E}\right)=\mathcal{H}_{A} \otimes \operatorname{ker}\left(R_{E}\right) \subseteq \operatorname{ker}\left(R_{A E}\right)$.

Proof. Let $\{|i\rangle\}_{i \in I}$ be an arbitrary orthonormal basis of \mathcal{H}_{A}. The equivalence claim then follows from the observation that

$$
\begin{aligned}
& \sum_{i}\langle i|\langle\varphi| R_{A E}|i\rangle|\varphi\rangle=\sum_{i} \operatorname{tr}\left(R_{A E}(|i\rangle\langle i| \otimes|\varphi\rangle\langle\varphi|)\right) \\
& \quad=\operatorname{tr}\left(R_{A E}(\mathbb{I} \otimes|\varphi\rangle\langle\varphi|)\right)=\operatorname{tr}\left(R_{E}|\varphi\rangle\langle\varphi|\right)=\langle\varphi| R_{E}|\varphi\rangle,
\end{aligned}
$$

together with Remark 0.3 and the positivity of both $R_{A E}$ and R_{E}.
Regarding the second claim, we first note that the subset-claim follows directly from the proven \Rightarrow-implication. For the equality, consider $|\Phi\rangle \in \mathcal{H}_{A E}$, written as $|\Phi\rangle=\sum_{i} \alpha_{i}|i\rangle\left|\varphi_{i}\right\rangle$, and note that

$$
\langle\Phi|\left(\mathbb{I}_{A} \otimes R_{E}\right)|\Phi\rangle=\sum_{i}\left|\alpha_{i}\right|^{2}\left\langle\varphi_{i}\right| R_{E}\left|\varphi_{i}\right\rangle .
$$

Thus, again exploiting Remark 0.3,

$$
|\Phi\rangle \in \operatorname{ker}\left(\mathbb{I}_{\boldsymbol{A}} \otimes R_{E}\right) \Longleftrightarrow\left|\varphi_{i}\right\rangle \in \operatorname{ker}\left(R_{E}\right) \forall i \text { with } \alpha_{i} \neq 0 \Longleftrightarrow|\Phi\rangle \in \mathcal{H}_{\boldsymbol{A}} \otimes \operatorname{ker}\left(R_{E}\right),
$$

which then completes the proof.
Corollary 8.2. For any $0 \leq R_{A E} \in \mathcal{L}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{E}\right)$ and $0 \leq L_{E} \in \mathcal{L}\left(H_{E}\right)$:

$$
\operatorname{supp}\left(R_{A E}\right) \subseteq \operatorname{supp}\left(\mathbb{I}_{A} \otimes L_{E}\right) \Longleftrightarrow \operatorname{supp}\left(R_{E}\right) \subseteq \operatorname{supp}\left(L_{E}\right)
$$

Furthermore, $\operatorname{supp}\left(\mathbb{I}_{A} \otimes L_{E}\right)=\mathcal{H}_{A} \otimes \operatorname{supp}\left(L_{E}\right)$.
Proof. We first show " \Rightarrow ". Consider $|\varphi\rangle \in \operatorname{ker}\left(L_{E}\right)$ and fix an arbitrary vector $|\psi\rangle \in \mathcal{H}_{A}$. Then, $\left(\mathbb{I}_{A} \otimes L_{E}\right)|\psi\rangle|\varphi\rangle=|\psi\rangle \otimes L_{E}|\varphi\rangle=0$ and so $|\psi\rangle|\varphi\rangle \in \operatorname{ker}\left(\mathbb{I}_{A} \otimes L_{E}\right) \subseteq \operatorname{ker}\left(R_{A E}\right)$, where the inclusion in $\operatorname{ker}\left(R_{A E}\right)$ is by assumption. By the above lemma, $|\varphi\rangle \in \operatorname{ker}\left(R_{E}\right)$.

For " \Leftarrow ", exploiting again the above lemma, we conclude that indeed the assumption implies that $\operatorname{ker}\left(\mathbb{I}_{\boldsymbol{A}} \otimes L_{E}\right)=\mathcal{H}_{\boldsymbol{A}} \otimes \operatorname{ker}\left(L_{E}\right) \subseteq \mathcal{H}_{A} \otimes \operatorname{ker}\left(R_{E}\right) \subseteq \operatorname{ker}\left(R_{A E}\right)$.

The final claims is obtained from $\mathcal{H}_{A} \otimes \operatorname{ker}\left(L_{E}\right)=\operatorname{ker}\left(\mathbb{I}_{A} \otimes L_{E}\right)$, taking orthogonal complements and noting that $\left(\mathcal{H}_{A} \otimes \operatorname{ker}\left(L_{E}\right)\right)^{\perp}=\mathcal{H}_{A} \otimes \operatorname{ker}\left(L_{E}\right)^{\perp}$.

Lemma 8.3. For any $\rho_{A E} \in \mathcal{D}(A E)$ and $\sigma_{E} \in \mathcal{D}(E)$ with $\operatorname{supp}\left(\rho_{E}\right) \subseteq \operatorname{supp}\left(\sigma_{E}\right)$

$$
\mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)=-\log \lambda_{\max }\left(\sigma_{E}^{-1 / 2} \rho_{A E} \sigma_{E}^{-1 / 2}\right)=-\log \left\|\sigma_{E}^{-1 / 2} \rho_{A E} \sigma_{E}^{-1 / 2}\right\|_{\infty},
$$

where the negative square root of σ_{E} is by means of its pseudo-inverse.
Proof. Since by assumption and Corollary 8.2, $\operatorname{supp}\left(\rho_{A E}\right) \subseteq \operatorname{supp}\left(\mathbb{I}_{A} \otimes \sigma_{E}\right)=\mathcal{H}_{A} \otimes \operatorname{supp}\left(\sigma_{E}\right)$, the definition of $\mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)$ as well as the claimed value are not affected when replacing \mathcal{H}_{E} by $\operatorname{supp}\left(\sigma_{E}\right)$ and considering the corresponding restrictions of $\rho_{A E}$ and σ_{E}. Therefore, we may assume without loss of generality that σ_{E} has full rank, and thus is invertible. Then, we see that

$$
\lambda \cdot \mathbb{I}_{A} \otimes \sigma_{E} \geq \rho_{A E} \Longleftrightarrow \lambda \cdot \mathbb{I}_{A} \otimes \mathbb{I}_{E} \geq \sigma_{E}^{-1 / 2} \rho_{A E} \sigma_{E}^{-1 / 2} \Longleftrightarrow \lambda \geq\left\|\sigma_{E}^{-1 / 2} \rho_{A E} \sigma_{E}^{-1 / 2}\right\|_{\infty}
$$

where the second equivalence is easily seem by bringing $\sigma_{E}^{-1 / 2} \rho_{A E} \sigma_{E}^{-1 / 2}$ into diagonal form.
Remark 8.2. If $\lambda \cdot \mathbb{I}_{\mathcal{A}} \otimes \sigma_{E} \geq \rho_{A E}$ for a $\sigma_{E} \in \mathcal{D}(E)$ with $\operatorname{supp}\left(\rho_{E}\right) \subsetneq \operatorname{supp}\left(\sigma_{E}\right)$ then we can consider

$$
\tilde{\sigma}_{E}:=\frac{\rho_{E}^{0} \sigma_{E} \rho_{E}^{0}}{\operatorname{tr}\left(\rho_{E}^{0} \sigma_{E} \rho_{E}^{0}\right)} \in \mathcal{D}(E),
$$

which satisfies $\operatorname{supp}\left(\tilde{\sigma}_{E}\right)=\operatorname{supp}\left(\rho_{E}\right)$. Furthermore, using Remark 0.2,

$$
\lambda \cdot \operatorname{tr}\left(\rho_{E}^{0} \sigma_{E} \rho_{E}^{0}\right) \cdot \mathbb{I}_{A} \otimes \tilde{\sigma}_{E} \geq \lambda \cdot \mathbb{I}_{A} \otimes \rho_{E}^{0} \sigma_{E} \rho_{E}^{0} \geq \rho_{E}^{0} \rho_{A E} \rho_{E}^{0}=\rho_{A E}
$$

Given that $\operatorname{tr}\left(\rho_{E}^{0} \sigma_{E} \rho_{E}^{0}\right) \leq\left\|\rho_{E}^{0}\right\|_{\infty}\left\|\sigma_{E}\right\|_{1}=1$ we thus have that $\mathrm{H}_{\infty}\left(\rho_{A E} \mid \tilde{\sigma}_{E}\right) \geq \mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)$.
Definition 8.3. For any $\rho_{A E} \in \mathcal{D}(A E)$, the conditional min-entropy of A given E is defined as

$$
\mathrm{H}_{\infty}(A \mid E):=\sup _{\sigma_{E}} \mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)=\max _{\sigma_{E}} \mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)
$$

where the supremum/maximum is over all $\sigma_{E} \in \mathcal{D}(E)$.
Remark 8.3. By Remarks 8.1 and 8.2, the quantification can be restricted to $\sigma_{E} \in \mathcal{D}(E)$ with $\operatorname{supp}\left(\sigma_{E}\right)=\operatorname{supp}\left(\rho_{E}\right)$, and thus with $\operatorname{supp}\left(\sigma_{E}\right) \subseteq \operatorname{supp}\left(\rho_{E}\right)$. In other words, we may assume without loss of generality that $\mathcal{H}_{E}=\operatorname{supp}\left(\rho_{E}\right)$. Furthermore, given that the supremum is over a compact set and the objective function is continuous on that set (including the points where the function is $-\infty$), the supremum is attained; thus, writing max is justified.

In case $E=\emptyset$, i.e., $\mathcal{H}_{E}=\mathbb{C}$, we obviously have $H_{\infty}(A \mid E)=\lambda_{\max }\left(\rho_{A}\right)=H_{\infty}(A)$. Also, in case of a product state $\rho_{A E}=\rho_{A} \otimes \rho_{E}$, we see that $\mathrm{H}_{\infty}\left(\rho_{A E} \mid \rho_{E}\right)=\lambda_{\max }\left(\rho_{A}\right)=\mathrm{H}_{\infty}(A)$; furthermore, strong subadditivity below implies that $\mathrm{H}_{\infty}(A \mid E) \leq \mathrm{H}_{\infty}(A)$, and thus we have $\mathrm{H}_{\infty}(A \mid E)=\mathrm{H}_{\infty}(A)$. For an arbitrary $\rho_{A E} \in \mathcal{D}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{E}\right)$, we note that strong subadditivity implies that $\mathrm{H}_{\infty}(A \mid E)$ is still upper bounded by $\log \operatorname{dim}\left(\mathcal{H}_{A}\right)$, and the bound is attained for states of the form $\rho_{A E}=\mu_{A} \otimes \rho_{E}=\frac{1}{\operatorname{dim}\left(\mathcal{H}_{A}\right)} \mathbb{I}_{A} \otimes \rho_{E}$. On the other hand, looking at the lower bound, it turns out that $\mathrm{H}_{\infty}(A \mid E)$ may be negative! - though not smaller than $-\log \operatorname{dim}\left(\mathcal{H}_{A}\right)$. This is again an artifact of entanglement. For instance, an EPR pair $A E$ has $\mathrm{H}_{\infty}(A \mid E)=-1$, as we will see later.

Considering the case of a classical system conditioned on a quantum system, it is easy to see that if $\rho_{X E} \in \mathcal{D}\left(\mathcal{X} \otimes \mathcal{H}_{E}\right)$ is a hybrid state with classical X then

$$
\mathbb{I}_{X} \otimes \rho_{E}=\sum_{x}|x\rangle\langle x| \otimes \rho_{E} \geq \sum_{x}|x\rangle\langle x| \otimes P_{X}(x) \rho_{E \mid X=x}=\rho_{X E}
$$

and thus $\mathrm{H}_{\infty}(X \mid E) \geq 0$, so this strange behavior does not occur here-because there is no entanglement. Intuitively, if A and E are entangled then $\rho_{A E}$ is not a block-diagonal matrix (and cannot be written as one), like in case of a hybrid state $\rho_{X E}$ above, but it still needs to be "covered" by a block-diagonal matrix, namely by a multiple of $\mathbb{I}_{\boldsymbol{A}} \otimes \sigma_{E}$, and thus the latter needs to be "raised higher up". Note that in the case of a hybrid state $\rho_{X E}$, we can also write

$$
\mathrm{H}_{\infty}\left(\rho_{X E} \mid \sigma_{E}\right)=-\log \max _{x} P_{X}(x) \lambda_{\max }\left(\sigma_{E}^{-1 / 2} \rho_{E \mid X=x} \sigma_{E}^{-1 / 2}\right)
$$

The following shows that monotonicity is recovered for classical subsystems.
Proposition 8.4. Let $\rho_{X A E} \in \mathcal{D}\left(\mathcal{X} \otimes \mathcal{H}_{A} \otimes \mathcal{H}_{E}\right)$ and $\sigma_{E} \in \mathcal{D}\left(\mathcal{H}_{E}\right)$. Then

$$
\mathrm{H}_{\infty}\left(\rho_{X A E} \mid \sigma_{E}\right) \geq \mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)
$$

Proof. Let $\lambda>0$ be minimal such that $\lambda \cdot \mathbb{I}_{A} \otimes \sigma_{E} \geq \rho_{A E}$, and thus $\mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)=-\log \lambda$. Note that $\rho_{A E}=\sum_{x} P_{X}(x) \rho_{A E \mid X=x}$, and thus $\rho_{A E} \geq P_{X}(x) \rho_{A E \mid X=x}$ for all x. It then follows that

$$
\lambda \cdot|x\rangle\langle x| \otimes \mathbb{I}_{A} \otimes \sigma_{E} \geq P_{X}(x)|x\rangle\langle x| \otimes \rho_{A E \mid X=x}
$$

Summing over all x yields that $\lambda \cdot \mathbb{I}_{X} \otimes \mathbb{I}_{A} \otimes \sigma_{E} \geq \rho_{X A E}$, which proves the claim.

The following data-processing inequality is another natural property: acting on the given system can only make the entropy larger. This in particular implies strong subadditivity (as in point 2. of Lemma A.4): $\mathrm{H}_{\infty}(A \mid B E) \leq \mathrm{H}_{\infty}(A \mid E)$ for every $\rho_{A B E} \in \mathcal{D}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{E}\right)$.

Proposition 8.5. Let $\rho_{A E} \in \mathcal{D}(A E), \sigma_{E} \in \mathcal{D}(E)$ and $\mathfrak{T} \in \mathcal{L}\left(\mathcal{L}(E), \mathcal{L}\left(E^{\prime}\right)\right)$ a CPTP map. Then

$$
\mathrm{H}_{\infty}\left(\mathfrak{T}_{E}\left(\rho_{A E}\right) \mid \mathfrak{T}_{E}\left(\sigma_{E}\right)\right) \geq \mathrm{H}_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)
$$

Proof. Let $\lambda>0$ be minimal such that $\lambda \cdot \mathbb{I}_{A} \otimes \sigma_{E}-\rho_{A E} \geq 0$, and thus $H_{\infty}\left(\rho_{A E} \mid \sigma_{E}\right)=-\log \lambda$. Because \mathfrak{T} is a CPTP map, also $\lambda \cdot \mathbb{I}_{A} \otimes \mathfrak{T}_{E}\left(\sigma_{E}\right)-\mathfrak{T}_{E}\left(\rho_{A E}\right) \geq 0$, which proves the claim.

Motivated by the classical definition, let us also here write Guess $(A \mid E)$ for $2^{-\mathrm{H}_{\infty}(A \mid E)}$, keeping in mind though that Guess $(A \mid E)$ may not be a probability: it may be greater than 1 .

Lemma 8.6. For any hybrid state $\rho_{Y A E} \in \mathcal{D}\left(\mathcal{Y} \otimes \mathcal{H}_{A} \otimes \mathcal{H}_{E}\right)$ with classical Y we have

$$
\operatorname{Guess}(A \mid Y E)=\sum_{y} P_{Y}(y) \operatorname{Guess}(A \mid E, Y=y),
$$

with $\operatorname{Guess}(A \mid E, Y=y)$ defined by means of the state $\rho_{A E \mid Y=y}$.
In particular, choosing $E=\emptyset$ and a classical A (referred to as X then), we see that in case of a fully classical state $\rho_{X Y}$, the quantum conditional min-entropy coincides with its classical counterpart. As a matter of fact, for a classical X but a (possibly) quantum E, $\operatorname{Guess}(X \mid E)$ does coincide with the (optimized) guessing probability of guessing X when given E, i.e.

$$
\operatorname{Guess}(X \mid E)=\sup _{\left\{M_{x}\right\}} \sum_{x} P_{X}(x) \operatorname{tr}\left(M_{x}^{\dagger} M_{x} \rho_{E}^{x}\right)
$$

where the supremum is over all measurements $\left\{M_{x}\right\}_{x \in \mathcal{X}}$. The proof is by means of the strong duality property of so-called semidefinite programs; we do not treat this here.

Proof (of Lemma 8.6). By Proposition 8.5, in Guess $(A \mid Y E)=\min _{\sigma_{Y E}} \lambda_{\max }\left(\sigma_{Y E}^{-1 / 2} \rho_{Y A E} \sigma_{Y E}^{-1 / 2}\right)$ it is good enough minimize over all $\sigma_{Y E}$ with classical Y; indeed, if Y is not classical then we may measure Y, i.e., apply the CPTP map that captures a measurement in the considered basis, which does not affect the state of $\rho_{Y A E}$ as there Y is already classical. Thus,

$$
\begin{aligned}
\text { Guess }(A \mid Y E) & =\min _{Q_{Y}} \min _{\left\{\sigma_{E \mid Y=y\}}\right.} \max _{y} \frac{P_{Y}(y)}{Q_{Y}(y)} \lambda_{\max }\left(\sigma_{E \mid Y=y}^{-1 / 2} \rho_{A E \mid Y=y} \sigma_{E \mid Y=y}^{-1 / 2}\right) \\
& =\min _{Q_{Y}} \max _{y} \frac{P_{Y}(y)}{Q_{Y}(y)} \min _{\sigma_{E \mid Y=y}} \lambda_{\max }\left(\sigma_{E \mid Y=y}^{-1 / 2} \rho_{A E \mid Y=y} \sigma_{E \mid Y=y}^{-1 / 2}\right) \\
& =\min _{Q_{Y}} \max _{y} \frac{P_{Y}(y)}{Q_{Y}(y)} \operatorname{Guess}(A \mid E, Y=y) .
\end{aligned}
$$

We now solve this optimization problem. For this, we observe that the choice of Q_{Y} for which $\max _{y}$ is smallest is such that the values $\max _{y}$ is over are all equal. As such, the minimum is achieved for

$$
Q_{Y}(y)=\frac{P_{Y}(y) \operatorname{Guess}(A \mid E, Y=y)}{\sum_{y^{\prime}} P_{Y}\left(y^{\prime}\right) \operatorname{Guess}\left(A \mid E, Y=y^{\prime}\right)}
$$

and it results in the claimed expression.
Together with strong subadditivity, this implies the following.

