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Chapter 8

Measures of Quantum Information

8.1 Quantum Min-Entropy

We define the quantum counterpart of the classical min-entropy (Definition A.4). By convention,
here and throughout the rest of the notes, log denotes the binary logarithm, i.e., the logarithm
to base 2.

Definition 8.1. For a given ⇢A 2 D(A) the min-entropy of A is

H1(A) := H1(⇢A) := � log �max(⇢A) = � log k⇢Ak1 .

Obviously, if ⇢X is classical, then the definition coincides with the classical notion. Also, we
see that for any ⇢A 2 D(A), its min-entropy is bounded by 0  H1(A)  log dim(HA), as for
the classical counterpart. However, in certain other aspects, the quantum version behaves very
di↵erently. For instance, if AB is an EPR pair, i.e. ⇢AB = |�ih�| with |�i = 1p

2

�
|0i|0i+ |1i|1i

�
,

then ⇢A = 1

2
|0ih0|+ 1

2
|1ih1| and thus

H1(A) = 1 > 0 = H1(AB) ,

meaning that the entropy can decrease when considering a larger system. In other words,
the quantum version of H1 violates monotonicity (see Lemma A.4). This is an artifact of
entanglement.

How to define the quantum version of the conditional min-entropy is way less obvious. We
start with the following auxiliary definition.

Definition 8.2. Let ⇢AE 2 D(AE) and �E 2 D(E). Then, the min-entropy of ⇢AE relative
to �E is given by

H1(⇢AE|�E) := � logmin{� > 0 |� · IA ⌦ �E � ⇢AE} .

with the understanding that H1(⇢AE|�E) = �1 if no such � exists.

Remark 8.1. If supp(⇢AE) 6✓ supp(IA ⌦ �E) then there is no � satisfying the inequality. Indeed,
if |⌦i 2 ker(IA ⌦ �E) but not in ker(⇢AE) then � · h⌦|(IA ⌦ �E)|⌦i = 0 < h⌦|⇢AE|⌦i for any
choice of � (exploiting Remark 0.3). Below, we show that the necessary condition supp(⇢AE) ✓
supp(IA⌦�E) for H1(⇢AE|�E) to be finite is equivalent to supp(⇢E) ✓ supp(�E) (Corollary 8.2),
and that this condition is also su�cient (Lemma 8.3).

Lemma 8.1. Let 0  RAE 2 L(HAE), RE = trA(RAE), and |'i 2 HE. Then:

|'i 2 ker(RE) () | i|'i 2 ker(RAE) 8 | i 2 HA .

Furthermore, ker(IA ⌦RE) = HA ⌦ ker(RE) ✓ ker(RAE).
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Proof. Let {|ii}i2I be an arbitrary orthonormal basis of HA. The equivalence claim then follows
from the observation that

X

i

hi|h'|RAE|ii|'i =
X

i

tr
�
RAE(|iihi|⌦ |'ih'|)

�

= tr
�
RAE(I⌦ |'ih'|)

�
= tr(RE|'ih'|) = h'|RE|'i ,

together with Remark 0.3 and the positivity of both RAE and RE.

Regarding the second claim, we first note that the subset-claim follows directly from the
proven )-implication. For the equality, consider |�i 2 HAE, written as |�i =

P
i
↵i|ii|'ii, and

note that
h�|(IA ⌦RE)|�i =

X

i

|↵i|
2
h'i|RE|'ii .

Thus, again exploiting Remark 0.3,

|�i 2 ker(IA ⌦RE) () |'ii 2 ker(RE) 8 i with ↵i 6= 0 () |�i 2 HA ⌦ ker(RE) ,

which then completes the proof.

Corollary 8.2. For any 0  RAE 2 L(HA ⌦HE) and 0  LE 2 L(HE):

supp(RAE) ✓ supp(IA ⌦ LE) () supp(RE) ✓ supp(LE) .

Furthermore, supp(IA ⌦ LE) = HA ⌦ supp(LE).

Proof. We first show “)”. Consider |'i 2 ker(LE) and fix an arbitrary vector | i 2 HA. Then,
(IA⌦LE)| i|'i = | i⌦LE|'i = 0 and so | i|'i 2 ker(IA⌦LE) ✓ ker(RAE), where the inclusion
in ker(RAE) is by assumption. By the above lemma, |'i 2 ker(RE).

For “(”, exploiting again the above lemma, we conclude that indeed the assumption implies
that ker(IA ⌦ LE) = HA ⌦ ker(LE) ✓ HA ⌦ ker(RE) ✓ ker(RAE).

The final claims is obtained from HA ⌦ ker(LE) = ker(IA ⌦ LE), taking orthogonal comple-
ments and noting that (HA ⌦ ker(LE))? = HA ⌦ ker(LE)?.

Lemma 8.3. For any ⇢AE 2 D(AE) and �E 2 D(E) with supp(⇢E) ✓ supp(�E)

H1(⇢AE|�E) = � log �max

�
��1/2

E ⇢AE �
�1/2

E

�
= � log

����1/2

E ⇢AE �
�1/2

E

��
1 ,

where the negative square root of �E is by means of its pseudo-inverse.

Proof. Since by assumption and Corollary 8.2, supp(⇢AE) ✓ supp(IA ⌦ �E) = HA ⌦ supp(�E),
the definition of H1(⇢AE|�E) as well as the claimed value are not a↵ected when replacing HE

by supp(�E) and considering the corresponding restrictions of ⇢AE and �E. Therefore, we may
assume without loss of generality that �E has full rank, and thus is invertible. Then, we see
that

� · IA ⌦ �E � ⇢AE () � · IA ⌦ IE � ��1/2

E ⇢AE �
�1/2

E () � �
����1/2

E ⇢AE �
�1/2

E

��
1 ,

where the second equivalence is easily seem by bringing ��1/2

E ⇢AE �
�1/2

E into diagonal form.

Remark 8.2. If � ·IA⌦�E � ⇢AE for a �E 2 D(E) with supp(⇢E) ( supp(�E) then we can consider

�̃E :=
⇢0E �E ⇢

0

E

tr(⇢0E �E ⇢
0

E)
2 D(E) ,
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which satisfies supp(�̃E) = supp(⇢E). Furthermore, using Remark 0.2,

� · tr(⇢0E �E ⇢
0

E) · IA ⌦ �̃E � � · IA ⌦ ⇢0E �E ⇢
0

E � ⇢0E ⇢AE ⇢
0

E = ⇢AE .

Given that tr(⇢0E �E ⇢
0

E)  k⇢0Ek1k�Ek1 = 1 we thus have that H1(⇢AE|�̃E) � H1(⇢AE|�E).

Definition 8.3. For any ⇢AE 2 D(AE), the conditional min-entropy of A given E is defined
as

H1(A|E) := sup
�E

H1(⇢AE|�E) = max
�E

H1(⇢AE|�E)

where the supremum/maximum is over all �E 2 D(E).

Remark 8.3. By Remarks 8.1 and 8.2, the quantification can be restricted to �E 2 D(E) with
supp(�E) = supp(⇢E), and thus with supp(�E) ✓ supp(⇢E). In other words, we may assume
without loss of generality that HE = supp(⇢E). Furthermore, given that the supremum is over
a compact set and the objective function is continuous on that set (including the points where
the function is �1), the supremum is attained; thus, writing max is justified.

In case E = ;, i.e., HE = C, we obviously have H1(A|E) = �max(⇢A) = H1(A). Also,
in case of a product state ⇢AE = ⇢A ⌦ ⇢E, we see that H1(⇢AE|⇢E) = �max(⇢A) = H1(A);
furthermore, strong subadditivity below implies that H1(A|E)  H1(A), and thus we have
H1(A|E) = H1(A). For an arbitrary ⇢AE 2 D(HA ⌦ HE), we note that strong subadditivity
implies that H1(A|E) is still upper bounded by log dim(HA), and the bound is attained for
states of the form ⇢AE = µA ⌦ ⇢E = 1

dim(HA)
IA ⌦ ⇢E. On the other hand, looking at the lower

bound, it turns out that H1(A|E) may be negative !— though not smaller than �log dim(HA).
This is again an artifact of entanglement. For instance, an EPR pair AE has H1(A|E) = �1,
as we will see later.

Considering the case of a classical system conditioned on a quantum system, it is easy to
see that if ⇢XE 2 D(X ⌦HE) is a hybrid state with classical X then

IX ⌦ ⇢E =
X

x

|xihx|⌦ ⇢E �

X

x

|xihx|⌦ PX(x)⇢E|X=x = ⇢XE ,

and thus H1(X|E) � 0, so this strange behavior does not occur here—because there is no
entanglement. Intuitively, if A and E are entangled then ⇢AE is not a block-diagonal matrix
(and cannot be written as one), like in case of a hybrid state ⇢XE above, but it still needs to
be “covered” by a block-diagonal matrix, namely by a multiple of IA ⌦ �E, and thus the latter
needs to be “raised higher up”. Note that in the case of a hybrid state ⇢XE, we can also write

H1(⇢XE|�E) = � logmax
x

PX(x) �max

�
��1/2

E ⇢E|X=x �
�1/2

E

�

The following shows that monotonicity is recovered for classical subsystems.

Proposition 8.4. Let ⇢XAE 2 D(X ⌦HA ⌦HE) and �E 2 D(HE). Then

H1(⇢XAE|�E) � H1(⇢AE|�E) .

Proof. Let � > 0 be minimal such that � · IA⌦�E � ⇢AE, and thus H1(⇢AE|�E) = � log �. Note
that ⇢AE =

P
x
PX(x)⇢AE|X=x, and thus ⇢AE � PX(x)⇢AE|X=x for all x. It then follows that

� · |xihx|⌦ IA ⌦ �E � PX(x)|xihx|⌦ ⇢AE|X=x .

Summing over all x yields that � · IX ⌦ IA ⌦ �E � ⇢XAE, which proves the claim.
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The following data-processing inequality is another natural property: acting on the given
system can only make the entropy larger. This in particular implies strong subadditivity
(as in point 2. of Lemma A.4): H1(A|BE)  H1(A|E) for every ⇢ABE 2 D(HA ⌦HB ⌦HE).

Proposition 8.5. Let ⇢AE 2D(AE), �E 2D(E) and T 2 L
�
L(E),L(E0)

�
a CPTP map. Then

H1
�
TE(⇢AE)

��TE(�E)
�
� H1(⇢AE|�E) .

Proof. Let � > 0 be minimal such that � · IA ⌦ �E � ⇢AE � 0, and thus H1(⇢AE|�E) = � log �.
Because T is a CPTP map, also � · IA ⌦ TE(�E)� TE(⇢AE) � 0, which proves the claim.

Motivated by the classical definition, let us also here write Guess(A|E) for 2�H1(A|E), keeping
in mind though that Guess(A|E) may not be a probability: it may be greater than 1.

Lemma 8.6. For any hybrid state ⇢YAE 2 D(Y ⌦HA ⌦HE) with classical Y we have

Guess(A|Y E) =
X

y

PY (y)Guess(A|E, Y =y) ,

with Guess(A|E, Y =y) defined by means of the state ⇢AE|Y=y.

In particular, choosing E = ; and a classical A (referred to as X then), we see that in case
of a fully classical state ⇢XY , the quantum conditional min-entropy coincides with its classical
counterpart. As a matter of fact, for a classical X but a (possibly) quantum E, Guess(X|E)
does coincide with the (optimized) guessing probability of guessing X when given E, i.e.

Guess(X|E) = sup
{Mx}

X

x

PX(x) tr(M †
xMx⇢

x

E)

where the supremum is over all measurements {Mx}x2X . The proof is by means of the strong
duality property of so-called semidefinite programs; we do not treat this here.

Proof (of Lemma 8.6). By Proposition 8.5, in Guess(A|Y E) = min�Y E �max(�
�1/2

Y E ⇢YAE �
�1/2

Y E ) it
is good enough minimize over all �Y E with classical Y ; indeed, if Y is not classical then we may
measure Y , i.e., apply the CPTP map that captures a measurement in the considered basis,
which does not a↵ect the state of ⇢YAE as there Y is already classical. Thus,

Guess(A|Y E) = min
QY

min
{�E|Y =y}

max
y

PY (y)

QY (y)
�max

�
��1/2

E|Y=y
⇢AE|Y=y �

�1/2

E|Y=y

�

= min
QY

max
y

PY (y)

QY (y)
min

�E|Y =y

�max

�
��1/2

E|Y=y
⇢AE|Y=y �

�1/2

E|Y=y

�

= min
QY

max
y

PY (y)

QY (y)
Guess(A|E, Y =y) .

We now solve this optimization problem. For this, we observe that the choice of QY for which
maxy is smallest is such that the values maxy is over are all equal. As such, the minimum is
achieved for

QY (y) =
PY (y)Guess(A|E, Y =y)P
y0 PY (y0)Guess(A|E, Y =y0)

and it results in the claimed expression.

Together with strong subadditivity, this implies the following.
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