
Corollary 8.7. As function D(AE) → R, the guessing probability Guess(A|E) is convex.

We conclude the subsection by showing that the chain rule (point 3. of Lemma A.4) still holds.

Proposition 8.8. For all states ρABE ∈ D(ABE)

H∞(A|BE) ≥ H∞(AB|E)− log rank(ρB) ≥ H∞(AB|E)− log dim(HB) .

Proof. Let λ > 0 and σE ∈ D(E) with supp(ρE) ⊆ supp(σE) so that λ · IA ⊗ IB ⊗ σE ≥ ρABE.
Then also λ · IA ⊗ ρ0

B
⊗ σE ≥ ρ0

B
ρABE ρ

0
B
= ρABE, where the equality is due to Corollary 8.2 and

Remark 0.2. So, for σB := ρ0
B
/rank(B) ∈ D(HB) we have λ · rank(ρB) · IA⊗σB⊗σE ≥ ρABE.

8.2 Min-Entropy of Superpositions

We start with the following technical observation, which relates a superposition of states to the
corresponding mixture of the states.

Lemma 8.9. Consider |ϕ〉 ∈ S(H) and ρ̃ ∈ D(H) of the form

|ϕ〉 =
∑

x∈X◦

αx|x〉 and ρ̃ =
∑

x∈X◦

|αx|2|x〉〈x| ,

where {|x〉}x∈X is an orthonormal basis of H and X◦ ⊆ X . Then, |ϕ〉〈ϕ| ≤ |X◦| · ρ̃.

Proof. Let |ψ〉 ∈ H. Then

〈ψ||ϕ〉〈ϕ||ψ〉 = |〈ψ|ϕ〉|2 =
∣

∣

∣

∣

∑

x

αx〈ψ|x〉
∣

∣

∣

∣

2

≤ |X◦|
∑

x

|αx〈ψ|x〉|2 = |X◦|
∑

x

|αx|2〈ψ|x〉〈x|ψ〉 = |X◦| · 〈ψ|ρ̃|ψ〉

where the inequality is obtained by viewing
∑

x αx〈ψ|x〉 as inner product of the length-|X◦|
vectors with entries αx〈ψ|x〉 and 1, and applying Cauchy-Schwarz inequality.

This allows us to related the min-entropy of a superposition to the min-entropy of its mixture.

Proposition 8.10. Let |Ω〉 ∈ S(AE) be a superposition

|Ω〉 =
∑

x∈X◦

αx|x〉|ϕx〉

where {|x〉}x∈X is an orthonormal basis of HA and X◦ ⊆ X , and let ρAE, ρ̃AE ∈ D(AE) be given
by

ρAE = |Ω〉〈Ω| and ρ̃AE =
∑

x∈X◦

|αx|2|x〉〈x| ⊗ |ϕx〉〈ϕx| .

Then, for any σE ∈ D(E)

H∞(ρAE|σE) ≥ H∞(ρ̃AE|σE)− log |X◦| .
Furthermore, if T is a CPTP map that acts on either of A and E, or on both, then

H∞(T(ρAE)|σE) ≥ H∞(T(ρ̃AE)|σE)− log |X◦| .

Proof. Let λ > 0 be so that λ · I⊗σE ≥ ρ̃AE. Then, by Lemma 8.9 above, it follows immediately
that |X◦|λ · I⊗ σE ≥ ρAE, which proves the first inequality. The extension involving the CPTP
map follows by observing that if |X◦| · ρ̃AE ≥ ρAE then also |X◦| · T(ρ̃AE) ≥ T(ρAE), because a
CPTP map preserves positivity, and thus the same argument still applies.
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8.3 Rényi Divergence and Rényi Entropy

We now introduce and discuss a parameterized entropy notion Hα(A), respectively Hα(A|E)
for the conditional version, referred to as (conditional) Rényi entropy, which recovers the
definition of the min-entropy H∞ when taking the limit α→ ∞. In the limit α→ 1, it recovers
the well-known Von Neumann entropy, the quantum extension of the Shannon entropy

(Definitions A.2 and A.3). The case α = 2 is referred to as collision entropy.

Like for the min-entropy, the definition for the unconditional version is quite harmless.

Definition 8.4. Let 0 < α < 1 or 1 < α < ∞. For a given ρA ∈ D(A), the Rény entropy of
order α is defined as

Hα(A) := Hα(ρA) :=
1

1− α
log tr

(

ραA
)

=
1

1− α
log ‖ρA‖αα .

When bringing ρA into diagonal form, the classical results (see Appendix A.3) apply, and thus
Hα(A) → H∞(A) for α → ∞, Hα(A) → H0(A) := log rank(ρA) for α → 0, and Hα(A) → H1(A)
for α→ 1, where

H1(A) := H(A) := −tr(ρA log ρA)

is known as Von Neumann entropy.

The conditional version is again trickier. It will be useful to first define the following. We
remark that it is convenient to think of Dα, when applied to density operators, as a distance
measure, even though it is not a metric.

Definition 8.5. Let 0 < α 6= 1. For ρ ∈ D(H) and σ ∈ P(H), the Rény divergence of order
α is defined as

Dα(ρ‖σ) :=
1

α− 1
log tr

(

(

σ
1−α
2α ρ σ

1−α
2α

)α
)

=
α

α− 1
log

∥

∥σ
1−α
2α ρ σ

1−α
2α

∥

∥

α

whenever supp(ρ) ⊆ supp(σ), or α < 1 and supp(ρ) 6⊥ supp(σ), and Dα(ρ, σ) := ∞ otherwise.

By taking the limit “component-wise”, one expects—and this is indeed the case—that

D∞(ρAE ‖ IA ⊗ σE) := lim
α→∞

Dα(ρAE ‖ IA ⊗ σE) = log
∥

∥σ−1/2

E
ρAE σ

−1/2

E

∥

∥

∞
= −H∞(ρAE|σE) .

This indicates that we are on the right track and motivates the following definition.

Definition 8.6. Let 0 < α 6= 1. For a given ρAE ∈ D(AE) we define

Hα(A|E) := −min
σE

Dα(ρAE ‖ IA ⊗ σE) ,

where the min is over all σE ∈ D(E).

For an “empty” system E = ∅, i.e., HE = C, we recover Hα(A|E) = Hα(A).

Remark 8.4. Using similar reasoning as in the case of the min-entropy, it is good enough to
quantify over σE with supp(σE) ⊆ supp(ρE), and so we may assume without loss of generality
that HE = supp(ρE). This then also ensures that the minimum is indeed attained, given that
the objective function is continuous and the optimization is over a compact set.

Compared to α→ ∞, the limit α→ 1 is less clear. We state here without proof nor intuition
that Dα(ρAE, IA ⊗ σE) → tr

(

ρAE log(ρAE) − ρAE log(σE)
)

. Furthermore, one can show that here
the optimal choice for σE is ρE, so that

H1(A|E) = −tr
(

ρAE log(ρAE)− ρAE log(ρE)
)

= H(AE)−H(E) ,
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which is the conditional Van Neumann entropy H(A|E).
Dα is monotonically increasing in α, and thus Hα(A|E) is monotonically decreasing in α. We

only show the following special case here.

Proposition 8.11. For any ρ ∈ D(H) and σ ∈ P(H)

D2(ρ‖σ) ≤ D∞(ρ‖σ) .

Proof. Let ρ =
∑

i λi|i〉〈i| be the spectral decomposition of ρ. Then, we have

D2(ρ‖σ) = log tr
(

(σ−1/4ρ σ−1/4)2
)

= log tr
(

ρ σ−1/2ρ σ−1/2
)

= log
∑

i

λi〈i|σ−1/2ρ σ−1/2|i〉

≤ log
∑

i

λi λmax

(

σ−1/2ρ σ−1/2
)

= log λmax

(

σ−1/2ρ σ−1/2
)

= D∞(ρ‖σ) ,

which proves the claim.

The Rényi entropy satisfies similar properties than the min-entropy, like monotonicity for
classical subsystems and data-processing inequality (for α ≥ 1

2) and chain rule, similar to
Propositions 8.4, 8.5 and 8.8. The chair rule is comparably simple.

Proposition 8.12. For 0 < α ≤ ∞ and any ρABE ∈ D(ABE), we have

Hα(A|BE) ≥ Hα(AB|E)−H0(B)

Proof. Using Corollary 8.2, which ensures supp(ρABE) ⊆ supp(IA ⊗ ρB ⊗ IE), and Remark 0.2,
we observe that ρ0

B
ρABE ρ

0
B
= ρABE. So, setting σB := ρ0

B
/rank(ρB), for

1
2 6= α <∞ we obtain

Hα(A|BE) ≥ −Dα(ρABE‖IA ⊗ σB ⊗ σE) =
α

1− α
log

∥

∥

∥

(

σB ⊗ σE
)
1−α
2α ρABE

(

σB ⊗ σE
)
1−α
2α

∥

∥

∥

α

=
α

1− α
log

∥

∥

∥
σ

1−α
2α

E
ρ0B ρABE ρ

0
B σ

1−α
2α

E

∥

∥

∥

α
− log rank(ρB) = −Dα(ρABE‖IAB ⊗ σE)−H0(B)

for any σE ∈ D(E), and so the claim follows by maximizing over σE. The cases α = 1 and ∞
follow by taking limits.

Arguing the monotonicity for classical subsystems and the data-processing inequality is sub-
stantially more involved, and will be obtained in the upcoming sections.

8.4 Data-Processing Inequality

The goal of this section is to prove the data-processing inequality for the divergence Dα.

Theorem 8.13. Let 1
2 ≤ α ≤ ∞. For any ρ ∈ D(H), σ ≥ 0 and CPTP map T ∈ L

(

L(H),L(H′)
)

:

Dα(T(ρ),T(σ)) ≤ Dα(ρ, σ) .

The data-processing inequality for the conditional entropy Hα then follows immediately.

Corollary 8.14. For α as above, ρAE ∈ D(AE) and T ∈ L
(

L(E),L(E′)
)

a CPTP map:

Hα

(

A|T(E)
)

≥ Hα(A|E) ,

where Hα

(

A|T(E)
)

is naturally understood as Hα(A|E ′) for ρAE′ = TE→E′(ρAE).

97



Remark 8.5. Another immediate consequence is that Dα(ρ, σ) ≥ 0 for all ρ, σ ∈ D(H), and that
Hα(A|E) ≤ Hα(A) ≤ log dim(HA); indeed, this follows by setting T := tr.

For the proof of the data-processing inequality for the divergence, it will be convenient to
consider a variant of Dα that is without the 1

α−1 -scaling and without the log. Furthermore, for
simplicity and since this is good enough to conclude Corollary 8.14, we restrict to where we
restrict to full-rank, i.e., invertible, ρ ∈ D(H) and σ ∈ P(H), denoted respectively as D⋆(H)
and P⋆(H). Thus, we define

dα : D⋆(H)× P⋆(H) → R , (ρ, σ) 7→ tr
(

(

σ
1−α
2α ρ σ

1−α
2α

)α
)

.

Our goal is to show that dα is decreasing under the partial trace when α > 1, respectively
increasing when α < 1. By the monotonicity of the log, this implies the data-processing
inequality for T being the partial trace— for full-rank ρ and σ, and in general due to continuity.
By the Stinespring representation, and observing that Dα is invariant under isometries, this
then implies Theorem 8.13 for arbitrary T. The cases α = 1 and ∞ follow by taking limits.

We start with the following convexity/concavity property.

Lemma 8.15. For α > 1 ( 1
2 ≤ α < 1), dα is jointly convex (concave).

The strategy of the proof is to reduce the claimed convexity statement to the celebrated Lieb’s

Concavity Theorem, as given in Corollary B.13 in Appendix B.4.

Proof. First, consider α > 1. Applying Corollary 7.4 with p = α and optimizing over the choice
of R, we obtain

tr
(

(

σ
1−α
2α ρ σ

1−α
2α

)α
)

= p ·max
R≥0

{

tr
(

σ
1−α
2α ρ σ

1−α
2α R

)

− 1
q tr(R

q)
}

= p ·max
R≥0

{

tr
(

ρ σ
− 1

2qRσ
− 1

2q
)

− 1
q tr(R

q)
}

,

where the second equality uses 1
q = 1− 1

p = α−1
α . Writing W = σ

− 1

2qRσ
− 1

2q , we then obtain

tr
(

(

σ
1−α
2α ρ σ

1−α
2α

)α
)

= p ·max
W≥0

{

tr(ρW )− 1
q tr

(

(

σ
1

2qWσ
1

2q
)q
)}

= p ·max
W≥0

{

tr(ρW )− 1
q tr

(

(

W 1/2σ1/qW 1/2
)q
)}

,

where the second equality is due to Lemma 0.4. The goal is now to show that the term 1
q tr(·) is

concave as a function of σ for every W . This then ensures that the entire objective function is
(jointly) convex as a function of (ρ, σ) for every W , since tr(ρW ) is linear in ρ and thus trivially
convex. It then follows that the max over W is convex as well (see Remark B.2), which then
proves the claim.

In order to argue concavity, we again apply Corollary 7.4, now to R = W 1/2σ1/qW 1/2 and
optimize over L. Writing L as L = Z1/p, we then obtain

1

q
tr
(

(

W 1/2σ1/qW 1/2
)q
)

= max
Z≥0

{

tr
(

Z1/pW 1/2σ1/qW 1/2
)

− 1
ptr(Z)

}

.

Here, tr
(

Z1/pW 1/2σ1/qW 1/2
)

is jointly concave in Z and σ by Corollary B.13 for any W . Thus,
this holds for the entire objective function, and thus the concavity claim we were aiming for
holds (see Remark B.2).
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For α < 1, we can show as above, but using the reverse version of Corollary 7.4, that

tr
(

(

σ
1−α
2α ρ σ

1−α
2α

)α
)

= p · min
W≥0

{

tr(ρW )− 1
q tr

(

(

W 1/2σ1/qW 1/2
)q
)}

= p · min
W≥0

{

tr(ρW ) + 1
q′ tr

(

(

W−1/2σ1/q
′

W−1/2
)q′

)}

,

where the second equality is by setting q′ := −q. It now remains to argue that 1
q′ tr(·) is concave,

which is done exactly as above, noting that 1
q′ =

1−α
α ≤ 1 for α ≥ 1/2, so that Corollary B.13

again applies.

In order to get from convexity/concavity of dα to the de-/increasingness of dα under the
partial trace, we first introduce the following.

Definition 8.7. For a given orthornormal basis {|0〉, . . . , |d− 1〉} of H, the generalized Pauli

operators X and Z are respectively defined as

X :=
d−1
∑

ℓ=0

|ℓ+1〉〈ℓ| and Z :=
d−1
∑

ℓ=0

e2πiℓ/d|ℓ〉〈ℓ| ,

where the addition ℓ+ 1 is understood to be modulo d.

The generalized Pauli operators X and Z satisfy the following basic properties, all easy to verify.
They are both unitaries, Xd = I = Zd, and ZX = e2πi/dXZ. Furthermore, tr(X) = 0 = tr(Z).

Considering a fixed orthonormal basis, we introduce the superoperator

E : L(H) → L(H) , R 7→ 1

d2

∑

x,z

XxZzR (Z†)z(X†)x =
1

d2

∑

x,z

ZzXxR (X†)x(Z†)z ,

where the sum is over all x and y in Z/dZ, and where the equality holds because of the above
commutativity property of X and Z.

Lemma 8.16. As a superoperator, E = I

dim(H) tr : R 7→ tr(R)
dim(H) I .

Proof. We observe that E(R) commutes with X and Z. Indeed,

XE(R) =
1

d2

∑

x,z

Xx+1ZzR (Z†)z(X†)x =
1

d2

∑

x,z

XxZzR (Z†)z(X†)x−1 = E(R)X

and similarly for Z. From this it follows that E(R) = λ(R) · I for some scalar λ(R). Indeed,
writing E(R) =

∑

k,ℓ εkℓ|k〉〈ℓ| and applying 〈k| · |ℓ〉 to both sides of ZE(R) = E(R)Z shows
that εkℓ = 0 for k 6= ℓ. Furthermore, applying 〈ℓ+1| · |ℓ〉 then to XE(R) = E(R)X shows that
εℓℓ = εℓ+1,ℓ+1. The claim now follows from observing that λ(R) · tr(I) = tr

(

E(R)
)

= tr(R).

We are now ready to prove the decreasingness of dα under the partial trace for α > 1, and
correspondingly for α < 1, from which Theorem 8.13 then follows. Noting that

trE(ρAE)⊗
1

d
IE =

(

idA ⊗ 1

d
IE tr

)

(ρAE) = (idA ⊗ EE)(ρAE) =
1

d2

∑

x,y

Xx
EZ

z
E ρAE (Z

†
E
)z(X†

E
)x ,

and correspondingly for σAE, we obtain that

dα
(

trE(ρAE), trE(σAE)
)

= dα

(

1
d2

∑

x,yX
x
E
Zz
E
ρAE (Z

†
E
)z(X†

E
)x, 1

d2
∑

x,yX
x
E
Zz
E
σAE (Z

†
E
)z(X†

E
)x
)

≤ 1

d2

∑

x,y

dα

(

Xx
EZ

z
E ρAE (Z

†
E
)z(X†

E
)x, Xx

EZ
z
E σAE (Z

†
E
)z(X†

E
)x
)

= dα
(

ρAE, σAE
)

where the inequality is Jensen’s inequality, and the final equality is because of the unitary
invariance of dα.
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8.5 Duality Property of Rényi Entropy

We contionue the discussion of the general Rényi entropy by showing the following duality
relation. With this relation, we can now for instance easily verify that the conditional min-
entropy of an EPR pair AE is indeed H∞(A|E) = −H1/2(A) = −1, as we claimed earlier. The
same for Hα. Furthermore, it follows that Hα(A|E) ≥ − log dim(HA) for any state ρAE.

Theorem 8.17. Let 1
2 ≤ α, β ≤ ∞ with 1

α+
1
β = 2. Then, for any pure ρABE = |ψ〉〈ψ| ∈ D(ABE):

Hα(A|B) + Hβ(A|E) = 0 .

For non-pure states, the inequality ≥ 0 holds.

For the proof, we introduce the following technical tool.

Lemma 8.18. Let ρAE = |ϕ〉〈ϕ| ∈ D(AE), and set ρA := trE(ρAE) and ρE := trA(ρAE). Then,
for every Hermitian RA ∈ L(A) with supp(RA) ⊆ supp(ρA) there exists a Hermitian RE ∈ L(E)
with supp(RE) ⊆ supp(ρE)—and vice versa—with the same list of non-zero eigenvalues and
so that for every LA ∈ L(A)

tr
(√
ρA LA

√
ρARA

)

= 〈ϕ|LA ⊗RE |ϕ〉 .

Proof. Let |ϕ〉 =
∑

i µi|ei〉|fi〉 ∈ S(AE) be the Schmidt decomposition. We may assume that
HA = supp(ρA) and HE = supp(ρE) (because if not, we restrict to the respective subspaces
supp(ρA) and supp(ρE)). Also, replacing RE by U †RE U for a suitable unitary U , we may
assume that |ei〉 = |fi〉. But then, given that

√
ρA =

∑

i

√
µi|ei〉〈ei| and invoking the notation

from Section 0.7, we have |√ρA〉 = |ϕ〉. Hence, applying Corollary 0.5, we obtain

tr
(√
ρA LA

√
ρARA

)

= 〈ϕ|LA ⊗RT
A |ϕ〉 ,

proving the claim.

Proof. We may assume that α < 1 and β > 1, and it will be useful to set 0 < α′ := 1−α
α =

1
α − 1 = 1− 1

β = −1−β
β =: −β′; with α′ = 1 and β′ = −1 in case α = 1

2 and β = ∞. Note that,
by definition and using Lemma 0.4,

Hα(A|B) = −min
σB

Dα(ρAB ‖ IA ⊗ σB) = −min
σB

α

α− 1
log

∥

∥

∥
σ

1−α
2α

B
ρAB σ

1−α
2α

B

∥

∥

∥

α

=
1

α′
logmax

σB

∥

∥σα′/2

B
ρAB σ

α′/2

B

∥

∥

α
=

1

α′
logmax

σB

∥

∥ρ1/2

AB
σα

′

B ρ
1/2

AB

∥

∥

α
,

with the understanding that the optimization is over all σB ∈ D(HB) with supp(σB) ⊆ supp(ρB).
Set p := − 1

β′ and q := − 1
α′ so that 1

α + 1
q = 1

α + α−1
α = 1 and correspondingly for β and

p. Then, by the reverse Hölder inequality, we get that for any τAB ∈ D(HA ⊗ HB) with
supp(τAB) ⊆ supp(ρAB)

∥

∥ρ1/2

AB
σα

′

B ρ
1/2

AB

∥

∥

α
=

∥

∥ρ1/2

AB
σα

′

B ρ
1/2

AB

∥

∥

α

∥

∥τ−α′

AB

∥

∥

q
≤ tr

(

ρ1/2

AB
σα

′

B ρ
1/2

AB
τ−α′

AB

)

where the equality is because
∥

∥τ−α′

AB

∥

∥

q
= tr(τAB)

−α′

= 1.

Similarly, but noting that 1
β′ < 0,

Hβ(A|E) =
1

β′
logmin

τE

∥

∥ρ1/2

AE
τβ

′

E
ρ1/2

AE

∥

∥

β
= − 1

α′
logmin

τE

∥

∥ρ1/2

AE
τβ

′

E
ρ1/2

AE

∥

∥

β
,
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and, by the (ordinary) Hölder inequality now,

∥

∥ρ1/2

AE
τβ

′

E
ρ1/2

AE

∥

∥

β
=

∥

∥σα
′

AE

∥

∥

p

∥

∥ρ1/2

AE
τβ

′

E
ρ1/2

AE

∥

∥

β
≥ tr

(

ρ1/2

AE
τβ

′

E
ρ1/2

AE
σα

′

AE

)

for any σAE ∈ D(HA ⊗HE) with supp(σAE) ⊆ supp(ρAE).

Finally, by invoking Lemma 8.18 twice, once with AB versus E, and once with AE versus B,

tr
(

ρ1/2

AB
σα

′

B ρ
1/2

AB
τβ

′

AB

)

= 〈ψ|(IA ⊗ σα
′

B ⊗ τβ
′

E
)|ψ〉 = tr

(

ρ1/2

AE
τβ

′

E
ρ1/2

AE
σα

′

AE

)

for suitable choices of τAB and σAE as considered above. Putting things together, this proves
Hα(A|B) + Hβ(A|E) ≤ 0.

In order to argue equality, we observe that the two inequalities in the reasoning above
become equalities when we minimize/maximize over τAB and σAE, and thus over τE and σB,
respectively. Showing Hα(A|B) + Hβ(A|E) = 0 then reduces to swapping, say, the max over σB
and the min over τE in front of the objective function 〈ψ|(IA ⊗ σα

′

B
⊗ τβ

′

E
)|ψ〉. This can be done

by means of Von Neumann’s minimax theorem (Theorem B.6), given that the function is
concave in σB and convex in τE. These latter properties follow from the results in Appendix B.4.

The claim for a non-pure state ρABE follows by purifying the state to, say, ρABCE, and using
data-processing inequality to argue that Hα(A|B) ≥ Hα(A|BC).

8.6 Monotonicity for Classical Subsystems

Finally, we show that, in line with Proposition 8.4 for the min-entropy, also the Rényi entropy
Hα is monotone for classical subsystems.

Proposition 8.19. For 1
2 ≤ α ≤ ∞ and ρXAE =

∑

x PX(x)|x〉〈x| ⊗ ρx
AE

∈ D(X ⊗HA ⊗HE):

Hα(XA|E) ≥ Hα(A|E) .

For the proof, we introduce the following technical lemma, which can be appreciated as a variant
of the data-processing inequality.

Lemma 8.20. Let 1
2 ≤ α ≤ ∞. Then, for any ρ ∈ D(H), σ ∈ P(H) and projection Π ∈ L(H):

Dα(ΠρΠ ‖ΠσΠ) ≤ Dα(ΠρΠ ‖σ) .

Proof. We show the claim for 1
2 ≤ α < 1. The case α > 1 works along the same lines, with the

inequalities turned around, and one has to take some care with the support of σ, and, as usual,
the cases α = 1 and ∞ follow by taking limits.

Given that 0 < 1−α
α ≤ 1, Jensen’s operator inequality (Theorem B.7) implies that

Πσ
1−α
α Π = Πσ

1−α
α Π+ (I−Π)0

1−α
α (I−Π) ≤

(

ΠσΠ+ (I−Π)0(I−Π)
)

1−α
α =

(

ΠσΠ
)

1−α
α .

Hence,

dα(ΠρΠ ‖σ) = tr

(

(

σ
1−α
2α ΠρΠσ

1−α
2α

)α
)

= tr

(

(

√

ΠρΠσ
1−α
α

√

ΠρΠ
)α

)

= tr

(

(

√

ΠρΠΠσ
1−α
α Π

√

ΠρΠ
)α

)

≤ tr

(

(

√

ΠρΠ(ΠσΠ)
1−α
α

√

ΠρΠ
)α

)

= dα(ΠρΠ ‖ΠσΠ) ,

where the inequality is by Corollary 7.3. The claim follows by observing that Dα = 1
α−1 log dα,

turning the inequality around for α < 1.

101



Proof of Proposition 8.4. We extend ρXAE to

ρXX′AE =
∑

x,x′

√

PX(x)PX(x′)|x〉〈x′| ⊗ |x〉〈x′| ⊗ ρxAE ∈ D(HX ⊗HX′ ⊗HE) ,

where HX = HX′ = C
|X |, and we define the projection ΠXX′ :=

∑

x |x〉〈x| ⊗ |x〉〈x|, for which it
obviously holds that ΠXX′ρXX′AEFΠXX′ = ρXX′AEF. Therefore, applying the above lemma,

Dα(ρXX′AE ‖ IXA ⊗ σX′E) ≥ Dα(ρXX′AE ‖ΠXX′(IXA ⊗ σX′E)ΠXX′)

= Dα(ρXX′AE ‖ IA ⊗ΠXX′(IX ⊗ σX′E)ΠXX′)

for any σX′E ∈ D(HX′ ⊗HE). Expoiting that

tr
(

ΠXX′(IX ⊗ σX′E)ΠXX′

)

=
∑

x

tr
(

|x〉〈x| ⊗ (|x〉〈x| ⊗ IE)σX′E(|x〉〈x| ⊗ IE)
)

= tr(σX′E) = 1 ,

we obtain that Hα(XA|X ′
E) ≤ Hα(A|XX ′

E). Finally, to conclude, we consider the state
ρXX′AEF obtained by purifying each ρx

AE
. We observe that ρXX′AEF is pure, and the above

reasoning applies equally to ρXX′AF. Using the duality property (Theorem 8.17), we then get
that

Hα(XA|E) = −Hβ(XA|X ′
F) ≥ −Hβ(A|XX ′

F) = Hα(A|E) ,
as is claimed.
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