
Chapter 9

Applications

9.1 Entropic Uncertainty Relations

The famous Heisenberg uncertainty principle states that it is not possible to have a subatomic
particle, such as an electron, with a definite position and momentum: at least one of the two
must have some inherent uncertainty. Using the language of these notes, this translates into the
following: for any pair of “sufficiently incompatible” measurements M and N and for any state
|ϕ〉, at least one of the two induced probability distributions, given by pi = 〈ϕ|M †

i Mi|ϕ〉 and
qi = 〈ϕ|N †

i Ni|ϕ〉, must have substantial entropy. For example, if |ϕ〉 ∈ S(C2) is an arbitrarily
qubit and X is the random variable discribing the measurement outcome when measuring |ϕ〉 in
the computational basis, i.e., M = {|0〉〈0|, |1〉〈1|}, and Y is the random variable discribing the
measurement outcome when measuring |ϕ〉 in the Hadamard basis, i.e., N = {|+〉〈+|, |−〉〈−|},
then the entropic uncertainty relation

H(X) + H(Y ) ≥ 1

holds, where H is the Shannon entropy (Definition A.2). This generalizes to an arbitrary state
space H and arbitrary (full-rank) projective measurements, where the inequality then becomes

H(X) + H(Y ) ≥ − log c

with c given by the following measure of “incompatability” of two full-rank projective measure-
ments, given by orthonormal bases.1 The above inequality is knows as the Maassen-Uffink

entropic uncertainty relation.

Definition 9.1. The overlap of two orthonormal bases {|ex〉}x∈X and {|fy〉}y∈Y is defined as

c := max
x,y

|〈ex|fy〉|
2 ,

i.e., the square of the maximal fidelity.

The goal of this section is to prove a generalization of the Maassen-Uffink entropic uncertainty
relation. Our version generalizes the original relation in two direction: it considers additional
“quantum side information” and it is expressed in terms of the general Rényi entropy.

Let {|ex〉}x∈X and {|fy〉}y∈Y be two orthonormal bases of HA, and let M and N be the
CPTP maps describing the corresponding measurements, i.e.,

M(ρ) =
∑

x

|x〉〈ex|ρ|ex〉〈x|

and correspondingly for N. We let c be the overlap of {|ex〉}x∈X and {|fy〉}y∈Y .

1Sometimes, c is defined without the square, in which case that bound becomes −2 log c.
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Theorem 9.1. Let 1
2 ≤ α, β ≤ ∞ with 1

α
+ 1

β
= 2, and let ρABE ∈ D(ABE). Then

Hα(M(A)|B) + Hβ(N(A)|E) ≥ − log c ,

where Hα(M(A)|B) is understood as Hα(X|B) for ρXB := MA→X(ρAB), and similarly Hβ(N(A)|E).

By considering empty subsystems B and E, and taking α = β = 1, we obviously recover the
original Maassen-Uffink entropic uncertainty relation.

For the proof, we need yet another variant of the data-processing inequality.

Lemma 9.2. Let 1
2 ≤ α ≤ ∞. Then, for any isometry V ∈ L(H,H ⊗H

′) and for ρ ∈ D(H)
and σ′ ∈ P(H ⊗H

′):
Dα(VρV

†‖σ′) ≥ Dα(ρ ‖V
†σ′V ) .

Proof. Let |0〉 be an arbitrary fixed state in S(H′). Given that I⊗ |0〉 is an isometry as well, V
can be written as V = U(I⊗|0〉) for a unitary U ∈ U(H⊗H

′). Therefore, V † = (I⊗〈0|)U † and
thus V † ⊗ |0〉 = (I⊗ |0〉)V † = (I⊗ |0〉〈0|)U †. In words: V † followed by “attaching” |0〉 equals a
unitary followed by a projection. Observing that

VρV † = U(ρ⊗ |0〉)(I⊗ 〈0|)U † = U(ρ⊗ |0〉〈0|)U †

we thus use Lemma 8.20, and basic properties of Dα, to argue that

Dα(VρV
†‖σ′) = Dα

(

U(ρ⊗ |0〉〈0|)U †‖σ′
)

= Dα

(

ρ⊗ |0〉〈0|‖U †σ′U
)

≥ Dα

(

ρ⊗ |0〉〈0|‖(I⊗ |0〉〈0|)U †σ′U(I⊗ |0〉〈0|)
)

= Dα

(

ρ⊗ |0〉〈0|‖V †σ′V ⊗ |0〉〈0|
)

= Dα

(

ρ‖V †σ′V
)

,

which was to be proven.

Proof of Theorem 9.1. We may assume α > 1. The case α < 1 follows by symmetry, and the
case α = 1 by taking the limit. Consider the isometry

V =
∑

y

|y〉〈fy| ⊗ |y〉 ∈ L(HA,HY ⊗HY ′)

where HY = HY ′ = HA. It is easy to verify that, as a CPTP map, V satisfies trY ′ ◦ V = N;
in particular, setting ρY Y ′BE = VA→Y Y ′(ρABE) we have ρY BE = NA→Y (ρABE) = trY ′(ρY Y ′BE).
In other words, V is the isometry U(I⊗ |0〉) from the Stinespring representation of N. It then
follows from the duality relation (Theorem 8.17) that Hβ(N(A)|E) = Hβ(Y |E) ≥ −Hα(Y |Y ′

B).

For a suitable σY ′B, taking it as understood that V acts on A and V † on Y Y ′, we have

−Hα(Y |Y ′
B) = Dα(ρY Y ′B ‖ IY ⊗ σY ′B) = Dα

(

V (ρAB)‖ IY ⊗ σY ′B

)

,

and thus by Lemma 9.2 and by the (ordinary) data-processing inequality (Theorem 8.13),

−Hα(Y |Y ′
B) ≥ Dα

(

ρAB ‖V †(IY ⊗ σY ′B)
)

≥ Dα

(

ρXB ‖M ◦ V †(IY ⊗ σY ′B)
)

Working out the right-hand-side argument of Dα, we obtain

M ◦ V †(IY ⊗ σY ′B) =
∑

x,y

|x〉〈ex|fy〉〈fy|ex〉〈x| ⊗ 〈y|σY ′B|y〉 ≤ c · IX ⊗ σB ,
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with σB = trY ′(σY ′B). Hence, by the operator anti-monotonicity of x 7→ x
1−α
α (Theorem B.2)

and by the monotonicity of the Schatten norm (Corollary 7.3),

Dα

(

ρXB ‖M ◦ V †(IY ⊗ σY ′B)
)

≥ Dα(ρXB ‖c · IX⊗ σB)

and therefore

−Hα(Y |Y ′
B) ≥ Dα(ρXB ‖c · IX⊗ σB) ≥ Dα(ρXB ‖IX⊗ σB)− log c ≥ −Hα(X|B)− log c .

Recalling that Hβ(Y |E) ≥ −Hα(Y |Y ′
B) then concludes the proof.

9.2 Privacy Amplification

We conclude with privacy amplification, also known as randomness extraction. The ob-
jective is to transform a weak (classical) source of randomness X, that may be correlated to
(quantum) side information E, into an almost perfect and uncorrelated source of randomness.
We show here that this is possible as soon as there is some uncertainty in X given E, for-
mally captured by having a lower bound on H2(X|E). The transformation itself requires some
randomness as a “catalyst” but is fully public, no secrecy is involved.

The considered privacy amplification procedure is by means of universal hashing, which we
quickly introduce here. Let S,X and K be arbitrary non-empty, finite sets.

Definition 9.2. A function f : S × X → K is called universal if for every pair x 6= x′ ∈ X

∣

∣{s ∈ S | f(s, x)=f(s, x′)}
∣

∣ ≤
|S|

|K|
.

The first argument is typically called the seed, and the second is sometimes referred to as
actual input. The seed should be chosen uniformly at random, independent of X and E, but
may be “publicly known”.

IN the language of probability theory, f : S × X → K is universal if and only if

P
[

f(S, x)=f(S, x′)
]

≤
1

|K|
∀ x 6= x′ ∈ X

when S be uniformly distributed over S. In other words, the probability that two distinct actual
inputs collide under a random seed is no bigger than for two random elements in the range K.

Although a universal function does not have to be hashing (in the sense of |K| < |X |), they
are usually referred to as universal hash functions. Examples of universal (hash) functions are

f : Fℓ×n × F
n → F

ℓ, (A, x) 7→ Ax

with ℓ ≤ n and where F is an arbitrary finite field, and

f : Fpn × Fpn → F
ℓ
p, (a, x) 7→ [a · x]ℓ ,

with ℓ ≤ n and where Fq stands for the finite field with q elements, and [ · ]ℓ : Fpn → F
ℓ
p is an

arbitrary surjective Fp-linear map (e.g. [ · ]ℓ = the first ℓ coordinates w.r.t. a Fp-basis of Fpn).

Theorem 9.3 (Privacy amplification). Let ρXE ∈ D(X ⊗HE). Let f : S × X → K = {0, 1}ℓ

be a universal hash function and µS = 1
|S|IS the density operator representation of the uniform

distribution over S. Consider ρSXE = µS ⊗ ρXE ∈ D(S ⊗ X ⊗HE). Then

δ
(

ρf(S,X)SE, µK ⊗ ρSE
)

≤
1

2
2−

1

2
(H2(X|E)−ℓ) ≤

1

2
2−

1

2
(H∞(X|E)−ℓ) ,

where µK = 1
2ℓ
IK is the density operator representation of the uniform distribution over K.
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Informally, this means that up to some gap that determines the “error”—and the error decreases
exponentially fast in this gap—H2(X|E) almost-random bits can be extracted. For the proof,
we need the following technical observation.

Lemma 9.4. For any Hermitian R ∈ L(H) and any L ∈ L(H): tr|LRL†| ≤ tr(L|R|L†).

Proof. Consider the spectral decompositions R =
∑

i λi|ei〉〈ei| and LRL† =
∑

j µj |fj〉〈fj |. Then

tr|LRL†| =
∑

j

|µj | =
∑

j

∣

∣〈fj |LRL†|fj〉
∣

∣ =
∑

j

∣

∣

∣

∑

i

λi〈fj |L|ei〉〈ei|L
†|fj〉

∣

∣

∣

≤
∑

j

∑

i

|λi|〈fj |L|ei〉〈ei|L
†|fj〉 =

∑

j

〈fj |L|R|L†|fj〉 = tr(L|R|L†) ,

which was to be proven.

Proof of Theorem 9.3. We write K for f(S,X) so that ρKSE = ρf(S,X)SE. First, we note that
by Lemma 7.8 and using the fact that S is independent of X and E,

δ := δ
(

ρKSE, µK ⊗ ρSE
)

=
∑

s

PS(s)δ
(

ρsf(S,X)E, µK ⊗ ρs
E

)

=
∑

s

PS(s)δ
(

ρf(s,X)E, µK ⊗ ρE
)

.

Furthermore, using Lemma 9.4 and Hölder inequality (Theorem 7.1), for any density operator
σE ∈ D(HE) with supp(ρE) ⊆ supp(σE) we have

δ
(

ρf(s,X)E, µK ⊗ ρE
)

=
1

2
tr
∣

∣σ
1/4

E
σ
−1/4

E
(ρf(s,X)E − µK ⊗ ρE)σ

−1/4

E
σ

1/4

E

∣

∣

≤
1

2
tr
(

σ
1/4

E

∣

∣σ
−1/4

E
(ρf(s,X)E − µK ⊗ ρE)σ

−1/4

E

∣

∣σ
1/4

E

)

≤
1

2

∥

∥IK ⊗ σ
1/2

E

∥

∥

2
·
∥

∥σ
1/4

E
(ρf(s,X)E − µK ⊗ ρE)σ

1/4

E

∥

∥

2

=
1

2

√

2ℓ tr
(

(ρf(s,X)E − µK ⊗ ρE)σ
−1/2

E
(ρf(s,X)E − µK ⊗ ρE)σ

−1/2

E

)

Applying Jensen inequality (Proposition B.5), we thus obtain

δ ≤
1

2

√

∑

s

PS(s) 2ℓ tr
(

(ρf(s,X)E − µK ⊗ ρE)σ
−1/2

E
(ρf(s,X)E − µK ⊗ ρE)σ

−1/2

E

)

.

Multiplying out the product in the trace, noting that
∑

s PS(s)ρf(s,X)E = ρKE and 2ℓµK = IK ,
and applying Proposition 6.1 to obtain, e.g.,

tr
(

ρKE σ
−1/2

E
(2ℓµK ⊗ ρE)σ

−1/2

E

)

= tr
(

ρKE σ
−1/2

E
ρE σ

−1/2

E

)

= tr
(

(ρE σ
−1/2

E
)2
)

,

we then get

4δ2 ≤ 2ℓ
∑

s

PS(s) tr
(

(ρf(s,X)E σ
−1/2

E
)2
)

− tr
(

(ρE σ
−1/2

E
)2
)

.

Writing ρf(s,X)E =
∑

x PX(x)|f(s, x)〉〈f(s, x)| ⊗ ρx
E
, we see that

tr
(

(ρf(s,X)E σ
−1/2

E
)2
)

=
∑

x,x′

PX(x)PX(x′)
〈

f(s, x)
∣

∣f(s, x′)
〉

tr
(

ρx
E
σ
−1/2

E
ρx

′

E
σ
−1/2

E

)

and therefore, by splitting up the sum into one with x 6= x′ and one with x = x′, and observing
that

∑

s PS(s)〈f(s, x)|f(s, x
′)〉 = P [f(S, x)=f(S, x′)] ≤ 2−ℓ, we get

2ℓ
∑

s

PS(s) tr
(

ρx
E
σ
−1/2

E
ρx

′

E
σ
−1/2

E

)
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≤
∑

x 6=x′

PX(x)PX(x′) tr
(

ρx
E
σ
−1/2

E
ρx

′

E
σ
−1/2

E

)

+ 2ℓ
∑

x

PX(x)2 tr
(

(ρx
E
σ
−1/2

E
)2
)

= tr
(

(ρE σ
−1/2

E
)2
)

+ (2ℓ − 1)tr
(

(ρXE σ
−1/2

E
)2
)

,

where for the inequality we use that tr
(

ρx
E
σ
−1/2

E
ρx

′

E
σ
−1/2

E

)

= tr
(

σ
−1/4

E
ρx
E
σ
−1/4

E
σ
−1/4

E
ρx

′

E
σ
−1/4

E

)

≥ 0.
Therefore,

δ
(

ρf(S,X)SE, µK ⊗ ρSE
)2

≤
1

2

√

2ℓ tr
(

σ
−1/2

E
ρXE σ

−1/2

E
ρXE

)

=
1

2
2−

1

2
(H2(ρXE|σE)−ℓ) .

The claim thus follows by definition of H2(X|E), and as it upper bounds H∞(X|E).
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