Chapter 9

Applications

9.1 Entropic Uncertainty Relations

The famous Heisenberg uncertainty principle states that it is not possible to have a subatomic particle, such as an electron, with a definite position and momentum: at least one of the two must have some inherent uncertainty. Using the language of these notes, this translates into the following: for any pair of "sufficiently incompatible" measurements \mathbf{M} and \mathbf{N} and for any state $|\varphi\rangle$, at least one of the two induced probability distributions, given by $p_{i}=\langle\varphi| M_{i}^{\dagger} M_{i}|\varphi\rangle$ and $q_{i}=\langle\varphi| N_{i}^{\dagger} N_{i}|\varphi\rangle$, must have substantial entropy. For example, if $|\varphi\rangle \in \mathcal{S}\left(\mathbb{C}^{2}\right)$ is an arbitrarily qubit and X is the random variable discribing the measurement outcome when measuring $|\varphi\rangle$ in the computational basis, i.e., $\mathbf{M}=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$, and Y is the random variable discribing the measurement outcome when measuring $|\varphi\rangle$ in the Hadamard basis, i.e., $\mathbf{N}=\{|+\rangle\langle+|,|-\rangle\langle-|\}$, then the entropic uncertainty relation

$$
\mathrm{H}(X)+\mathrm{H}(Y) \geq 1
$$

holds, where H is the Shannon entropy (Definition A.2). This generalizes to an arbitrary state space \mathcal{H} and arbitrary (full-rank) projective measurements, where the inequality then becomes

$$
\mathrm{H}(X)+\mathrm{H}(Y) \geq-\log c
$$

with c given by the following measure of "incompatability" of two full-rank projective measurements, given by orthonormal bases. ${ }^{1}$ The above inequality is knows as the Maassen-Uffink entropic uncertainty relation.

Definition 9.1. The overlap of two orthonormal bases $\left\{\left|e_{x}\right\rangle\right\}_{x \in \mathcal{X}}$ and $\left\{\left|f_{y}\right\rangle\right\}_{y \in \mathcal{Y}}$ is defined as

$$
c:=\max _{x, y}\left|\left\langle e_{x} \mid f_{y}\right\rangle\right|^{2},
$$

i.e., the square of the maximal fidelity.

The goal of this section is to prove a generalization of the Maassen-Uffink entropic uncertainty relation. Our version generalizes the original relation in two direction: it considers additional "quantum side information" and it is expressed in terms of the general Rényi entropy.

Let $\left\{\left|e_{x}\right\rangle\right\}_{x \in \mathcal{X}}$ and $\left\{\left|f_{y}\right\rangle\right\}_{y \in \mathcal{Y}}$ be two orthonormal bases of \mathcal{H}_{A}, and let \mathfrak{M} and \mathfrak{N} be the CPTP maps describing the corresponding measurements, i.e.,

$$
\mathfrak{M}(\rho)=\sum_{x}|x\rangle\left\langle e_{x}\right| \rho\left|e_{x}\right\rangle\langle x|
$$

and correspondingly for \mathfrak{N}. We let c be the overlap of $\left\{\left|e_{x}\right\rangle\right\}_{x \in \mathcal{X}}$ and $\left\{\left|f_{y}\right\rangle\right\}_{y \in \mathcal{Y}}$.

[^0]Theorem 9.1. Let $\frac{1}{2} \leq \alpha, \beta \leq \infty$ with $\frac{1}{\alpha}+\frac{1}{\beta}=2$, and let $\rho_{A B E} \in \mathcal{D}(A B E)$. Then

$$
\mathrm{H}_{\alpha}(\mathfrak{M}(A) \mid B)+\mathrm{H}_{\beta}(\mathfrak{N}(A) \mid E) \geq-\log c
$$

where $\mathrm{H}_{\alpha}(\mathfrak{M}(A) \mid B)$ is understood as $\mathrm{H}_{\alpha}(X \mid B)$ for $\rho_{X B}:=\mathfrak{M}_{A \rightarrow X}\left(\rho_{A B}\right)$, and similarly $\mathrm{H}_{\beta}(\mathfrak{N}(A) \mid E)$.
By considering empty subsystems B and E, and taking $\alpha=\beta=1$, we obviously recover the original Maassen-Uffink entropic uncertainty relation.

For the proof, we need yet another variant of the data-processing inequality.
Lemma 9.2. Let $\frac{1}{2} \leq \alpha \leq \infty$. Then, for any isometry $V \in \mathcal{L}\left(\mathcal{H}, \mathcal{H} \otimes \mathcal{H}^{\prime}\right)$ and for $\rho \in \mathcal{D}(\mathcal{H})$ and $\sigma^{\prime} \in \mathcal{P}\left(\mathcal{H} \otimes \mathcal{H}^{\prime}\right)$:

$$
\mathrm{D}_{\alpha}\left(V \rho V^{\dagger} \| \sigma^{\prime}\right) \geq \mathrm{D}_{\alpha}\left(\rho \| V^{\dagger} \sigma^{\prime} V\right)
$$

Proof. Let $|0\rangle$ be an arbitrary fixed state in $\mathcal{S}\left(\mathcal{H}^{\prime}\right)$. Given that $\mathbb{I} \otimes|0\rangle$ is an isometry as well, V can be written as $V=U(\mathbb{I} \otimes|0\rangle)$ for a unitary $U \in \mathcal{U}\left(\mathcal{H} \otimes \mathcal{H}^{\prime}\right)$. Therefore, $V^{\dagger}=(\mathbb{I} \otimes\langle 0|) U^{\dagger}$ and thus $V^{\dagger} \otimes|0\rangle=(\mathbb{I} \otimes|0\rangle) V^{\dagger}=(\mathbb{I} \otimes|0\rangle\langle 0|) U^{\dagger}$. In words: V^{\dagger} followed by "attaching" $|0\rangle$ equals a unitary followed by a projection. Observing that

$$
V \rho V^{\dagger}=U(\rho \otimes|0\rangle)(\mathbb{I} \otimes\langle 0|) U^{\dagger}=U(\rho \otimes|0\rangle\langle 0|) U^{\dagger}
$$

we thus use Lemma 8.20, and basic properties of D_{α}, to argue that

$$
\begin{aligned}
\mathrm{D}_{\alpha}\left(V \rho V^{\dagger} \| \sigma^{\prime}\right) & =\mathrm{D}_{\alpha}\left(U(\rho \otimes|0\rangle\langle 0|) U^{\dagger} \| \sigma^{\prime}\right) \\
& =\mathrm{D}_{\alpha}\left(\rho \otimes|0\rangle\langle 0| \| U^{\dagger} \sigma^{\prime} U\right) \\
& \geq \mathrm{D}_{\alpha}\left(\rho \otimes|0\rangle\langle 0| \|(\mathbb{I} \otimes|0\rangle\langle 0|) U^{\dagger} \sigma^{\prime} U(\mathbb{I} \otimes|0\rangle\langle 0|)\right) \\
& =\mathrm{D}_{\alpha}\left(\rho \otimes|0\rangle\langle 0| \| V^{\dagger} \sigma^{\prime} V \otimes|0\rangle\langle 0|\right) \\
& =\mathrm{D}_{\alpha}\left(\rho \| V^{\dagger} \sigma^{\prime} V\right)
\end{aligned}
$$

which was to be proven.
Proof of Theorem 9.1. We may assume $\alpha>1$. The case $\alpha<1$ follows by symmetry, and the case $\alpha=1$ by taking the limit. Consider the isometry

$$
V=\sum_{y}|y\rangle\left\langle f_{y}\right| \otimes|y\rangle \in \mathcal{L}\left(\mathcal{H}_{A}, \mathcal{H}_{Y} \otimes \mathcal{H}_{Y^{\prime}}\right)
$$

where $\mathcal{H}_{Y}=\mathcal{H}_{Y^{\prime}}=\mathcal{H}_{A}$. It is easy to verify that, as a CPTP map, V satisfies $\operatorname{tr}_{Y^{\prime}} \circ V=\mathfrak{N}$; in particular, setting $\rho_{Y Y^{\prime} B E}=V_{A \rightarrow Y Y^{\prime}}\left(\rho_{A B E}\right)$ we have $\rho_{Y B E}=\mathfrak{N}_{A \rightarrow Y}\left(\rho_{A B E}\right)=\operatorname{tr}_{Y^{\prime}}\left(\rho_{Y Y^{\prime} B E}\right)$. In other words, V is the isometry $U(\mathbb{I} \otimes|0\rangle)$ from the Stinespring representation of \mathfrak{N}. It then follows from the duality relation (Theorem 8.17) that $\mathrm{H}_{\beta}(\mathfrak{N}(A) \mid E)=\mathrm{H}_{\beta}(Y \mid E) \geq-\mathrm{H}_{\alpha}\left(Y \mid Y^{\prime} B\right)$.

For a suitable $\sigma_{Y^{\prime} B}$, taking it as understood that V acts on A and V^{\dagger} on $Y Y^{\prime}$, we have

$$
-\mathrm{H}_{\alpha}\left(Y \mid Y^{\prime} B\right)=\mathrm{D}_{\alpha}\left(\rho_{Y Y^{\prime} B} \| \mathbb{I}_{Y} \otimes \sigma_{Y^{\prime} B}\right)=\mathrm{D}_{\alpha}\left(V\left(\rho_{A B}\right) \| \mathbb{I}_{Y} \otimes \sigma_{Y^{\prime} B}\right)
$$

and thus by Lemma 9.2 and by the (ordinary) data-processing inequality (Theorem 8.13),

$$
-\mathrm{H}_{\alpha}\left(Y \mid Y^{\prime} B\right) \geq \mathrm{D}_{\alpha}\left(\rho_{A B} \| V^{\dagger}\left(\mathbb{I}_{Y} \otimes \sigma_{Y^{\prime} B}\right)\right) \geq \mathrm{D}_{\alpha}\left(\rho_{X B} \| \mathfrak{M} \circ V^{\dagger}\left(\mathbb{I}_{Y} \otimes \sigma_{Y^{\prime} B}\right)\right)
$$

Working out the right-hand-side argument of D_{α}, we obtain

$$
\mathfrak{M} \circ V^{\dagger}\left(\mathbb{I}_{Y} \otimes \sigma_{Y^{\prime} B}\right)=\sum_{x, y}|x\rangle\left\langle e_{x} \mid f_{y}\right\rangle\left\langle f_{y} \mid e_{x}\right\rangle\langle x| \otimes\langle y| \sigma_{Y^{\prime} B}|y\rangle \leq c \cdot \mathbb{I}_{X} \otimes \sigma_{B}
$$

with $\sigma_{B}=\operatorname{tr}_{Y^{\prime}}\left(\sigma_{Y^{\prime} B}\right)$. Hence, by the operator anti-monotonicity of $x \mapsto x^{\frac{1-\alpha}{\alpha}}$ (Theorem B.2) and by the monotonicity of the Schatten norm (Corollary 7.3),

$$
\mathrm{D}_{\alpha}\left(\rho_{X B} \| \mathfrak{M} \circ V^{\dagger}\left(\mathbb{I}_{Y} \otimes \sigma_{Y^{\prime} B}\right)\right) \geq \mathrm{D}_{\alpha}\left(\rho_{X B} \| c \cdot \mathbb{I}_{X} \otimes \sigma_{B}\right)
$$

and therefore

$$
-\mathrm{H}_{\alpha}\left(Y \mid Y^{\prime} B\right) \geq \mathrm{D}_{\alpha}\left(\rho_{X B} \| c \cdot \mathbb{I}_{X} \otimes \sigma_{B}\right) \geq \mathrm{D}_{\alpha}\left(\rho_{X B} \| \mathbb{I}_{X} \otimes \sigma_{B}\right)-\log c \geq-\mathrm{H}_{\alpha}(X \mid B)-\log c .
$$

Recalling that $\mathrm{H}_{\beta}(Y \mid E) \geq-\mathrm{H}_{\alpha}\left(Y \mid Y^{\prime} B\right)$ then concludes the proof.

9.2 Privacy Amplification

We conclude with privacy amplification, also known as randomness extraction. The objective is to transform a weak (classical) source of randomness X, that may be correlated to (quantum) side information E, into an almost perfect and uncorrelated source of randomness. We show here that this is possible as soon as there is some uncertainty in X given E, formally captured by having a lower bound on $\mathrm{H}_{2}(X \mid E)$. The transformation itself requires some randomness as a "catalyst" but is fully public, no secrecy is involved.

The considered privacy amplification procedure is by means of universal hashing, which we quickly introduce here. Let \mathcal{S}, \mathcal{X} and \mathcal{K} be arbitrary non-empty, finite sets.

Definition 9.2. A function $f: \mathcal{S} \times \mathcal{X} \rightarrow \mathcal{K}$ is called universal if for every pair $x \neq x^{\prime} \in \mathcal{X}$

$$
\left|\left\{s \in \mathcal{S} \mid f(s, x)=f\left(s, x^{\prime}\right)\right\}\right| \leq \frac{|\mathcal{S}|}{|\mathcal{K}|} .
$$

The first argument is typically called the seed, and the second is sometimes referred to as actual input. The seed should be chosen uniformly at random, independent of X and E, but may be "publicly known".

IN the language of probability theory, $f: \mathcal{S} \times \mathcal{X} \rightarrow \mathcal{K}$ is universal if and only if

$$
P\left[f(S, x)=f\left(S, x^{\prime}\right)\right] \leq \frac{1}{|\mathcal{K}|} \forall x \neq x^{\prime} \in \mathcal{X}
$$

when S be uniformly distributed over \mathcal{S}. In other words, the probability that two distinct actual inputs collide under a random seed is no bigger than for two random elements in the range \mathcal{K}.

Although a universal function does not have to be hashing (in the sense of $|\mathcal{K}|<|\mathcal{X}|$), they are usually referred to as universal hash functions. Examples of universal (hash) functions are

$$
f: \mathbb{F}^{\ell \times n} \times \mathbb{F}^{n} \rightarrow \mathbb{F}^{\ell},(A, x) \mapsto A x
$$

with $\ell \leq n$ and where \mathbb{F} is an arbitrary finite field, and

$$
f: \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}^{\ell},(a, x) \mapsto[a \cdot x]_{\ell}
$$

with $\ell \leq n$ and where \mathbb{F}_{q} stands for the finite field with q elements, and $[\cdot]_{\ell}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}^{\ell}$ is an arbitrary surjective \mathbb{F}_{p}-linear map (e.g. $[\cdot]_{\ell}=$ the first ℓ coordinates w.r.t. a \mathbb{F}_{p}-basis of $\mathbb{F}_{p^{n}}$).
Theorem 9.3 (Privacy amplification). Let $\rho_{X E} \in \mathcal{D}\left(\mathcal{X} \otimes \mathcal{H}_{E}\right)$. Let $f: \mathcal{S} \times \mathcal{X} \rightarrow \mathcal{K}=\{0,1\}^{\ell}$ be a universal hash function and $\mu_{S}=\frac{1}{|\mathcal{S}|} \mathbb{I}_{S}$ the density operator representation of the uniform distribution over \mathcal{S}. Consider $\rho_{S X E}=\mu_{S} \otimes \rho_{X E} \in \mathcal{D}\left(\mathcal{S} \otimes \mathcal{X} \otimes \mathcal{H}_{E}\right)$. Then

$$
\delta\left(\rho_{f(S, X) S E}, \mu_{K} \otimes \rho_{S E}\right) \leq \frac{1}{2} 2^{-\frac{1}{2}\left(\mathrm{H}_{2}(X \mid E)-\ell\right)} \leq \frac{1}{2} 2^{-\frac{1}{2}\left(\mathrm{H}_{\infty}(X \mid E)-\ell\right)},
$$

where $\mu_{K}=\frac{1}{2^{4}} \mathbb{I}_{K}$ is the density operator representation of the uniform distribution over \mathcal{K}.

Informally, this means that up to some gap that determines the "error" - and the error decreases exponentially fast in this gap $-\mathrm{H}_{2}(X \mid E)$ almost-random bits can be extracted. For the proof, we need the following technical observation.

Lemma 9.4. For any Hermitian $R \in \mathcal{L}(\mathcal{H})$ and any $L \in \mathcal{L}(\mathcal{H}): \operatorname{tr}\left|L R L^{\dagger}\right| \leq \operatorname{tr}\left(L|R| L^{\dagger}\right)$.
Proof. Consider the spectral decompositions $R=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$ and $L R L^{\dagger}=\sum_{j} \mu_{j}\left|f_{j}\right\rangle\left\langle f_{j}\right|$. Then

$$
\begin{aligned}
\operatorname{tr}\left|L R L^{\dagger}\right| & \left.=\sum_{j}\left|\mu_{j}\right|=\sum_{j}\left|\left\langle f_{j}\right| L R L^{\dagger}\right| f_{j}\right\rangle\left|=\sum_{j}\right| \sum_{i} \lambda_{i}\left\langle f_{j}\right| L\left|e_{i}\right\rangle\left\langle e_{i}\right| L^{\dagger}\left|f_{j}\right\rangle \mid \\
\leq & \sum_{j} \sum_{i}\left|\lambda_{i}\right|\left\langle f_{j}\right| L\left|e_{i}\right\rangle\left\langle e_{i}\right| L^{\dagger}\left|f_{j}\right\rangle=\sum_{j}\left\langle f_{j}\right| L|R| L^{\dagger}\left|f_{j}\right\rangle=\operatorname{tr}\left(L|R| L^{\dagger}\right),
\end{aligned}
$$

which was to be proven.
Proof of Theorem 9.3. We write K for $f(S, X)$ so that $\rho_{K S E}=\rho_{f(S, X) S E}$. First, we note that by Lemma 7.8 and using the fact that S is independent of X and E,

$$
\delta:=\delta\left(\rho_{K S E}, \mu_{K} \otimes \rho_{S E}\right)=\sum_{s} P_{S}(s) \delta\left(\rho_{f(S, X) E}^{s}, \mu_{K} \otimes \rho_{E}^{s}\right)=\sum_{s} P_{S}(s) \delta\left(\rho_{f(s, X) E}, \mu_{K} \otimes \rho_{E}\right)
$$

Furthermore, using Lemma 9.4 and Hölder inequality (Theorem 7.1), for any density operator $\sigma_{E} \in \mathcal{D}\left(\mathcal{H}_{E}\right)$ with $\operatorname{supp}\left(\rho_{E}\right) \subseteq \operatorname{supp}\left(\sigma_{E}\right)$ we have

$$
\begin{aligned}
\delta\left(\rho_{f(s, X) E}, \mu_{K} \otimes \rho_{E}\right) & =\frac{1}{2} \operatorname{tr}\left|\sigma_{E}^{1 / 4} \sigma_{E}^{-1 / 4}\left(\rho_{f(s, X) E}-\mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{-1 / 4} \sigma_{E}^{1 / 4}\right| \\
& \leq \frac{1}{2} \operatorname{tr}\left(\sigma_{E}^{1 / 4}\left|\sigma_{E}^{-1 / 4}\left(\rho_{f(s, X) E}-\mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{-1 / 4}\right| \sigma_{E}^{1 / 4}\right) \\
& \leq \frac{1}{2}\left\|\mathbb{I}_{K} \otimes \sigma_{E}^{1 / 2}\right\|_{2} \cdot\left\|\sigma_{E}^{1 / 4}\left(\rho_{f(s, X) E}-\mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{1 / 4}\right\|_{2} \\
& =\frac{1}{2} \sqrt{2^{\ell} \operatorname{tr}\left(\left(\rho_{f(s, X) E}-\mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{-1 / 2}\left(\rho_{f(s, X) E}-\mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{-1 / 2}\right)}
\end{aligned}
$$

Applying Jensen inequality (Proposition B.5), we thus obtain

$$
\delta \leq \frac{1}{2} \sqrt{\sum_{s} P_{S}(s) 2^{\ell} \operatorname{tr}\left(\left(\rho_{f(s, X) E}-\mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{-1 / 2}\left(\rho_{f(s, X) E}-\mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{-1 / 2}\right)}
$$

Multiplying out the product in the trace, noting that $\sum_{s} P_{S}(s) \rho_{f(s, X) E}=\rho_{K E}$ and $2^{\ell} \mu_{K}=\mathbb{I}_{K}$, and applying Proposition 6.1 to obtain, e.g.,

$$
\operatorname{tr}\left(\rho_{K E} \sigma_{E}^{-1 / 2}\left(2^{\ell} \mu_{K} \otimes \rho_{E}\right) \sigma_{E}^{-1 / 2}\right)=\operatorname{tr}\left(\rho_{K E} \sigma_{E}^{-1 / 2} \rho_{E} \sigma_{E}^{-1 / 2}\right)=\operatorname{tr}\left(\left(\rho_{E} \sigma_{E}^{-1 / 2}\right)^{2}\right)
$$

we then get

$$
4 \delta^{2} \leq 2^{\ell} \sum_{s} P_{S}(s) \operatorname{tr}\left(\left(\rho_{f(s, X) E} \sigma_{E}^{-1 / 2}\right)^{2}\right)-\operatorname{tr}\left(\left(\rho_{E} \sigma_{E}^{-1 / 2}\right)^{2}\right)
$$

Writing $\rho_{f(s, X) E}=\sum_{x} P_{X}(x)|f(s, x)\rangle\langle f(s, x)| \otimes \rho_{E}^{x}$, we see that

$$
\operatorname{tr}\left(\left(\rho_{f(s, X) E} \sigma_{E}^{-1 / 2}\right)^{2}\right)=\sum_{x, x^{\prime}} P_{X}(x) P_{X}\left(x^{\prime}\right)\left\langle f(s, x) \mid f\left(s, x^{\prime}\right)\right\rangle \operatorname{tr}\left(\rho_{E}^{x} \sigma_{E}^{-1 / 2} \rho_{E}^{x^{\prime}} \sigma_{E}^{-1 / 2}\right)
$$

and therefore, by splitting up the sum into one with $x \neq x^{\prime}$ and one with $x=x^{\prime}$, and observing that $\sum_{s} P_{S}(s)\left\langle f(s, x) \mid f\left(s, x^{\prime}\right)\right\rangle=P\left[f(S, x)=f\left(S, x^{\prime}\right)\right] \leq 2^{-\ell}$, we get

$$
2^{\ell} \sum_{s} P_{S}(s) \operatorname{tr}\left(\rho_{E}^{x} \sigma_{E}^{-1 / 2} \rho_{E}^{x^{\prime}} \sigma_{E}^{-1 / 2}\right)
$$

$$
\begin{aligned}
& \leq \sum_{x \neq x^{\prime}} P_{X}(x) P_{X}\left(x^{\prime}\right) \operatorname{tr}\left(\rho_{E}^{x} \sigma_{E}^{-1 / 2} \rho_{E}^{x^{\prime}} \sigma_{E}^{-1 / 2}\right)+2^{\ell} \sum_{x} P_{X}(x)^{2} \operatorname{tr}\left(\left(\rho_{E}^{x} \sigma_{E}^{-1 / 2}\right)^{2}\right) \\
& =\operatorname{tr}\left(\left(\rho_{E} \sigma_{E}^{-1 / 2}\right)^{2}\right)+\left(2^{\ell}-1\right) \operatorname{tr}\left(\left(\rho_{X E} \sigma_{E}^{-1 / 2}\right)^{2}\right),
\end{aligned}
$$

where for the inequality we use that $\operatorname{tr}\left(\rho_{E}^{x} \sigma_{E}^{-1 / 2} \rho_{E}^{x^{\prime}} \sigma_{E}^{-1 / 2}\right)=\operatorname{tr}\left(\sigma_{E}^{-1 / 4} \rho_{E}^{x} \sigma_{E}^{-1 / 4} \sigma_{E}^{-1 / 4} \rho_{E}^{x^{\prime}} \sigma_{E}^{-1 / 4}\right) \geq 0$. Therefore,

$$
\delta\left(\rho_{f(S, X) S E}, \mu_{K} \otimes \rho_{S E}\right)^{2} \leq \frac{1}{2} \sqrt{2^{\ell} \operatorname{tr}\left(\sigma_{E}^{-1 / 2} \rho_{X E} \sigma_{E}^{-1 / 2} \rho_{X E}\right)}=\frac{1}{2} 2^{-\frac{1}{2}\left(\mathrm{H}_{2}\left(\rho_{X E} \mid \sigma_{E}\right)-\ell\right)} .
$$

The claim thus follows by definition of $\mathrm{H}_{2}(X \mid E)$, and as it upper bounds $\mathrm{H}_{\infty}(X \mid E)$.

[^0]: ${ }^{1}$ Sometimes, c is defined without the square, in which case that bound becomes $-2 \log c$.

