QUANTUM INFORMATION THEORY Fall 2021, Mathematical Institute, Leiden University Serge Fehr (lecturer) Jelle Don (TA)

Exercise Set 1

Exercise 1.1 We have seen that $\mathcal{D}(\mathcal{H})$ coincides with the convex hull of the set of pure density operators in $\mathcal{D}(\mathcal{H})$. Show that the pure density operators are the *extreme points* in $\mathcal{D}(\mathcal{H})$, i.e., if

$$|\varphi\rangle\!\langle\varphi| = \sum_{i=1}^{n} \varepsilon_i |\varphi_i\rangle\!\langle\varphi_i|$$

with $|\varphi\rangle, |\varphi_1\rangle, \dots, |\varphi_n\rangle \in \mathcal{S}(\mathcal{H}), \varepsilon_1, \dots, \varepsilon_n > 0$ and $\sum_i \varepsilon_i = 1$, then $|\varphi\rangle\langle\varphi| = |\varphi_i\rangle\langle\varphi_i|$ for every *i*. *Hint:* Apply $\langle\varphi|$ from the left and $|\varphi\rangle$ from the right, and use Proposition 0.1 (Chauchy-Schwarz).

Exercise 1.2 Let $\rho \in \mathcal{D}(\mathcal{H})$. Show that $0 \leq \operatorname{tr}(\rho^2) \leq 1$, with $\operatorname{tr}(\rho^2) = 1$ if and only if ρ is pure. *Hint:* Use spectral decomposition.

Exercise 1.3 Show that for any two $\rho, \sigma \in \mathcal{D}(\mathcal{H})$: $0 \leq \operatorname{tr}(\rho \sigma) \leq 1$.

Exercise 1.4 Show that two states that are described by *different* respective density matrices $\rho, \sigma \in \mathcal{D}(\mathcal{H})$, can be distinguished with positive advantage by a suitable measurement. Concretely, show that if $\rho \neq \sigma$ then there exists an orthonormal basis $\{|i\rangle\}_{i\in I}$ of \mathcal{H} such that $\operatorname{tr}(|i\rangle\langle i|\rho) \neq \operatorname{tr}(|i\rangle\langle i|\sigma)$ for some $i \in I$.

Hint: Consider the spectral decomposition of $\rho - \sigma$.

Exercise 1.5 Let $A \in \mathcal{L}(\mathcal{H})$. Show that if $\langle \varphi | A | \varphi \rangle = 0$ for all $|\varphi \rangle \in \mathcal{H}$ then A = 0. *Hint:* Show that $\langle \varphi | A | \varphi \rangle = 0$ for all $|\varphi \rangle \in \mathcal{H}$ implies that $\langle e_i | A | e_j \rangle = 0$ for all $i, j \in I$ and any orthonormal basis $\{ |e_i \rangle \}_{i \in I}$ of \mathcal{H} . Also, it is helpful to realize that the statement is not true in case \mathcal{H} is a *real* Hilbert space.

NB: You are not meant to use the property that $A \ge 0 \Rightarrow A$ Hermitian; as a matter of fact, what you are supposed to show is typically used to prove this property.