QUANTUM INFORMATION THEORY Fall 2021, Mathematical Institute, Leiden University Serge Fehr (lecturer) Jelle Don (TA)

Exercise Set 2

Exercise 2.1 Let $\rho_A \in \mathcal{D}(\mathcal{H}_A)$, and let $\sqrt{\rho_A} \in \mathcal{L}(\mathcal{H}_A)$ be the positive-semidefinite square root of ρ_A , i.e., $\sqrt{\rho_A} \ge 0$ and $\sqrt{\rho_A}^2 = \rho_A$.¹ Also, let $\mathcal{H}_B = \mathcal{H}_A$, let $\{|i\rangle\}_{i\in I}$ be an orthonormal basis of \mathcal{H}_A (and of \mathcal{H}_B), and set $|\Omega\rangle = \sum_i |i\rangle |i\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ (note that $|\Omega\rangle$ is not normalized). Show that

 $|\varphi\rangle = (\sqrt{\rho_A} \otimes \mathbb{I}_B)|\Omega\rangle$

is a purification of ρ_A , i.e., $|\varphi\rangle \in \mathcal{S}(\mathcal{H}_A \otimes \mathcal{H}_B)$ with $\operatorname{tr}_B(|\varphi\rangle\langle\varphi|) = \rho_A$.

Exercise 2.2 Use the Schmidt decomposition to show that for every $|\varphi\rangle \in \mathcal{S}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the two reduced density matrices $\rho_A = \operatorname{tr}_B(|\varphi\rangle\langle\varphi|)$ and $\rho_B = \operatorname{tr}_A(|\varphi\rangle\langle\varphi|)$ have the same non-zero eigenvalues (with the same multiplicities).

Exercise 2.3 Show that $\langle A|B \rangle = \operatorname{tr}(A^{\dagger}B)$ and $|AXB^T \rangle = (A \otimes B)|X\rangle$ for any $A, B, X \in \mathcal{L}(\mathcal{H})$, as claimed in Section 0.7.

Hint: It is sufficient to show the claims for (some of) the operators being of the form $|i\rangle\langle j|$. Note that, for simplicity, we consider $\mathcal{H} = \mathcal{H}'$ here, and so we have *one* fixed basis $\{|i\rangle\}_{i\in I}$ here.

Exercise 2.4 Show that for any CPTP map $\mathfrak{T} : \mathcal{L}(\mathfrak{H}_A) \to \mathcal{L}(\mathfrak{H}_{A'})$, there exists a Kraus representation $\mathfrak{T}(R) = \sum_{\ell} T_{\ell} R T_{\ell}^{\dagger}$ with mutually *orthogonal* Kraus operators with respect to the Hilbert-Schmidt inner product, i.e. $\operatorname{tr}(T_{\ell}^{\dagger}T_k) = 0$ for all $\ell \neq k$.

Hint: Use how the Kraus operators T_{ℓ} are constructed in the proof of Theorem 6.6.

Exercise 2.5 We consider yet another representation of a CPTP map: using the notation from Section 0.6 for fixed orthonormal bases of \mathcal{H}_A and $\mathcal{H}_{A'}$, any CPTP map $\mathfrak{T} : \mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_{A'})$ induces an operator $M(\mathfrak{T}) \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_A, \mathcal{H}_{A'} \otimes \mathcal{H}_{A'})$ that maps

 $M(\mathfrak{T}): |R\rangle \mapsto |\mathfrak{T}(R)\rangle.$

 $M(\mathfrak{T})$ is called the *matrix representation* of \mathfrak{T} . Show that if $\mathfrak{T}(R) = \sum_{\ell} T_{\ell} R T_{\ell}^{\dagger}$ is the Kraus representation of \mathfrak{T} , then $M(\mathfrak{T}) = \sum_{\ell} T_{\ell} \otimes \overline{T}_{\ell}$.

¹Existence and uniqueness of $\sqrt{\rho_A}$ follows immediately from the respective spectral decompositions of ρ_A and its positive-semidefinite square root.