Exercise Set 3

Exercise 3.1 Consider the so-called Pauli- X operator

$$
X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \in \mathcal{L}\left(\mathbb{C}^{2}\right)
$$

and compute the operator $e^{-i \theta X} \in \mathcal{L}\left(\mathbb{C}^{2}\right)$, defined according to Definition 0.1 by applying the function $x \mapsto e^{-i \theta x}=\cos (\theta x)-i \sin (\theta x)$ to the eigenvalues in the spectral decomposition of X.

Exercise 3.2 Show that $(L \otimes R)^{p}=L^{p} \otimes R^{p}$ holds for any $L \in \mathcal{P}(\mathcal{H}), R \in \mathcal{P}\left(\mathcal{H}^{\prime}\right)$, and $p \in \mathbb{R}$. Use this to show that $|L \otimes R|=|L| \otimes|R|$ and $\|L \otimes R\|_{p}=\|L\|_{p}\|R\|_{p}$ holds for any $L \in \mathcal{L}(\mathcal{H})$, $R \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$, and $0 \neq p \in \mathbb{R}$.

Exercise 3.3 Show that for any two density matrices $\rho, \sigma \in \mathcal{D}(\mathcal{H})$, there exists an orthonormal basis $\{|i\rangle\}_{i \in I}$ of \mathcal{H} such that the respective probability distributions $P, Q: I \rightarrow[0,1]$, given by $P(i)=\operatorname{tr}(|i\rangle\langle i| \rho)$ and $Q(i)=\operatorname{tr}(|i\rangle\langle i| \sigma)$, satisfy $\delta(P, Q)=\delta(\rho, \sigma)$.

Exercise 3.4 Let $A, B \in \mathcal{L}(\mathcal{H})$ be Hermitian. Show that if A and B have orthogonal supports, i.e., $\operatorname{supp}(A) \perp \operatorname{supp}(B)$, then $\|A+B\|_{1}=\|A\|_{1}+\|B\|_{1}$. Conclude Lemma 7.8.

Exercise 3.5 Show that for any random variables X and Y with joint distribution $P_{X Y}$ the following inequalities hold, where \mathcal{Y} is the range of Y.

$$
\mathrm{H}_{\infty}(X Y) \geq \mathrm{H}_{\infty}(X), \quad \mathrm{H}_{\infty}(X \mid Y) \leq \mathrm{H}_{\infty}(X) \quad \text { and } \quad \mathrm{H}_{\infty}(X \mid Y) \geq \mathrm{H}_{\infty}(X Y)-\log |\mathcal{Y}|
$$

