QUANTUM INFORMATION THEORY Fall 2021, Mathematical Institute, Leiden University Serge Fehr (lecturer) Jelle Don (TA)

Exercise Set 4

Exercise 4.1 Show that $D_{\alpha}(\rho, \rho) = 0$ for any $\rho \in \mathcal{D}(\mathcal{H})$. With the help of the previous exercise set, show that $D_{\alpha}(\rho \otimes \rho', \sigma \otimes \sigma') = D_{\alpha}(\rho, \sigma) + D_{\alpha}(\rho', \sigma')$ for all $\rho, \rho' \in \mathcal{D}(\mathcal{H})$ and $\sigma, \sigma' \in \mathcal{P}(\mathcal{H})$. Finally, using the fact that $D_{\alpha}(\rho, \sigma) \geq 0$ for all $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ (which we will later see to hold), show that $H_{\alpha}(A|E) = H_{\alpha}(A)$ in case of a product state $\rho_{AE} = \rho_A \otimes \rho_E$.

Exercise 4.2 Recall the fidelity

$$F(\rho,\sigma) := \left\| \sqrt{\rho} \sqrt{\sigma} \right\|_{tr}$$

for $\rho, \sigma \in \mathcal{D}(\mathcal{H})$. Show that it is symmetric, i.e., $F(\rho, \sigma) = F(\sigma, \rho)$. *Hint:* Use Lemma 0.4. Simplify $F(\rho, \sigma)$ in case $\sigma = |\psi\rangle\langle\psi|$ is pure. Show that $D_{1/2}(\rho||\sigma) = -2\log F(\rho, \sigma)$.

Exercise 4.3 For arbitrary $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ and $0 \leq \lambda \in \mathbb{C}$, how does $D_{\alpha}(\rho \| \lambda \sigma)$ relate to $D_{\alpha}(\rho \| \sigma)$? For $\rho_{AE} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_A)$, conclude that

$$\mathrm{H}_{\alpha}(A|E) = n - \min_{\sigma_{E}} \mathrm{D}_{\alpha}(\rho_{AE} \parallel \mu_{A} \otimes \sigma_{E}),$$

where min is over all $\sigma_E \in \mathcal{D}(\mathcal{H}_E)$, and $\mu_A := \mathbb{I}_A/N \in \mathcal{D}(\mathcal{H}_A)$ with $N := \dim(\mathcal{H}_A)$ and $n := \log(N)$. Thus, $H_\alpha(A|E)$ can be understood as n, the maximal possible entropy, achieved by a state of the form $\mu_A \otimes \sigma_E$, minus how far away ρ_{AE} is from such a state.

Exercise 4.4 Let V, V' be vector spaces over \mathbb{R} and L a linear map $L: V' \to V$. Let $C \subseteq V$ be a convex set (i.e., $x, y \in C, 0 \leq p \leq 1 \Rightarrow px + (1-p)y \in C$) and f a convex function on C. Show that the set $C' := L^{-1}(C) = \{x' \mid L(x') \in C\}$ and the function $f' := f \circ L$ with domain C' are convex as well.

Exercise 4.5 Let \mathcal{X} and \mathcal{Y} be convex sets, let $f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a function, and let $g : \mathcal{X} \to \mathbb{R}$ be given by $g(x) = \max_y f(x, y)$, where the max is promised to exist (for any x). Show that:

- 1. if $f(\cdot, y)$ is *convex* (as a function of x) for every $y \in \mathcal{Y}$ then g is convex, and
- 2. if f is jointly concave then g is concave.