Exercise Set 4

Exercise 4.1 Show that $\mathrm{D}_{\alpha}(\rho, \rho)=0$ for any $\rho \in \mathcal{D}(\mathcal{H})$. With the help of the previous exercise set, show that $\mathrm{D}_{\alpha}\left(\rho \otimes \rho^{\prime}, \sigma \otimes \sigma^{\prime}\right)=\mathrm{D}_{\alpha}(\rho, \sigma)+\mathrm{D}_{\alpha}\left(\rho^{\prime}, \sigma^{\prime}\right)$ for all $\rho, \rho^{\prime} \in \mathcal{D}(\mathcal{H})$ and $\sigma, \sigma^{\prime} \in \mathcal{P}(\mathcal{H})$. Finally, using the fact that $\mathrm{D}_{\alpha}(\rho, \sigma) \geq 0$ for all $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ (which we will later see to hold), show that $\mathrm{H}_{\alpha}(A \mid E)=\mathrm{H}_{\alpha}(A)$ in case of a product state $\rho_{A E}=\rho_{A} \otimes \rho_{E}$.

Exercise 4.2 Recall the fidelity

$$
F(\rho, \sigma):=\|\sqrt{\rho} \sqrt{\sigma}\|_{t r}
$$

for $\rho, \sigma \in \mathcal{D}(\mathcal{H})$. Show that it is symmetric, i.e., $F(\rho, \sigma)=F(\sigma, \rho)$. Hint: Use Lemma 0.4. Simplify $F(\rho, \sigma)$ in case $\sigma=|\psi\rangle\langle\psi|$ is pure. Show that $\mathrm{D}_{1 / 2}(\rho \| \sigma)=-2 \log F(\rho, \sigma)$.

Exercise 4.3 For arbitrary $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ and $0 \leq \lambda \in \mathbb{C}$, how does $\mathrm{D}_{\alpha}(\rho \| \lambda \sigma)$ relate to $\mathrm{D}_{\alpha}(\rho \| \sigma)$? For $\rho_{A E} \in \mathcal{D}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{A}\right)$, conclude that

$$
\mathrm{H}_{\alpha}(A \mid E)=n-\min _{\sigma_{E}} \mathrm{D}_{\alpha}\left(\rho_{A E} \| \mu_{A} \otimes \sigma_{E}\right),
$$

where min is over all $\sigma_{E} \in \mathcal{D}\left(\mathcal{H}_{E}\right)$, and $\mu_{A}:=\mathbb{I}_{A} / N \in \mathcal{D}\left(\mathcal{H}_{A}\right)$ with $N:=\operatorname{dim}\left(\mathcal{H}_{A}\right)$ and $n:=\log (N)$. Thus, $\mathrm{H}_{\alpha}(A \mid E)$ can be understood as n, the maximal possible entropy, achieved by a state of the form $\mu_{A} \otimes \sigma_{E}$, minus how far away $\rho_{A E}$ is from such a state.

Exercise 4.4 Let V, V^{\prime} be vector spaces over \mathbb{R} and L a linear map $L: V^{\prime} \rightarrow V$. Let $C \subseteq V$ be a convex set (i.e., $x, y \in C, 0 \leq p \leq 1 \Rightarrow p x+(1-p) y \in C)$ and f a convex function on C. Show that the set $C^{\prime}:=L^{-1}(C)=\left\{x^{\prime} \mid L\left(x^{\prime}\right) \in C\right\}$ and the function $f^{\prime}:=f \circ L$ with domain C^{\prime} are convex as well.

Exercise 4.5 Let \mathcal{X} and \mathcal{Y} be convex sets, let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a function, and let $g: \mathcal{X} \rightarrow \mathbb{R}$ be given by $g(x)=\max _{y} f(x, y)$, where the max is promised to exist (for any x). Show that:

1. if $f(\cdot, y)$ is convex (as a function of x) for every $y \in \mathcal{Y}$ then g is convex, and
2. if f is jointly concave then g is concave.
