Solutions to Exercise Set 1

Solution 1.1 By acting with $\langle\varphi|$ from the left and with $|\varphi\rangle$ from the right, and then taking absolute values, we see that

$$
1=|\langle\varphi \mid \varphi\rangle\langle\varphi \mid \varphi\rangle|=\left|\sum_{i=1}^{n} \varepsilon_{i}\left\langle\varphi \mid \varphi_{i}\right\rangle\left\langle\varphi_{i} \mid \varphi\right\rangle\right| \leq \sum_{i=1}^{n} \varepsilon_{i}\left|\left\langle\varphi \mid \varphi_{i}\right\rangle\left\langle\varphi_{i} \mid \varphi\right\rangle\right| \leq \sum_{i=1}^{n} \varepsilon_{i}=1
$$

where the first inequality is triangle inequality, and the second is Cauchy-Schwarz. But since the inequalities must be equalities, we have that every $\left|\varphi_{i}\right\rangle=\omega_{i}|\varphi\rangle$ for a scalar $\omega_{i} \in \mathbb{C}$ with $\left|\omega_{i}\right|=1$, and thus $\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=\omega \bar{\omega}|\varphi\rangle\langle\varphi|=|\varphi\rangle\langle\varphi|$.

Solution 1.2 Consider the spectral decomposition $\rho=\sum_{i} \lambda_{i}|i\rangle\langle i|$. Note that $\lambda_{i}=\langle i| \rho|i\rangle \geq 0$ (because $\rho \geq 0$) and $\sum_{i} \lambda_{i}=\operatorname{tr}(\rho)=1$. Furthermore,

$$
\operatorname{tr}\left(\rho^{2}\right)=\sum_{i, j} \lambda_{i} \lambda_{j} \operatorname{tr}(|i\rangle\langle i \mid j\rangle\langle j|)=\sum_{i, j} \lambda_{i} \lambda_{j} \operatorname{tr}(|i\rangle\langle i||j\rangle\langle j|)=\sum_{i} \lambda_{i}^{2} \operatorname{tr}(|i\rangle\langle i|)=\sum_{i} \lambda_{i}^{2},
$$

where the right-hand side is obviously non-negative, and it is upper bounded by $\left(\sum_{i} \lambda_{i}\right)^{2}=1$, with equality if and only if $\lambda_{i}=0$ for all but one i (again by Proposition 0.1), i.e., ρ is pure.

Solution 1.3 Consider the spectral decomposition $\rho=\sum_{i} \lambda_{i}|i\rangle i \mid$ of ρ. Then,

$$
\operatorname{tr}(\rho \sigma)=\sum_{i} \lambda_{i} \operatorname{tr}(|i\rangle\langle i| \sigma)=\sum_{i} \lambda_{i}\langle i| \sigma|i\rangle .
$$

The lower bound follows because $\lambda_{i} \geq 0$ and $\sigma \geq 0$, and the upper bound follows from $\langle i| \sigma|i\rangle \leq 1$ and $\sum_{i} \lambda_{i}=1$.

Solution 1.4 Let $\{|i\rangle\}_{i \in I}$ be an eigenbasis of $\rho-\sigma$, i.e., consist of the vectors from the spectral decomposition $\rho-\sigma=\sum_{i} \lambda_{i} \mid i\langle i|$. Since $\rho \neq \sigma$, there exists j with $\lambda_{j} \neq 0$. For that j, we have

$$
\operatorname{tr}(|j\rangle\langle j| \rho)-\operatorname{tr}(|j\rangle\langle j| \sigma)=\operatorname{tr}(|j\rangle\langle j|(\rho-\sigma))=\sum_{i} \lambda_{i} \operatorname{tr}(|j\rangle\langle j||i\rangle\langle i|)=\sum_{i} \lambda_{i}\langle i \mid j\rangle\langle j \mid i\rangle=\lambda_{j} \neq 0 .
$$

Solution 1.5 Fix an orthonormal basis $\left\{\left|e_{i}\right\rangle\right\}_{i \in I}$, and consider arbitrary fixed indices $i, j \in I$. For $|\varphi\rangle=\left|e_{i}\right\rangle+\left|e_{j}\right\rangle$ and $\left|\varphi^{\prime}\right\rangle=\left|e_{i}\right\rangle+i\left|e_{j}\right\rangle$, we see then that $0=\langle\varphi| A|\varphi\rangle=\left\langle e_{i}\right| A\left|e_{j}\right\rangle+\left\langle e_{j}\right| A\left|e_{i}\right\rangle$ and $0=\left\langle\varphi^{\prime}\right| A\left|\varphi^{\prime}\right\rangle=i\left\langle e_{i}\right| A\left|e_{j}\right\rangle-i\left\langle e_{j}\right| A\left|e_{i}\right\rangle$, where for the latter we used that $\left\langle\varphi^{\prime}\right|=\left\langle e_{i}\right|-i\left\langle e_{j}\right|$. It now follows that $\left\langle e_{i}\right| A\left|e_{j}\right\rangle=0$. Since $i \in I$ was arbitrary, we get that $A\left|e_{j}\right\rangle=0$; indeed, only the 0 -vector is orthogonal to a basis. Finally, since $j \in I$ was arbitrary, we then get $A=0$.

