Solutions to Exercise Set 2

Solution 2.1 Note that $|\varphi\rangle=\sum_{i} \sqrt{\rho_{\boldsymbol{A}}}|i\rangle \otimes|i\rangle$ and ${\sqrt{\rho_{A}}}^{\dagger}=\sqrt{\rho_{A}}$, so that

$$
|\varphi\rangle\langle\varphi|=\sum_{i, j} \sqrt{\rho_{\boldsymbol{A}}}|i\rangle\langle j| \sqrt{\rho_{\boldsymbol{A}}} \otimes|i\rangle\langle j|
$$

and

$$
\operatorname{tr}_{\boldsymbol{B}}(|\varphi\rangle\langle\varphi|)=\sum_{i, j} \sqrt{\rho_{A}}|i\rangle\langle j| \sqrt{\rho_{A}}\langle i \mid j\rangle=\sum_{i} \sqrt{\rho_{\boldsymbol{A}}}|i\rangle\langle i| \sqrt{\rho_{\boldsymbol{A}}}=\rho_{\boldsymbol{A}} .
$$

That $|\varphi\rangle \in \mathcal{S}(\mathcal{H})$ follows directly from $\langle\varphi \mid \varphi\rangle=\operatorname{tr}(|\varphi\rangle\langle\varphi|)=\operatorname{tr}\left(\operatorname{tr}_{B}(|\varphi\rangle\langle\varphi|)\right)=\operatorname{tr}\left(\rho_{A}\right)=1$.
Solution 2.2 By the Schmidt decomposition, we can write $|\varphi\rangle$ as

$$
|\varphi\rangle=\sum_{i=1}^{r} \mu_{i}\left|e_{i}\right\rangle\left|f_{i}\right\rangle,
$$

where $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{d_{A}}\right\rangle\right\}$ and $\left\{\left|f_{1}\right\rangle, \ldots,\left|f_{d_{B}}\right\rangle\right\}$ are orthonormal bases of \mathcal{H}_{A} and \mathcal{H}_{B}, respectively, $r \leq d_{A}, d_{B}$, and $\mu_{1}, \ldots \mu_{r}>0$. Therefore, we can write

$$
\rho_{A}=\operatorname{tr}_{B}(|\varphi\rangle\langle\varphi|)=\sum_{i=1}^{r} \mu_{i}^{2}\left|e_{i}\right\rangle\left\langle e_{i}\right| \quad \text { and } \quad \rho_{B}=\operatorname{tr}_{A}(|\varphi\rangle\langle\varphi|)=\sum_{i=1}^{r} \mu_{i}^{2}\left|f_{i}\right\rangle\left\langle f_{i}\right|
$$

and thus have the respective spectral decompositions of ρ_{A} and ρ_{B}, and we observe that the non-zero eigenvalues of ρ_{A} as well as of ρ_{B} are given by the μ_{i}^{2} 's, and thus are identical.

Solution 2.3 Let $\{|i\rangle\}_{i \in I}$ be the fixed orthonormal basis considered for the notation of Section 0.6. For $A=|i\rangle\langle j|$ and $B=|k\rangle\langle\ell|$ with $i, j, k, \ell \in I$ we have $|A\rangle=|i\rangle|j\rangle$ and $B=|k\rangle|\ell\rangle$, and thus

$$
\langle A \mid B\rangle=(\langle i| \otimes\langle j|)(|k\rangle \otimes|\ell\rangle)=\langle i \mid k\rangle\langle j \mid \ell\rangle,
$$

while

$$
\operatorname{tr}\left(A^{\dagger} B\right)=\operatorname{tr}(|j\rangle\langle i||k\rangle\langle\ell|)=\langle i \mid k\rangle \operatorname{tr}(|j\rangle\langle\ell|)=\langle i \mid k\rangle\langle\ell \mid j\rangle .
$$

Since $\langle j \mid \ell\rangle$ is 0 or 1 , and thus $\langle j \mid \ell\rangle=\langle\ell \mid j\rangle$, the first claim holds for the considered A and B. For general A and B, the claim follows from linearity and the fact that the $|i\rangle\langle j|$'s form a basis.

As for the second claim, for $B=|i\rangle\langle j|$ and $X=|k\rangle\langle\ell|$ with $i, j, k, \ell \in I$ and for arbitrary A, we have

$$
A X B^{T}=A|k\rangle\langle\ell||j\rangle\langle i|=A|k\rangle\langle\ell \mid j\rangle\langle i|,
$$

and therefore, noting that (by linearity) the ket-vector representation maps $|\varphi\rangle\langle i| \mapsto|\varphi\rangle|i\rangle$ for any $|\varphi\rangle \in \mathcal{H}$, we have

$$
\left|A X B^{T}\right\rangle=A|k\rangle \otimes|i\rangle\langle\ell \mid j\rangle=A|k\rangle \otimes|i\rangle\langle j \mid \ell\rangle=(A \otimes|i\rangle\langle j|)|k\rangle|\ell\rangle=(A \otimes B)|X\rangle
$$

Again, this implies the claim for an arbitrary B and X by linearity.
Solution 2.4 The proof of Theorem 6.6 shows that the Kraus operators T_{ℓ} can be chosen so that $\left|T_{\ell}\right\rangle=\sqrt{\lambda}\left|e_{\ell}\right\rangle$, where $\sum_{\ell} \lambda_{\ell}\left|e_{\ell}\right\rangle\left\langle e_{\ell}\right|$ is the spectral decomposition of the Choi-Jamiołkowski representation $J(\mathfrak{T})$ of \mathfrak{T}. In particular, the ket vectors $\left|T_{\ell}\right\rangle$ are mutually orthogonal and thus $\operatorname{tr}\left(T_{\ell}^{\dagger} T_{k}\right)=\left\langle T_{\ell} \mid T_{k}\right\rangle=0$ for all $\ell \neq k$.

Solution 2.5 Using properties as discussed in Section 0.7, we see that

$$
|\mathfrak{T}(R)\rangle=\left|\sum_{\ell} T_{\ell} R T_{\ell}^{\dagger}\right\rangle=\sum_{\ell}\left|T_{\ell} R T_{\ell}^{\dagger}\right\rangle=\sum_{\ell}\left|T_{\ell} R \bar{T}_{\ell}^{T}\right\rangle=\sum_{\ell} T_{\ell} \otimes \bar{T}_{\ell}|R\rangle,
$$

which proves the claim.

