Solutions to Exercise Set 3

Solution 3.1 A straightforward calculation shows that X has the eigenvectors
with respective eigenvalues ± 1. Thus, X has spectral decomposition $X=|+\rangle\langle+|-|-\rangle\langle-|$, and therefore, recalling that $|+\rangle\langle+|+|-\rangle\langle-|=\mathbb{I}$, we obtain

$$
\begin{aligned}
e^{-i \theta X} & =e^{-i \theta}|+\rangle\langle+|+e^{i \theta}|-\rangle\langle-| \\
& =\cos (\theta)(|+\rangle\langle+|+|-\rangle\langle-|)-i \sin (\theta)(|+\rangle\langle+|-|-\rangle\langle-|) \\
& =\cos (\theta) \mathbb{I}-i \sin (\theta) X
\end{aligned}
$$

which, as matrix, equals

$$
e^{-i \theta X}=\left[\begin{array}{cc}
\cos (\theta) & -i \sin (\theta) \\
-i \sin (\theta) & \cos (\theta)
\end{array}\right] .
$$

Solution 3.2 First, we observe that for $L \in \mathcal{P}(\mathcal{H})$ and $R \in \mathcal{P}\left(\mathcal{H}^{\prime}\right)$ with respective spectral decompositions $L=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right|$ and $R=\sum_{j} \mu_{j}\left|f_{j}\right\rangle\left\langle f_{j}\right|$ with $\lambda_{i}, \mu_{j}>0$, it holds that

$$
L \otimes R=\sum_{i j} \lambda_{i} \mu_{j}\left|e_{i}\right\rangle\left|f_{j}\right\rangle\left\langle e_{i}\right|\left\langle f_{j}\right|
$$

is the spectral decomposition of $L \otimes R$, and therefore

$$
(L \otimes R)^{p}=\sum_{i j} \lambda_{i}^{p} \mu_{j}^{p}\left|e_{i}\right\rangle\left|f_{j}\right\rangle\left\langle e_{i}\right|\left\langle f_{j}\right|=\sum_{i} \lambda_{i}^{p}\left|e_{i}\right\rangle\left\langle e_{i}\right| \otimes \sum_{j} \mu_{j}^{p}\left|f_{j}\right\rangle\left\langle f_{j}\right|=L^{p} \otimes R^{p}
$$

for any power $p \in \mathbb{R}$. For $L \in \mathcal{L}(\mathcal{H})$ and $R \in \mathcal{L}\left(\mathcal{H}^{\prime}\right)$, this then implies that

$$
|L \otimes R|=\sqrt{(L \otimes R)^{\dagger}(L \otimes R)}=\sqrt{L^{\dagger} L \otimes R^{\dagger} R}=\sqrt{|L|^{2} \otimes|R|^{2}}=\sqrt{(|L| \otimes|R|)^{2}}=|L| \otimes|R|,
$$

and thus that

$$
\|L \otimes R\|_{p}^{p}=\operatorname{tr}\left(|L \otimes R|^{p}\right)=\operatorname{tr}\left((|L| \otimes|R|)^{p}\right)=\operatorname{tr}\left(|L|^{p} \otimes|R|^{p}\right)=\operatorname{tr}\left(|L|^{p}\right) \operatorname{tr}\left(|R|^{p}\right)=\|L\|_{p}^{p}\|R\|_{p}^{p}
$$

The claim follows by taking p-th roots.
Solution 3.3 Let $\{|i\rangle\}_{i \in I}$ be the eigenbasis of $\rho-\sigma$, i.e., consider the spectral decomposition $\rho-\sigma=\sum_{i} \lambda_{i}|i\rangle\langle i|$ of $\rho-\sigma$. Then,

$$
\delta(P, Q)=\frac{1}{2} \sum_{j}|\operatorname{tr}(|j\rangle\langle j| \rho)-\operatorname{tr}(|j\rangle\langle j| \sigma)|=\frac{1}{2} \sum_{j}|\operatorname{tr}(|j\rangle\langle j|(\rho-\sigma))|=\frac{1}{2} \sum_{j}\left|\lambda_{j}\right|=\delta(\rho, \sigma),
$$

which was to be shown.
Solution 3.4 Let

$$
A=\sum_{i} \lambda_{i}\left|e_{i}\right\rangle\left\langle e_{i}\right| \quad \text { and } \quad B=\sum_{j} \mu_{j}\left|f_{j}\right\rangle\left\langle f_{j}\right|
$$

be the respective spectral decompositions of A and B, where we restrict i and j to those with $\lambda_{i} \neq 0$ and $\mu_{j} \neq 0$, respectively. Then, as discussed in Sect. 0.3 , for any such i with $\lambda_{i} \neq 0$
and j with $\mu_{j} \neq 0$, it holds that $\left|e_{i}\right\rangle \in \operatorname{supp}(A)$ and $\left|f_{j}\right\rangle \in \operatorname{supp}(B)$, and so, by assumption $\left\langle e_{i} \mid f_{j}\right\rangle=0$ for all those i and j 's. Therefore,

$$
A+B=\sum_{i} \lambda_{i}\left|\varepsilon_{i}\right\rangle\left\langle\varepsilon_{i}\right|+\sum_{j} \mu_{j}\left|f_{j}\right\rangle\left\langle f_{j}\right|
$$

forms the spectral decomposition of $A+B$, and so

$$
\|A+B\|_{1}=\sum_{i}\left|\lambda_{i}\right|+\sum_{j}\left|\mu_{j}\right|=\|A\|_{1}+\|B\|_{1}
$$

Lemma 7.8 follows by observing that $\rho_{X E}-\rho_{X E}^{\prime}=\sum_{x} P_{X}(x)|x\rangle\langle x| \otimes\left(\rho_{E}^{x}-\rho_{E}^{\prime x}\right)$, and that the $|x\rangle\langle x| \otimes\left(\rho_{E}^{x}-\rho_{E}^{\prime x}\right)$'s have pairwise orthogonal supports. Indeed, the support of $|x\rangle\langle x| \otimes\left(\rho_{E}^{x}-\rho_{E}^{\prime x}\right)$ is contained in $\operatorname{span}(|x\rangle) \otimes \mathcal{H}_{E}$.

Solution 3.5 For the first inequality, we see that

$$
\operatorname{Guess}(X)=\max _{x} P_{X}(x)=\max _{x} \sum_{y} P_{X Y}(x, y) \geq \max _{x} \max _{y} P_{X Y}(x, y)=\operatorname{Guess}(X Y)
$$

which implies the claim. For the second, we observe that

$$
\begin{aligned}
\operatorname{Guess}(X \mid Y)=\sum_{y} P_{Y}(y) \max _{x} P_{X \mid Y}(x \mid y) & =\sum_{y} \max _{x} P_{X Y}(x, y) \\
\geq \max _{x} \sum_{y} P_{X Y}(x, y) & =\max _{x} P_{X}(x)=\operatorname{Guess}(X)
\end{aligned}
$$

Finally, recycling part of above, we get

$$
\operatorname{Guess}(X \mid Y)=\sum_{y} \max _{x} P_{X Y}(x, y) \leq \sum_{y} \max _{x, y^{\prime}} P_{X Y}\left(x, y^{\prime}\right)=|\mathcal{Y}| \operatorname{Guess}(X Y)
$$

which again gives us the claimed inequality by taking $-\log$ on both sides.

