
Solutions to Exercise Set 3

Solution 3.1 A straightforward calculation shows that X has the eigenvectors
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with respective eigenvalues ±1. Thus, X has spectral decomposition X = |+ih+|� |�ih�|, and
therefore, recalling that |+ih+|+ |�ih�| = I, we obtain
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which, as matrix, equals
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Solution 3.2 First, we observe that for L 2 P(H) and R 2 P(H
0
) with respective spectral

decompositions L =
P

i �i|eiihei| and R =
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j µj |fjihfj | with �i, µj > 0, it holds that
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is the spectral decomposition of L⌦R, and therefore
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for any power p 2 R. For L 2 L(H) and R 2 L(H0
), this then implies that
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and thus that
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The claim follows by taking p-th roots.

Solution 3.3 Let {|ii}i2I be the eigenbasis of ⇢� �, i.e., consider the spectral decomposition

⇢� � =
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i �i|iihi| of ⇢� �. Then,
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which was to be shown.

Solution 3.4 Let
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be the respective spectral decompositions of A and B, where we restrict i and j to those with

�i 6= 0 and µj 6= 0, respectively. Then, as discussed in Sect. 0.3, for any such i with �i 6= 0



and j with µj 6= 0, it holds that |eii 2 supp(A) and |fji 2 supp(B), and so, by assumption

hei|fji = 0 for all those i and j’s. Therefore,
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forms the spectral decomposition of A+B, and so
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Lemma 7.8 follows by observing that ⇢XE�⇢0XE =
P

x PX(x)|xihx|⌦ (⇢xE�⇢0xE ), and that the

|xihx|⌦ (⇢xE�⇢0xE )’s have pairwise orthogonal supports. Indeed, the support of |xihx|⌦ (⇢xE�⇢0xE )
is contained in span(|xi)⌦HE.

Solution 3.5 For the first inequality, we see that
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which implies the claim. For the second, we observe that
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Finally, recycling part of above, we get
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which again gives us the claimed inequality by taking �log on both sides.


