
Solutions to Exercise Set 4

Solution 4.1 Since ⇢ commutes with any power of ⇢, we have
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With the help of the previous exercise set, we see that
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Therefore, for a product state ⇢AE = ⇢A ⌦ ⇢E, we have

D↵(⇢AE k IA ⌦ �E) = D↵(⇢A k IA) + D↵(⇢E k�E) � �H↵(A)

with equality for �E = ⇢E. Therefore, H↵(A|E) = �min�E D↵(⇢AE k IA ⌦ �E) = H↵(A).

Solution 4.2 By definition, we have
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which proves that the fidelity is symmetric.

If � = | ih | is pure then
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Plugging in ↵ = 1/2 into the definition of D↵ we obtain
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Solution 4.3 By definition, and using that the scalar � commutes with the operators ⇢ and �,
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In particular,

D↵(⇢AE k IA ⌦ �E) = D↵(⇢AE kNµA ⌦ �E) = D↵(⇢AE kµA ⌦ �E)� n



and thus
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Solution 4.4 For x0, y0 2 C 0
and 0  p  1, using linearily of L and convexity of C,
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Solution 4.5 For 1., we see that
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And, for 2., letting yi be so that g(xi) = f(xi, yi), we have
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