Solutions to Exercise Set 4

Solution 4.1 Since ρ commutes with any power of ρ, we have

$$
\mathrm{D}_{\alpha}(\rho \| \rho)=\frac{1}{\alpha-1} \log \operatorname{tr}\left(\left(\rho^{\frac{1-\alpha}{2 \alpha}} \rho \rho^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right)=\frac{1}{\alpha-1} \log \operatorname{tr}(\rho)=0
$$

With the help of the previous exercise set, we see that

$$
\begin{aligned}
\mathrm{D}_{\alpha}\left(\rho \otimes \rho^{\prime}, \sigma \otimes \sigma^{\prime}\right) & =\frac{1}{\alpha-1} \log \operatorname{tr}\left[\left(\left(\sigma \otimes \sigma^{\prime}\right)^{\frac{1-\alpha}{2 \alpha}}\left(\rho \otimes \rho^{\prime}\right)\left(\sigma \otimes \sigma^{\prime}\right)^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right] \\
& =\frac{1}{\alpha-1} \log \operatorname{tr}\left[\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha} \otimes\left(\sigma^{\prime \frac{1-\alpha}{2 \alpha}} \rho^{\prime} \sigma^{\prime \frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right] \\
& =\frac{1}{\alpha-1} \log \operatorname{tr}\left[\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right]+\frac{1}{\alpha-1} \log \operatorname{tr}\left[\left(\sigma^{\prime \frac{1-\alpha}{2 \alpha}} \rho^{\prime} \sigma^{\prime \frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right] \\
& =\mathrm{D}_{\alpha}(\rho, \sigma)+\mathrm{D}_{\alpha}\left(\rho^{\prime}, \sigma^{\prime}\right)
\end{aligned}
$$

Therefore, for a product state $\rho_{A E}=\rho_{A} \otimes \rho_{E}$, we have

$$
\mathrm{D}_{\alpha}\left(\rho_{A E} \| \mathbb{I}_{A} \otimes \sigma_{E}\right)=\mathrm{D}_{\alpha}\left(\rho_{A} \| \mathbb{I}_{A}\right)+\mathrm{D}_{\alpha}\left(\rho_{E} \| \sigma_{E}\right) \geq-\mathrm{H}_{\alpha}(A)
$$

with equality for $\sigma_{E}=\rho_{E}$. Therefore, $\mathrm{H}_{\alpha}(A \mid E)=-\min _{\sigma_{E}} \mathrm{D}_{\alpha}\left(\rho_{A E} \| \mathbb{I}_{A} \otimes \sigma_{E}\right)=\mathrm{H}_{\alpha}(A)$.

Solution 4.2 By definition, we have

$$
F(\rho, \sigma)=\|\sqrt{\rho} \sqrt{\sigma}\|_{t r}=\operatorname{tr}|\sqrt{\rho} \sqrt{\sigma}|=\operatorname{tr} \sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}}
$$

Furthermore, applying Lemma 0.4 with $A=\sqrt{\rho} \sqrt{\sigma}$ ensures that $\sqrt{\sigma} \sqrt{\rho} \sqrt{\rho} \sqrt{\sigma}$ and $\sqrt{\rho} \sqrt{\sigma} \sqrt{\sigma} \sqrt{\rho}$ have the same spectrum, and thus so have their respective square roots. Thus,

$$
\operatorname{tr} \sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}}=\operatorname{tr} \sqrt{\sqrt{\sigma} \sqrt{\rho} \sqrt{\rho} \sqrt{\sigma}}=\operatorname{tr} \sqrt{\sqrt{\rho} \sqrt{\sigma} \sqrt{\sigma} \sqrt{\rho}}=\operatorname{tr} \sqrt{\sqrt{\rho} \sigma \sqrt{\rho}}
$$

which proves that the fidelity is symmetric.
If $\sigma=|\psi\rangle\langle\psi|$ is pure then $\sqrt{\sigma}=|\psi\rangle\langle\psi|$, and thus

$$
F(\rho, \sigma)=\operatorname{tr} \sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}}=\operatorname{tr} \sqrt{|\psi\rangle\langle\psi| \rho|\psi\rangle\langle\psi|}=\sqrt{\langle\psi| \rho|\psi\rangle} \operatorname{tr} \sqrt{|\psi\rangle\langle\psi|}=\sqrt{\langle\psi| \rho|\psi\rangle}
$$

Plugging in $\alpha=1 / 2$ into the definition of D_{α} we obtain

$$
\mathrm{D}_{1 / 2}(\rho \| \sigma)=-2 \log \operatorname{tr} \sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}}=-2 \log F(\rho, \sigma)
$$

Solution 4.3 By definition, and using that the scalar λ commutes with the operators ρ and σ,

$$
\begin{aligned}
\mathrm{D}_{\alpha}(\rho \| \lambda \sigma) & =\frac{1}{\alpha-1} \log \operatorname{tr}\left(\left((\lambda \sigma)^{\frac{1-\alpha}{2 \alpha}} \rho(\lambda \sigma)^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right)=\frac{1}{\alpha-1} \log \left(\lambda^{1-\alpha} \operatorname{tr}\left(\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right)\right) \\
= & \frac{1}{\alpha-1} \log \operatorname{tr}\left(\left(\sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}}\right)^{\alpha}\right)-\log \lambda=\mathrm{D}_{\alpha}(\rho \| \sigma)-\log \lambda
\end{aligned}
$$

In particular,

$$
\mathrm{D}_{\alpha}\left(\rho_{A E} \| \mathbb{I}_{A} \otimes \sigma_{E}\right)=\mathrm{D}_{\alpha}\left(\rho_{A E} \| N \mu_{A} \otimes \sigma_{E}\right)=\mathrm{D}_{\alpha}\left(\rho_{A E} \| \mu_{A} \otimes \sigma_{E}\right)-n
$$

and thus

$$
\mathrm{H}_{\alpha}(A \mid E)=-\min _{\sigma_{E}} \mathrm{D}_{\alpha}\left(\rho_{A E} \| \mathbb{I}_{A} \otimes \sigma_{E}\right)=n-\min _{\sigma_{E}} \mathrm{D}_{\alpha}\left(\rho_{A E} \| \mu_{A} \otimes \sigma_{E}\right) .
$$

Solution 4.4 For $x^{\prime}, y^{\prime} \in C^{\prime}$ and $0 \leq p \leq 1$, using linearily of L and convexity of C,

$$
L\left(p x^{\prime}+(1-p) y^{\prime}\right)=p L\left(x^{\prime}\right)+(1-p) L\left(y^{\prime}\right) \in C .
$$

Thus, $p x^{\prime}+(1-p) y^{\prime} \in C^{\prime}$ as well by definition of C^{\prime}. Furthermore, by linearity of L

$$
f^{\prime}\left(p x^{\prime}+(1-p) y^{\prime}\right)=f\left(L\left(p x^{\prime}+(1-p) y^{\prime}\right)\right)=f\left(p L\left(x^{\prime}\right)+(1-p) L\left(y^{\prime}\right)\right)
$$

which is bounded as

$$
\leq p f\left(L\left(x^{\prime}\right)\right)+(1-p) f\left(L\left(y^{\prime}\right)\right)=p f^{\prime}\left(x^{\prime}\right)+(1-p) f^{\prime}\left(y^{\prime}\right) .
$$

by convexity of f.
Solution 4.5 For 1., we see that

$$
g\left(\sum_{i} \varepsilon_{i} x_{i}\right)=\max _{y} f\left(\sum_{i} \varepsilon_{i} x_{i}, y\right) \leq \max _{y} \sum_{i} \varepsilon_{i} f\left(x_{i}, y\right) \leq \sum_{i} \varepsilon_{i} \max _{y_{i}} f\left(x_{i}, y_{i}\right)=\sum_{i} \varepsilon_{i} g\left(x_{i}\right) .
$$

And, for 2., letting y_{i} be so that $g\left(x_{i}\right)=f\left(x_{i}, y_{i}\right)$, we have

$$
g\left(\sum_{i} \varepsilon_{i} x_{i}\right)=\max _{y} f\left(\sum_{i} \varepsilon_{i} x_{i}, y\right) \geq f\left(\sum_{i} \varepsilon_{i} x_{i}, \sum_{i} \varepsilon_{i} y_{i}\right) \geq \sum_{i} \varepsilon_{i} f\left(x_{i}, y_{i}\right)=\sum_{i} \varepsilon_{i} g\left(x_{i}\right) .
$$

