Detection of Algebraic Manipulation
with Applications to Robust Secret Sharing
and Fuzzy Extractors

Ronald Cramer!2, Yevgeniy Dodis®, Serge Fehr?, Carles Padr6?, and Daniel Wichs?

! Mathematical Institute, Leiden University, The Netherlands
2 CWI Amsterdam, The Netherlands
{cramer, fehr}@cwi.nl
3 New York University
{dodis,wichs}@cs.nyu.edu
4 Universitat Politécnica de Catalunya, Barcelona, Spain
cpadro@mad.upc.edu

Abstract. Consider an abstract storage device X(G) that can hold a single el-
ement z from a fixed, publicly known finite group G. Storage is private in the
sense that an adversary does not have read access to X'(G) at all. However, X (G)
is non-robust in the sense that the adversary can modify its contents by adding
some offset A € G. Due to the privacy of the storage device, the value A can only
depend on an adversary’s a priori knowledge of x. We introduce a new primitive
called an algebraic manipulation detection (AMD) code, which encodes a source
s into a value x stored on X'(G) so that any tampering by an adversary will be de-
tected. We give a nearly optimal construction of AMD codes, which can flexibly
accommodate arbitrary choices for the length of the source s and security level.
We use this construction in two applications:

— We show how to efficiently convert any linear secret sharing scheme into a
robust secret sharing scheme, which ensures that no unqualified subset of
players can modify their shares and cause the reconstruction of some value
s’ # s.

— We show how to build nearly optimal robust fuzzy extractors for several nat-
ural metrics. Robust fuzzy extractors enable one to reliably extract and later
recover random keys from noisy and non-uniform secrets, such as biomet-
rics, by relying only on non-robust public storage. In the past, such construc-
tions were known only in the random oracle model, or required the entropy
rate of the secret to be greater than half. Our construction relies on a ran-
domly chosen common reference string (CRS) available to all parties.

1 Introduction

We consider an abstract storage device X(G) that can hold a single element x from a
fixed, publicly known finite (additive) group G. Storage is private in the sense that an
adversary does not have read access to X(G) at all. However, X' (G) allows tampering
in the sense that an adversary may manipulate the stored value x by adding some offset
A € G of his choice. As a result, X'(G) stores the element © + A € G. Due to the

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 471488] 2008.
(© International Association for Cryptologic Research 2008

472 R. Cramer et al.

privacy of the storage device, the value A can only depend on an adversary’s a priori
knowledge of x. For instance, one-time-pad encryption can be understood as such a
storage device: it hides the message perfectly, but an adversary can add (bitwise-xor)
a string to the message without being detected. Of course, by itself, this example is
not very interesting, since it requires some additional private and tamper-proof storage
for the one-time pad key.El However, in the two applications discussed below, no other
private or tamper-proof storage is available and hence we will need to use X(G) alone
to achieve authenticity.

1.1 Linear Secret Sharing Schemes

In a linear secret sharing scheme (e.g. Shamir’s secret sharing [24]] and many others) a
secret s is distributed among n players so that each player gets some algebraic share of
the secret. Any qualified subset of the players can pool their shares together and recover
s by means of a linear transformation over the appropriate domain while any unquali-
fied subset gets no information about s. Unfortunately, the correctness of the recovery
procedure is guaranteed only if all the shares are correct. In particular, if a qualified
subset of the players pools their shares for reconstruction, but the honest players among
them form an unqualified set, then the dishonest players (possibly just one!) can cause
the reconstruction of a modified secret. Moreover, the difference between the correct
secret s and the reconstructed secret s’ is controlled by the corrupted players, due to
the linearity of the scheme. Luckily, this is “all” that the corrupted players can do: (1)
by the privacy of the secret sharing scheme, the noise introduced by the corrupted play-
ers can only depend on their prior knowledge of the secret and (2) by the linearity of
the secret sharing scheme, for any attempted modification of their shares, the corrupted
players must “know” the additive difference between s and s’. In essence, a linear secret
sharing scheme of s can be viewed as storing s on our abstract device X'(G).

To deal with this problem, we introduce the notion of an algebraic manipulation
detection (AMD) code. This is a probabilistic encoding of a source s from a given set
S as an element of the group G, with unique decodability. The security of the code
ensures that, when the encoding is stored in X'(G), any manipulation of contents by an
adversary will be detected except with a small error probability 6. The guarantee holds
even if the adversary has full a priori knowledge of the source state s. No secret keys
are required since we rely on the privacy of X(G) instead.

Using an AMD code, we can turn any linear secret sharing scheme into a robust
secret sharing scheme [26], which ensures that no unqualified subset of players can
modify their shares and cause the reconstruction of some value s’ # s. The transforma-
tion is very simple: apply the linear secret sharing scheme to the encoding of s rather
than s itself.

In terms of parameters, we obtain robust secret sharing schemes which are nearly
as efficient as their non-robust counterparts, since the overhead added by encoding a
source will be very small. More precisely, to achieve security 27", we build an AMD
code where the length of the encoding of a u-bit value s is only 2x + O(log(u/k)) bits

! For example, by using a slightly longer secret key containing a key to a one-time MAC in
addition to the one-time-pad key, one can trivially add authentication to this application.

Detection of Algebraic Manipulation with Applications 473

longer than the length of s. This construction is close to optimal since we prove a lower
bound of 2k on the amount of overhead that an AMD encoding must add to the size
of the source. As a concrete example, in order to robustly secret share a 1 megabyte
message with security level § = 27128 our best construction adds fewer than 300 bits
by encoding the message, whereas previous constructions (described below) add nearly
2 megabytes.

Relation to Prior Work on Secret Sharing. Although AMD codes were never for-
mally defined in previous work, some constructions of AMD codes have appeared,
mostly in connection with making secret sharing robust [T9I620]. Although some of
these constructions are essentially optimal, all of them are largely inflexible in that the
error probability 6 is dictated by the cardinality of the source space S: § ~ 1/[S|. In
particular, this implies that when the cardinality of S is large, the known constructions
may introduce significantly more overhead than what is needed to achieve a particular
security threshold. In contrast, our constructions can accommodate arbitrary choices of
security ¢ and message length .

For example, Cabello, Padr6 and Sdez [6] (see also [22I21]]) proposed an elegant
construction of a robust secret sharing scheme which implicitly relies on the following
AMD code. For any finite field IF of order ¢, the encoding of the secret s € [is a triple
(s,z,z - s), where v €r F. This code achieves security 6 = 1/¢ and optimal message
overhead 2log(q) = 2log(1/6) for this value of §. However, as already mentioned,
it is far from optimal when we only desire a security level § > 1/¢, making this
construction inflexible for many applications.

In the context of robust secret sharing, the inflexibility issue mentioned above has
recently been addressed in a paper by Obana and Araki [[18], where a flexible robust
secret sharing scheme (in fact, an AMD code in our terminology) was proposed and
claimed to be “proven” secure. However, in the full version of this paper [8]], we give
an attack on their construction showing it to be completely insecure.

1.2 Fuzzy Extractors

A less obvious example comes from the domain of fuzzy extractors [10]. A fuzzy extrac-
tor extracts a uniformly random key R from some non-uniform secret w (e.g., biometric
data) in such a way that this key can be recovered from any w’ sufficiently close to w in
some appropriate metric spacel] To accomplish this task, the fuzzy extractor also com-
putes a public helper string P in addition to the extracted key R, and then recovers R
using w’ and P. In their original paper, Dodis et al. constructed fuzzy extractors for
the Hamming and several other metrics. Unfortunately, the original notion of a fuzzy
extractor critically depends on the value of P being stored on a tamper-proof (though
public) device. As observed by Boyen et al. [54]], this severely limits the usability of the
concept. To address this problem, introduced a stronger notion of a robust fuzzy
extractor, where any tampering of P will be detected by the user, even with an imper-
fect reading w’ of w! Thus, P can be stored on a potentially untrusted server without
the fear that a wrong key R # R will be extracted.

% For now and much of the paper, we will concentrate on the Hamming space over {0, 1}™, later
pointing out how to extend our results to related metrics.

474 R. Cramer et al.

Prior Work and Our Result. All of the prior work on robust fuzzy extractors uses
some form of a message authentication code (MAC) keyed by w to authenticate the
public parameters P. Such codes are difficult to construct since w is not a uniformly
random secret, and the authentication information needs to be verifiable using an im-
perfect reading w’ of w.

Nevertheless, Boyen et al. [4] gave a generic transformation which makes a fuzzy
extractor robust in the random oracle model, without considerably sacrificing any of
the parameters. In the plain model, Dodis et al. showed how to achieve robustness
if the initial secret w contains an entropy rate of at least one half (i.e. the entropy of
the secret is at least half the length of the secret). The work of [12]] shows that this
requirement is necessary for information theoretic security in the plain model, even if
no errors are allowed (i.e., w = w’). Moreover, when the secret does meet this entropy
rate threshold, robustness in is only achieved at a large cost in the length of the
extracted random key, as compared to the optimal non-robust extractors for the same
entropy threshold.

In this work we take a difference approach and use a portion of the extracted ran-
domness R to authenticate the public parameters P. Of course, using a MAC naively
is insecure since the adversary who modifies P to P will cause the extraction of some
R # R and we cannot guarantee that the adversary is unable to produce an authentica-
tion tag for P under the key R.

We overcome this difficulty by carefully analyzing the effects of modifying the pub-
lic helper P on the extracted randomness R. We construct fuzzy extractors with a spe-
cial linearity property so that any modification of P into P canbe essentially subsumed
by giving the attacker the ability to control the difference A between the original key
R extracted from w, P and the “defective” key R = R + A extracted from w’, P.
Thus, on a very high level, storing the public helper P on a public and unprotected
storage can be viewed as implicitly storing the extracted key R on our abstract storage
device X (G).

In this application one does not have the freedom of storing some encoding of R on
X(G), so AMD codes are not directly applicable. Instead, we introduce a related notion
called a (one-time) message authentication code with key manipulation security (KMS-
MAC). Abstractly, this authentication code is keyed by a random element of some finite
group G, and remains secure even if the key is stored in X(G) so that an adversary can
tamper with it by adding an offset A. We show how to construct KMS-MACs using
appropriate AMD codes!] Using a KMS-MAC, we can turn any fuzzy extractor with the
above mentioned special linearity property into a robust fuzzy extractor with essentially
the same parameters and no restrictions on the entropy rate of the secret w. However,
this is (necessarily) done in the Common Reference String (CRS) model, as we explain
below.

COMMON REFERENCE STRING MODEL. Unfortunately, the impossibility result of
[12] guarantees that fuzzy extractors with the special linearity property cannot be con-
structed in the plain model since they imply robust fuzzy extractors for secrets with

3 The idea of a KMS-MAC is implicitly used in with a construction that is indeed quite
similar to ours. However, the construction there is more complicated since the key is not guar-
anteed to be uniformly random.

Detection of Algebraic Manipulation with Applications 475

entropy rate below a half. We overcome this pessimistic state of affairs by building such
fuzzy extractors (and hence corresponding robust fuzzy extractors) in the Common Ref-
erence String (CRS) model. The common reference string can be chosen once when
the system is designed and can be hardwired/hardcoded into all hardware/software im-
plementing the system. Moreover, the CRS can be published publicly and we allow the
attacker to observe (but not modify) itA Our CRS is a random bitstring - it has no trap-
doors and we do not require any ability to “program” it. Since most users do not create
their own hardware/software but instead assume that a third party implementation is
correct, the assumption that this implementation also contains an honestly generated
random string does not significantly increase the amount of trust required from users.
We do assume that the probability distribution from which the secret w is chosen is
independent of the CRS. This is a very natural assumption for biometrics and many
other scenarios. However, it also means that our scheme is not applicable in the setting
of exposure resilient cryptography (see [9]]) where the attacker can learn some function
of the secret after seeing the CRS.

What our result shows, however, is that this seemingly minor addition not only al-
lows us to achieve robustness without additional restrictions on the entropy rate of
the secret, but also to nearly match the extracted key length of non-robust fuzzy ex-
tractor constructions (or the robust fuzzy extractor constructions in the random oracle
model [4]).

2 Algebraic Manipulation Detection Codes

Definition 1. An (S, G, §)-algebraic manipulation detection code, or (S, G, §)-AMD
code for short, is a probabilistic encoding map £ : S — G from a set S of size S
into an (additive) group G of order G, together with a (deterministic) decoding function
D : G — SU{L} suchthat D(E(s)) = s with probability I forany s € S. The security
of an AMD code requires that forany s € S, A € G, Pr[D(E(s) + A) ¢ {s, L}] < 6.
An AMD code is called systematic if S is a group, and the encoding is of the form

E:8§—=8%xG1 xGy, s (8,2, f(x,9))

for some function f and x € Gy. The decoding function of a systematic AMD code is
naturally given by D(s', 2/, 0") = s" if o' = f(a',s') and L otherwise.

Intuitively, £(s) can safely be stored on a private storage device X(G) so that an adver-
sary who manipulates the stored value by adding an offset A, cannot cause it to decode
to some s’ # s. It is also possible to define a weak AMD code where security only
holds for a random s € S rather than an arbitrary one. We focus of regular (strong)
AMD codes and mention some constructions and applications of weak AMD codes in
the full version of this work [8§].

From a practical perspective, it is typically not sufficient to have one particular code,
but rather one would like to have a class of codes at hand such that for every choice u

* We remark that assuming tamper-proof storage of the CRS, which can be shared by many
users, is very different than assuming tamper-proof storage of a “user-specific”” helper string
P. Indeed, the former can be hardwired into the system, and the latter can not.

476 R. Cramer et al.

for the bit-length of the source s and for every choice « of the security level, there exists
a code that “fits” these parameters. This motivates the following definition:

Definition 2. An AMD code tamily is a class of AMD codes such that for any k,u € N
there exists an (S, G, 6)-AMD code in that class with S > 2% and 6 < 27",

We point out that in this definition, the group G can be different for every AMD code
in the family and is left unspecified. In our constructions the group G will often be
the additive group of the vector space F¢ for some field IF. Specifically, we will often
focus on the field Fa (as an additive group, this is equivalent to F$) so addition (and
subtraction) is just bitwise-xor of d bit long strings.

We would like the construction of an AMD code to be close to optimal in that G
should not be much larger than S . We consider the fag size w of a (S, G, §)-AMD
code defined as w = log(G) — log(S). Intuitively, this denotes the number of bits that
the AMD code appends to the source. More generally we define the efficiency of an
AMD code family as follows.

Definition 3. The effective tag size w*(k,u) with respect to k,u € N of an AMD
code family is defined as w*(k, u) = min{log(G)} — u where the minimum is over all
(S, G, 6)-AMD codes in that class with S > 2% and 6 < 27",

In the full version of this work [8]], we prove the following lower bound on the effective
tag size of an AMD code family.

Theorem 1. Any AMD code family has an affective tag size lower bounded by
w*(k,u) > 2k — 274 > 25 — 1.

2.1 Optimal and Flexible Construction

We are now ready to present a construction of AMD codes which is both optimal and
flexible. As noted in the introduction, a similar, but more complicated construction ap-
peared in [[11]], though it was presented as part of a larger construction, and its properties
were not stated explicitly as a stand-alone primitive. The two constructions were dis-
covered concurrently and independently from each other.

Let F be a field of size ¢ and characteristic p, and let d be any integer such that d + 2
is not divisible by p. Define the function £ : F¢ — F¢ xF xF by E(s) = (s, z, f(x, s))
where

d
fla,s) =22+ " sia’

i=1

Theorem 2. The given construction is a systematic (¢%,q%2, (d + 1)/q)-AMD code
with tag size w = 2logq.

Proof. We wish to show that for any s € F and A € Fit+2: Pr[D(E(s) + A
{s, L}] < é.1tis enough to show that for any s’ # s and any A,, Ay € F: Pr[f(z, s)
Af = f(x+ Az, s’)] < 6. Hence we consider the event

d
24D st + Ap = (x4 Ay) d+2+z (z+ Ay) (1)

i=1 i=1

Detection of Algebraic Manipulation with Applications 477

We rewrite the right hand side of (@) as 2912 + (d+2) A,z + Zle slat 4+ A, -p(x),
where p(x) is some polynomial of degree at most d in x. Subtracting this term from both

sides of equation (I}, 2%*2 cancels out and we get
d
—(d+2) Az + Y (s — s)at — Ay p(x) + Ap =0 2)
i=1

We claim that the left side of equation2lis a non-zero polynomial of degree at most
d + 1. To see this, let us consider two cases:

1. If A, # 0, then the leading coefficient is —(d 4+ 2)A, # 0 (here we use the fact
that d + 2 is not divisible by the characteristic of the field).

2. If A, = 0, then @) simplifies to Z?:l (si—s)x'+As = 0, whichis not identically
zero since we assumed that s # s’

This shows that () has at most d + 1 solutions x. Let B be the set of such solutions so
|B| < d+ 1. Then

d+1

Pr[D(E(s) + 4) ¢ {5, 1}] = Prlre B <

O

Notice, the elements of the range group G = F¢ x F x I can be conveniently viewed
as elements of Z;, for some t (recall, p is the characteristic of [F). Thus, addition in
G simply corresponds to element-wise addition modulo p. When p = 2, this simply
becomes the XOR operation.

Quantifying the above construction over all fields F and all values of d (such that
d + 2 is not divisible by p), we get a very flexible AMD family. Indeed, we show that
the effective tag size of the family is nearly optimal.

Corollary 1. The effective tag size of the AMD code family is w*(k,u) < 2k +
2log(¥ + 3) + 2. Moreover, this can be achieved with the range group G being the
group of bitstrings under the bitwise-xor operation

We prove the above corollary in the full version of our work [§].

3 Application to Robust Secret Sharing

A secret sharing scheme is given by two probabilistic functions. The function Share
maps a secret s from some group G to a vector S = (S1,...,S5,) where the shares
S; are in some group G;. The function Recover takes as input a vector of shares S =
(S1,...,5,) where S; € G;U{ L} and outputs 3 € GU{ L }. A secret sharing schemes

3 We can also imagine situations where the “base” field F’ of some characteristic p is given to
us, and our freedom is in choosing the extension field IF and the appropriate value of d so that
S can be embedded into F¢. Under such restrictions, the effective tag size becomes roughly
2k + 2log(u) + O(log p).

478 R. Cramer et al.

is defined over some monotone access structure which maps subsets B C {1,...,n} to
astatus: qualified,unqualified, L. The correctness property of such a scheme
states that for any s € G and any qualified set B, the following is true with probability
1.If S «— Share(s) and S is defined to be S; = S; for each i € B and S; = L for each
i ¢ B, then Recover(S) = s. Similarly, the privacy of such a scheme states that for any
unqualified subset A, the shares {S;},_ , reveal no information about the secret s (this
is formalized using standard indistinguishability).

Thus, qualified sets of players can recover the secret from their pooled shares, while
unqualified subsets learn no information about the secret. Sets of players which are
neither qualified nor unqualified might not be able to recover the secret in full but might
gain some partial information about its value.

A linear secret sharing scheme has the property that the Recover function is linear:
given any s € G, any S € Share(s), and any vector S’ (possibly containing some
L symbols), we have Recover(S + S’) = s + Recover(S’), where vector addition is
defined element-wise and addition with L is defined by 1. +x =2 + L = | forall z.

Examples of linear secret sharing schemes include Shamir’s secret sharing scheme
[24] where the access structure is simply a threshold on the number of players, or a
scheme for a general access structure in [13].

We consider a setting where an honest dealer uses a secret sharing scheme to share
some secret s among n players. Later, an outside entity called the reconstructor con-
tacts some qualified subset B of the players, collects their shares and reconstructs the
secret. The security of the scheme ensures that, as long as the set A C B of players
corrupted by an adversary is unqualified, the adversary gets no information about the
shared secret. However, if the honest players B\ A also form an unqualified subset,
then the adversary can enforce the reconstruction of an incorrect secret by handing in
incorrect shares. In fact, if the reconstructor contacts a minimal qualified subset of the
players, then even a single corrupted player can cause the reconstruction of an incorrect
secret. Robust secret sharing schemes (defined in [26/3]]) ensure that such attacks can’t
succeed: as long as the adversary corrupts only an unqualified subset of the players, the
reconstructor will never recover a modified version of the secret.

Definition 4. A secret sharing scheme is 6-robust if for any unbounded adversary A
who corrupts an unqualified set of players A C {1,...,n}and any s € G, we have the
following. Let S < Share(s) and S be a value such that, for each 1 < i < n,

g - A(i,s,{Si}tica) ific A
T Sior L ifidA

Then Pr[Recover(S) & {s, L}] <é.

We note that in a (non-robust) linear secret sharing scheme, when the adversary modifies
shares by setting S; = S;+A, then, by linearity of the scheme, the adversary also knows
the difference A = § — s between the reconstructed secret § and the shared secret s.
This implies that we can think of s as being stored in an abstract storage device X (G),
which is private for an adversary who corrupts an unqualified subset of the players,
yet is not-robust in that the adversary can specify additive offsets so that X'(G) stores
s + A. This immediately implies that we can turn any linear secret sharing scheme into
an -robust secret sharing scheme using AMD codes.

Detection of Algebraic Manipulation with Applications 479

Theorem 3. Let (Share, Recover) denote a linear secret sharing scheme with domain
G of order G, and let (€, D) be an (S, G, 6)-AMD code with range G. Then the scheme

(Share™, Recover™) given by Share™(s) =Share(€(s)), Recover™(S) = D(Recover(S))
is an 6-robust secret sharing scheme.

Proof. Let S = Share®(S) and let S be a vector meeting the requirements of Def. @
Let 8" =S — S. The vector S’ contains 0 for honest players, L for absent players, and
arbitrary values for dishonest players. We have:

Pr[Recover®(S) ¢ {s, L}] = Pr[D(Recover(S) + Recover(S’)) ¢ {s, L}]
= Pr[D((s) + 4) & {s, L}]

where the value A = Recover(S’) is determined by the adversarial strategy .A. By
the privacy of the secret sharing scheme, it is only based on the adversary’s a-priori
knowledge of the shared secret and is otherwise independent of the value £(s). The
conclusion then follows immediately from the definition of AMD codes. a

For Shamir secret sharing (and similar schemes), where the group G can be an arbitrary
field of size ¢ > n, we can use the optimal and flexible AMD code construction from
Section 2.1l In doing so, each player’s share would increase by roughly 2log(1/8) +
2 log u bits (where u in the length of the message) as compared to the non-robust case.

ROBUST INFORMATION DISPERSAL. Systematic AMD codes have an additional ben-
efit in that the encoding leaves the original value s intact. This could be beneficial in
the scenario where players do not care about the privacy of s, but only about its au-
thenticity. In other words, it is safe to use information dispersal on s or, alternatively, s
can be stored in some public non-robust storage. Using a systematic AMD code which
maps s to (s, x, f(z, s)), the players can just secret share the authentication information
(z, f(z,s)) and use it later to authenticate s.Even when the value s is large, the authen-
tication information (x, f(x, s)) remains relatively small. Concretely, to authenticate an
u-bit secret s, we only need to secret share roughly 2(log(1/6) + log u) bits.

SECURE AND PRIVATE STORAGE / SECURE MESSAGE TRANSMISSION. In some ap-
plications we want to make sure that, as long as the honest players form a qualified
set and the dishonest players form an unqualified set, the correct secret will always be
reconstructed (we do not allow the option of reconstructing). This problem is known
under the name (unconditional) secure information dispersal or non-interactive
secure message transmission [14/13]]. There is a generic, though for large player sets
computationally inefficient, construction based on a robust secret sharing [7]: for every
qualified subset of the involved players, invoke the robust reconstruction until for one
set of shares no foul play is detected and a secret is reconstructed. If the robust secret
sharing scheme is 1/2%""-secure, then this procedure succeeds in producing the correct
secret except with probability at most 1/2%.

ANONYMOUS MESSAGE TRANSMISSION. In recent work [2], Broadbent and Tapp
explicitly used the notion of AMD codes introduced in this paper (and our construction
of them) in the setting of unconditionally secure multi-party protocols with a dishonest
majority. Specifically, AMD codes allowed them to obtain robustness in their protocol

480 R. Cramer et al.

for anonymous message transmission. This protocol, and with it the underlying AMD
code, was then used in as a building block to obtain a protocol for anonymous
quantum communication.

4 Message Authentication Codes with Key Manipulation Security

As a notion related to AMD codes, we define message authentication codes which re-
main secure even if the adversary can manipulate the key. More precisely, we assume
that (only) the key of the authentication code is stored on an abstract private device
X(G) to which the adversary has algebraic manipulation access, but the message and
the authentication tag are stored publicly and the adversary can modify them at will.
This is in contrast to AMD codes where the entire encoding of the message is stored in

X(G).

Definition 5. An (S, G, T, §)-message authentication code with key manipulation se-
curity (KMS MAC) is a function MAC : S x G — T which maps a source message in
a set S of size S to atag in the set T of size T using a key from a group G of order G.
We require that for any s # s’ € S, any 0,0’ € T andany A € G

Pr[MAC(s', K + A) =o' | MAC(s,K) = 0] <6
where the probability is taken over a uniformly random key K € G.

Intuitively, the adversary get some message/tag pair (s, o). The adversary wins if he can
produce an offset A and a message s’ # s along with a tag ¢’ such that the pair (s’, ")
verifies correctly under the key K + A. The above definition guarantees that such an
attack succeeds with probability at most §. In fact, the definition is slightly stronger than
required, since we quantify over all possible tags o of the message s (rather than just
looking at a randomly generated one). However, since the above definition is achievable
and simpler to state, we will consider this stronger notion only. We can also think of a
KMS-MAC as a generalization of a standard message authentication code, which only
guarantees security for A = 0.

As with AMD codes, we will consider the notion of a KMS-MAC family. For effi-
ciency, we are interested in minimizing the tag size log(7") and the key size log(G). The
following well known lower bounds on standard message authentication codes (e.g., see
[23]) obviously also apply to the stronger notion of a KMS-MAC.

Lemma 1. For any authentication code with security 6 < 275, the key size log(Q)
must be at least 2k, and the tag size log(T') must be at least k.

We now give a construction of a KMS-MAC out of any systematic AMD code.

Theorem4. LetE£:S — S x Gy X Ga, s+ (s,, f(x,s)) be a systematic
(IS1,|S]11G1 |Gz, 6)-AMD code. Then the function MAC : S x (G1 X Ga) — Ga yields
a (|S|,1G111G2|, G|, 6)-KMS-MAC:

MAC(s, (z1,22)) = f(z1,$8) + 22

Detection of Algebraic Manipulation with Applications 481

Proof. Assume K = (x1,x2) € G1 X G is chosen uniformly at random, and consider
arbitrary A = (A1, Ag) € G1 X Go, 0,0’ € Go, and 5,8 € S, where s # .

The event MAC(s, K) = o is the event f(x1,s) + 22 = o, which is the same as
x9 = —f(x1, 8) + 0. Let us call this event Fy. Similarly, the event MAC(s’, K + A) =
o’ isthe event f(z1 + Ay, 8') 4 (x2+ Ag) = o/, which is the same as f(z1 + Ay, 8') =
—29 + o’/ — As. Let us call this event Es. Thus, we need to bound Pr[Es | E].

Let us denote Ay = —o + o’ — Ay and define an auxiliary event EY as f(zq +
A1, 8") = f(x1,8) + Ay. We claim that Pr[Ey | Ey] = Pr[E) | Ei]. Indeed, if
xo = —f(x1,s) + o, then

—1’2+U’—A2 :—(—f(ach S)+U)+U/_A2 = f(l'h S)+(—U+0'/—A2) :f(acl, S)-i—Af

Finally, notice that F, and E are independent. Indeed, since EY, does not depend on x2,
and x5 is chosen at random from G, whether or not xs is equal to — f (1, 8) 4+ o does
not affect any other events not involving 5. Thus, Pr[E} | E1] = Pr[E}]. Therefore,
we have

Pr[MAC(s', K+ A) = ¢/ | MAC(s, K) =0| = Pr[f(z1+ A1, ") = f(z1,8)+Af] <6

where the last inequality follows directly from the security of the AMD code, since
s# 5. O

Using the systematic AMD code family constructed in Section 2.1l we get a nearly
optimal KMS-MAC family. In particular, plugging in the systematic AMD code family
from Theorem[] and using the parameters obtained in Corollary [T we get:

Corollary 2. There is a KMS-MAC family such that, for any k,u € N, the family
contains an (S, G, T,)-KMS-MAC (with respect to XOR operation) with § < 27",
S > 2% and

log(G) < 2k + 2log (u/k + 3) + 2
log(T)